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We analyze Dirac spectra of two-dimensional QCD-like theories both in the continuum and on the lattice
and classify them according to random matrix theories sharing the same global symmetries. The
classification is different from QCD in four dimensions because the antiunitary symmetries do not
commute with γ5. Therefore, in a chiral basis, the number of degrees of freedom per matrix element are not
given by the Dyson index. Our predictions are confirmed by Dirac spectra from quenched lattice
simulations for QCD with two or three colors with quarks in the fundamental representation as well as in
the adjoint representation. The universality class of the spectra depends on the parity of the number of
lattice points in each direction. Our results show an agreement with random matrix theory that is
qualitatively similar to the agreement found for QCD in four dimensions. We discuss the implications for
the Mermin-Wagner-Coleman theorem and put our results in the context of two-dimensional disordered
systems.
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I. INTRODUCTION

It has been well established that chiral symmetry is
spontaneously broken in strongly interacting systems of
quarks and gluons for a wide range of parameters such as
the temperature, the chemical potential, the number of
colors, the number of flavors and the representation of the
gauge group. In the broken phase the corresponding low
energy effective theory is given by a weakly interacting
system of pseudo-Goldstone bosons with a Lagrangian that
is determined by the pattern of chiral symmetry breaking.
In lattice QCD the spontaneous breaking of chiral sym-
metry is studied by evaluating the Euclidean partition
function which is the average of the determinant of the
Euclidean Dirac operator weighted by the Euclidean Yang-
Mills action. Its low energy limit is given by the partition
function of the Euclidean chiral Lagrangian. This theory
simplifies drastically [1,2] in the limit where the pion
Compton wave-length is much larger than the size of the
box. Then the partition function factorizes into a part
comprising the modes with zero momentum and a part
describing the modes with nonzero momentum. It turns out
that the zero momentum part is equivalent to a random
matrix theory with the global symmetries of QCD [3].
A particular useful way to study chiral symmetry break-

ing is to analyze the properties of the eigenvalues of the
Dirac operator. Because of the Banks-Casher formula [4]
the chiral condensate Σ ¼ jhψ̄ψij, the order parameter for

the spontaneous breaking of chiral symmetry, is given
by the average spectral density (denoted by ρðλÞ) near zero
of the Dirac operator per unit of the space-time volume V,

Σ≡jhψ̄ψij ¼ lim
a→0

lim
m→0

lim
V→∞

1

V

Z
∞

−∞

2mρðλÞdλ
λ2 þm2

¼ lim
a→0

lim
λ→0

lim
V→∞

π

V
ρðλÞ: ð1Þ

Here, a is the lattice spacing which provides the ultraviolet
cut-off. The order of the limits is critical and a different
order gives a different result. A better understanding of
these limits can be obtained from the behavior of the
eigenvalue density of the Dirac operator on the scale of the
smallest eigenvalues which according to the Banks-Casher
formula is given by

Δλ ¼ 1

ρð0Þ ¼
π

ΣV
: ð2Þ

The so-called microscopic spectral density is defined by [5]

ρsðxÞ ¼ lim
V→∞

1

ΣV
ρ

�
x
ΣV

�
: ð3Þ

If the Compton wavelength associated with the Dirac
eigenvalues, λ, is much larger than the size of the box, L,
then the partition function that generates the Dirac spec-
trum factorizes into a zero momentum part and a nonzero
momentum part. The zero momentum part is completely
determined by the global symmetries of the QCD-(like)
partition function and is equivalent to a random matrix
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theory with the same global symmetries. The Compton
wave length associated with the Dirac eigenvalues is the
Compton wave-length of the corresponding pseudo-
Goldstone modes and is given by

2π

mπ
¼ 2πFπffiffiffiffiffiffiffiffi

2λΣ
p ; ð4Þ

where Fπ is the pion decay constant. The condition
2π=mπ ≫ L implies

λ ≪
4π2F2

π

2L2Σ
¼ λL; ð5Þ

meaning that λL is the characteristic eigenvalue scale
corresponding to the size of the box. In d dimensions
the Euclidean volume is V ¼ Ld so that the average number
of eigenvalues in the universal domain scales as

ETh ∝
λL
Δλ

¼ 2πF2
πLd−2: ð6Þ

This scale is also known as the Thouless energy ETh. In two
dimensions, the number of eigenvalues in the universal
domain remains of Oð1Þ in the thermodynamic limit.
Arguments have been made that in one-dimensional

systems all states become localized for an arbitrary small
amount of disorder. The two-dimensional case is marginal.
For site disorder all states are exponentially localized
whereas for link disorder the situation is less clear [6].
For systems that are both rotational invariant and time
reversal invariant (denoted by the Dyson index βD ¼ 1) all
states seem to be localized. In the case of rotational
invariant systems with broken time reversal invariance
(denoted by the Dyson index βD ¼ 2) states in the center
of the band seem to be delocalized and the localization
length may be very large in a region around the band center.
For nonrotational invariant spin 1=2 systems (denoted by
the Dyson index βD ¼ 4) states are delocalized for a
substantial range of disorder and energies [7–9].
The connection between localization and Goldstone

bosons was most clearly formulated by McKane and
Stone [10]. They argued that a nonzero density of states
around the origin for a disordered system may either
indicate the presence of Goldstone bosons or may be
due to a nonzero density of the localized states. For
dynamical quarks the second alternative is not possible.
The reason is that the eigenvalues of localized states are
uncorrelated so that the partition function

ZðmÞ ¼
�Y

k

ðiλk þmÞ
�

ð7Þ

factorizes into single eigenvalue partition functions
resulting in a vanishing chiral condensate [11].

If we take the results from the condensed matter
literature at face value, also in two- dimensional systems,
there may be a finite region of extended states around zero
with correlations that are described by chiral randommatrix
theory or alternatively a partition function with sponta-
neously broken chiral symmetry. In more than two dimen-
sions we expect that these correlations will remain in the
presence of a fermion determinant and the corresponding
partition function will be the zero momentum part of a
chiral Lagrangian. In two dimensions, the presence of a
fermion determinant may push these states beyond the
Thouless energy so that all states become localized. This
would reconcile the numerical results for βD ¼ 4 with the
Mermin-Wagner-Coleman theorem which states that a
continuous symmetry cannot be broken spontaneously in
two or less dimensions in systems with sufficiently short-
range interactions. In terms of the supersymmetric formu-
lation of the quenched limit, the Mermin-Wagner-Coleman
theorem could be evaded because the symmetry group is
noncompact. This has been shown for hyperbolic spin
models [12,13]. This opens the possibility to have extended
states and universal spectral correlations also in two
dimensions.
Another interpretation is possible if the localization

length ξ is large so that we can consider the limiting case

1 ≪ L ≪ ξ: ð8Þ

Then the states behave as extended states with eigenvalues
that are described by random matrix theory up to the
Thouless energy. In this case the problems with the
Mermin-Wagner-Coleman theorem can be avoided and a
transition to a localized phase only takes place when L ∼ ξ.
In such scenario the scalar correlation function may drop
off at a similar rate, so that chiral symmetry appears to be
broken in the regime (8). This correlation function was
studied for theNc-color Thirring model [14] with a drop-off
of 1=x1=Nc .
A two-dimensional model for which Dirac spectra have

been studied in great detail, both analytically and numeri-
cally, is the Schwinger model. The eigenvalue correlations
of the one-flavor Schwinger model are given by random
matrix theory as was shown numerically [15,16] and
analytically by calculating the Leutwyler-Smilga sum rules
[17]. The two flavor Schwinger model was analyzed in
great detail in [18], and after rescaling the eigenvalues by
the average level spacing excellent agreement with chiral
random matrix theory is observed. No agreement with
chiral random matrix theory is found for the quenched
Schwinger model [16], while the spectral density seems to
diverge for λ → 0. The repulsion between the eigenvalues
seems to be greatly suppressed indicating that the states are
localized.
Let us consider a theory where the mass dependent chiral

condensate scales with the quark mass as
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ΣðmÞ ∼mα: ð9Þ

In the Schwinger model we have that [19]

α ¼ Nf − 1

Nf þ 1
; ð10Þ

but the argument given in this paragraph is more general.
According to the Gell-Mann-Oakes-Rennner relation the
mass of the “pions” associated with this condensate is
given by

m2
π ∼mαþ1: ð11Þ

Using the relation (1) between the spectral density and the
chiral condensate we find that the eigenvalue density
behaves as

ρðλÞ ∼ VΣðλÞ ∼ Vλα: ð12Þ
The Thouless energy is given by the scale for which the
pion Compton wavelength is equal to the size of the box,
i.e. mπ ∝ 1=L. Employing the relation (11) we find the
mass associated to the Thouless energy,

mth ∼ L−2=ðαþ1Þ: ð13Þ

The integrated spectral density is given by

NðλÞ ¼
Z

λ

−λ
ρðλ0Þdλ0 ∼ Vλαþ1; ð14Þ

so that the average number of eigenvalues below the
Thouless energy is proportional to

Nth ¼ NðmthÞ ∼ Ld−2: ð15Þ
due to combination of Eqs. (13) and (14). Remarkably, the
number of eigenvalues described by random matrix theory
does not depend on α. In two dimensions this number is
constant in the thermodynamic limit but the agreement with
chiral random matrix theory seems to improve with larger
volumes for the Schwinger model [16]. The corollary
of this argument is that correlations of low-lying Dirac
eigenvalues in conformal QCD-like theories are given by
chiral random matrix theory after unfolding the eigenval-
ues, i.e. λ0k ¼ λαþ1

k .
The eigenvalues scale with the volume as

λ ∼ V−1=ðαþ1Þ ð16Þ

via the relation (14) when keeping the average number of
eigenvalues fixed. This scaling was studied in [18] where
a volume scaling of V−5=8 is observed for two almost
massless flavors, c.f. Eq. (10). This would correspond to
Nf ¼ 4, cf. Eq. (10). This is actually correct because the
lattice Dirac operator couples only even and odd sites

doubling the number of flavors. Apparently, we need
exact massless quarks to push the states in the localized
domain.
Another important difference between QCD in four

dimensions and QCD in lower dimensions is the index
of the Dirac operator. In four dimensions the index is equal
to the topological charge of the gauge field configurations.
In three dimensions the index is not defined. In two
dimensions topology is defined for U(1) and can for
example be studied for the Schwinger model [17,20].
However, for higher-dimensional gauge groups the index
of the Dirac operator is zero [19,21,22] although unstable
instantons do exist [23,24].
In this paper we consider the quenched two-dimensional

QCD Dirac operator in the strong coupling limit with the
gauge fields distributed according to the Haar measure.
Both the continuum limit and the lattice QCD Dirac
operator will be discussed. For the lattice Dirac operator
we employ naive fermions. Our original motivation for this
choice was to understand the transition between different
symmetry classes when taking the continuum limit which
was observed for staggered fermions in three [25] as well as
in four [26] dimensions, but this issue is not addressed in
this paper.
The strong coupling lattice model is expected to be

equivalent to an interacting theory of mesons and/or
baryons. For U(1) gauge theories in two dimensions
this has been shown explicitly [27] by means of a
color-flavor transformation [28–30], where a gradient
expansion generates the various terms of a chiral
Lagrangian. In this paper, we do not perform the con-
tinuum limit, so that the lattice theory is equivalent to an
unrenormalized chiral Lagrangian, and the usual argu-
ments, that the states below the Thouless energy are
correlated according to random matrix theory, apply. In
the continuum limit and two dimensions, the fluctuations
of the hadronic fields will dominate the chiral condensate
and the theory renormalizes to a trivial phase without
Goldstone bosons. In other words, the theory renormalizes
to a localized phase.
The symmetry breaking pattern for the continuum limit

in any dimension was discussed in [31] and in the context
of topological insulators in [32] and goes back to what is
known as Bott-periodicity. The dimensional dependence of
the symmetry breaking pattern (see Table I) has its origins
in the structure of Clifford algebras. The four-dimensional
symmetry breaking pattern and its description in terms
of random matrix theory has been known for a long time
[33–35]. Because of the absence of the γ5 Dirac matrix in
three dimensions the symmetry breaking pattern is different
[36–38]. In two dimensions, the γ5 matrix is replaced by the
third Pauli matrix, σ3. This matrix also anticommutes with
the Dirac operator, but it does not commute with the charge
conjugation matrix given by σ2, which leads to a different
symmetry breaking pattern [31].
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The symmetries of the Dirac operator also depend on the
parity of the lattice. If the lattice size is even in both
directions, even lattice sites are only coupled to odd lattice
sites resulting in a “lattice chiral symmetry”. Having a
lattice that is odd in one direction and even in the other one
also puts global constraints on the Dirac operator resulting
in different symmetry properties. In this paper we classify
lattice theories in terms of randommatrix theory. In total we
can distinguish 9 classes. First of all they differ in their
antiunitary symmetries, namely with no antiunitary sym-
metry, with an antiunitary symmetry that squares to 1, and
with an antiunitary symmetry that squares to −1. Moreover
for each of these three classes we can have an even-even, an
even-odd or an odd-odd lattice. For all nine classes we give
the spectral properties in the microscopic domain and
compare them with lattice simulations of the corresponding
lattice theory in the strong coupling limit.
In Sec. II we discuss the microscopic Dirac spectrum

and chiral symmetry breaking pattern for the continuum
limit of two-dimensional QCD. The two-dimensional
lattice gauge theory for three different values of the
Dyson index is analyzed in Sec. III, and concluding
remarks are made in Sec. IV. In the appendices we derive
several random matrix results that have been used in the
main text. Part of this work was presented at the Lattice
2013 conference [41].

