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In light of the development of the Gribov issue for pure Euclidean gauge theories and of the recent lattice

measurement of soft breaking of the BRST invariance in Yang-Mills theories in the Landau gauge, we

consider nonperturbative features in the gauge-interacting matter sector and their relation with general

properties of the Faddeev-Popov operator. A signature for BRST breaking in the matter sector is proposed

and a local and renormalizable framework is constructed, accommodating this signature and predicting

nonperturbative matter propagators that are consistent with available lattice data for adjoint scalars and

quarks.
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I. INTRODUCTION

Nowadays, the issue of the Gribov copies [1] is an
important tool in order to investigate the behavior of non-
Abelian gauge theories in the nonperturbative infrared
region, exhibiting a deep connection with gluon confine-
ment." As is widely known, the existence of the Gribov
copies is a general feature of the gauge fixing procedure [4],
reflecting the impossibility of selecting a unique gauge
field configuration for each gauge orbit through a local,
covariant and renormalizable gauge condition.

Although a full resolution of the Gribov problem is still
lacking, the interplay between analytic methods and numeri-
cal lattice simulations which has taken place during the last
decade has provided strong evidence for the relevance of the
issue of Gribov copies in the nonperturbative study of the
correlation functions of Euclidean Yang-Mills theories. A
nice example of this fruitful interplay between analytic and
numerical methods is provided by the Landau gauge. If, on
one side, several properties of the Gribov region € of the
Landau gauge have been rigorously established from a
mathematical point of view [5-7], on the other side, this
gauge possesses a lattice formulation [8—17], which has
allowed for a direct comparison between analytic and
numerical results.

These great advances in pure-gauge theories have not
provided up to now an equivalent development in the
understanding of the nonperturbative behavior of gauge-
interacting matter. The aim of this paper is to make a series of
observations concerning nonperturbative infrared properties
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of confining theories that also extend to the matter sector. We
shall show that a consistent description of confined matter
propagators may be achieved through a systematic soft
BRST breaking construction, in analogy with what was
found for the gauge fields.

In order to be more precise on the statement of our goals
and for the benefit of the reader, let us give here a short
update of the Gribov issue in the Landau gauge. Let us start
with the definition of the Gribov region €, which is at the
basis of the Gribov-Zwanziger framework [1,18-20]. The
Gribov region Q is defined as the set of all gauge field
configurations fulfilling the Landau gauge condition,
0,A;, =0, and for which the Faddeev-Popov operator,
M = —(9?6 — gfPcALD,), is strictly positive, namely

Q= {A}; 9,45 = 0, M® = (826 — gf**°A50,) > 0}.
(1)

The region Q enjoys the following properties [5,6]:

(i) Q is convex and bounded in all direction in field
space. Its boundary, 0Q, is the Gribov horizon,
where the first vanishing eigenvalue of the Faddeev-
Popov operator shows up.

(i1) every gauge orbit crosses at least once the region €.
In particular, the result (ii) provides a well-defined support
to the original Gribov’s proposal [1] of restricting the
domain of integration in the functional integral to the region
Q. Therefore, for the partition function of Yang-Mills
theories one writes

zZ= A DAS(DA)(det M)

eSS = / DADcDeDbe ™S, (2)
Q

where Sgp is the Faddeev-Popov action in the Landau gauge

SFP = SYM + ng, (3)
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where Syy and S, denote, respectively, the Yang-Mills
and the gauge-fixing term:

1
Sym = i / d*xF4,F¢,, (4)
and
Sy = / d*x(b*0,A% + ¢9,Dib ), (5)

where (¢“, ¢?) are the Faddeev-Popov ghosts, b“ is the
Lagrange multiplier implementing the Landau gauge,
Db = (570, + gf*’A5) is the covariant derivative in
the adjoint representation of the gauge group SU(N),
and Fj, denotes the field strength

F4, = 0,Af — 0,A4 + gf**cAbAC. (6)

Following [1,18-20], the restriction of the domain of
integration in the path integral is achieved by adding to
the Faddeev-Popov action Sgp an additional term H(A),
called the horizon term, given by the following nonlocal
expression

H(A) = ¢ / dhxdy e AL (x) M9 (x, y) fUec S (),

(7)
where M~! stands for the inverse of the Faddeev-Popov
operator. For the partition function one gets [1,18-20]

