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In light of the development of the Gribov issue for pure Euclidean gauge theories and of the recent lattice
measurement of soft breaking of the BRST invariance in Yang-Mills theories in the Landau gauge, we
consider nonperturbative features in the gauge-interacting matter sector and their relation with general
properties of the Faddeev-Popov operator. A signature for BRST breaking in the matter sector is proposed
and a local and renormalizable framework is constructed, accommodating this signature and predicting
nonperturbative matter propagators that are consistent with available lattice data for adjoint scalars and
quarks.
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I. INTRODUCTION

Nowadays, the issue of the Gribov copies [1] is an
important tool in order to investigate the behavior of non-
Abelian gauge theories in the nonperturbative infrared
region, exhibiting a deep connection with gluon confine-
ment.1 As is widely known, the existence of the Gribov
copies is a general feature of the gauge fixing procedure [4],
reflecting the impossibility of selecting a unique gauge
field configuration for each gauge orbit through a local,
covariant and renormalizable gauge condition.
Although a full resolution of the Gribov problem is still

lacking, the interplay between analyticmethods and numeri-
cal lattice simulations which has taken place during the last
decade has provided strong evidence for the relevance of the
issue of Gribov copies in the nonperturbative study of the
correlation functions of Euclidean Yang-Mills theories. A
nice example of this fruitful interplay between analytic and
numerical methods is provided by the Landau gauge. If, on
one side, several properties of the Gribov region Ω of the
Landau gauge have been rigorously established from a
mathematical point of view [5–7], on the other side, this
gauge possesses a lattice formulation [8–17], which has
allowed for a direct comparison between analytic and
numerical results.
These great advances in pure-gauge theories have not

provided up to now an equivalent development in the
understanding of the nonperturbative behavior of gauge-
interactingmatter. The aim of this paper is tomake a series of
observations concerning nonperturbative infrared properties

of confining theories that also extend to the matter sector.We
shall show that a consistent description of confined matter
propagators may be achieved through a systematic soft
BRST breaking construction, in analogy with what was
found for the gauge fields.
In order to be more precise on the statement of our goals

and for the benefit of the reader, let us give here a short
update of the Gribov issue in the Landau gauge. Let us start
with the definition of the Gribov region Ω, which is at the
basis of the Gribov-Zwanziger framework [1,18–20]. The
Gribov region Ω is defined as the set of all gauge field
configurations fulfilling the Landau gauge condition,
∂μAa

μ ¼ 0, and for which the Faddeev-Popov operator,
Mab ¼ −ð∂2δab − gfabcAc

μ∂μÞ, is strictly positive, namely

Ω ¼ fAa
μ; ∂μAa

μ ¼ 0;Mab ¼ −ð∂2δab − gfabcAc
μ∂μÞ > 0g:

ð1Þ
The region Ω enjoys the following properties [5,6]:

(i) Ω is convex and bounded in all direction in field
space. Its boundary, ∂Ω, is the Gribov horizon,
where the first vanishing eigenvalue of the Faddeev-
Popov operator shows up.

(ii) every gauge orbit crosses at least once the region Ω.
In particular, the result (ii) provides a well-defined support
to the original Gribov’s proposal [1] of restricting the
domain of integration in the functional integral to the region
Ω. Therefore, for the partition function of Yang-Mills
theories one writes

Z ¼
Z
Ω
DAδð∂AÞðdetMÞ

e−SYM ¼
Z
Ω
DADcDc̄Dbe−SFP ; ð2Þ

where SFP is the Faddeev-Popov action in the Landau gauge

SFP ¼ SYM þ Sgf; ð3Þ
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where SYM and Sgf denote, respectively, the Yang-Mills
and the gauge-fixing term:

SYM ¼ 1

4

Z
d4xFa

μνFa
μν; ð4Þ

and

Sgf ¼
Z

d4xðba∂μAa
μ þ c̄a∂μDab

μ cbÞ; ð5Þ

where ðc̄a; caÞ are the Faddeev-Popov ghosts, ba is the
Lagrange multiplier implementing the Landau gauge,
Dab

μ ¼ ðδab∂μ þ gfacbAc
μÞ is the covariant derivative in

the adjoint representation of the gauge group SUðNÞ,
and Fa

μν denotes the field strength

Fa
μν ¼ ∂μAa

ν − ∂νAa
μ þ gfabcAb

μAc
ν: ð6Þ

Following [1,18–20], the restriction of the domain of
integration in the path integral is achieved by adding to
the Faddeev-Popov action SFP an additional term HðAÞ,
called the horizon term, given by the following nonlocal
expression

HðAÞ ¼ g2
Z

d4xd4yfabcAb
μðxÞ½M−1�adðx; yÞfdecAe

μðyÞ;

ð7Þ
where M−1 stands for the inverse of the Faddeev-Popov
operator. For the partition function one gets [1,18–20]

Z ¼
Z
Ω
DADcDc̄Dbe−SFP

¼
Z

DADcDc̄Dbe−ðSFPþγ4HðAÞ−Vγ44ðN2−1ÞÞ; ð8Þ

where V is the Euclidean space-time volume. The param-
eter γ has the dimension of a mass and is known as the
Gribov parameter. It is not a free parameter of the theory. It
is a dynamical quantity, being determined in a self-con-
sistent way through a gap equation called the horizon
condition [1,18–20], given by

hHðAÞi ¼ 4VðN2 − 1Þ; ð9Þ
where the vacuum expectation value hHðAÞi has to be
evaluated with the measure defined by Eq. (8). Although
the horizon term HðAÞ, eq. (7), is nonlocal, it can be cast in
local form by means of the introduction of a set of auxiliary
fields ðω̄ab

μ ;ωab
μ ; φ̄ab

μ ;φab
μ Þ, where ðφ̄ab

μ ;φab
μ Þ are a pair of

bosonic fields, while ðω̄ab
μ ;ωab

μ Þ are anticommuting. It turns
out that the partition function ZGZ in Eq. (8) can be
rewritten as [18–20]

Z ¼
Z

DADcDc̄DbDω̄DωDφ̄Dφe−SGZ ; ð10Þ

where SGZ is given by the local expression

SGZ ¼ SYM þ Sgf þ S0 þ Sγ; ð11Þ

with

S0 ¼
Z

d4xðφ̄ac
μ ð∂νDab

ν Þφbc
μ − ω̄ac

μ ð∂νDab
ν Þωbc

μ

− gfambð∂νω̄
ac
μ ÞðDmp

ν cpÞφbc
μ Þ; ð12Þ

and

Sγ ¼ γ2
Z

d4xðgfabcAa
μðφbc

μ þ φ̄bc
μ ÞÞ−4γ4VðN2−1Þ: ð13Þ

In the local formulation of the Gribov-Zwanziger action,
the horizon condition (9) takes the simpler form

∂Ev

∂γ2 ¼ 0; ð14Þ

where EvðγÞ is the vacuum energy defined by:

e−VEv ¼ Z: ð15Þ
The local action SGZ in Eq. (11) is known as the Gribov-
Zwanziger action. It has been shown to be renormalizable
to all orders [18–20].
Recently, a refinement of the Gribov-Zwanziger action

has been worked out by the authors [21–23], by taking into
account the existence of certain dimension two conden-
sates.2 The Refined Gribov-Zwanziger (RGZ) action reads
[21–23]

SRGZ ¼ SGZ þ
Z

d4x

�
m2

2
Aa
μAa

μ − μ2ðφ̄ab
μ φab

μ − ω̄ab
μ ωab

μ Þ
�
;

ð16Þ
where SGZ stands for the Gribov-Zwanziger action,
Eq. (11). As much as the Gribov parameter γ2, the massive
parameters ðm2; μ2Þ have a dynamical origin, being related
to the existence of the dimension two condensates hAa

μAa
μi

and hφ̄ab
μ φab

μ − ω̄ab
μ ωab

μ i, [21–23]. The gluon propagator
obtained from the RGZ action turns out to be suppressed in
the infrared region, attaining a nonvanishing value at zero
momentum, k2 ¼ 0, i.e.

hAa
μðkÞAb

νð−kÞi ¼ δab
�
δμν −

kμkν
k2

�
Dðk2Þ; ð17Þ

Dðk2Þ ¼ k2 þ μ2

k4 þ ðμ2 þm2Þk2 þ 2Ng2γ4 þ μ2m2
: ð18Þ

Also, unlike the case of the GZ action, the ghost propagator
stemming from the refined theory is not enhanced in the
deep infrared:

Gabðk2Þ ¼ hc̄aðkÞcbð−kÞijk∼0 ∼
δab

k2
: ð19Þ

The infrared behavior of the gluon and ghost propagators
obtained from the RGZ action turns out to be in very good