II. CONTINUUM DIRAC OPERATOR

The Euclidean Dirac operator of QCD-like theories is
given by

D ¼ γμð∂μ þ iAa
μλaÞ; ð17Þ

where Aa
μ are the gauge fields, γμ are the Euclidean γ-

matrices and λa are the generators of the gauge group. For

an even number of dimensions the Dirac operator in a chiral
basis reduces to a 2 × 2 block structure

Dð2=4Þ ¼
�

0 Wð2=4Þ

−Wð2=4Þ† 0

�
; ð18Þ

where in two dimensions the operator Wð2Þ is given by

Wð2Þ ¼ ∂1 þ i∂2 þ ðiAa
1 − Aa

2Þλa; ð19Þ
and in four dimensions the operator Wð4Þ can be written as

Wð4Þ ¼ iσμð∂μ þ iAa
μλaÞ ð20Þ

employing the standard chiral representation of Euclidean
γ-matrices with σμ ¼ ðσk;−i14Þ and σk the Pauli matrices.
In three dimensions, the Dirac operator is given by

D ¼
X3
k¼1

σkð∂k þ iAa
kλaÞ: ð21Þ

There is no involution that anticommutes with the Dirac
operator so that there is no chiral block structure. This is the
crucial difference with even-dimensional theories and was
already studied in Ref. [42].
In addition to chiral symmetry the Dirac operator has

other symmetries depending on the representation of the
gauge group which is discussed in the ensuing subsections.
In subsection II A we recall the discussion of the global
symmetries of the QCD Dirac operator in three and four
dimensions and extend it to the two-dimensional theory as
well. This symmetry classification is summarized in
Table I. In subsection II B we discuss the corresponding
random matrix theories. Thereby we summarize the

TABLE I. Symmetry breaking patterns in two (d ¼ 2), three (d ¼ 3), and four (d ¼ 4) dimensions for different gauge theories
and their associated Dyson index βD which is equal to the level repulsion. The corresponding random matrix theory sharing
the same symmetry breaking pattern and its classification according to symmetric spaces is indicated in the last column. The repulsion of
the levels from the origin, λαD , depends on the topological charge ν for QCD-like theories in four dimensions. The case of the two-
dimensional SUðNcÞ theory with the fermions in the adjoint representation is particular since the index of the
Dirac operator is either 0 or 1 depending on the parity of the dimensions of the Dirac matrix. This results in a repulsion that is
either λ or λ5. The corresponding random matrix theory consists of antisymmetric off-diagonal blocks so that depending on the
dimensionality we have either no or one pair of generic zero modes, respectively. For a discussion of the classification of random matrix
theories in terms of symmetric spaces we refer to Refs. [39,40]. In this table we do not include the breaking of the axial symmetry.

d Gauge theory βD αD Symmetry Breaking Pattern RMT

2 Nc ¼ 2, fund. 1 1 USpð2NfÞ × USpð2NfÞ → USpð2NfÞ (CI)
2 Nc ≥ 3, fund. 2 1 UðNfÞ × UðNfÞ → UðNfÞ chGUE (AIII)
2 Nc ≥ 2, adj. 4 1,5 Oð2NfÞ × Oð2NfÞ → Oð2NfÞ (DIII)

3 Nc ¼ 2, fund. 1 0 USpð4NfÞ → USpð2NfÞ × USpð2NfÞ GOE (AI)
3 Nc ≥ 3, fund. 2 0 Uð2NfÞ → UðNfÞ × UðNfÞ GUE (A)
3 Nc ≥ 2, adj. 4 0 Oð2NfÞ → OðNfÞ × OðNfÞ GSE (AII)

4 Nc ¼ 2, fund. 1 ν Uð2NfÞ → USpð2NfÞ chGOE (BDI)
4 Nc ≥ 3, fund. 2 2νþ 1 UðNfÞ × UðNfÞ → UðNfÞ chGUE (AIII)
4 Nc ≥ 2, adj. 4 4νþ 3 Uð2NfÞ → Oð2NfÞ chGSE (CII)
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classification of the random matrix theories for three- and
four-dimensional continuum QCD and supplement this
with the random matrix theories for two-dimensional
QCD. In subsection II C we recall the symmetry breaking
patterns.

A. Antiunitary symmetries of the QCD Dirac operator

The antiunitary symmetries of the Dirac operator depend
on the representation of the generators λa of the gauge
group SUðNcÞ. We consider three different gauge theories,
namely with the gauge group SUðNc ¼ 2Þ and fermions in
the fundamental representation denoted by the Dyson index
βD ¼ 1, with the gauge group SUðNc > 2Þ and fermions in
the fundamental representation which is βD ¼ 2, and with
the gauge group SUðNc ≥ 2Þ and fermions in the adjoint
representation labelled by βD ¼ 4.

1. βD ¼ 1

Let us consider the first case which is QCD with two
colors (Nc ¼ 2) and fermions in the fundamental repre-
sentation. Then the λa are given by the three Pauli matrices
τa acting in color space. Hence each covariant derivative

Dμ ¼ ∂μ þ iAa
μτa ð22Þ

is pseudoreal (quaternion) and anti-Hermitian, i.e.

D†
μ ¼−Dμ and ½Dμ;τ2K�− ¼Dμτ2K− τ2KDμ ¼ 0 ð23Þ

with K the complex conjugation operator. The correspond-
ing Dirac operator has the antiunitary symmetry

½iDðdÞ; τ2CK�− ¼ 0; ð24Þ

where C is the charge conjugation matrix. In four dimen-
sions the charge conjugation matrix reads C≡ γ2γ4 and in
two and three dimensions it is given by C ¼ σ2.
A crucial point is that the antiunitary operator satisfies

ðCτ2KÞ2 ¼ 1: ð25Þ

Therefore one can always find a gauge field independent
basis for which the Dirac operator is real [35,39]. This is the
reason why this case is denoted by the Dyson index βD ¼ 1
(one degree of freedom per matrix element). Collecting
everything, the continuum Euclidean QCD Dirac operator
for QCD with two fundamental fermions fulfills three
global symmetries in four and two dimensions namely anti-
Hermiticity, chiral symmetry, and a reality condition, i.e.

Dð4Þ†¼−Dð4Þ; ½Dð4Þ;γ5�þ ¼0; and ½iDð4Þ;τ2γ2γ4K�−¼0

ð26Þ
for four dimensions, see Ref. [35], and

Dð2Þ†¼−Dð2Þ; ½Dð2Þ;σ3�þ ¼ 0; and ½iDð2Þ;τ2σ2K�−¼ 0

ð27Þ
for two dimensions. For three dimensions there is no chiral
symmetry but the rest remains the same as in the even-
dimensional case

Dð3Þ† ¼ −Dð3Þ and ½iDð3Þ; τ2σ2K�− ¼ 0; ð28Þ

see Ref. [42]. Next we discuss the implications of these
symmetries.
In four dimensions, Eq. (26) implies that we can

construct a gauge field independent basis for which the
Dirac operator decomposes into a chiral block structure or a
basis for which the Dirac operator becomes real. This can
be done at the same time if the projection onto a chiral basis
commutes with the antiunitary symmetry. This is the case in
four dimensions where

�
1� γ5

2
; τ2γ2γ4K

�
−
¼ 0: ð29Þ

The corresponding random matrix ensemble is the chiral
Gaussian orthogonal ensemble (chGOE), see Refs. [35].
Equation (29) does not carry over to the two-dimensional

theory. In this case the projectors onto a chiral basis are
given by ð1� σ3Þ=2, playing the role of ð1� γ5Þ=2, but the
commutator with the antiunitary operator does not vanish,�

1� σ3
2

; τ2σ2K

�
−
≠ 0: ð30Þ

Therefore, one cannot find a basis for which the two-
dimensional Dirac operator decomposes into real chiral
blocks.
Choosing a chiral basis for Dð2Þ the antiunitary sym-

metry yields a different condition

��
0 iτ2K

−iτ2K 0

�
;

�
0 iWð2Þ

−iWð2Þ† 0

��
−
¼ 0; ð31Þ

which is equivalent to

Wð2Þ ¼ −τ2Wð2ÞTτ2: ð32Þ
Thus the operator is anti-self-dual and complex since we
have no additional symmetries. After a unitary transforma-
tion one obtains an equivalent Dirac operator with an off-
diagonal block τ2Wð2Þ which is complex symmetric. The
corresponding random matrix is known as the first
Bogolyubov-de Gennes ensemble denoted by the Cartan
symbol CI, see Ref. [40], and has been applied to
the normal-superconducting transitions in mesoscopic
physics [43].

DIRAC SPECTRA OF TWO-DIMENSIONAL QCD-LIKE … PHYSICAL REVIEW D 90, 085013 (2014)

085013-5



In three dimensions we can construct a gauge field
independent basis for which the matrix elements of the
operator iDð3Þ become real symmetric. The corresponding
random matrix ensemble is the Gaussian orthogonal
ensemble (GOE), see Ref. [42].

2. βD ¼ 2

In the case of three or more colors (Nc ≥ 3) with the
fermions in the fundamental representation the symmetry
under complex conjugation (23) is lost. Only anti-
Hermiticity and, for even dimensions, chiral symmetry
survive. The global symmetries of the Dirac operator are

Dð2Þ† ¼ −Dð2Þ and ½Dð2Þ; σ3�þ ¼ 0 ð33Þ

in two dimensions and

Dð4Þ† ¼ −Dð4Þ and ½Dð4Þ; γ5�þ ¼ 0 ð34Þ

in four dimensions. Since there are no antiunitary sym-
metries the operator Wð2=4Þ is generically complex both in
two and four dimensions. This is the reason why we denote
this case by the Dyson index βD ¼ 2. Therefore the random
matrix ensemble corresponding to the Dirac operator Dð2Þ
as well as Dð4Þ is given by an ensemble of chiral, complex,
anti-Hermitian random matrices which can be chosen with
Gaussian weights. This ensemble is known as the chiral
Gaussian Unitary Ensemble (chGUE), see Ref. [35].
In three dimensions we only have the anti-Hermiticity

condition,

Dð3Þ† ¼ −Dð3Þ: ð35Þ

Hence the operator iDð3Þ is Hermitian and its analogue in
random matrix theory is the Gaussian Unitary Ensemble
(GUE). The three-dimensional case was discussed in
Ref. [42] and its predictions for the microscopic Dirac
spectrum have been confirmed by various lattice
simulations [25].