Zz/DADCDEDbe_SFP
Q

_ / DADCDEDbe- St HA-VAHN-1)  (g)

where V is the Euclidean space-time volume. The param-
eter y has the dimension of a mass and is known as the
Gribov parameter. It is not a free parameter of the theory. It
is a dynamical quantity, being determined in a self-con-
sistent way through a gap equation called the horizon
condition [1,18-20], given by

(H(A)) = 4V(N? - 1) ©)
where the vacuum expectation value (H(A)) has to be
evaluated with the measure defined by Eq. (8). Although
the horizon term H(A), eq. (7), is nonlocal, it can be cast in
local form by means of the introduction of a set of auxiliary
fields (@4’, wi’, P, @a?), where (@4”, g4") are a pair of
bosonic fields, while (©4”, w4?) are anticommuting. It turns
out that the partition function Zg; in Eq. (8) can be
rewritten as [18-20]

Z= / DADcDeDbD&DwDpDype 57, (10)

where Sg7 is given by the local expression

SGZ = SYM+ng+SO+Sy’ (11)
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So = / (1 (9, D)l — (9, De e
— gF ™ (8,a8°) (DI Pl (12)
and
S, =7 / dx(gf AL (e + @) — A V(N2 - 1), (13)

In the local formulation of the Gribov-Zwanziger action,
the horizon condition (9) takes the simpler form

o€,
v, 14
where £,(y) is the vacuum energy defined by:
e Ve =7 (15)

The local action Sgz in Eq. (11) is known as the Gribov-
Zwanziger action. It has been shown to be renormalizable
to all orders [18-20].

Recently, a refinement of the Gribov-Zwanziger action
has been worked out by the authors [21-23], by taking into
account the existence of certain dimension two conden-
sates.” The Refined Gribov-Zwanziger (RGZ) action reads
[21-23]

m? _ -
Sraz = Saz + / dx <7AZAZ - P‘z((l’zbﬁﬂﬁb - wﬁbwﬁb)>,

(16)

where Sgz stands for the Gribov-Zwanziger action,
Eq. (11). As much as the Gribov parameter y2, the massive
parameters (m?, %) have a dynamical origin, being related
to the existence of the dimension two condensates (AjA5)
and (@i pi? — iPwiP), [21-23]. The gluon propagator
obtained from the RGZ action turns out to be suppressed in
the infrared region, attaining a nonvanishing value at zero
momentum, k% = 0, i.e.

(as(waL(-0)) = (8, - L) D). (17
kK + 2

D(k?) = .
(k%) 1 G2+ m)E + 2NPr + o2

(18)

Also, unlike the case of the GZ action, the ghost propagator
stemming from the refined theory is not enhanced in the
deep infrared:

ab (1,2 — [7a b(_ N(Lw
GO (k") = (e (k) (=)o ~ 7 (19)

The infrared behavior of the gluon and ghost propagators
obtained from the RGZ action turns out to be in very good

See [24,25] for a recent detailed investigation on the structure
of these condensates in color space.

085010-2



PROPERTIES OF THE FADDEEV-POPOV OPERATOR IN ...

agreement with the most recent numerical lattice simula-
tions on large lattices [8,10-12]. Moreover, the numerical
estimates [12] of the parameters (m?, 4%, y?) show that the
RGZ gluon propagator (17) exhibits complex poles and
violates reflection positivity. This kind of two-point func-
tion lacks the Killén-Lehmann spectral representation and
cannot be associated with the propagation of physical
particles. Rather, it indicates that, in the nonperturbative
infrared region, gluons are not physical excitations of the
spectrum of the theory, i.e. they are confined. It is worth
mentioning here that the RGZ gluon propagator has been
employed in analytic calculation of the first glueball states
[26,27], yielding results which compare well with the
available numerical simulations as well as with other
approaches, see [28] for an account on this topic. The
RGZ gluon propagator has also been used in order to study
the Casimir energy within the MIT bag model [29]. The
resulting energy has the correct expected confining behav-
ior. Applications of the RGZ theory at finite temperature
can be found in [30,31]. In [32,33], the issue of the Gribov
copies has been addressed in the case in which Higgs fields
are present, yielding analytic results on the hard problem of
the understanding of the transition between the confining
and Higgs phases for asymptotically free gauge theories.
The output of this analysis turns out to be in qualitative
agreement with the seminal work by Fradkin-Shenker [34].
Finally, in [35,36], the Gribov-Zwanziger construction has
been generalized to supersymmetric Yang-Mills theories.
All these results enable us to state that the issue of the
Gribov copies captures nontrivial aspects of the nonper-
turbative dynamics of Yang-Mills theories.