2See [24,25] for a recent detailed investigation on the structure
of these condensates in color space.
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agreement with the most recent numerical lattice simula-
tions on large lattices [8,10–12]. Moreover, the numerical
estimates [12] of the parameters ðm2; μ2; γ2Þ show that the
RGZ gluon propagator (17) exhibits complex poles and
violates reflection positivity. This kind of two-point func-
tion lacks the Källén-Lehmann spectral representation and
cannot be associated with the propagation of physical
particles. Rather, it indicates that, in the nonperturbative
infrared region, gluons are not physical excitations of the
spectrum of the theory, i.e. they are confined. It is worth
mentioning here that the RGZ gluon propagator has been
employed in analytic calculation of the first glueball states
[26,27], yielding results which compare well with the
available numerical simulations as well as with other
approaches, see [28] for an account on this topic. The
RGZ gluon propagator has also been used in order to study
the Casimir energy within the MIT bag model [29]. The
resulting energy has the correct expected confining behav-
ior. Applications of the RGZ theory at finite temperature
can be found in [30,31]. In [32,33], the issue of the Gribov
copies has been addressed in the case in which Higgs fields
are present, yielding analytic results on the hard problem of
the understanding of the transition between the confining
and Higgs phases for asymptotically free gauge theories.
The output of this analysis turns out to be in qualitative
agreement with the seminal work by Fradkin-Shenker [34].
Finally, in [35,36], the Gribov-Zwanziger construction has
been generalized to supersymmetric Yang-Mills theories.
All these results enable us to state that the issue of the
Gribov copies captures nontrivial aspects of the nonper-
turbative dynamics of Yang-Mills theories.
One important aspect of both GZ and RGZ theories is

that they exhibit a soft breaking of the BRST symmetry. In
fact, introducing the nilpotent BRST transformations

sAa
μ ¼ −Dab

μ cb;

sca ¼ 1

2
gfabccbcc;

sc̄a ¼ ba; sba ¼ 0;

sω̄ab
μ ¼ φ̄ab

μ ; sφ̄ab
μ ¼ 0;

sφab
μ ¼ ωab

μ ; sωab
μ ¼ 0; ð20Þ

it is immediately checked that the Gribov-Zwanziger
action breaks the BRST symmetry, as summarized by
the equation3

sSGZ ¼ γ2Δ; ð21Þ
where

Δ ¼
Z

d4xð−gfabcðDam
μ cmÞðφbc

μ þ φ̄bc
μ Þ þ gfabcAa

μω
bc
μ Þ:

ð22Þ

Notice that the breaking term Δ is of dimension two in the
fields. As such, it is a soft breaking. The properties of the
soft breaking of the BRST symmetry of the Gribov-
Zwanziger theory and its relation with confinement have
been object of intensive investigation, see [37–43]. Let us
mention here that the broken identity (21) is deeply
connected with the restriction to the Gribov region Ω.
Equation (21) can be translated into a set of softly broken
Slavnov-Taylor identities which ensure the all order renor-
malizability of both GZ and RGZ actions. The presence of
the soft breaking term Δ turns out to be necessary in order
to have a confining gluon propagator which attains a
nonvanishing value at zero momentum, Eqs. (17), (18),
in agreement with the lattice data [8,10–12]. It is worth
underlining that this property is deeply related to the
soft breaking of the BRST symmetry. In fact, the non-
vanishing of the propagator at zero momentum relies on the
parameter μ2, which reflects the existence of the BRST-
exact dimension-two condensate [21–23]

hφ̄ab
μ φab

μ − ω̄ab
μ ωab

μ i ¼ hsðω̄ab
μ ðxÞφab

μ ðxÞÞi ≠ 0: ð23Þ
Moreover, despite the soft breaking, Eq. (21), a set of
BRST invariant composite operators whose correlation
functions exhibit the Källén-Lehmann spectral representa-
tion with positive spectral densities can be consistently
introduced [44].
Although a satisfactory understanding of the physical

meaning of the soft breaking of the BRST symmetry in
presence of the Gribov horizon and of its relationship with
confinement is still lacking, it is worth underlining here that
the first concrete numerical lattice evidence of the existence
of such breaking has been provided by the authors of [45],
who have shown that a BRST exact correlation function is
nonvanishing, signaling thus the breaking of the BRST
symmetry. More precisely, in [45], the infrared behavior of
the correlation function

Qabcd
μν ðx − yÞ ¼ hRab

μ ðxÞRcd
ν ðyÞi; ð24Þ

Rac
μ ðxÞ ¼

Z
d4zðM−1Þadðx; zÞgfdecAe

μðzÞ; ð25Þ

involving the inverse of the Faddeev-Popov operator M,
has been investigated through numerical lattice simula-
tions. The relation of the correlation function (24) with the
breaking of the BRST symmetry can be understood by
observing that, within the local formulation of the Gribov-
Zwanziger framework, expression (24) corresponds to the
exact correlation function

hsðφab
μ ðxÞω̄cd

ν ðyÞÞi ¼ hωab
μ ðxÞω̄cd

ν ðyÞ þ φab
μ ðxÞφ̄cd

ν ðyÞi:
ð26Þ

In fact, integrating out the auxiliary fields ðω̄ab
μ ;ωab

μ ;
φ̄ab
μ ;φab

μ Þ in expression3A similar equation holds in the case of the RGZ action [21–23].
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Z
½DΦ�ðωab

μ ðxÞω̄cd
ν ðyÞ þ φab

μ ðxÞφ̄cd
ν ðyÞÞe−SGZ ; ð27Þ

givesR ½DΦ�ðsðφab
μ ðxÞω̄cd

ν ðyÞÞÞe−SGZR ½Dϕ�e−SGZ

¼ γ4
R
DAδð∂AÞðdetMÞRab

μ ðxÞRcd
ν ðyÞe−ðSYMþγ4HðAÞÞR

DAδð∂AÞðdetMÞe−ðSYMþγ4HðAÞÞ :

ð28Þ
This equation shows that the investigation of the correlation
function (24) with a cutoff at the Gribov horizon is directly
related to the existence of the BRST breaking. This is
precisely what has been done in [45], where the correlator
(24) has been shown to be nonvanishing, see Fig. 1 of [45].
Moreover, from [45], it turns out that in the deep infrared
the Fourier transform of the correlation function (24) is
deeply enhanced, see Fig. 2 of [45], behaving as 1

k4, namely

h ~Rab
μ ðkÞ ~Rcd

ν ð−kÞi ∼ 1

k4
: ð29Þ

As observed in [45], this behavior can be understood
by making use of the analysis [46], i.e. of the cluster
decomposition

h ~Rab
μ ðkÞ ~Rcd

ν ð−kÞi ∼ g2G2ðk2ÞDðk2Þ; ð30Þ
where Dðk2Þ and Gðk2Þ correspond to the gluon and ghost
propagators, Eqs. (18), (19). A nonenhanced ghost propa-
gator, i.e. Gðk2Þjk∼0 ∼ 1

k2, and an infrared finite gluon
propagator, i.e. Dð0Þ ≠ 0, nicely yield the behavior
of Eq. (29).
The aim of the present work is that of showing that the

quantity R, Eq. (25), and the correlation function
hRðxÞRðyÞi, Eq. (24), can be consistently generalized to
the case of matter fields, i.e. when quark and scalar fields
are included in the starting action.
More precisely, let Fi denote a generic matter field in a

given representation of SUðNÞ, specified by the generators
ðTaÞij, a ¼ 1;…; ðN2 − 1Þ, and let RaiðxÞ stand for the
quantity

RaiðxÞ ¼ g
Z

d4zðM−1Þabðx; zÞðTbÞijFjðzÞ; ð31Þ

which is a convolution of the inverse Faddeev-Popov
operator with a given colored matter field, being clearly
the matter counterpart of the operatorRab

μ in the pure gauge
case. We shall be able to prove that, in analogy with the
case of the gauge field Aa

μ, a nontrivial correlation function

hRaiðxÞRbjðyÞi; ð32Þ
can be obtained from a local and renormalizable action
which is constructed by adding to the starting conventional
matter action a nonlocal term which shares great similarity
with the horizon function HðAÞ, Eq. (7), namely

g2
Z

d4xd4yFiðxÞðTaÞij½M−1�abðx; yÞðTbÞjkFkðyÞ: ð33Þ

As it happens in the case of the Gribov-Zwanziger theory,
the term (33) can be cast in local form by means of the
introduction of suitable auxiliary fields. The resulting local
action enjoys a large set of Ward identities which guarantee
its renormalizability. The introduction of the term (33)
deeply modifies the infrared behavior of the correlation
functions of the matter fields giving rise, in particular, to
propagators which are of the confining type, while being in
good agreement with the available lattice data, as in the
case of the scalar matter fields [47,48] as well as in the case
of quarks [49,50].
Moreover, relying on the numerical data for the two-

point correlation functions of quark and scalar fields,
expression (32) turns out to be nonvanishing and, interest-
ingly enough, it seems to behave exactly as expression (29)
in the deep infrared, i.e.

h ~RaiðkÞ ~Rbjð−kÞi ∼ 1

k4
: ð34Þ

Also, as in the case of the gauge sector, expression (32)
signals the existence of the BRST breaking in the matter
field sector of the theory.
The present work is organized as follows. In Sec. II we

present a discussion of the correlation function (32) in the
case of quark and scalar fields, relying on the available data
for the quark and scalar propagators. In Sec. III we shall
show how the correlation function hRaiðxÞRbjðyÞi can be
obtained from a local and renormalizable action exhibiting a
soft breaking of the BRST invariance in the matter sector.
This will be done byworking out in detail the case of a scalar
field in the adjoint representation, in Sec. III A.We shall also
discuss how hRaiðxÞRbjðyÞi encodes information on the
soft breaking of the BRST symmetry. In Sec. III B we
generalize the previous construction to the case of quark
fields. Section IV contains our conclusion. The final
Appendix collects the details of the algebraic proof of the
renormalizability of the local action obtained by the addition
of the term (33) in the case of a scalar matter field in the
adjoint representation.