3. βD ¼ 4

The third case is for fermions in the adjoint representa-
tion with two or more colors (Nc ≥ 2). In this case the
generators of the gauge group are antisymmetric and purely
imaginary. This results in two symmetry relations for the
covariant derivatives

D†
μ ¼ −Dμ and ½K; iDμ�− ¼ 0: ð36Þ

The corresponding Dirac operator fulfills the antiunitary
symmetry

½iDðdÞ; CK�− ¼ 0; ð37Þ
where the antiunitary operator satisfies

ðCKÞ2 ¼ −1 ð38Þ

for all dimensions. This allows us to construct a gauge field
independent basis for which the matrix elements of the
Dirac operator can be grouped into real quaternions. This
case is denoted by the Dyson index βD ¼ 4.
Collecting all global symmetries of the Dirac operator

we have

Dð4Þ†¼−Dð4Þ; ½Dð4Þ;γ5�þ ¼ 0; and ½iDð4Þ;γ2γ4K�−¼ 0

ð39Þ

for four dimensions,

Dð2Þ† ¼ −Dð2Þ; ½Dð2Þ;σ3�þ ¼ 0; and ½iDð2Þ;σ2K�− ¼ 0

ð40Þ
for two dimensions, and

Dð3Þ† ¼ −Dð3Þ and ½iDð3Þ; σ2K�− ¼ 0 ð41Þ

for three dimensions. The last case is the simplest. There is
no chiral symmetry, but we can construct a basis for which
the matrix elements of the Hermitian operator iDð3Þ can be
grouped into real quaternions. The associated random
matrix ensemble is the Gaussian Symplectic Ensemble
(GSE) pointed out for the first time in Ref. [42].
In two and four dimensions we have again to consider

the commutator of the projection operators onto the
eigenspaces of γ5 and the antiunitary operator. As is
the case for βD ¼ 1, the commutator vanishes in four
dimensions,

�
1� γ5

2
; γ2γ4K

�
−
¼ 0: ð42Þ

Therefore we can construct a basis for which Dð4Þ decom-
poses into chiral blocks with quaternion real elements. Such
Dirac operators are in the universality class of the chiral
Gaussian Symplectic Ensemble (chGSE), see Ref. [35].
In two dimensions the commutator of the antiunitary

symmetry and the chiral projector does not vanish, i.e.

�
1� σ3

2
; σ2K

�
−
≠ 0: ð43Þ

Therefore, there is no gauge field independent basis for
which Dð2Þ decomposes into quaternion real chiral blocks.
Nevertheless, we can find a basis for which one of these
properties holds. In a chiral basis the antiunitary symmetry
(37) reads

��
0 iK

−iK 0

�
;

�
0 iWð2Þ

−iWð2Þ† 0

��
−
¼ 0 ð44Þ
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and results into

Wð2ÞT ¼ −Wð2Þ: ð45Þ

Thus the operator Wð2Þ, see Eq. (19), is complex anti-
symmetric. In random matrix theory this symmetry class is
known as the second Bogolyubov-de Gennes ensemble
denoted by the Cartan symbol DIII [40]. This ensemble
also plays an important role in mesoscopic physics [43].

B. Random matrix theory for continuum QCD

As was outlined in Refs. [5,35] a random matrix theory
for the Dirac operator is obtained by replacing its matrix
elements by random numbers while maintaining the global
unitary and antiunitary symmetries of the QCD(-like)
theory. Within a wide class, the distribution of the eigen-
values on the scale of the average level spacing does not
depend on the probability distribution of the matrix
elements. This allows us to choose the probability distri-
bution to be Gaussian. The random matrix partition
function is thus given by

Zν
Nf

¼
Z

d½D�exp
�
−
nβD
2

trD†D

�YNf

k¼1

detðDþmk1Þ: ð46Þ

In even dimensions, in particular for d ¼ 2, 4, the Dirac
operator has the chiral block structure

D ¼
�

0 iW

iW† 0

�
; ð47Þ

while in three dimensions the Dirac operator is still anti-
Hermitian but the block structure is absent. The mass matrix
for the Nf quarks is given by M ¼ diagðm1;…; mNf

Þ. The
measure d½D� is the product of all real independent differ-
entials of the matrix elements of D.
In three dimensions, the random matrix ensemble is

n × n-dimensional for βD ¼ 1, 2 and 2n × 2n-dimensional
for βD ¼ 4. The random matrix iD is either real symmetric
(βD ¼ 1), Hermitian (βD ¼ 2), or Hermitian self-dual
(βD ¼ 4). From the corresponding joint probability density
of the eigenvalues [44],

pd¼3ðΛÞ
Y

1≤j≤n
dλj∝ jΔnðΛÞjβD

Y
1≤j≤n

exp

�
−
nβD
2

λ2j

�
dλj; ð48Þ

one can already read off many important spectral properties
of the QCD-Dirac operator Dð3Þ in the microscopic limit,
cf. Table I. Recall the Vandermonde determinant

ΔnðΛÞ ¼
Y

1≤a<b≤n
ðλa− λbÞ ¼ ð−1Þnðn−1Þ=2 det ½λb−1a �1≤a;b≤n:

ð49Þ

Thus, in three dimensions the eigenvalues are not degen-
erate apart from the Kramers degeneracy of QCD with
adjoint fermions. Moreover, the eigenvalues of Dð3Þ repel
each other like jλa − λbjβD and have no repulsion from the
origin [42].
In four dimensions, the operator Wð4Þ is replaced by an

n × ðnþ νÞ real (βD ¼ 1) or complex (βD ¼ 2) random
matrixW or a 2n × 2ðnþ νÞ quaternion matrix for βD ¼ 4.
Then the Dirac operator has exactly ν and 2ν zero modes
for βD ¼ 1, 2 and βD ¼ 4, respectively. Therefore, ν is
identified as the index of the Dirac operator. Due to the
axial symmetry the nonzero eigenvalues always come in
pairs �iλ. Moreover, because of the quaternion structure,
the eigenvalues of Dð4Þ as well as of the corresponding
random matrix Dirac operator are degenerate for QCD with
adjoint fermions. The joint probability density of the
eigenvalues of the random matrix D reads [35]

pχðΛÞ
Y

1≤j≤2n
dλj∝ jΔ2nðΛ2ÞjβD

Y
1≤j≤2n

exp
�
−
nβD
2

λ2j

�
λαDj dλj;

ð50Þ

cf. Table I. Again we can read off the behavior of the
eigenvalues of D which, in the microscopic limit, are
shared with the behavior of the low-lying eigenvalues of
the QCD Dirac operator. The eigenvalues again repel
each other as jλa − λbjβD . The difference with the three-
dimensional case is the level repulsion from the origin
λαDa ¼ λβDðνþ1Þ−1

a which results from the generic zero modes
and the chiral structure of the Dirac operator. The global
symmetries of the four-dimensional QCD Dirac operator
and their impact on the microscopic spectrum were dis-
cussed in Refs. [5,35].
In two dimensions, rather than choosing a basis for

which the Dirac operator becomes real or quaternion real
for βD ¼ 1 and βD ¼ 4, respectively, we insist on a chiral
basis that preserves the chiral block structure of the Dirac
operator. This results in a random matrix theory for which
the matrix τ2W is complex symmetric for βD ¼ 1,
τ2W ¼ ðτ2WÞT ∈ C2n×2n, and complex antisymmetric for
βD ¼ 4, W ¼ −WT ∈ Cn×n, cf. Eqs. (32) and (45), respec-
tively. For QCD with three or more colors and the fermions
in the fundamental representation (βD ¼ 2), the two-
dimensional Dirac operator has the same symmetries as
the four-dimensional theory resulting in the same random
matrix theory.
Another important difference between two and four

dimensions is the topology of the gauge field configura-
tions. For QCD with fundamental fermions the homotopy
class is Π1ðSUð2ÞÞ ¼ 0. Hence, no stable instanton sol-
utions exist [22,45] (unstable instanton solutions are still
possible [23,24,46]). Also the index of the Dirac operator is
necessarily zero. Suppose that the two-dimensional Dirac
operator has an exact zero mode
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Dð2Þϕ ¼ 0 ð51Þ

with definite chirality

σ3ϕ ¼ �ϕ: ð52Þ

Then, because of the antiunitary symmetry, we also have
that

Dð2Þσ2τ2Kϕ ¼ 0; ð53Þ

which generates another zero mode unless σ2τ2Kϕ and ϕ
are linearly dependent. This exactly happens in the four-
dimensional theory. However in two dimensions ϕ and
σ2τ2Kϕ have opposite chiralities

σ3σ2τ2Kϕ ¼ −σ2τ2Kσ3ϕ ¼ ∓σ2τ2Kϕ ð54Þ

implying that they have to be linearly independent states.
We conclude that the index of the Dirac operator is zero for
two-dimensional QCD in the fundamental representation
and with two colors.
Although the index is trivial we still have a linear

repulsion of the spectrum from the origin resulting from
the chiral structure ofD. The joint probability density of the
corresponding random matrix ensemble was first derived in
the context of mesoscopic physics [43] and is given by
Eq. (50). For completeness we give a derivation of this
result in appendix A 1. Since we have a linear repulsion
from the origin we have αD ¼ 1. The level repulsion is also
linear, i.e. ∼jλa − λbj, and the eigenvalues show no generic
degeneracy.
For quarks in the adjoint representation the gauge group

is given by SUðNcÞ=ZNc
with the homotopy group

Π1ðSUðNcÞ=ZNc
Þ ¼ ZNc

[45]. If ϕ is a zero mode with
positive chirality, then σ2Kϕ is a zero mode with negative
chirality. Therefore, the index of the Dirac operator is zero.
Using a bosonization approach it can be shown that the
chiral condensate is nonzero for all Nc [47], which is
consistent with having at most one pair of zero modes.
Indeed, in a chiral basis, the nonzero off-diagonal block of
the Dirac matrix is a square antisymmetric matrix, and
generically has one zero mode if the matrix is odd-
dimensional and no zero modes if the matrix is even
dimensional. In Ref. [45], in the sector of topological
charge k ¼ 0;…; Nc − 1, a total of 2kðNc − kÞ zero modes
are found, half of them right-handed and the other half left-
handed. However, these zero modes are only obtained after
complexifying the SUðNcÞ algebra and are irrelevant in the
present context. The corresponding random matrix theory
for this universality class also has an antisymmetric off-
diagonal block with no zero modes or one zero mode.
The joint probability density of the eigenvalues is given

by the form (50) where the level repulsion is jλa − λbj4
since all eigenvalues are Kramers degenerate (because the

antiunitary symmetry operator satisfies (σ2KÞ2 ¼ −1). We
rederive this joint probability density in appendix A 2 and
relate it to the QCD Dirac operator in the microscopic limit.
The repulsion of the eigenvalues from the origin is either
linear (αD ¼ 1) for an even-dimensional W or quintic
(αD ¼ 5) for an odd-dimensional W. We emphasize that
the pair of zero modes for odd-dimensional matrices is not
related to topology.

C. Symmetry breaking pattern

In Table I, we also summarize the symmetry breaking
patterns for continuum QCD in two, three, and four
dimensions (see [31] for a discussion of general dimen-
sions). We recall the results for the cases considered in our
work and show that they also apply to the random matrix
ensembles introduced in the previous subsection. We
restrict ourselves to the two-dimensional case with the
Dyson index βD ¼ 1, 4. The other symmetry breaking
patterns and their relation to random matrix theory were
extensively discussed in Refs. [35,42].
For βD ¼ 1, the off-diagonal block is symmetric after a

unitary transformation, ðτ2Wð2ÞÞT ¼ τ2Wð2Þ. Then we have

ψ̄Rτ2Wð2ÞψR ¼ 1

2

�
ψ̄T
R

ψR

�T� 0 τ2Wð2Þ

−τ2Wð2Þ 0

��
ψ̄T
R

ψR

�
;

ð55Þ

where ψR ¼ ð1þ σ3Þψ=2 is the right handed component of
a quark field ψ . We obtain a similar expression for the other
off-diagonal block, Wð2Þ†, of the Dirac operator Dð2Þ with
ψR → ψL ¼ ð1 − σ3Þψ=2, i.e.