One important aspect of both GZ and RGZ theories is
that they exhibit a soft breaking of the BRST symmetry. In
fact, introducing the nilpotent BRST transformations

sA4 = —Dibch,

scd = %gfabccbcc’

sct = b, sb* =0,
~ab __ =ab —ab _
sy = @7, s@y” =0,
b _ _ab b _
s’ = o, swi’ =0, (20)

it is immediately checked that the Gribov-Zwanziger
action breaks the BRST symmetry, as summarized by
the equation3

$Scz = 72A7 (21)

where
A= / d*x(=gf (D" ™) (@ + @,C) + af " Agapi€).

(22)

3 A similar equation holds in the case of the RGZ action [21-23].
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Notice that the breaking term A is of dimension two in the
fields. As such, it is a soft breaking. The properties of the
soft breaking of the BRST symmetry of the Gribov-
Zwanziger theory and its relation with confinement have
been object of intensive investigation, see [37-43]. Let us
mention here that the broken identity (21) is deeply
connected with the restriction to the Gribov region Q.
Equation (21) can be translated into a set of softly broken
Slavnov-Taylor identities which ensure the all order renor-
malizability of both GZ and RGZ actions. The presence of
the soft breaking term A turns out to be necessary in order
to have a confining gluon propagator which attains a
nonvanishing value at zero momentum, Eqgs. (17), (18),
in agreement with the lattice data [8,10-12]. It is worth
underlining that this property is deeply related to the
soft breaking of the BRST symmetry. In fact, the non-
vanishing of the propagator at zero momentum relies on the
parameter >, which reflects the existence of the BRST-
exact dimension-two condensate [21-23]

(@i’ — wiPai’) = (s(@p” (X)g; (x))) # 0.

Moreover, despite the soft breaking, Eq. (21), a set of
BRST invariant composite operators whose correlation
functions exhibit the Killén-Lehmann spectral representa-
tion with positive spectral densities can be consistently
introduced [44].

Although a satisfactory understanding of the physical
meaning of the soft breaking of the BRST symmetry in
presence of the Gribov horizon and of its relationship with
confinement is still lacking, it is worth underlining here that
the first concrete numerical lattice evidence of the existence
of such breaking has been provided by the authors of [45],
who have shown that a BRST exact correlation function is
nonvanishing, signaling thus the breaking of the BRST
symmetry. More precisely, in [45], the infrared behavior of
the correlation function

(23)

Qucd(x = y) = (R ()R (v)). (24)

Re(x) = / (M) (x, 2)gf I AL (), (25)

involving the inverse of the Faddeev-Popov operator M,
has been investigated through numerical lattice simula-
tions. The relation of the correlation function (24) with the
breaking of the BRST symmetry can be understood by
observing that, within the local formulation of the Gribov-
Zwanziger framework, expression (24) corresponds to the
exact correlation function

(s(p ()@ (v))) = (@i ()@ (v) + @ ()P (v)).-

(26)
In fact, integrating out the auxiliary fields (@4’ ws’,
@2, i) in expression
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/ DB (@ (x)a(y) + gt (P (y))eSw,  (27)

gives

JIDP(s (g (x) @y (v))) e
J[Dgle=5e
| DAS(OA)(det M)REP (x)ReA (y) e~ Swtr H(A))
a [ DAS(DA)(det M)e~(Sru+rHA) :

(28)

This equation shows that the investigation of the correlation
function (24) with a cutoff at the Gribov horizon is directly
related to the existence of the BRST breaking. This is
precisely what has been done in [45], where the correlator
(24) has been shown to be nonvanishing, see Fig. 1 of [45].
Moreover, from [45], it turns out that in the deep infrared
the Fourier transform of the correlation function (24) is
deeply enhanced, see Fig. 2 of [45], behaving as k% namely
~ ~ 1

(R (RS (=k)) ~ 15 (29)
As observed in [45], this behavior can be understood
by making use of the analysis [46], i.e. of the cluster
decomposition

(R’ (k) Ry (=k)) ~ PG> (k) D(K), (30)

where D(k?) and G(k?) correspond to the gluon and ghost
propagators, Eqgs. (18), (19). A nonenhanced ghost propa-
gator, ie. G(k?)|;.o~7 and an infrared finite gluon
propagator, i.e. D(0) # 0, nicely yield the behavior
of Eq. (29).