II. DISCUSSION ON THE CORRELATION
FUNCTION h ~RðkÞ ~Rð−kÞi FROM THE AVAILABLE
LATTICE DATA ON THE PROPOGATORS OF

SCALAR QUARK FIELDS

Let us now investigate the correlation function
h ~RðkÞ ~Rð−kÞi, that signals soft BRST breaking in the
matter sector, in light of available lattice data for gauge-
interacting matter propagators in the Landau gauge.
As in the pure gauge case, one may rely on the general

cluster decomposition property in order to obtain the
leading behavior in the deep infrared region. With this
aim, one writes the RaiðxÞ function in terms of elementary
fields, with the inverse Faddeev-Popov propagator repre-
sented via ghost fields as usual:
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hRaiðxÞRbjðyÞi ¼ g2
Z

d4zd4z0hc̄aðxÞca0 ðzÞFi0 ðzÞðTa0 Þi0ic̄bðyÞcb0 ðz0ÞðTb0 Þj0jFj0 ðz0Þi

¼ g2ðTaÞi0iðTbÞi0j
Z

d4keikðx−yÞG2ðkÞDðk2Þ

þ ðhigher ordersÞ; ð35Þ

where Gðk2Þ is the ghost propagator, while Dðk2Þ now
stands for the propagator of the associated matter field. The
one-particle-irreducible (1PI) contribution above becomes
subleading in the IR limit, since in this case the points x and
y are largely separated and the cluster decomposition
applies. This can also be seen diagrammatically. Since
the external legs are ghosts, these corrections will involve at
least two ghost-gluon vertices, that carry a derivative
coupling. In fact, as a consequence of the transversality
of the gluon propagator, factorization of the external
momentum takes place, implying the subleading character
of the 1PI contributions.
Therefore, in the limit k → 0, the (full) ghost and matter

propagators alone dictate the momentum-dependence of
the correlation function h ~RðkÞ ~Rð−kÞi, i.e.

h ~RaiðkÞ ~Rbjð−kÞi ∼ g2G2ðkÞDðk2Þ: ð36Þ
Having in mind the nonenhanced ghost propagator, Gðk2Þ∼
1=k2 (as observed in high-precision pure gauge simulations
in the Landau gauge [10–12]), it is straightforward to
conclude that a finite zero-momentum value for the matter
propagators is a sufficient condition for a ∼1=k4 behavior
of the correlation function h ~RðkÞ ~Rð−kÞi in the deep IR.
As we shall see in the following subsections, both scalar

and fermion propagators display, when coupled to non-
Abelian gauge fields, a shape compatible with a finite zero-
momentum value in the currently available lattice data. We
expect thus a ∼1=k4 behavior of the correlation function
h ~RðkÞ ~Rð−kÞi in the matter sector, being in this sense a
universal property associated with the Faddeev-Popov
operator—when coupled to any colored field—in confining
Yang-Mills theories that can be easily probed in the future
via direct lattice measurements.
Moreover, fits of the lattice data are presented for adjoint

scalars in Sec. II A and for fermions in Sec. II B. This
analysis shows that the propagators for gauge-interacting
scalars and fermions are compatible not only with a finite
zero-momentum limit, but also with a complete analytical
form that can be extracted from an implementation of soft
BRST breaking in the matter sector to be presented below,
in Sec. III.

A. The case of the scalar field in the adjoint
representation

In this subsection, we consider real scalar fields coupled
to a confining Yang-Mills theory:

L¼ 1

4
Fa
μνFa

μνþ
1

2
½Dab

μ ϕb�2þm2
ϕ

2
ϕaϕaþ λ

4!
½ϕaϕa�2þLGF;

ð37Þ

where LGF is the Landau gauge fixing term and ϕ is a real
scalar field in the adjoint representation of SUðNÞ and there
is no Higgs mechanism, namely hϕi ¼ 0.
We are interested in analyzing the infrared nonperturba-

tive regime, focusing especially on the adjoint scalar
propagator. We resort to the lattice implementation of this
system: currently available in the quenched approximation
with the specific setup described in [48]. Preliminary and
unpublished data points for larger lattice sizes (with lattice
cutoff a−1 ¼ 4.94 GeV and N ¼ 30 lattice sites) [51] are
displayed in Fig. 1 for different values of the bare scalar
mass (mbare ¼ 0; 1; 10 GeV). It should be noticed that this
data is unrenormalized in the lattice sense. The renormal-
ization procedure that fixes the data to a known renorm-
alization scheme and the resulting points will be
discussed below.
First of all, the data tends to show a finite zero-

momentum value for the scalar propagator, irrespective
of its bare mass. This indicates—together with the well-
established nonenhanced ghost propagator—that the cor-
relation function h ~R ~Rik is indeed nonvanishing in the IR

0.025

momentum p GeV

un
re

no
rm

.p
ro

p.
D

p
G

eV
2

FIG. 1 (color online). Unrenormalized propagator for different
bare masses of the scalar field: mbare ¼ 0(top, black), 1 and
10 GeV (bottom, red). The points are preliminary and unpub-
lished lattice data from quenched simulations [51] (for lattice
cutoff a−1 ¼ 4.54 GeV, N ¼ 30 and β ¼ 2.698; cf. also [48] for
more details on the lattice setup and measurements) and the
curves are the corresponding fits, whose parameter values can be
found in Table 1.
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limit, presenting the power-law enhancement ∼1=k4 that
we have anticipated above.
The curves in Fig. 1 further show that the data is

compatible with 4-parameter fits of the following form:

DðpÞ ¼ Z
p2 þ μ2ϕ

p4 þ p2ðm2
ϕ þ μ2ϕÞ þ σ4 þm2

ϕμ
2
ϕ

; ð38Þ

where Z; μϕ; mϕ; σ are the fit parameters, whose values
are presented in Table 1. In this case we may extrapolate
the fits in order to obtain the specific values at zero
momentum: Dðp ¼ 0Þ ≈ 0.028; 0.027; 0.0073 GeV−2 for
m ¼ 0; 1; 10 GeV, respectively, so that the nontrivial IR
limit is clear. Moreover, the σ parameter—which will be
directly related to the realization of a hRRi ≠ 0 in the
framework of the next section—seems to be nonvanishing.
It is also interesting to point out that the obtained fits
correspond to a combination of two complex-conjugate
poles for all values of bare scalar mass, indicating the
absence of a Källén-Lehmann spectral representation for
this two-point function and the presence of positivity
violation. In this sense the adjoint scalar propagators
consistently represent confined degrees of freedom, that
do not exhibit a physical propagating pole.
An important issue to be addressed is the possibility of

scheme dependence of those findings. To check for this, we
have also analyzed the scalar propagators after renormal-
ization in another scheme. As usual, renormalization is
implemented through the inclusion of mass δmϕ and wave-
function renormalization δZ counterterms:

D−1
renðpÞ ¼ D−1ðpÞ þ δm2

ϕ þ δZðp2 þm2
bareÞ; ð39Þ

where the counterterms are obtained by imposing the
following renormalization conditions (for Λ ¼ 2 GeV):

(i) ∂p2D−1
remðp ¼ ΛÞ ¼ 1;

(ii) D−1
renðp ¼ ΛÞ ¼ Λ2 þm2

bare.
The fit functions were used to compute the counterterms
and the renormalized points are obtained from the original
lattice data by adding the same counterterms.4 Results are
shown in Fig. 2 and Table 2.