ψ̄Lðτ2Wð2ÞÞ†ψL¼
1

2

�
ψ̄T
L

ψL

�T� 0 ðτ2Wð2ÞÞ†
−ðτ2Wð2ÞÞ† 0

��
ψ̄T
L

ψL

�
;

ð56Þ

Therefore, the chiral symmetry is USpð2NfÞ × USpð2NfÞ
and acts on the doublets via the transformation ðψ̄R;ψT

RÞ →
ðψ̄R;ψT

RÞUR and ðψ̄L;ψT
LÞ → ðψ̄L;ψT

LÞUL with UR=L ∈
USpð2NfÞ. In terms of these doublets the chiral condensate
can be written as

ψ̄RψL þ ψ̄LψR ¼
�
ψ̄T
R

ψR

�T� 0 1

−1 0

��
ψ̄T
L

ψL

�
: ð57Þ

A nonzero expectation value of the chiral condensate
requires that the unitary symplectic matrices fulfill the
constraint

UR

�
0 1

−1 0

�
UT

L ¼
�

0 1

−1 0

�
; ð58Þ

so that the chiral symmetry is broken to USpð2NfÞ.
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This result can be derived by an explicit calculation
for the corresponding random matrix model, see
appendix A 1 b, and was also found in Ref. [31] for general
QCD-like theories and in Ref. [40] for random matrix
theories.
For two-dimensional QCD with adjoint fermions

(βD ¼ 4) Wð2ÞT ¼ −Wð2Þ is antisymmetric so that the
coupling of the gauge fields and the quarks can be
rewritten as

ψ̄RWð2ÞψR ¼ 1

2

�
ψ̄T
R

ψR

�T� 0 Wð2Þ

Wð2Þ 0

��
ψ̄T
R

ψR

�
; ð59Þ

and

ψ̄LWð2Þ†ψL ¼ 1

2

�
ψ̄T
L

ψL

�T� 0 Wð2Þ†

Wð2Þ† 0

��
ψ̄T
L

ψL

�
: ð60Þ

The corresponding chiral symmetry is Oð2NfÞ × Oð2NfÞ
with the transformation ðψ̄R;ψT

RÞ → ðψ̄R;ψT
RÞAORA−1 and

ðψ̄L;ψT
LÞ → ðψ̄L;ψT

LÞAOLA−1 with OR=L ∈ Oð2NfÞ and

AAT ¼
�
0 1

1 0

�
: ð61Þ

Invariance of the nonzero chiral condensate,

ψ̄RψL þ ψ̄LψR ¼
�
ψ̄T
R

ψR

�T� 0 1

−1 0

��
ψ̄T
L

ψL

�
; ð62Þ

requires

OR ¼
�

0 1

−1 0

�
OL

�
0 1

−1 0

�
; ð63Þ

such that the symmetry is broken to Oð2NfÞ. Also this case
agrees with results of Refs. [31,40].

III. TWO-DIMENSIONAL LATTICE QCD WITH
NAIVE FERMIONS AT STRONG COUPLING

In this section we consider the microscopic limit of naive
fermions in the strong coupling limit and the corresponding
random matrix theories. Thus the links, the gauge group
elements on the lattice, are distributed according to the
Haar-measure of the gauge group. In Secs. III Awe discuss
the general effect of the parity of the lattice on the global
symmetries of the Dirac operator. This discussion is
combined with the specific antiunitary symmetries of the
QCD-like theories in Secs. III B, III C, and III D. In
particular, we classify each lattice Dirac operator according
to a random matrix ensemble, which is summarized in
Table II together with some spectral properties. These
random matrix theory predictions are compared with two-
dimensional lattice simulations confirming that the parity
of the lattice has an important effect on the properties of the
smallest eigenvalues. This was observed before in the
condensed matter literature [6].

A. General lattice model

The covariant derivatives that enter in the lattice QCD
Dirac operator can be readily constructed via the translation
matrices. Before doing so we introduce the lattice. Let jji
be the j’th site in one direction of a lattice written in Dirac’s
bra-ket notation. Then the dual vector is hjj. The translation
matrices of an L1 × L2 lattice in the directions μ ¼ 1, 2 are
given by

TABLE II. Random matrix theories for the two-dimensional naive lattice QCD Dirac operator with gauge group listed in the first
column. The Dyson index βD refers to the antiunitary symmetry of the Dirac operator in the continuum. Because of additional
symmetries the power of the Vandermonde determinant, βðeffÞD , is generally different from the continuum theory and thus, the level
repulsion as well. Moreover the repulsion of the levels from the origin, namely λα

ðeffÞ
D , the generic degeneracy of the eigenvalues (third to

last column, “Deg”), and the number of generic zero modes (second to last column, “ZM”) generally change as well. The third column
refers to whether L1 or L2 are even (e) or odd (o). All discretizations are classified according to the ten-fold classification of random
matrix theories (fourth column) which share the same pattern of chiral symmetry breaking with the lattice QCD Dirac operator (we do
not consider axial symmetry breaking). Notice that the symmetry breaking pattern and, therefore, the global symmetries of the lattices
where L1 and L2 are both odd is the same as the two-dimensional QCD Dirac operator in continuum, cf. Table I.

Gauge theory βD Lat. Sym. Class βðeffÞD αðeffÞD Deg ZM Symmetry breaking pattern

Nc ¼ 2, fund. 1 ee CII 4 3 4 0 Uð4NfÞ → Oð4NfÞ
Nc ¼ 2, fund. 1 eo C 2 2 2 0 USpð4NfÞ → Uð2NfÞ
Nc ¼ 2, fund. 1 oo CI 1 1 1 0 USpð2NfÞ × USpð2NfÞ → USpð2NfÞ
Nc > 2, fund. 2 ee AIII 2 1 2 0 Uð2NfÞ × Uð2NfÞ → Uð2NfÞ
Nc > 2, fund. 2 eo A 2 0 1 0 Uð2NfÞ → UðNfÞ × UðNfÞ
Nc > 2, fund. 2 oo AIII 2 1 1 0 UðNfÞ × UðNfÞ → UðNfÞ
Nc ≥ 2, adj. 4 ee BDI 1 0 2 0 Uð4NfÞ → USpð4NfÞ
Nc ≥ 2, adj. 4 eo D 2 0 2 0 Oð4NfÞ → Uð2NfÞ
Nc ∈ 2Nþ 1, adj. 4 oo DIII (even-dim) 4 1 2 0 Oð2NfÞ × Oð2NfÞ → Oð2NfÞ
Nc ∈ 2N, adj. 4 oo DIII (odd-dim) 4 5 2 2 Oð2NfÞ × Oð2NfÞ → Oð2NfÞ
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Tμ ¼

8>>>>><
>>>>>:

P
1≤i≤L1

1≤j≤L2

U1ij ⊗ jiihiþ 1j ⊗ jjihjj; μ ¼ 1;

P
1≤i≤L1

1≤j≤L2

U2ij ⊗ jiihij ⊗ jjihjþ 1j; μ ¼ 2.
ð64Þ

The matrices Uμij are given in some representation of the

special unitary group SUðNcÞ and are weighted with the

Haar-measure of SUðNcÞ. Hence, the translation matrices

Tμ are unitary.
Note that our lattices have a toroidal geometry. We have

numerically looked at the effect of periodic and antiperiodic
fermionic boundary conditions on the spectrum of the
Dirac operator. Indeed, the universality class remains
unaffected since the global symmetries are independent
of the boundary conditions. Only the Thouless energy
marginally changes.
The Dirac operator on a two-dimensional lattice is

given by

D¼ σμðTμ−T†
μÞ

¼
�

0 W

−W† 0

�

¼
�

0 Tx−T†
xþ iðTy−T†

yÞ
Tx−T†

x − iðTy−T†
yÞ 0

�
: ð65Þ

Due to the lattice structure, an additional symmetry can
exist in each direction if the number of sites in a direction is
even. Then the matrix elements of the Dirac operator
between even and odd sites are nonvanishing while there
is no direct coupling between an even and an even lattice
site and between an odd and an odd site. For a two-
dimensional lattice we can distinguish three cases. First, the
number of lattice sites L1 and L2 are both odd. Then, there
are no additional symmetries such that the lattice Dirac
operator is in the same symmetry class as the continuum
theory. The other two cases are, second, L1 even and L2

odd or the reverse, and third, both L1 and L2 are even. We
analyze these two cases in detail for each antiunitary
symmetry class separately. Thereby we assume that both
L1 and L2 are larger than 2 because only then the low-lying
eigenvalues of the Dirac operator show a generic behavior.
Let us define the operators

ΓðμÞ
5 ¼

8>>>>><
>>>>>:

P
1≤i≤L1

1≤j≤L2

ð−1Þi1Nc
⊗ jiihij ⊗ jjihjj; μ ¼ 1;

P
1≤i≤L1

1≤j≤L2

ð−1Þj1Nc
⊗ jiihij ⊗ jjihjj; μ ¼ 2.

ð66Þ

Then one can show that the operator ΓðμÞ
5 fulfills the relation

ΓðμÞ
5 TωΓ

ðμÞ
5 ¼ ð−1ÞδμωTω ð67Þ

if Lμ is even. Hereby we employ the Kronecker symbol δμω
in the exponent of the sign.
Let us consider the simplest case where L1 and L2 are

odd. Then W has no additional symmetries resulting from
the lattice structure. Therefore, the Dirac operator will have
the same unitary and antiunitary symmetries as in the
continuum limit discussed in Sec. II, in particular it is anti-
Hermitian and chirally symmetric,

D ¼ −D† and ½σ3; D�þ ¼ 0: ð68Þ

Therefore the Dirac operator has the structure

D ¼
�

0 W
−W† 0

�
; ð69Þ

where W may fulfill some additional antiunitary sym-
metries because of the representation of the gauge theory.
In the second case, we have in one direction an even

number of lattice sites and in the other direction an odd
number of lattice sites. Let us assume that without loss of
generality L1 ∈ 2N and L2 ∈ 2Nþ 1. Then the lattice
Dirac operator fulfills the global symmetries

D ¼ −D†; ½σ3; D�þ ¼ 0; and ½Γð1Þ
5 σ2; D�− ¼ 0

ð70Þ

plus possible antiunitary symmetries depending on the
representation of the gauge group. From the first two
symmetries it follows that the Dirac operator has the chiral
structure (69). The last symmetry relation of Eq. (70) tells
us that the matrix W is Γð1Þ

5 -Hermitian, i.e.

W† ¼ Γð1Þ
5 WΓð1Þ

5 : ð71Þ

Hence the Dirac operator for this kind of lattices takes the
form

D ¼
�

0 Γð1Þ
5 H

−HΓð1Þ
5 0

�

¼ diagðΓð1Þ
5 ; 1Þ

�
0 H

−H 0

�
diagðΓð1Þ

5 ; 1Þ; ð72Þ

withH a Hermitian matrix. This matrixH may be restricted
to a subspace of the Hermitian matrices if we take into
account the antiunitary symmetries resulting from the
representation of the gauge theory. The unitary matrix
diagðΓð1Þ

5 ; 1Þ does not change the eigenvalue spectrum ofD
and can be omitted.
One can also derive the structure (72) by employing the

projection operators ð1� Γð1Þ
5 Þ=2. They project the lattice
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onto sub-lattices associated to the even and odd lattice sites
in the direction μ ¼ 1. In such a basis, the translation matrix
T1 maps the even lattice sites to the odd ones and vice versa
while the translation matrix T2 maps the two sub-lattices
onto themselves.
In the third case the lattice has an even number of lattice

sites in both directions. This is exactly the situation of
staggered fermions. The corresponding Dirac operator for
naive fermions has the symmetries

D ¼ −D†; ½σ3; D�þ ¼ 0;

½Γð1Þ
5 σ2; D�− ¼ 0; and ½Γð2Þ

5 σ1; D�− ¼ 0: ð73Þ

Again the Dirac operator has the chiral structure (69), but
the symmetry relation of the matrix W is given by

W† ¼ Γð1Þ
5 WΓð1Þ

5 and ½Γð1Þ
5 Γð2Þ

5 ;W�þ ¼ 0: ð74Þ

The first symmetry restricts W to a Γð1Þ
5 -Hermitian matrix

whereas the second relation reflects the even-odd symmetry
of the Dirac operator. Therefore the lattice Dirac operator
has the structure

D ¼ diagðΓð1Þ
5 ; 1Þ

0
BBBBB@

0
0 X

X† 0

0 −X
−X† 0

0

1
CCCCCAdiagðΓð1Þ

5 ; 1Þ;

ð75Þ
where X is a complex matrix that may fulfill antiunitary
symmetries depending on the representation of the gauge
fields. The double degeneracy is immediate and is
eliminated for staggered fermions.
Again one can also explicitly construct the form of the

lattice Dirac operator (75) by employing the four projection

operators ð1� Γð1Þ
5 Þ=2 and ð1� Γð2Þ

5 Þ=2. They split the
lattice into four sub-lattices which are coupled via the
translation matrices T1=2.
Adding the antiunitary symmetries to the symmetries

(68), (70), and (73) will give rise to further constraints on
W. In Table II we summarize these cases for each
antiunitary symmetry class. In general, the symmetry class
will differ from the symmetry class in continuum.
Therefore the corresponding random matrix ensemble
and the symmetry breaking pattern will also change.
In particular, one has to replace the indices βD
(Dyson index ¼ level repulsion) and αD (¼ repulsion of
the levels from the origin) in the joint probability densities
of the eigenvalues of the random matrix model,
cf. Eqs. (48) and (50), by effective values,

βD → βðeffÞD and αD → αðeffÞD : ð76Þ

This impacts the spectral properties of the Dirac operator in
the microscopic limit.
There are additional conditions on the off-diagonal block

W of the lattice Dirac operator D which are independent of
the gauge configurations. For example the traces of W
satisfy the relations

trW2¼ trW2lþ1¼0 and

trWW†¼
	
2NcL1L2; fundamental fermions;

2ðN2
c−1ÞL1L2; adjoint fermions

ð77Þ

with l ¼ 0; 1; 2;… such that l ≤ minfL1; L2g=2 − 1. They
result from the fact that the translation matrices (64) are
unitary and have no diagonal elements. The conditions of
the kind (77) are expected to have no influence on the
microscopic spectrum in the limit of large matrices.
Nevertheless, they may give rise to finite volume correc-
tions which turn out to be particularly large for the
simulations of SU(3) gauge theory with fermions in the
fundamental representation and choosing L1 even and L2

odd, see subsection III D 2. The effect of such conditions
can also be studied with random matrix theory and we do
this for the simplest condition, namely that W is traceless,
i.e. trW ¼ 0.

B. SU(2) and fermions in the fundamental
representation

When studying the two-color theory in its fundamental
representation the translation matrix fulfills exactly the
same antiunitary symmetry as the covariant derivative in
the continuum theory,

½iTμ; τ2K�− ¼ 0; ð78Þ

cf. Eq. (23). This symmetry carries over to the symmetry

½iD; τ2σ2K�− ¼ 0; ð79Þ

for the lattice Dirac operator meaning that there is always a
gauge field independent basis where the Dirac operator
appears real. However, as is the case in the continnuum
theory, the symmetry (79) may not commute with the
symmetries (68), (70), and (73). In the continuum theory
we showed that the antiunitary symmetry results in a
symmetry of the off-diagonal block W,

W ¼ −τ2WTτ2: ð80Þ

cf. Eq. (32). This carries over to the lattice theory as well
and together with the symmetries (68), (70), and (73) yields
the symmetry classification given in Table 2. This is
worked out in detail in the subsections III B 1, III B 2,
and III B 3 for ðL1; L2Þ odd-odd, even-odd, and even-even,
respectively.
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1. The odd-odd case

As already discussed before, this case does not have any
additional symmetries and the pattern of chiral symmetry
breaking as well as the distribution of the eigenvalues in the
microscopic domain has to be the same as in the continuum
limit which was discussed in Sec. III A. The symmetries of
the Dirac operator are summarized in Eq. (27) which
translates in terms of the lattice Dirac operator as in
Eqs. (68) and (80). That corresponds to a chiral random
matrix theory with symmetric complex off-diagonal blocks.
In the Cartan classification of symmetric spaces, this is
denoted by the symbol CI. The corresponding microscopic
level density is given by (x ¼ λVΣ) [48]

ρðxÞ ¼ x
2
½J21ðxÞ − J0ðxÞJ2ðxÞ� þ

1

2
J0ðxÞJ1ðxÞ: ð81Þ

The symmetry breaking pattern is therefore the same as in
the continuum, namely Uð2NfÞ → Oð2NfÞ.
In Fig. 1(a) we compare the prediction (81) for the low-

lying Dirac spectrum with lattice QCD data at strong
coupling. The size of the lattices is quite small.
Nevertheless the agreement of the analytical prediction
for the microscopic level density and the simulations
around the origin is good. In particular, the linear repulsion
of the eigenvalues from the origin is confirmed. Also the

degree of degeneracy and the number of generic zero
modes, which are in this case one and zero, respectively, are
verified. The lattice results are obtained from an ensemble
of about 105 independent configurations with the links
generated by the Haar measure of the gauge group SU(2).

2. The even-odd case

For definiteness we choose L1 even and L2 odd. Then,
the Dirac operator is of the form (72). We combine

the intermediate result W ¼ Γð1Þ
5 H with a Hermitian matrix

H and the antiunitary symmetry (80). Therefore we can
find a gauge field independent rotation, namely

Uð1Þ
5 ¼exp½πiðΓð1Þ

5 −1NcL1L2
Þ=4�, where ~H ¼ Uð1Þ

5 HUð1Þ−1
5

becomes an anti-self-dual Hermitian matrix ( ~H ¼ ~H† ¼
−τ2 ~HTτ2 ¼ −τ2 ~H�τ2). This is the class C of the tenfold
classification [40]and ~H is anelement in theLie-algebraof the
group USpðNcL1L2Þ. In this basis, the Dirac operator reads

D¼diagðUð1Þ
5 ;Uð1Þ−1

5 Þ
�

0 ~H

− ~H 0

�
diagðUð1Þ−1

5 ;Uð1Þ
5 Þ: ð82Þ

Note that Γð1Þ
5 ¼ Uð1Þ2

5 .
What does this imply for the spectrum of the Dirac

operator? The antiunitary symmetry leads to a pair of
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FIG. 1 (color online). Comparison of the microscopic level densities of lattice QCD data in the strong coupling limit at various lattice
sizes (stars) and the analytical results given by the corresponding random matrix theories (solid curves). The plotted lattice gauge
theories are: a) SU(2) fundamental and L1; L2 odd, b) SU(2) fundamental and L1 þ L2 odd, and c) SU(2) fundamental and L1; L2 even.
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eigenvalues�λ of the Hermitian matrix ~H. Indeed, if λ is an
eigenvalue of ~H with the eigenvector jϕi,

~Hjϕi ¼ λjϕi; ð83Þ

then the state τ2jϕ�i is an eigenvector with eigenvalue −λ,

~Hτ2jϕ�i ¼ −λτ2jϕ�i: ð84Þ

Therefore the Dirac operator (82) has the eigenvalues �iλ
which are doubly degenerate. This leads to a doubling of
the number of flavors and the spectrum of D is twice the
spectrum of i ~H. In addition, because of

ψ̄ ~H ψ ¼ 1

2
ðψ̄ ~H ψ − ðτ2ψÞT ~Hτ2ψ̄

TÞ; ð85Þ

the flavor symmetry is enhanced to USpð4NfÞ, cf. Eq. (55).
Because

detðDþm1Þ ¼ detð ~H2 þm21Þ
¼ detð ~H þ im1Þ detð ~H − im1Þ; ð86Þ

a nonzero eigenvalue density of ~H leads to a nonzero
eigenvalue density of the Dirac operator, D. The symmetry
USpð4NfÞ is thus spontaneously broken by the formation
of a condensate with m as source term. However this
condensate is still invariant under a Uð2NfÞ subgroup of
USpð4NfÞ

½diagðU;U�Þ�T
�

0 m12Nf

−m12Nf
0

�
diagðU;U�Þ

¼
�

0 m12Nf

−m12Nf
0

�
: ð87Þ

Thus the symmetry breaking pattern is USpð4NfÞ →
Uð2NfÞ in agreement with the symmetry breaking pattern
of the corresponding random matrix ensemble [40].
The joint probability distribution of the symmetry class

C coincides with the distribution of the nonzero eigenval-
ues of the chGUE for ν ¼ 1=2. The microscopic level
density is thus given by [43,48,49]

ρðxÞ ¼ 1

π
−
sinð2xÞ
2πx

: ð88Þ

In Fig. 1(b) we compare this result to lattice simulations.
We find only good agreement to about one eigenvalue
spacing. The reason for the strong disagreement above the
average position of the first eigenvalue is not clear.
Nevertheless, the quadratic repulsion of the eigenvalues
from the origin, the double degeneracy of the eigenvalues,
and the fact that there are no generic zero modes are
confirmed by the lattice simulations.

3. The even-even case

Finally, we consider the case with both L1 and L2 even.
Then the Dirac operator has the structure given in Eq. (75).
After combining the chiral structure of W with the anti-
unitary symmetry (80) the Dirac operator takes the form

D ¼ diagðUð1Þ
5 ; Uð1Þ−1

5 Þ

0
BBBBB@

0
0 ~W
~W† 0

0 − ~W

− ~W† 0
0

1
CCCCCA

× diagðUð1Þ−1
5 ; Uð1Þ

5 Þ ð89Þ

with ~W� ¼ τ2 ~Wτ2 a quaternion matrix without any further
symmetries. The unitary transformation diagðUð1Þ−1

5 ; Uð1Þ
5 Þ

is exactly the same as in the previous subsection and keeps
the spectrum invariant such that the global symmetries
of the lattice Dirac operator D essentially coincide with
the continuum Dirac operator in four dimensions with the
fermions in the adjoint representation. Therefore, the
random matrix ensemble corresponding to this type of
lattice theory is the chGSE with the chiral symmetry
breaking pattern Uð4NfÞ → Oð4NfÞ. The degeneracy of
the eigenvalues is four because of Kramers degeneracy and
the doubling of flavors. In Table II we summarize the main
properties of this ensemble.
The microscopic level density of the lattice QCD Dirac

operator in this class is given by the ν ¼ 0 result of the
chGSE [48,50] (note that ~W is a square matrix),

ρðxÞ ¼ x½J20ð2xÞ þ J21ð2xÞ� −
1

2
J0ð2xÞ

Z
2x

0

J0ð~xÞd~x: ð90Þ

There are no generic zero modes and the levels show a
cubic repulsion from the origin.
In Fig. 1(c) we compare the result (90) to lattice

simulations of the two-dimensional Dirac operator for
QCD with two colors. There is an excellent agreement
for the first few eigenvalues confirming our predictions. In
this case we also checked that the finite size corrections of
the chiral condensate behave as Σ ¼ c1 þ c2=V with c1 ¼
0.375 and c2 ¼ 2.5.

C. SUðNcÞ and fermions in the adjoint representation

For the fermions in the adjoint representation of the
gauge group SUðNc ≥ 2Þ the translation matrices are real
and, hence, satisfy the antiunitary symmetry

½K; Tμ�− ¼ Tμ: ð91Þ

On a L1 × L2 lattice, the translation matrices are repre-
sented by a subset of matrices in the orthogonal group
OððN2

c − 1ÞL1L2Þ. The symmetry (91) carries over to the
two-dimensional lattice Dirac operator
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½iD; σ2K�− ¼ 0; ð92Þ

and its off-diagonal block matrix

W ¼ −WT: ð93Þ
We combine this symmetry with the symmetries (68), (70),
and (73) along the same lines as shown in subsection III C.
Thereby we discuss the odd-odd, even-odd, and even-
even lattices in subsections III C 1, III C 2, and III C 3,
respectively.