The renormalized propagator may be rewritten in the
form (38), with redefined parameters m0

ϕ; σ
0; Z0:

DrenðpÞ ¼ Z0 p2 þ μ2ϕ
p4 þ p2ðm02

ϕ þ μ2ϕÞ þ σ04 þm02
ϕ μ

2
ϕ

ð40Þ

All the interesting qualitative properties observed in the
unrenormalized data remain valid, namely: (i) finite IR
limit, (ii) compatibility with 4-parameter fits of the same
form, with nontrivial σ values, (iii) the fit parameters yield
complex-conjugate poles, so that the renormalized propa-
gator is still compatible with positivity violation and
confinement.
We underline that the present analysis for the scalar

fields is meant to be a preliminary study of the propagator.
As such, the results are still at the qualitative level. A more
quantitative analysis would require further simulations with
improved statistics and even larger lattices.

B. The case of the quark field

In this subsection, we consider the case of gauge-
interacting fermionic fields coupled to a confining Yang-
Mills theory. Of course, the case of QCD is the emblematic
example. We will verify that the same qualitative properties
shown above for scalar fields can also be found in this case,
indicating that the IR enhancement of the correlation
function h ~R ~Ri ∼ 1=k4 seems to be universally present
in the confined matter sector.

TABLE I. Fit parameters for the unrenormalized propagator in
powers of GeV.

mbare μ2ϕ m2
ϕ σ4 Z χ2=dof

0 120 0 4913 1.137 0.31
1 46 34 644 1.28 1.84
10 88 158 1267 1.26 0.10

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

1.2

momentum p GeV

re
no

rm
.p

ro
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D
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n
p

G
eV

2

FIG. 2 (color online). Renormalized propagator for different
bare masses of the scalar field: mbare ¼ 0 (top, black), 1 and
10 GeV (bottom, red). The points are obtained from the
unrenormalized lattice data [48,51] displayed in Fig. 1.

TABLE II. Counterterms, redefined fit parameters and zero-
momentum values of the renormalized propagator in powers of
GeV.

mbare δm2
ϕ δZ m02

ϕ σ04 Z0 Drenðp ¼ 0Þ
0 −35.98 0.40 −28.09 3374.32 0.781 26.7
1 −36.49 0.416 −8.18 420.84 0.834 0.94
10 −69.69 0.322 79.19 902.23 0.894 0.01

4Direct renormalization of lattice data was avoided, since we
did not have access to the measurement of ∂p2D and the number
of data points available was not sufficient for a reliable numerical
derivative to be computed.
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The fermionic propagator is decomposed as usual,

SðpÞ ¼ Zðp2Þ−ipμγμ þAðp2Þ
p2 þA2ðp2Þ ; ð41Þ

and our interest resides solely on the mass function Aðp2Þ,
whose lattice data will be analyzed here.
As already discussed and shown in [52], the data of [50]

for the mass function of the propagator of degenerate up (u)
and down (d) quarks with current mass μ ¼ 0.014 GeV can
be fitted excellently with

Aðp2Þ ¼ M3

p2 þm2
þ μ with M3 ¼ 0.1960ð84Þ GeV3;

m2 ¼ 0.639ð46Þ GeV2 ðχ2=d:o:f: ¼ 1.18Þ; ð42Þ
as can be seen in Fig. 3. A recent alternative semianalytic
description of the nonperturbative quark propagator in the
Landau gauge based on an effective gluon mass was
discussed in [53].
The quark propagator presents clearly a finite IR limit.

This is, in fact, well known in QCD as dynamical mass
generation and is intimately related to chiral symmetry
breaking. Interestingly enough, this is also a sufficient
condition—supposing a nonenhanced ghost propagator—
for the soft BRST breaking in the quark sector through the
IR enhancement of the correlation function h ~R ~Ri. Again,
we predict a ∼1=k4 IR scaling for this observable, now in
the quark sector. This suggests a close relation between soft
BRST breaking and chiral symmetry breaking, and may
provide an interesting underlying connection between
confinement and chiral symmetry breaking.

III. IMPLEMENTING THE CORRELATION
FUNCTION h ~RðkÞ ~Rð−kÞi WITHIN A LOCAL
QUANTUM FIELD THEORY FRAMEWORK

Now that we have established that available lattice
data for different propagators of gauge-interacting matter
seems to be qualitatively compatible with the nontrivial

h ~RðkÞ ~Rð−kÞi ∼ 1=k4 behavior, let us discuss how the
correlation function (32) can be obtained through a local
and renormalizable action. In this section, the example of a
real scalar field ϕa in the adjoint representation of the gauge
group will be worked out in detail.

A. Scalar field in the adjoint representation

We start by considering the following nonlocal action

Sϕ ¼
Z

d4x
�
1

2
ðDab

μ ϕbÞ2 þm2
ϕ

2
ϕaϕa þ λ

4!
ðϕaϕaÞ2

�

þ g2σ4
Z

d4xd4yfabcϕbðxÞ½M−1�adðx; yÞfdecϕeðyÞ;

ð43Þ
where σ is a massive parameter which, to some extent,
plays a role akin to that of the Gribov parameter γ2 of the
Gribov-Zwanziger action. Equation (11).
Following now the same procedure adopted in the case

of the Gribov-Zwanziger action, it is not difficult to show
that the nonlocal action (43) can be cast in local form. This
is achieved by introducing a set of auxiliary fields
ð~ηab; ηabÞ, ð~θab; θabÞ, where ð~ηab; ηabÞ are commuting fields
while ð~θab; θabÞ are anticommuting. For the local version of
(43) one gets

Sϕloc ¼ Sϕ0 þ Sσ; ð44Þ
with

Sϕ0 ¼
Z

d4x

�
1

2
ðDab

μ ϕbÞ2 þm2
ϕ

2
ϕaϕa þ λ

4!
ðϕaϕaÞ2

þ ~ηacð∂μDab
μ Þηbc − ~θacð∂μDab

μ Þθbc

− gfabcð∂μ
~θaeÞðDbd

μ cdÞηce
�

ð45Þ

and

Sσ ¼ σ2g
Z

d4xfabcϕaðηbc þ ~ηbcÞ: ð46Þ

As in the case of the Gribov-Zwanziger action, the auxiliary
fields ð~ηab; ηabÞ, ð~θab; θabÞ appear quadratically, so that
they can be easily integrated out, giving back precisely the
nonlocal starting expression (43). Moreover, in full analogy
with the Gribov-Zwanziger case, the local action Sϕloc
exhibits a soft breaking of the BRST symmetry. In fact,
making use of Eq. (A5) and of

sϕa ¼ −gfabcϕbcc;

s~θab ¼ ~ηab; s~ηab ¼ 0;

sηab ¼ θab; sθab ¼ 0; ð47Þ
it follows that

sSϕloc ¼ σ2Δϕ; ð48Þ
where

0
0 0.5 1 1.5 2 2.5 3 43.5 4.5

0.1

0.2

0.3

p [GeV]

M
(p

2 ) 
[G

eV
2 ]

FIG. 3 (color online). Lattice quark mass function [50] with
its fit Aðp2Þ. Figure extracted from [52]; fit obtained by
O. Oliveira [54].
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Δϕ ¼ g
Z

d4xfabcð−gfamnϕmcnðηbc þ ~ηbcÞ þ ϕaθbcÞ: ð49Þ

Again, being of dimension two in the fields, the breaking termΔϕ is a soft breaking. We now add the local action (44) to the
Gribov-Zwanziger action (11), obtaining

Sloc ¼
Z

d4x

�
1

4
Fa
μνFa

μν þ ba∂μAa
μ þ c̄a∂μDab

μ cb þ 1

2
ðDab

μ ϕbÞ2 þm2
ϕ

2
ϕaϕa þ λ

4!
ðϕaϕaÞ2 þ φac

ν ∂μDab
μ φ̄bc

ν

− ωac
ν ∂μDab

μ ω̄ac
ν þ γ2gfabcAa

μðφbc
μ þ φ̄bc

μ Þ − gfabcð∂μω̄
ae
ν ÞðDbd

μ cdÞφce
ν − γ44ðN2 − 1Þ

þ ~ηacð∂μDab
μ Þηbc − ~θacð∂μDab

μ Þθbc þ σ2gfabcϕaðηbc þ ~ηbcÞ − gfabcð∂μ
~θaeÞðDbd

μ cdÞηce
�
: ð50Þ

As it happens in the case of the Gribov-Zwanziger action,
the local action Sloc can be proven to be renormalizable to
all orders. This important property follows from the
existence of a large set of Ward identities which can be
derived in the matter scalar sector and which restrict very
much the possible allowed counterterms. For the sake of
clarity, the whole Appendix A has been devoted to the
detailed algebraic proof of the renormalizability of the
action (50). As in the case of the Gribov-Zwanziger action,
expression (50) is well suited to investigate the correlation
function

hRabðxÞRcdðyÞi; ð51Þ
RabðxÞ ¼ g

Z
d4zðM−1Þacðx; zÞfcdbϕdðzÞ; ð52Þ

and its relation with the soft BRST breaking in the scalar
field sector, Eq. (48). In fact, repeating the same reasoning
of Eqs. (46), (27), (28), one is led to consider the exact
BRST correlation function in the matter scalar field sector

hsðηabðxÞ~θcdðyÞÞiSloc ¼ hθabðxÞ~θcdðyÞ þ ηabðxÞ~ηcdðyÞiSloc :
ð53Þ

Integrating out the auxiliary fields ð~θab; θab; ~ηab; ηabÞ in
expression

Z
½DΦ�ðθabðxÞ~θcdðyÞ þ ηabðxÞ~ηcdðyÞÞe−Sloc ; ð54Þ

gives

R ½DΦ�ðsðηabðxÞ~θcdðyÞÞÞe−SlocR ½DΦ�e−Sloc ¼ σ4
R
DADϕδð∂AÞðdetMÞRabðxÞRcdðyÞe−ðSYMþγ4HðAÞþSϕÞR