1. The odd-odd case

In the case where both the number of lattice sites L1 and
L2 are odd, the Dirac operator has the same symmetries as
in the continuum limit resulting in the same pattern of chiral
symmetry breaking (Oð2NfÞ × Oð2NfÞ → Oð2NfÞ) and the
same microscopic spectral properties (see Table II).
Depending on the number of colors the off-diagonal block
W of the lattice Dirac operator is either even or odd
dimensional and the corresponding symmetry class is given
by the second Bogolyubov–de Gennes ensemble DIII, see
Ref. [40,43], which can be also either even or odd,
respectively. The microscopic level density was obtained
in Ref. [48] and is given by

ρðxÞ ¼ x
2
½2J21ð2xÞ þ J20ð2xÞ − J0ð2xÞJ2ð2xÞ� þ

1

2
J1ð2xÞ

ð94Þ

for Nc odd and

ρðxÞ ¼ 2δðxÞ þ x
2
½2J21ð2xÞ þ J20ð2xÞ − J0ð2xÞJ2ð2xÞ�

−
1

2
J1ð2xÞ ð95Þ

for Nc even. Notice that the lattice Dirac operator has one
additional pair of generic zero-modes if the number of
colors is even otherwise there are no generic zero modes.
Therefore the repulsion of the eigenvalues from the origin
is stronger. However, the level repulsion is always quartic
(see Table II). Moreover, the full spectrum is Kramers
degenerate. This is a characteristic for ensembles associated
to the Dyson index βD ¼ 4.
In Figs. 2(a) and 2(b) we compare the low lying lattice

Dirac spectra and the analytical results of (94) and (95) for
two and three colors, respectively. The agreement is good
for the first few eigenvalues and becomes better when
increasing the number of colors.
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FIG. 2 (color online). Comparison of the microscopic level densities of the lattice QCD Dirac operator in the strong coupling limit at
various lattice sizes (stars) and the analytical results derived from the corresponding random matrix theories (solid curves). Results are
shown for the lattice theories: (a) SU(2) adjoint and L1; L2 odd, (b) SU(3) adjoint and L1; L2 odd, (c) SU(3) adjoint and L1 odd and L2

even, and (d) SU(3) adjoint and L1; L2 even.
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2. The even-odd case

Next we consider the mixed situation where the lattice
has an even L1 and an odd L2. The combination of the
symmetries (70) and (93) can be again simplified via the

same unitary transformation diagðUð1Þ−1
5 ; Uð1Þ

5 Þ as intro-
duced in subsection III B 2. Then the lattice Dirac operator
can be written as

D ¼ diagðUð1Þ
5 ; Uð1Þ−1

5 Þ
�

0 ~H

− ~H 0

�
diagðUð1Þ−1

5 ; Uð1Þ
5 Þ;

ð96Þ

where ~H is purely imaginary and antisymmetric. Thus the
symmetry class is equivalent to a random matrix ensemble
with the matrices in the Lie-algebra of the orthogonal group
OðL1L2ðN2

c − 1ÞÞ which is denoted by the Cartan symbol
D [40]. Although for this ensemble one also has to
distinguish between even and odd matrix size because of
an additional pair of generic zero modes, the lattice Dirac
operator always yields an even sized matrix ~H. The reason
is that ~H is L1L2ðN2

c − 1Þ × L1L2ðN2
c − 1Þ dimensional,

where L1 is even. Therefore we expect a quadratic level
repulsion, no repulsion of the levels of D from the origin
and no generic zero modes, cf. Table II. The number
of flavors is doubled because of the particular block
structure (96).
The quark bilinear can be written as

ψ̄ ~H ψ ¼ 1

2
ðψ̄ ~H ψ þ ψT ~Hψ̄TÞ; ð97Þ

so that the symmetry group is Oð4NfÞ. As was shown in
the case βD ¼ 1, see subsection III B 2, a nonzero eigen-
value density of ~H results in a nonzero eigenvalue density
of the Dirac operator yielding a chiral condensate with
source term m. This condensate breaks the Oð4NfÞ sym-
metry group to the subgroup satisfying

OT

�
0 12Nf

−12Nf
0

�
O ¼

�
0 12Nf

−12Nf
0

�
ð98Þ

This equation enforces the matrix O to a block structure

O ¼
�

O1 O2

−O2 O1

�
: ð99Þ

The orthogonality of O requires that

ðO1 þ iO2Þ†ðO1 þ iO2Þ ¼ 1 ð100Þ

so that O is equivalent to a unitary transformation.
Moreover each unitary matrix U ∈ Uð2NfÞ can be decom-
posed into the real matrices O1 ¼ 1

2
ðU þU�Þ and

O2 ¼ −iðU −U�Þ. Hence the remaining group invariance

is equal to Uð2NfÞ yielding the symmetry breaking
pattern Oð4NfÞ → Uð2NfÞ.
The microscopic level density can be calculated from the

corresponding random matrix ensemble in class D and is
given by [43,48]

ρðxÞ ¼ 1

π
þ sinð2xÞ

2πx
: ð101Þ

In Fig. 2(c) we compare this analytical result to strong
coupling lattice simulations for naive quarks in the adjoint
representation of SU(3). The lattice data show excellent
agreement for the low-lying Dirac spectrum. Moreover the
simulations confirm the double degeneracy of the Dirac
operator (eigenvalues have also the degeneracy two) and
the fact that there are no generic zero modes.

3. The Even-Even Case

Let L1 and L2 be even. This is the case related to the
staggered Dirac operator. With help of the symmetries (73)
and (93) the lattice Dirac operator can, by choosing a
particular gauge field independent basis, be brought to the
form

D ¼ diagðUð1Þ
5 ; Uð1Þ−1

5 Þ

0
BBBBB@

0
0 ~W
~W† 0

0 − ~W

− ~W† 0
0

1
CCCCCA

× diagðUð1Þ−1
5 ; Uð1Þ

5 Þ; ð102Þ

where ~W is a real L1L2ðN2
c − 1Þ=2 × L1L2ðN2

c − 1Þ=2
matrix without any additional restrictions. The additional
chiral structure is related to the parity of the lattice sites.
The unitary transformation diagðUð1Þ−1

5 ; Uð1Þ
5 Þ does not

change the spectrum. Therefore the naive lattice Dirac
operator (102) is in the class of the chGOE with index
ν ¼ 0 (because ~W is a square matrix). The Dirac spectrum
is doubly degenerate which is taken care of when con-
structing the staggered Dirac operator. The symmetry
breaking pattern is Uð4NfÞ → USpð4NfÞ [35] and the
microscopic spectral density is given by the ν ¼ 0 result
of the chGOE [51]

ρðxÞ ¼ x
2
½J20ðxÞ − J21ðxÞ� þ

1

2
J0ðxÞ

�
1 −

Z
x

0

J0ð~xÞd~x
�
;

ð103Þ

Therefore the level repulsion is linear, the levels have no
repulsion from the origin and there are no generic zero
modes. The analytical result (103) is compared with lattice
data in Fig. 2(d) showing a perfect agreement.
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D. QCD with more than two colors and fermions in the
fundamental representation

In this case there are no antiunitary symmetries. The
structure and the symmetry class of the Dirac operator are
only related to the parity of the lattice. Hence, we have to
take the structure of the naive lattice Dirac operator as
shown in Eqs. (68), (70), and (73).
The odd-odd and even-even lattices are in the same uni-

versality class and are both discussed in subsection III D 1.
The case of one even number of lattice sites and one odd
number is considered in subsection III D 2.

1. The odd-odd and even-even case

If the parity of both directions is odd, there are no
additional symmetries and we are in the universality class
of the chGUE with the symmetry breaking pattern
UðNfÞ × UðNfÞ → UðNfÞ. The Dirac operator has the form
(69). The eigenvalues of D show no degeneracies and the
microscopic spectral density is given by the ν ¼ 0 result of
the chGUE [42]

ρðxÞ ¼ x
2
½J20ðxÞ þ J21ðxÞ�: ð104Þ

Note that the two-dimensional Dirac operator has no zero
modes. Therefore the level repulsion is quadratic and the
repulsion from the origin is linear.
If both numbers of lattice sites, L1 and L2, are even, the

off-diagonal block W becomes itself chiral and the Dirac-
operator takes the form (75). Since we have no additional
symmetries the symmetry class is again the one of the
chGUE. The only difference with the odd-odd case is a
doubling of the number of flavors with the chiral symmetry
breaking pattern Uð2NfÞ × Uð2NfÞ → Uð2NfÞ. Apart from
an additional degeneracy from the doubling of the flavors,
the spectral properties remain the same. In particular, the

microscopic spectral density has index ν ¼ 0 and is given
by Eq. (104).
In Fig. 3(a) we show lattice data for the spectral density

of the Dirac operator in the case that both L1 and L2 are
either odd or even. There is an excellent agreement with the
analytical random matrix result (104). Also the degree of
degeneracy and the fact that there are no zero modes is
confirmed by the lattice simulations. There has been a
numerical study with overlap fermions [52] both in two and
four dimensions which has reached similar conclusions for
this case.

2. The even-odd case

The situation changes if L1 þ L2 is odd. Then the Dirac
operator D follows the structure (72) where the L1L2Nc ×
L1L2Nc matrix H is Hermitian. The corresponding sym-
metry class is represented by the GUE and denoted by the
Cartan symbol A [40]. Due to the structure (72) and the
Hermiticity of H, the flavor symmetry is doubled to
Uð2NfÞ. However the eigenvalues of D are not doubly
degenerate but come in complex conjugate pairs �iλ
because H appears in the off-diagonal blocks.
The lattice Dirac operator is in the same universality

class as the three-dimensional continuum theory. Hence the
symmetry breaking pattern for this case is already known
from QCD in three dimensions [36]. A nonzero spectral
density of H results in a nonzero spectral density of the
Dirac operator (see the discussion in subsection III B 2)
resulting in a chiral condensate with source term m. The
chiral condensate is invariant under a transformation with
the unitary matrix U ∈ Uð2NfÞ if it fulfills

U†
�

0 1Nf

−1Nf
0

�
U ¼

�
0 1Nf

−1Nf
0

�
: ð105Þ
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FIG. 3 (color online). Comparison of the microscopic level density of lattice QCD data in the strong coupling limit at various lattice
sizes (stars) and the analytical results predicted by the corresponding random matrix theories (solid curves). The presented lattice gauge
theories are (a) SU(3) fundamental with L1 þ L2 ¼ even and (b) SU(3) fundamental with L1 þ L2 ¼ odd. Note that in (b) we have a
strong oscillation on top of the universal result which is a constant equal to 1=π. Therefore we plotted the GUE result with its first
correction in a 1=n expansion in its matrix size n. Astoundingly also this nonuniversal term seems to fit the lattice data quite well.
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This breaks chiral symmetry according to the pattern
Uð2NfÞ → UðNfÞ × UðNfÞ.
The microscopic level density including the Oð1=nÞ

corrections of a 2n × 2n GUE is given by

ρðxÞ ¼ 1

π

�
1þ cos 2x

8n

�
: ð106Þ

In order to obtain a better fit of the analytical result to the
lattice data, we have included the correction term multi-
plied by a fitting parameter. In Fig. 3(b) we compare the
microscopic level density of GUE and lattice results. The
lattice data exhibit much larger oscillations than the ones
given by the Oð1=nÞ correction in Eq. (106). One possible
mechanism that may contribute to this enhancement is the
condition that the off-diagonal block H of D is traceless,
trH ¼ 0, since the translation matrices (64) have no
diagonal elements. In appendix B we evaluate the spectral
density for the random matrix ensemble that interpolates
between the GUE and the traceless GUE. The result is
given by

ρtðxÞ ¼
1

π

�
1þ 1

8n
exp

�
2t

tþ 1

�
cos ½2x�

�
; ð107Þ

which shows oscillations that are enhanced by a factor of
e2 ≈ 7.4 for a traceless random matrix (t → ∞) in com-
parison to the original GUE (t ¼ 0). Because the lattice
Dirac operator is sparse the effective value of n is expected
much less than the size of the matrix. Nevertheless we
would also expect that n still increases with the lattice size.
However when using n in Eq. (107) as a fitting parameter
we find that n ≈ 7 for almost all simulations. It is not clear
why the amplitude of the oscillations does not depend on
the lattice size which should be analyzed in more detail.
Also other conditions such as the fixed Euclidean norm of
H, i.e. trH2 ¼ 4NcL1L2, may contribute to the amplitude
of the oscillations.

IV. CONCLUSIONS

We have analyzed quenched two-dimensional lattice
QCD Dirac spectra at strong coupling. The main
differences with QCD in four dimensions are the absence
of Goldstone bosons, the absence of topology correspond-
ing to the Atiyah-Singer index theorem, and the non-
commutativity of the antiunitary symmetries and the axial
symmetry. As is the case in four dimensions, the sym-
metries of the Dirac operator depend on the parity of the
number of lattice points in each direction. However in two
dimensions we find a much richer classification of sym-
metry breaking patterns. As is the case in four dimensions,
the corresponding randommatrix class is determined by the
antiunitary and the involutive symmetries. This is consis-
tent with the maximum spontaneous breaking of chiral
symmetry.