DADϕδð∂AÞðdetMÞe−ðSYMþγ4HðAÞþSϕÞ ; ð55Þ

showing that, in analogy with the case of the gauge field,
the correlation function (51) with a cutoff at the Gribov
horizon is directly related to the existence of the BRST
breaking in the matter sector.
We can now have a look at the two-point correlation

function of the scalar field. Nevertheless, before that, an
additional effect has to be taken into account. In very strict
analogy with the case of the Refined Gribov-Zwanziger
action, Eq. (16), the soft breaking of the BRST symmetry
occurring in the scalar matter sector, Eq. (48), implies the
existence of a nonvanishing BRST exact dimension two
condensate, namely

hsð~θabðxÞηabðxÞÞi ¼ hð~ηabðxÞηabðxÞ − ~θabðxÞθabðxÞÞi ≠ 0:

ð56Þ
In order to show that expression (56) is nonvanishing, we

couple the operator ð~ηabðxÞηabðxÞ − ~θabðxÞθabðxÞÞ to the
local action Sloc, Eq. (50), by means of a constant external
source J,

Sloc − J
Z

d4xð~ηabðxÞηabðxÞ − ~θabðxÞθabðxÞÞ; ð57Þ

and we evaluate the vacuum energy EðJÞ in the presence of
J, namely

e−VEðJÞ ¼
Z

DΦe−ðSloc−J
R

d4xð~ηabðxÞηabðxÞ−~θabðxÞθabðxÞÞÞ: ð58Þ

Thus, the condensate hð~ηabðxÞηabðxÞ − ~θabðxÞθabðxÞÞi is
obtained by differentiating EðJÞ with respect to J and
setting J ¼ 0 at the end, i.e.

∂EðJÞ
∂J jJ¼0 ¼ −hð~ηabðxÞηabðxÞ − ~θabðxÞθabðxÞÞi: ð59Þ

Employing dimensional regularization, to the first order, we
have

EðJÞ ¼ ðN2 − 1Þ
2

Z
ddk
ð2πÞd log

�
k2 þm2

ϕ þ
2Nσ4g2

k2 þ J

�
þ Ê;

ð60Þ

where Ê stands for the part of the vacuum energy which is
independent from J. Differentiating Eq. (60) with respect to
J and setting J ¼ 0, we get

CAPRI et al. PHYSICAL REVIEW D 90, 085010 (2014)

085010-8



hð~ηabðxÞηabðxÞ− ~θabðxÞθabðxÞÞi

¼ ðN2−1ÞNσ4g2
Z

ddk
ð2πÞd

1

k2
1

k4þm2
ϕk

2þ2Nσ4g2
≠ 0:

ð61Þ

Notice that the integral in the right-hand side of Eq. (61) is
ultraviolet convergent in d ¼ 4. Expression (61) shows
that, as long as the parameter σ in nonvanishing, the
condensate hð~ηabðxÞηabðxÞ − ~θabðxÞθabðxÞÞi is dynami-
cally generated.
The effect of the condensate (56) can be taken into

account by adding to the action Sloc the novel term

μ2ϕ

Z
d4xsð~θabηabÞ ¼ μ2ϕ

Z
d4xð~ηabηab − ~θabθabÞ; ð62Þ

giving rise to the refined action

~SRef ¼ Sloc þ
Z

d4x

�
m2

2
Aa
μAa

μ − μ2ðφ̄ab
μ φab

μ − ω̄ab
μ ωab

μ Þ
�

− μ2ϕ

Z
d4xð~ηabηab − ~θabθabÞ: ð63Þ

Finally, for the propagator of the scalar field, we get

hϕaðkÞϕbð−kÞi¼ δab
k2þμ2ϕ

k4þðμ2ϕþm2
ϕÞk2þ2Ng2σ4þμ2ϕm

2
ϕ

;

ð64Þ
which is precisely of the same kind employed in the
previous section in order to fit the lattice data.

B. The quark field

In this subsection we generalize the previous construc-
tion to the case of quark fields. The starting nonlocal action
(43) is now given by

Sψ ¼
Z

d4xðψ̄ iγμD
ij
μ ψ j −mψ ψ̄

iψ iÞ

−M3g2
Z
d4xd4yψ̄ iðxÞðTaÞij½M−1�abðx; yÞðTbÞjkψkðyÞ;

ð65Þ

where the massive parameter M is the analogue of the
parameter σ of the scalar field and

Dij
μ ¼ δij∂μ − igðTaÞijAa

μ; ð66Þ
is the covariant derivative in the fundamental representa-
tion, specified by the generators ðTaÞij. As in the previous
case, the nonlocal action (65) can be cast in local form
through the introduction of a suitable set of auxiliary fields:
ðλ̄ai; λaiÞ and ðξ̄ai; ξaiÞ. The fields ðλ̄ai; λaiÞ are Dirac
spinors with two color indices ða; iÞ belonging, respec-
tively, to the adjoint and to the fundamental representation.

Similarly, ðξ̄ai; ξaiÞ are a pair of spinor fields with ghost
number ð−1; 1Þ. The spinors ðλ̄ai; λaiÞ are anticommuting,
while ðξ̄ai; ξaiÞ are commuting.
For the local version of the action, we get

Sψloc ¼ S0 þ SM; ð67Þ
where

S0 ¼
Z

d4xðψ̄ iγμD
ij
μ ψ j −mψ ψ̄

iψ i þ λ̄aið−∂μDab
μ Þλbi

þ ξ̄aið−∂μDab
μ Þξbi − ð∂μξ̄

aiÞgfacbðDcm
μ cmÞλbiÞ; ð68Þ

and

SM ¼ gM3=2

Z
d4xðλ̄aiðTaÞijψ j þ ψ̄ iðTaÞijλajÞ: ð69Þ

The nonlocal action Sψ is easily recovered by integrating
out the auxiliary fields ðλ̄ai; λaiÞ and ðξ̄ai; ξaiÞ. As in the
case of the scalar field, the term SM induces a soft breaking
of the BRST symmetry. In fact, from

sψ i ¼ −igcaðTaÞijψ j;

sψ̄ i ¼ −igψ̄ jcaðTaÞji;
sξ̄ai ¼ λ̄ai; sλ̄ai ¼ 0;

sλai ¼ ξai; sξai ¼ 0; ð70Þ
one easily checks that

sSψloc ¼ sSM ¼ M3=2ΔM; ð71Þ
where

ΔM ¼
Z

d4xðig2λ̄aiðTaÞijcbðTbÞjkψk

− ig2ψ̄kcbðTbÞkiðTaÞijλaj − gψ̄ iðTaÞijξajÞ: ð72Þ
Again, being of dimension 5=2 in the fields, ΔM is a soft
breaking. In the present case, for the quantity (31) we have

Rai
α ðxÞ ¼ g

Z
d4zðM−1Þabðx; zÞðTbÞijψ j

αðzÞ;

R̄bj
β ðxÞ ¼ g

Z
d4zðM−1Þbcðx; zÞψ̄k

βðzÞðTcÞkj; ð73Þ

where we have explicitated the Dirac indi-
ces α; β ¼ 1; 2; 3; 4.
As in the case of the scalar field, the action Sψloc can be

added to the Gribov-Zwanziger action. The resulting
action, ðSGZ þ SψlocÞ, turns out to be renormalizable.
Although we shall not give here the details of the proof
of the renormalizability of the action ðSGZ þ SψlocÞ, it is
worth mentioning that it can be given by following the
framework already outlined in [55], where a similar non-
local spinor action has been considered.
Proceeding now as in the case of the scalar field,

one finds
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R ½DΦ�ðsðξ̄aiα ðxÞλbjβ ðyÞÞÞe−ðSGZþSψlocÞR ½DΦ�e−ðSGZþSψlocÞ
¼ M3