The simulations were performed with periodic boundary
conditions in both directions even though we have also
checked the effect of antiperiodicity in one direction. Our
results remain unaffected in terms of the identifications of
the universality class. Only a marginal increase of the
Thouless energy was observed by this modification. We
have checked that the finite size corrections of the chiral
condensate scale as 1=V.
Notwithstanding the Mermin-Wagner-Coleman theo-

rem, we find that the agreement with random matrix theory
is qualitatively the same in two and four dimensions. The
agreement is particularly good if the Goldstone manifold
contains a U(1) or Oð1Þ≃ Z2 group (i.e for the classes D,
DII, BDI, CII and AIII). This raises the possibility that
the long range correlations that give rise to random matrix
statistics are related to the topological properties of the
Goldstone manifold [53].
In this paper all numerical results are at nonzero lattice

spacing. We did not attempt to perform an extrapolation to
the continuum limit. Based on a bosonized form of the
QCD partition function in terms of hadronic fields, one
would expect a domain of low-lying eigenvalues that is
dominated by the fluctuations of the zero momentum
modes so that they are correlated according to random
matrix theory. In the continuum limit the two- dimensional
theory is expected to renormalize to a theory without
spontaneous symmetry breaking. What is disturbing is that
we do observe a qualitative similar behavior between QCD
in two and four dimensions.
Since quenched spectra are obtained by a supersym-

metric extension of the partition function, our results seem
to favor the suggestion by Niedermaier and Seiler that
noncompact symmetries can be broken spontaneously in
two dimensions. One of the signatures of this type of
spontaneous symmetry breaking is an order parameter that
wanders off to infinity. Indeed, in [16] it was found that the
chiral condensate of the quenched Schwinger model seems
to diverge in the thermodynamic limit. On the other hand,
the Dirac spectrum of the Nf ¼ 1 Schwinger model
behaves as predicted by random matrix theory. It is clear
that the chiral condensate is determined by the anomaly and
does not involve any noncompact symmetries. Because of
the absence of massless excitations the partition function of
the one flavor Schwinger model must be smooth as a
function of the quark mass. This implies that the con-
densate due to the nonzero Dirac eigenvalues must be the
same as the condensate from the one-instanton configura-
tions in the massless limit. This suggests that the eigen-
functions of the low-lying nonzero mode states must be
delocalized and that the eigenvalue fluctuations are
described by random matrix theory, so that the super-
symmetric partition function that generates the Dirac
spectrum looks like it has spontaneous symmetry breaking.
An alternative scenario arises because of the finiteness of

the Thouless energy in units of the average level spacing.
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The fermion determinant due to massless quarks may push
all eigenvalues beyond the Thouless energy into the
localized domain resulting in a partition function with
no spontaneous breaking of chiral symmetry. To find out if
this is the case we would have to study two-dimensional
lattice QCD with dynamical quarks. This scenario is not
favored by simulations of the Schwinger model. Both the
one- and two-flavor Schwinger model show excellent
agreement with random matrix statistics and the agreement
improves with increasing volumes which also excludes the
possibility that the localization length is larger than the size
of the box.
Our study raises many questions. The most fundamental

issue is the reconciliation of the agreement with random
matrix theory and the implied spontaneous breaking of
chiral symmetry with the Mermin-Wagner-Coleman theo-
rem. In particular, can the noncompact symmetry of the
supersymmetric generating function for the Dirac spectrum
of two-dimensional QCD-like theories be spontaneously
broken? To address this we have to analyze the approach to
the thermodynamic limit and the continuum limit. Such
studies could also settle whether or not the localization
length of the low-lying states exceeds the size of the box
used in the present work. This is supported by Dirac spectra
of the quenched Schwinger model which deviate more from
random matrix theory with increasing volume [16], but
there is no hint of this in our results. Another intriguing
question is the possibility that all states become localized
beyond a critical number of flavors. A final issue concerns
the number of generic zero modes of the QCD Dirac
operator for fermions in the adjoint representation. Based
on chiral perturbation theory and random matrix theory we
predict that the Dirac operator may have no or only two
generic zero modes of opposite chirality. In future work we
hope to address the nature of these zero modes and the
possible relation with the complexified zero modes found
in Ref. [45].
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APPENDIX A: RANDOM MATRIX THEORIES OF
TWO-DIMENSIONAL CONTINUUM QCD

In this appendix we evaluate the joint probability density
of the eigenvalues and the pattern of chiral symmetry
breaking of random matrix theory corresponding to the
continuum limit of two-dimensional QCD. The case of two
colors with fundamental fermions is worked out in the
subsection A 1 and the case with two or more colors with

fermions in the adjoint representation is discussed in the
subsection A 2. The case with three or more colors with
fermions in the fundamental representation follows the
same pattern in two and four dimensions and is not
discussed here. Although the results of this appendix are
known, discussing them in the present framework will add
to the readability of this paper.

1. Random matrix theory for two-dimensional QCD
with two colors in the fundamental representation

For two colors with the quarks in the fundamental
representation we can find a gauge field independent basis
for which the Dirac operator becomes real. In two dimen-
sions this transformation does not commute with the
transformation to a block structure reflecting its chiral
symmetry, see Sec. II A. We choose to preserve the chiral
structure of the Dirac operator. Then the consequence of the
antiunitary symmetry is that the off-diagonal block of the
Dirac operator is complex anti-self-dual which is unitarily
equivalent to a random matrix theory with an off-diagonal
block that is complex symmetric. The corresponding chiral
random matrix theory is given by

D ¼
�

0 W

−W† 0

�
; W ¼ −τ2WTτ2 ∈ C2n×2n; ðA1Þ

or equivalently by

D0 ¼
�

0 Wτ2

−W†τ2 0

�
; ðWτ2ÞT ¼ Wτ2 ∈ C2n×2n:

ðA2Þ

The probability distribution is taken to be Gaussian,

PðWÞd½W� ∝ exp ½−ntrWW†�
Y

1≤i≤j≤2n
dReWijdImWij:

ðA3Þ

In the subsection A 1 a we calculate the joint eigenvalue
probability density of this theory (see Ref. [43]). In the
subsection A 1 b we rederive its partition function which
was already summarized for all chiral ensembles in
Refs. [40,48].

a. Joint probability density

The joint probability density of the eigenvalues of the
random matrix D denoted by pðΛÞ is defined byZ
C2n×2n

fðDÞPðWÞd½W� ¼
Z
R2n

þ
fð�iΛÞpðΛÞ

Y
1≤j≤2n

dλj

ðA4Þ

for any function f invariant under
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fðDÞ ¼ fðVDV†Þ ðA5Þ

for allV ¼ diagð ~V; τ2 ~V�τ2Þor equivalentlyW → ~VWτ2 ~V
Tτ2

with ~V ∈ Uð2nÞ.
The characteristic polynomial of D can be rewritten as

detðD− iλ14nÞ ¼ detðWW† − λ212nÞ ¼ detðW†W − λ212nÞ:
ðA6Þ

Let U ∈ Uð2nÞ=U2nð1Þ be the matrix diagonalizing WW†,
i.e. WW† ¼ UΛ2U† with the positive definite, diagonal
matrix Λ2 ∈ R2nþ . Then we can relate the eigenvectors of
WW† to those of W†W. Let

WW†U ¼ ðWτ2ÞðWτ2Þ†U ¼ UΛ2; ðA7Þ
then complex conjugation results in

ðWτ2Þ�ðWτ2ÞTU� ¼ U�Λ2; ðA8Þ

and because of the symmetry of Wτ2, we also have

ðWτ2Þ†Wτ2U� ¼ U�Λ2: ðA9Þ

Hence the eigenvalue decomposition of W†W reads

ðWτ2Þ†ðWτ2Þ ¼ U�Λ2UT: ðA10Þ

The combination of this decomposition with WW† ¼
UΛ2U† yields a singular value decomposition of W,

Wτ2 ¼ UZUT; ðA11Þ
with the complex, diagonal matrix Z ∈ C2n such that jZj ¼
Λ and U ∈ Uð2nÞ=U2nð1Þ. The number of degrees of
freedom is 2nð2nþ 1Þ on both sides of Eq. (A11).
Hence, the right hand side of Eq. (A11) can be used as
a parametrization ofW. The phases of Z can be absorbed in
U so that W can be parametrized as

Wτ2 ¼ UΛUT ðA12Þ

with the positive definite, diagonal matrix Λ ∈ R2nþ
and U ∈ Uð2nÞ.
In the next step we calculate the invariant length element

which directly yields the Haar measure of W in the
coordinates (A12),

trdWdW† ¼ trdðWτ2ÞdðWτ2Þ†
¼ trdΛ2 þ trðU†dUΛþ ΛðU†dUÞTÞðU†dUΛþ ΛðU†dUÞTÞ†
¼

X
1≤i≤2n

ðdλ2i þ 4λ2i ðU†dUÞ2iiÞ

þ
X

1≤i<j≤2n
½ðU†dUÞij; ðU†dUÞ�ij�

2
64 λiλj − λ2i þ λ2j

2

− λ2i þ λ2j
2

λiλj

3
75� ðU†dUÞij;

ðU†dUÞ�ij

�
: ðA13Þ

Note that the Pauli matrix τ2 drops out. Moreover we have
used the anti-Hermiticity of U†dU. From the invariant
length (A13) we find the joint probability density

pðΛÞ
Y

1≤j≤2n
dλj ∝ jΔ2nðΛ2Þj

Y
1≤j≤2n

exp ½−nλ2j �λjdλj; ðA14Þ

cf. Refs. [43,48]. This coincides with the joint probability
density of the nonzero eigenvalues of the chiral GOE with
ν ¼ 1, which has one zero mode while the present model
has no zero modes at all. Its microscopic spectral density
has a linear slope at the origin and the level repulsion is also
linear at small distances, cf. Fig 1(a).

b. Partition function

The partition function with Nf flavors is defined by

ZðNfÞ ¼
Z

d½W�
YNf

k¼1

detðDþmk14nÞPðWÞ: ðA15Þ

Due to the decomposition (A12) we multiply D by the
unitary matrix diagð12n; τ2Þ from the left and from the right
which keeps the spectrum invariant. To evaluate the average
(A15) we first rewrite the determinants as Gaussians over
Grassmann variables,

ZðMÞ ∝
Z

d½W;V� exp ½−ntrWτ2ðWτ2Þ†�

× exp ½trV†
RWτ2VL − trV†

LðWτ2Þ†VR�
× exp½trMðV†

RVR þ V†
LVLÞ�; ðA16Þ

with the mass matrixM ¼ diagðm1;…; mNf
Þ. The matrices

VR and VL are both 2n × Nf rectangular matrices compris-
ing independent Grassmann variables as matrix elements.
Because Wτ2 is symmetric we have to symmetrize the
matrices VLV

†
R and VRV

†
L. After integrating over W we

obtain
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ZðMÞ∝
Z
d½V�exp

�
−

1

4n
trðVLV

†
R−V�

RV
T
LÞðVRV

†
L−V�

LV
T
RÞ
�

×exp½trMðV†
RVRþV†

LVLÞ�

∝
Z

d½V�exp
�
1

4n
trð~τ2⊗1Nf

Þσð~τ2⊗1Nf
ÞσT

�
×exp½trð12⊗MÞσ�; ðA17Þ

where τ2 completely drops out. The second Pauli matrix ~τ2
acts on flavor space and should not be confused with τ2
which acts on color space for QCD and its analogue in
random matrix theory. The dyadic super matrix

σ ¼
�

V†
R

−VT
L

��
VR; V�

L

�
: ðA18Þ

is nilpotent and can be replaced by a unitary matrix U ∈
Uð2NfÞ via the superbosonization formula [54–56]. By
rescaling U → 2nU and introducing the rescaled mass
matrix M̂ ¼ 2nM, we arrive at

Zð bMÞ ∝
Z

Uð2NfÞ

exp ½ntrð~τ2 ⊗ 1Nf
ÞUð~τ2 ⊗ 1Nf

ÞUT �

× exp½trð12 ⊗ bMÞU�det−2nUdμðUÞ; ðA19Þ

where dμ is the normalized Haar-measure.
In the microscopic limit (n → ∞ and M̂ fixed) we can

apply the saddlepoint approximation. The saddlepoint
equation is given by

U−1 ¼ ð~τ2 ⊗ 1Nf
ÞUTð~τ2 ⊗ 1Nf

Þ: ðA20Þ

Since U ∈ Uð2NfÞ Eq. (A20) implies U ∈ USpð2NfÞ. The
final result is given by

ZðM̂Þ ¼
Z
USpð2NfÞ

exp ½trð12 ⊗ M̂ÞU�dμðUÞ

¼
Z
USpð2NfÞ

exp

�
1

2
trð12 ⊗ M̂ÞðU þ U−1Þ

�
dμðUÞ:

ðA21Þ

Although the joint probability density of the eigenvalues
coincides with the chGOE, the chiral symmetry breaking
pattern (USpð2NfÞ × USpð2NfÞ → USpð2NfÞ) turns out
to be different and agrees with Refs. [31,40]. Especially
there are no zero modes such that the partition function
does not vanish at M ¼ 0 which would be the case for the
chGOE with index ν ¼ 1, see Ref. [35].