R
DADψDψ̄δð∂AÞðdetMÞRai

α ðxÞR̄bj
β ðyÞe−ðSYMþγ4HðAÞþSψ ÞR

DADψDψ̄δð∂AÞðdetMÞe−ðSYMþγ4HðAÞþSψ Þ ; ð74Þ

showing that the correlation function hRai
α ðxÞR̄bj

β ðyÞi with
a cutoff at the Gribov horizon is related to the existence of
the BRST breaking, Eq. (71).
Let us end this section by discussing the two-point

correlation function of the quark field. As before, an
additional effect has to be taken into account. Also here,
the soft breaking of the BRST symmetry, Eq. (71), implies
the existence of a nonvanishing BRST exact dimension two
condensate, namely

hsðξ̄aiðxÞλaiðxÞÞi ¼ hðλ̄aiðxÞλaiðxÞ þ ξ̄aiðxÞξaiðxÞÞi ≠ 0;

ð75Þ
whose effect can be taken into account by adding to the
action Sψloc the term

μ2ψ

Z
d4xsðξ̄aiðxÞλaiðxÞÞ

¼ μ2ψ

Z
d4xðλ̄aiðxÞλaiðxÞ þ ξ̄aiðxÞξaiðxÞÞ: ð76Þ

Therefore, including the dimension two condensates, we
end up with the refined action

~SψRef ¼ SRGZþSψlocþμ2ψ

Z
d4xðλ̄aiðxÞλaiðxÞþ ξ̄aiðxÞξaiðxÞÞ:

ð77Þ

Finally, for the propagator of the quark field, we get

hψ iðkÞψ̄ jð−kÞi ¼ δij
−ikμγμ þAðk2Þ
k2 þA2ðk2Þ ; ð78Þ

where

Aðk2Þ ¼ mψ þ g2M3CF

k2 þ μ2ψ
; ð79Þ

and

ðTaÞijðTaÞjk ¼ δikCF; CF ¼ N2 − 1

2N
: ð80Þ

Expression (78) is of the same kind employed to fit the
lattice data.

IV. CONCLUSION

One of the striking features of the (R)GZ formulation of
nonperturbative Euclidean continuum Yang-Mills theories
is the appearance of the soft breaking of the BRST
symmetry, which seems deeply related to gluon confine-
ment. Recently, direct lattice investigations [45] have
confirmed the existence of this breaking through the
analysis of the correlation function:

h ~Rab
μ ðkÞ ~Rcd

ν ð−kÞi ∼k→0 1

k4
ð81Þ

Rac
μ ðxÞ ¼ g

Z
d4zðM−1Þadðx; zÞfdecAe

μðzÞ; ð82Þ

As pointed in [45], this nonvanishing correlator signals the
breaking of the BRST invariance. Interestingly enough, the
behavior (81) is in quite good agreement with the RGZ
framework.
The aim of the present work is that of providing evidence

that a similar picture can be consistently achieved in the
matter sector. The cases of both adjoint scalars and quarks
indicate that it is possible to introduce an analogous
operator Rai

F for matter fields,

Rai
F ðxÞ ¼ g

Z
d4zðM−1Þabðx; zÞðTbÞijFjðzÞ; ð83Þ

so that the correlation function hRFRFi is nonvanishing
and, from the available lattice data, seems to behave like
expression (81), namely

h ~Rai
F ðkÞ ~Rbj

F ð−kÞi ∼k→0 1

k4
: ð84Þ

Again, the nonvanishing of hRFRFi indicates the soft
breaking of the BRST symmetry in the matter sector. In this
sense, the correlation function hRFRFi could be regarded
as a direct signature for BRST breaking, being accessible
both analytically as well as through numerical lattice
simulations.
Concerning the analytic side, we have been able to

construct a local and renormalizable action including
matter fields which accommodates the nontrivial correla-
tion functions hRFRFi. Our analysis further suggests that
the inverse of the Faddeev-Popov operator M−1, whose
existence is guaranteed by the restriction to the Gribov
regionΩ, couples in a universal way to any colored fieldGi

(e.g. gluon and matter fields),

Rai
G ðxÞ ¼ g

Z
d4zðM−1Þabðx; zÞðTbÞijGjðzÞ; ð85Þ

giving rise to a nonvanishing correlation function

h ~RGðkÞ ~RGð−kÞi ∼k→0 1

k4
: ð86Þ

Therefore, these correlation functions could signal that the
soft breaking of the BRST invariance generated by the
restriction to the Gribov region is transmitted to the colored
objects through the coupling with the inverse Faddeev-
Popov operator ðM−1Þab, as described by Eqs. (85)
and (86).
Although this construction has been presented in the case

of the Landau gauge, it can be generalized to other gauges,
like, e.g. the Maximal Abelian Gauge [56].
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APPENDIX: ALGEBRAIC RENORMALIZATION
OF THE SCALAR ACTION Sloc

In order to prove the renormalizability of the action Sloc,
Eq. (50), we proceed as in [18–23] and we embed the
theory into an extended action Σ enjoying exact BRST
symmetry, given by

Σ¼
Z

d4x

�
1

4
Fa
μνFa

μνþba∂μAa
μþ c̄a∂μDab

μ cbþ1

2
ðDab

μ ϕbÞ2þm2
ϕ

2
ϕaϕaþ λ

4!
ðϕaϕaÞ2þ φ̄ac

ν ∂μDab
μ φbc

ν − ω̄ac
ν ∂μDab

μ ωbc
ν

−gfabcð∂μω̄
ae
ν ÞðDbd

μ cdÞφce
ν −Nac

μνDab
μ ω̄bc

ν −Mae
μν½Dab

μ φ̄be
ν −gfabcðDbd

μ cdÞω̄ce
ν �− M̄ac

μνDab
μ φbc

ν

þ N̄ae
μν½Dab

μ ωbe
ν −gfabcðDbd

μ cdÞφce
ν �− M̄ac

μνMac
μνþ N̄ac

μνNac
μνþ ~ηacð∂μDab

μ Þηbc− ~θacð∂μDab
μ Þθbc−gfabcð∂μ

~θaeÞðDbd
μ cdÞηce

þgfabc ~VadϕbηcdþgfabcVadð−gfbdeϕdce ~θcdþϕb ~ηcdÞþρð ~VabVab− ~UabUabÞþgfabc ~Ualðgfbdeϕdceηcl−ϕbθclÞ

þgfabcUadϕb ~θcd−Ka
μDab

μ cbþ g
2
fabcLacbcc−gfabcFaϕbcc

�
; ðA1Þ

where ðMab
μν ; M̄ab

μν ; Nab
μν ; N̄ab

μν ; Vabc; ~Vabc; Uabc; ~UabcÞ are
external sources. The original local action Sloc, (50),
can be reobtained from the extended action Σ by
letting the external fields to assume their physical values
namely

Mab
μν jphys ¼ M̄ab

μν jphys ¼ γ2δabδμν;

Vabjphys ¼ ~Vabjphys ¼ σ2δab;

Nab
μν jphys ¼ N̄ab

μν jphys ¼ Uabjphys ¼ ~Uabjphys ¼ 0:

Ka
μ ¼ La ¼ Fa ¼ 0; ðA2Þ

so that

Σjphys ¼ Sloc þ Vρσ4g2NðN2 − 1Þ; ðA3Þ

where the parameter ρ has been introduced in order to take
into account possible divergences in the vacuum energy
associated to the term σ4. This term stems from the source
term ρ ~VabcVabc, which is allowed by power counting. In
the physical limit the vertex ϕc~θ remains nonvanishing.
Though, it is harmless, due to the absence of mixed
propagators hc~θi and hc̄θi.
It is easy to check that the extended action Σ enjoys exact

BRST invariance, i.e.

sΣ ¼ 0; ðA4Þ

where

sAa
μ ¼ −Dab

μ cb;

sϕa ¼ −gfabcϕbcc;

sca ¼ 1

2
gfabccbcc;

sc̄a ¼ ba; sba ¼ 0;

sω̄ab
μ ¼ φ̄ab

μ ; sφ̄ab
μ ¼ 0;

sφab
μ ¼ ωab

μ ; sωab
μ ¼ 0;

s~θab ¼ ~ηab; s~ηab ¼ 0;

sηab ¼ θab; sθab ¼ 0; ðA5Þ
and

sMab
μν ¼ Nab

μν ; sNab
μν ¼ 0;

sN̄ab
μν ¼ M̄ab

μν ; sM̄ab
μν ¼ 0;

s ~Uab ¼ ~Vab; s ~Vab ¼ 0;

sVab ¼ Uab; sUab ¼ 0;

sKa ¼ sLa ¼ sFa ¼ 0: ðA6Þ
As noticed in [18–23], it is useful introducing a multi-index
notation for the localizing auxiliary fields ðφ̄ab