2. Two-dimensional QCD in the adjoint representation

For two-dimensional QCD with quarks in the adjoint
representation the antiunitary symmetry of the Dirac
operator allows us to choose a gauge field independent
basis for which the Dirac operator becomes quaternion
real. However, when performing this transformation we
will lose the chiral block structure. We choose to preserve
this structure. Then the antiunitary symmetry requires that
the off-diagonal block of the Dirac operator becomes
antisymmetric. The corresponding random matrix theory
is given by

D ¼
�

0 W

−W† 0

�
; W ¼ −WT ∈ Cð2nþνÞ×ð2nþνÞ:

ðA22Þ

with the probability distribution

PðWÞd½W� ∝ exp ½−ntrWW†�
Y

1≤i<j≤ð2nþνÞ
dReWijdImWij:

ðA23Þ

Because odd-dimensional antisymmetric matrices have one
generic zero eigenvalue we have to distinguish the even-
and odd-dimensional case (denoted by ν ¼ 0 and ν ¼ 1,
respectively).
In subsection A 2 a we evaluate the joint probability

density of the eigenvalues and in subsection A 2 b
we discuss the corresponding partition function for
ν ¼ 0, 1. These results were obtained previously in
Refs. [31,40,43,48].

a. Joint Probability Distribution

The joint probability density pðΛÞ is defined as in
Eq. (A4) while the arbitrary function f has the invariance

fðDÞ ¼ fðVDV†Þ; ∀V ¼ diagð ~V; ~V�Þ with

~V ∈ Uð2nþ νÞ: ðA24Þ

Let ν ¼ 0, i.e. W is even dimensional. Analogous to
the discussion in subsection A 1 a we can quasi-diagonalize
W, i.e.

W ¼ Uðτ2 ⊗ ΛÞUT ðA25Þ

with a positive definite, diagonal matrix Λ ∈ Rnþ and a
unitary matrix U ∈ Uð2nÞ=SUnð2Þ. The division with the
subgroup SUnð2Þ is the result of the identity ~Uτ2 ~U

T ¼ τ2
for all ~U ∈ SUð2Þ.
The matrix τ2 ⊗ Λ has �λj as eigenvalues. We can

use the result (A14) by replacing diagðλ1;…; λ2nÞ →
diagðλ1;…; λn;−λ1;…;−λnÞ and taking care of the fact
that some degrees of freedom of Uð2nÞ are missing. We can
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apply the result (A14) because the invariant length element
is calculated similar to the (βD ¼ 1, d ¼ 2)-case. Hence, we
find the joint probability density

pðΛÞ
Y

1≤j≤2n
dλj ∝ Δ4

nðΛ2Þ
Y
1≤j≤n

exp ½−nλ2j �λjdλj; ðA26Þ

cf. Ref. [43,48]. This density coincides with the chGSE
for ν ¼ −1=2.
Let us consider the case with an odd dimension,

W ¼ −WT ∈ Cð2nþ1Þ×ð2nþ1Þ. Since an odd-dimensional
antisymmetric matrix has one generic zero mode we have
to modify the decomposition (A25) according to

W ¼ Udiagðτ2 ⊗ Λ; 0ÞUT; ðA27Þ

where Λ ∈ Rnþ and U ∈ Uð2nþ 1Þ=½SUnð2Þ × Uð1Þ�.
Hence, the joint probability density (A26) becomes [43,48]

pðΛÞ
Y

1≤j≤2n
dλj ∝ Δ4

nðΛ2Þ
Y

1≤j≤n
exp ½−nλ2j �λ5jdλj ðA28Þ

by employing the result (A14) with the replacement
diagðλ1;…; λ2nÞ → diagðλ1;…; λn;−λ1;…;−λn; 0Þ and tak-
ing care of the subgroup SUnð2Þ × Uð1Þ that is divided out.
This coincideswith the joint probability density of the nonzero
eigenvalues of the chGSE with ν ¼ 1=2.

b. Partition Function

The partition function with Nf fermionic flavors (A15)
can be again mapped to flavor space via the rectangular
ð2nþ νÞ × Nf matrices VR and VL comprising Grassmann
variables only. The analogue of Eq. (A17) is given by

ZðMÞ∝
Z
d½V�exp

�
−

1

4n
trðVLV

†
RþV�

RV
T
LÞðVRV

†
LþV�

LV
T
RÞ
�

×exp
�
trMðV†

RVRþV†
LVLÞ

�

∝
Z

exp

�
1

4n
trσσTþ trð~τ1⊗MÞσ

�
d½V� ðA29Þ

with the dyadic supermatrix

σ ¼
�−VT

L

V†
R

��
VR; V�

L

�
: ðA30Þ

The first Pauli matrix ~τ1 acts on flavor space. The super-
bosonization formula [54–56] yields

ZðM̂Þ ∝
Z
Uð2NfÞ

exp ½ntrUUT þ trð~τ1 ⊗ M̂ÞU�

× det−2n−νUdμðUÞ: ðA31Þ

In the microscopic limit by taking n to infinity we have to
solve the saddlepoint equation

U−1 ¼ UT: ðA32Þ

Therefore we end up with an integral over the group
Oð2NfÞ, i.e.

ZðM̂Þ¼
Z
Oð2NfÞ

exp ½trð~τ1⊗ M̂ÞU�detνUdμðUÞ;

¼
Z
Oð2NfÞ

exp ½trð12⊗ M̂ÞU�detνUdμðUÞ;

¼
Z
Oð2NfÞ

exp

�
1

2
trð12⊗ M̂ÞðUþU−1Þ

�
detνUdμðUÞ

ðA33Þ

with M̂ ¼ 2nM. For ν ¼ 0 the partition function is of order
one for M̂ ≪ 1 while for ν ¼ 1, the sum over two
disconnected components of Oð2NfÞ, results in a partition
function ZðM̂Þ ∝ M̂2 for M̂ ≪ 1. This property as well as
the symmetry breaking pattern Oð2NfÞ × Oð2NfÞ →
Oð2NfÞ underlines the difference of the random matrix
ensemble (A22) with the chGSE, see Refs. [35,40]. The
sum over ν ¼ 0 and ν ¼ 1 gives an integral over SOð2NfÞ
corresponding to the symmetry breaking pattern of the full
partition function [31].
As was shown in Ref. [45] gauge fields with nonzero

topology exist for two-dimensional QCD with adjoint
fermions and both partition functions for ν ¼ 0 and ν ¼
1 are realized. The argument of Ref. [45] predicting
additional values of ν for Nc > 2 seems to be in conflict
with chiral perturbation theory [31] and random matrix
theory, but we hope to address this puzzle in future work. In
lattice QCD at strong coupling in the case of an odd-odd
lattice only ν ¼ 0 and ν ¼ 1 are realized for Nc odd and Nc
even, respectively. Our simulations confirm this prediction,
see Fig. 2.

APPENDIX B: CORRECTIONS TO THE
TRACELESS ENSEMBLE

In this appendix we calculate the eigenvalue density
including 1=n corrections for an even-dimensional GUE
with the additional condition that the trace of the matrices
may vanish. This condition is implemented via a Lagrange
multiplier. The level density is thus given by the random
matrix integral,
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ρðnÞt ðxÞ ¼
R
Hermð2nÞ d½H� exp ½−trH2=ð4nÞ − ttr2H=ð8n2Þ�trδðH − x12nÞR

Hermð2nÞ d½H� exp ½−trH2=ð4nÞ − ttr2H=ð8n2Þ� : ðB1Þ

The parameter t interpolates between the traceless con-
dition (t → ∞) and the ordinary GUE (t → 0). The square
of the trace in H can be linearized by a Gaussian integral
over an auxiliary scalar variable λ, meaning that we can
trace back the whole problem to ordinary GUE,

ρðnÞt ðxÞ ¼
Z

∞

−∞

ffiffiffiffiffiffiffiffiffiffi
1þ t
2tπ

r
dλexp

�
−
1þ t
2t

λ2
�
ρðnÞ0 ðxþ iλÞ: ðB2Þ

The level density of GUE is given in terms of Hermite
polynomials, HjðxÞ ¼ xj þ…, in the following formula
[44],

ρðnÞ0 ðxÞ ¼ ð2nÞ!ffiffiffiffiffiffiffiffi
4πn

p exp

�
−
x2

4n

�� ð2nÞ2n−1
ðð2n − 1Þ!Þ2H

2
2n−1

�
xffiffiffiffiffiffi
2n

p
�

−
ð2nÞ2n−1

ð2nÞ!ð2n − 2Þ!H2n

�
xffiffiffiffiffiffi
2n

p
�
H2n−2

�
xffiffiffiffiffiffi
2n

p
��

:

ðB3Þ
The large n asymptotics of H2nðx=

ffiffiffiffiffiffi
2n

p Þ where x is fixed
can be obtained by the relation between Hermite poly-
nomials with an even order and the associated Laguerre
polynomials, Lð−1=2Þ

n ðxÞ ¼ xn þ…,

H2n

�
xffiffiffiffiffiffi
2n

p
�

¼ 2nLð−1=2Þ
n

�
x2

2n

�
: ðB4Þ

Note that we employ for both polynomials the monic
normalization. The associated Laguerre polynomials LðνÞ

n

with a positive integer index ν have a simple representation
as a contour integral,

LðνÞ
n

�
x2

2n

�
¼ n!

ð2nÞn
Z

2π

0

dφ
2π

eiνφ
�
1 −

e−iφ

2n

�
nþν

exp½x2eiφ�;

ðB5Þ

which can be expanded asymptotically as

LðνÞ
n

�
x2

2n

�
≈

n≫1 1

ð2nÞn
Z

2π

0

dφ
2π

eiνφ

× exp

�
x2eiφ − ðnþ νÞ

�
e−iφ

2n
þ e−2iφ

8n2

��

≈
1

ð2nÞn
�
J−νðxÞ
xν

−
νJ1−νðxÞ
2nxν−1

−
J2−νðxÞ
8nxν−2

�
: ðB6Þ

The functions Jj are the Bessel functions of the first kind
and can be analytically continued in their index j. For
ν ¼ −1=2 the expansion for the Hermite polynomials reads

1

n!
H2n

�
xffiffiffiffiffiffi
2n

p
�

≈
n≫1 1

nn

� ffiffiffi
x

p
J1=2ðxÞ þ

x3=2J3=2ðxÞ
4n

−
x5=2J5=2ðxÞ

8n

�

¼ 1

nn

ffiffiffi
2

π

r �
sin xþ 1

8n
ððx2 − 1Þ sin xþ x cos xÞ

�
: ðB7Þ

From this asymptotic expansion it also follows

1

ðn − 1Þ!H2n−1

�
xffiffiffiffiffiffi
2n

p
�

¼
ffiffiffi
n
2

r ∂
∂x

1

n!
H2n

�
xffiffiffiffiffiffi
2n

p
�

≈
n≫1 1

nn

ffiffiffi
n
π

r �
cos xþ 1

8n
ðx sin xþ x2 cos xÞ

�
: ðB8Þ

and

1

ðn − 2Þ!H2n−2

�
xffiffiffiffiffiffi
2n

p
�

¼
ffiffiffiffiffiffi
2n

p ðn − 1Þ
2n − 1

∂
∂x

1

ðn − 1Þ!H2n−1

�
xffiffiffiffiffiffi
2n

p
�

≈
n≫1 n − 1

ð2n − 1Þnn−1
ffiffiffi
2

π

r

×

�
− sin xþ 1

8n
ðð1 − x2Þ sin xþ 3x cos xÞ

�
; ðB9Þ

with help of the recurrence relation of the Hermite poly-
nomials and the Stirling formula including subleading
corrections,

n! ≈
n≫1 ffiffiffiffiffiffiffiffi

2πn
p

nne−n
�
1þ 1

12n

�
: ðB10Þ

Summarizing all these asymptotic expansions and plug-
ging everything into the level density (B3) we find the first
correction to the GUE asymptotics,
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ρðnÞ0 ðxÞ ≈n≫1 1

π

�
1 −

x2

4n

��
1þ 1

8n

��
cos2xþ 1

4n
cos xðx sin xþ x2 cos xÞ

−
�
−sin2xþ 1

4n
sin xðð1 − x2Þ sin xþ x cos xÞ

��

≈
1

π

�
1þ cos 2x

8n

�
: ðB11Þ

One can now perform the integral (B2) which yields the result (107).
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