μ ;φab
μ ;

ω̄ab
μ ; ω̄ab

μ Þ ¼ ðφ̄a
i ;φ

a
i ; ω̄

a
i ; ω̄

a
i Þ where the multi-index i ¼

ðb; μÞ runs from 1 to 4ðN2 − 1Þ. The important reason in
order to introduce the multi-index notation is related to the
existence of a global symmetry Uð4ðN2 − 1ÞÞ in the index
i, which plays an important role in the proof of the algebraic
renormalization. Analogously, one can introduce a second
index I for the localizing fields of the matter scalar sector
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ð~ηab; ηab; ~θab; θabÞ ¼ ð~ηaI; ηaI; ~θaI; θaIÞ, where I ¼ 1;…; ðN2 − 1Þ. Again, the introduction of the index I is related to the
existence of a second global symmetry UðN2 − 1Þ. In the multi-index notation, the action (A1) reads

Σ¼
Z

d4x

�
1

4
Fa
μνFa

μν þ ba∂μAa
μ þ c̄a∂μDab

μ cb þ 1

2
ðDab

μ ϕbÞ2 þm2
ϕ

2
ϕaϕa þ λ

4!
ðϕaϕaÞ2 þ φ̄a

i ∂μDab
μ φb

i − ω̄a
i ∂μDab

μ ωb
i

− gfabcð∂μω̄
a
i ÞðDbd

μ cdÞφc
i −Na

μiD
ab
μ ω̄b

i −Ma
μi½Dab

μ φ̄b
i − gfabcðDbd

μ cdÞω̄c
i �− M̄a

μiD
ab
μ φb

i þ N̄a
μi½Dab

μ ωb
i − gfabcðDbd

μ cdÞφc
i �

− M̄a
μiM

a
μi þ N̄a

μiN
a
μi þ ~ηaIð∂μDab

μ ÞηbI − ~θaIð∂μDab
μ ÞθbI − gfabcð∂μ

~θaIÞðDbd
μ cdÞηcI þ gfabc ~VaIϕbηcI

þ gfabcVaIð−gfbdeϕdce ~θcI þϕb ~ηcIÞ þ ρð ~VaIVaI − ~UaIUaIÞ þ gfabc ~UaIðgfbdeϕdceηcI −ϕbθcIÞ

þ gfabcUaIϕb ~θcI −Ka
μDab

μ cb þ g
2
fabcLacbcc − gfabcFaϕbcc

�
: ðA7Þ

We are now ready to write down the large set of Ward identities fulfilled by the action (A7). These are
given by:

(i) The Slavnov-Taylor identity:

SðΣÞ ¼ 0; ðA8Þ
where

SðΣÞ ¼
Z

d4x

�
δΣ
δKa

μ

δΣ
δAa

μ
þ δΣ
δFa

δΣ
δϕa þ

δΣ
δLa

δΣ
δca

þ ba
δΣ
δc̄a

þ ωa
i
δΣ
δφa

i
þ φ̄a

i
δΣ
δω̄a

i

þ ~ηaI
δΣ
δ~θaI

þ θaI
δΣ
δηaI

þ Na
μi

δΣ
δMa

μi
þ M̄a

μi
δΣ
δN̄a

μi
þ ~VaI δΣ

δ ~UaI þUaI δΣ
δVaI

�
: ðA9Þ

For future convenience, let us also introduce the so-called linearized Slavnov-Taylor operator BΣ,
given by

BΣ ¼
Z

d4x

�
δΣ
δKa

μ

δ

δAa
μ
þ δΣ
δAa

μ

δ

δKa
μ
þ δΣ
δFa

δ

δϕa þ
δΣ
δϕa

δ

δFa þ
δΣ
δLa

δ

δca
þ δΣ
δca

δ

δLa þ ba
δ

δc̄a

þ ωa
i

δ

δφa
i
þ φ̄a

i
δ

δω̄a
i
þ ~ηaI

δ

δ~θaI
þ θaI

δ

δηaI
þ Na

μi
δ

δMa
μi
þ M̄a

μi
δ

δN̄a
μi
þ ~VaI δ

δ ~UaI þ UaI δ

δVaI

�
: ðA10Þ

The operator BΣ enjoys the important property of
being nilpotent

BΣBΣ ¼ 0: ðA11Þ
(ii) The gauge-fixing and antighost equations:

δΣ
δba

¼ ∂μAa
μ;

δΣ
δc̄a

þ ∂μ
δΣ
δKa

μ
¼ 0: ðA12Þ

(iii) The linearly broken Ward identities:

δΣ
δφ̄a

i
þ ∂μ

δΣ
δM̄a

μi
¼ 0; ðA13Þ

δΣ
δωa

i
þ ∂μ

δΣ
δNa

μi
− gfabc

δΣ
δbc

ω̄b
i ¼ 0; ðA14Þ

δΣ
δω̄a

i
þ ∂μ

δΣ
δN̄a

μi
− gfabcMb

μi
δΣ
δKc

μ
¼ 0; ðA15Þ

δΣ
δφa

i
þ ∂μ

δΣ
δMa

μi

− gfabc
�
δΣ
δbc

φ̄b
i þ

δΣ
δc̄b

ω̄c
i − N̄c

μi
δΣ
δKb

μ

�
¼ 0;

ðA16Þ
Z

d4x

�
ca

δ

δωa
i
þ ω̄a

i
δ

δc̄a
þ N̄a

μi
δ

δKa
μ

�
Σ ¼ 0; ðA17Þ

Z
d4x

�
ca

δ

δθaI
þ ~θaI

δ

δc̄a
− ~UaI δ

δFa

�
Σ ¼ 0;

ðA18Þ
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Z
d4x

�
δ

δηbI
−gfabc ~UaI δ

δFc−gfabe
�
~ηaI

δ

δbe
− ~θaI

δ

δc̄e

��
Σ¼

Z
d4xgfabcVaIϕc; ðA19Þ

Z
d4x

�
δ

δθbI
− gfabe ~θaI

δ

δbe

�
Σ ¼ −

Z
d4xgfabc ~UaIϕc; ðA20Þ

Z
d4x

�
δ

δ~θaI
− gfabcVcI δ

δFb

�
Σ ¼

Z
d4xgfabcUcIϕb; ðA21ÞZ

d4x
δΣ
δ~ηbI

¼ −
Z

d4xgfabcVaIϕc: ðA22Þ

(iv) The ghost equation:

GaðΣÞ ¼ Δa
class; ðA23Þ

where

Ga ¼
Z

d4x

�
δ

δca
þ gfabc

�
c̄b

δ

δbc
þ ω̄b

i
δ

δφc
i
þ φb

i
δ

δωc
i
þMb

μi
δ

δNc
μi
þ N̄b

μi
δ

δM̄c
μi
þ ~θbI

δ

δ~ηcI

ηbI
δ

δθcI
þ ~UbI δ

δ ~VcI þ VbI δ

δUcI

��
ðA24Þ

and

Δa
class ¼

Z
d4xgfabcðKb

μAc
μ − Lbcc þ FbϕcÞ: ðA25Þ

(v) The global symmetry Uðf ¼ 4ðN2 − 1ÞÞ:

LijðΣÞ¼
Z

d4x

�
φc
i
δ

δφc
j
− φ̄c

i
δ

δφ̄c
j
þωc

i
δ

δωc
j
− ω̄c

i
δ

δω̄c
j
þMc

μi
δ

δMc
μj
− M̄a

μi
δ

δM̄a
μj
þNa

μi
δ

δNa
μj
− N̄a

μi
δ

δN̄a
μj

�
Σ¼ 0: ðA26Þ

(vi) The global symmetry Uðf0 ¼ ðN2 − 1ÞÞ:

LIJðΣÞ¼
Z

d4x

�
θbI

δ

δθbJ
− ~θbI

δ

δ~θbJ
þηbI

δ

δηbJ
− ~ηbI

δ

δ~ηbJ
þVaI δ

δVaJ− ~VaI δ

δ ~VaJþUaI δ

δUaJ− ~UaI δ

δ ~UaJ

�
Σ¼0: ðA27Þ

Let us also display below the quantum numbers of all fields and sources
(vii) Table of quantum numbers (“B” is for bosonic fields and “F” is for fermionic fields):

A ϕ c c̄ b φ φ̄ ω ω̄ η ~η θ ~θ

Dim 1 1 0 2 2 1 1 1 1 1 1 1 1
Ghost# 0 0 1 −1 0 0 0 1 −1 0 0 1 −1
Charge-qf 0 0 0 0 0 1 −1 1 −1 0 0 0 0
Charge-qf0 0 0 0 0 0 0 0 0 0 1 −1 1 −1
Nature B B F F B B B F F B B F F

M M̄ N N̄ U ~U V ~V K L F

Dim 2 2 2 2 2 2 2 2 3 4 3
Ghost# 0 0 1 −1 1 −1 0 0 −1 −2 −1
Charge-qf 1 −1 1 −1 0 0 0 0 0 0 0
Charge-qf0 0 0 0 0 1 −1 1 −1 0 0 0
Nature B B F F F F B B F B F
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1. Algebraic characterization of the invariant
counterterm and renormalizability

In order to determine the most general invariant counter-
term which can be freely added to each order of perturba-
tion theory, we follow the Algebraic Renormalization
framework [57] and perturb the complete action Σ by
adding an integrated local polynomial in the fields and
sources with dimension bounded by four and vanishing
ghost number, Σct, and we require that the perturbed action,
ðΣþ εΣctÞ, where ε is an infinitesimal expansion param-
eter, obeys the same Ward identities fulfilled by Σ to the
first order in the parameter ε. Therefore, in the case of the
Slavnov-Taylor identity (A8), we have

SðΣþ εΣctÞ ¼ 0þOðε2Þ; ðA28Þ
which leads to

BΣðΣctÞ ¼ 0; ðA29Þ
implying that Σct belongs to the cohomology of the
linearized Slavnov-Taylor operator in the sector of the
local integrated polynomials of dimension bounded by
four. From the general results on the cohomology of Yang-
Mills theories, see [57], the counterterm Σct can be para-
metrized as follows

Σct ¼ a0SYM þ a1
λ

4!
ðϕaϕaÞ2 þ a2

m2
ϕ

2
ϕaϕa þ BΣðΔ−1Þ;

ðA30Þ
where a0, a1, a2 are free arbitrary coefficients andΔ−1 is an
integrated polynomial in the fields and sources with
dimension bounded by 4 and with ghost number −1.
The most general expression for Δ−1 is given by

Δ−1 ¼
Z

d4xfa3ð∂μc̄a þ Ka
μÞAa

μ þ a4Laca þ a5ϕaFa þ a6∂μφ
a
i ∂μω̄

a
i þ a7∂μη

aI∂μ
~θaI

þ a8∂μω̄
a
i M

a
μi þ a9N̄a

μi∂μφ
a
i þ a10Ma

μiN̄
a
μi þ a11VaI ~UaI þ a12m2

ϕφ
a
i ω̄

a
i

þ a13m2
ϕη

aI ~θaI þ a14gfabcVaIϕb ~θcI þ a15gfabc ~U
aIϕbηcI

þ a16gfabc∂μAa
μφ

b
i ω̄

c
i þ a17gfabcAa

μ∂μφ
b
i ω̄

c
i þ a18gfabcAa

μφ
b
i ∂μω̄

c
i

þ a19gfabcAa
μMb

μiω̄
c
i þ a20gfabcAa

μN̄b
μiφ

c
i þ a21gfabc∂μAa

μη
bI ~θcI

þ a22gfabcAa
μ∂μη

bI ~θcI þ a23gfabcAa
μη

bI∂μ
~θcI

þ Cabcd
1 ϕaϕbφc

i ω̄
d
i þ Cabcd

2 ϕaϕbηcI ~θdI þ CabcdIJKL
3 ηaI ~θbJθcK ~θdL

þ CabcdIJKL
4 ηaI ~θbJηcK ~ηdL þ Cabcd

5 φa
i φ̄

b
i η

cI ~θdI þ Cabcd
6 ωa

i ω̄
b
i η

cI ~θdI

þ Cabcd
7 φa

i ω̄
b
i θ

cI ~θdI þ Cabcd
8 φa

i ω̄
b
i η

cI ~ηdI þ Cabcdijkl
9 φa

i ω̄
b
jφ

c
kφ̄

d
l þ Cabcdijkl

10 φa
i ω̄

b
jω

c
kω̄

d
l g; ðA31Þ

where ðCabcd
1 ;Cabcd

2 ;CabcdIJKL
3 ;CabcdIJKL

4 ;Cabcd
5 ;Cabcd

6 ;Cabcd
7 ;Cabcd

8 ;Cabcdijkl
9 ;Cabcdijkl

10 Þ are arbitrary coefficients. After
imposition of all other Ward identities it turns out that the nonvanishing parameters which remain at the end of a lengthy
algebraic analysis are

a3 ¼ a6 ¼ a7 ¼ a8 ¼ a9 ¼ a10 ¼ a17 ¼ −a18 ¼ a19 ¼ a22 ≠ 0; ðA32Þ
as well as

−a5 ¼ a16 ¼ a17 ≠ 0; a11 ≠ 0: ðA33Þ
Therefore, for the final expression of the invariant counterterm one finds

Σct ¼
Z

d4x

�
a0Fa

μνFa
μν þ a1

λ

4!
ðϕaϕaÞ2 þ a2

m2
ϕ

2
ϕaϕa þ a3

�
δSYM
δAa

μ
Aa
μ þ ∂μc̄a∂μca

þ Ka
μ∂μca − φ̄a

i ∂2φa
i þ ω̄a

i ∂2ωa
i − ~ηaI∂2ηaI þ ~θaI∂2θaI − φ̄a

i ∂μMa
μi

þ Na
μi∂μω̄

a
i þ M̄a

μi∂μφ
a
i − ωa

i ∂μN̄a
μi − N̄a

μiN
a
μi þ M̄a

μiM
a
μi

þ gfabcð−∂μcaφb
i ∂μω̄

c
i − ∂μcaN̄b

μiφ
c
i þ ∂μcaMa

μiω̄
c
i − ∂μcaηbI∂μ

~θcIÞ
�

þ a5

�
gfabcFaϕbcc þDab

μ ϕbDac
μ ϕc þm2

ϕϕ
aϕa þ λ

3!
ðϕaϕaÞ2

�
þa11ð ~VaIVaI − ~UaIUaIÞ

�
: ðA34Þ

It remains now to check that the counterterm Σct can be reabsorbed into the initial action Σ, through a redefinition of the
fields, sources and parameters, according to
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ΣðF; S; ξÞ þ εΣctðF; S; ξÞ ¼ ΣðF0; S0; ξ0Þ þOðε2Þ; ðA35Þ
with

F0 ¼ Z1=2
F F; S0 ¼ ZSS and ξ0 ¼ Zξξ; ðA36Þ

where fFg stands for all fields, fSg for all sources and fxig
for all parameters, i.e. ξ ¼ g;mϕ; λ; ρ. Therefore, by direct
application of (A35) we get

Z1=2
A ¼ 1þ ε

�
a0
2
þ a3

�
ðA37Þ

Z1=2
ϕ ¼ 1þ εa5 ðA38Þ

Z1=2
b ¼ Z−1=2

A ðA39Þ

Z1=2
c̄ ¼ Z1=2

c ¼ Z−1=2
g Z−1=4

A ðA40Þ

Z1=2
φ̄ ¼ Z1=2

φ ¼ Z−1=2
g Z−1=4

A ðA41Þ

Z1=2
ω̄ ¼ Z−1

g ðA42Þ

Z1=2
ω ¼ Z−1=2

A ðA43Þ

Z1=2
θ ¼ Z−1=2

A ðA44Þ

Z1=2
θ̄

¼ Z−1
g ðA45Þ

Z1=2
η ¼ Z1=2

η̄ ¼ Z−1=2
g Z−1=4

A ðA46Þ

ZN ¼ Z−1=2
A ðA47Þ

Z1=2
N̄ ¼ Z−1

g ðA48Þ

ZM ¼ ZM̄ ¼ Z−1=2
g Z−1=4

A ðA49Þ

ZV ¼ ZV̄ ¼ Z−1=2
ϕ Z1=2

g Z1=4
A ðA50Þ

ZU ¼ Z−1=2
ϕ ðA51Þ

ZŪ ¼ Z−1
g Z1=2

A Z−1=2
ϕ ðA52Þ

ZK ¼ Z1=2
c̄ ðA53Þ

ZF ¼ Z−1
ϕ Z1=4

A Z−1=2
g ðA54Þ

and

Zg ¼ 1 − ε
a0
2

ðA55Þ

Zmϕ
¼ 1þ εa2 ðA56Þ

Zλ ¼ 1þ εa1 ðA57Þ

Zρ ¼ ð1þ εa11ÞZ−1
g Z1=2

A Z−1
ϕ : ðA58Þ

These equations show that the invariant counterterm Σct,
Eq. (A34), can be reabsorbed into the initial action Σ
through a multiplicative redefinition of the fields, sources
and parameters. This concludes the algebraic proof of the
all order renormalizability of Σ.
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