The aim of the present work is that of showing that the
quantity R, Eq. (25), and the correlation function
(R(x)R(y)), Eq. (24), can be consistently generalized to
the case of matter fields, i.e. when quark and scalar fields
are included in the starting action.

More precisely, let F/ denote a generic matter field in a
given representation of SU(N), specified by the generators
(T*), a=1,...,(N*=1), and let R%(x) stand for the
quantity

R (x) = g / (M) (x, ) (T")IFI(z), (31)

which is a convolution of the inverse Faddeev-Popov
operator with a given colored matter field, being clearly
the matter counterpart of the operator Rﬁb in the pure gauge
case. We shall be able to prove that, in analogy with the
case of the gauge field A%, a nontrivial correlation function

(RU(x)RM(y)). (32)

can be obtained from a local and renormalizable action
which is constructed by adding to the starting conventional
matter action a nonlocal term which shares great similarity
with the horizon function H(A), Eq. (7), namely
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7 / dxd*yFi (x) (T M1 (x, y) (TP VEFR(y). (33)

As it happens in the case of the Gribov-Zwanziger theory,
the term (33) can be cast in local form by means of the
introduction of suitable auxiliary fields. The resulting local
action enjoys a large set of Ward identities which guarantee
its renormalizability. The introduction of the term (33)
deeply modifies the infrared behavior of the correlation
functions of the matter fields giving rise, in particular, to
propagators which are of the confining type, while being in
good agreement with the available lattice data, as in the
case of the scalar matter fields [47,48] as well as in the case
of quarks [49,50].

Moreover, relying on the numerical data for the two-
point correlation functions of quark and scalar fields,
expression (32) turns out to be nonvanishing and, interest-
ingly enough, it seems to behave exactly as expression (29)
in the deep infrared, i.e.

(R KRV (~H)) ~ 5. (34)
Also, as in the case of the gauge sector, expression (32)
signals the existence of the BRST breaking in the matter
field sector of the theory.

The present work is organized as follows. In Sec. II we
present a discussion of the correlation function (32) in the
case of quark and scalar fields, relying on the available data
for the quark and scalar propagators. In Sec. III we shall
show how the correlation function (R (x)R%/(y)) can be
obtained from a local and renormalizable action exhibiting a
soft breaking of the BRST invariance in the matter sector.
This will be done by working out in detail the case of a scalar
field in the adjoint representation, in Sec. IIT A. We shall also
discuss how (R%(x)R%(y)) encodes information on the
soft breaking of the BRST symmetry. In Sec. IIIB we
generalize the previous construction to the case of quark
fields. Section IV contains our conclusion. The final
Appendix collects the details of the algebraic proof of the
renormalizability of the local action obtained by the addition
of the term (33) in the case of a scalar matter field in the
adjoint representation.

IL. DISCUSSION ON THE CORRELATION
FUNCTION (R (k)R(—k)) FROM THE AVAILABLE
LATTICE DATA ON THE PROPOGATORS OF
SCALAR QUARK FIELDS

Let us now investigate the correlation function
(R(k)R(—k)), that signals soft BRST breaking in the
matter sector, in light of available lattice data for gauge-
interacting matter propagators in the Landau gauge.

As in the pure gauge case, one may rely on the general
cluster decomposition property in order to obtain the
leading behavior in the deep infrared region. With this
aim, one writes the R%(x) function in terms of elementary
fields, with the inverse Faddeev-Popov propagator repre-
sented via ghost fields as usual:
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(R (x)RY(y)) =

PHYSICAL REVIEW D 90, 085010 (2014)

/d4zd4 (e (x)c (2)F7 (2)(T) e (y)e? () (T )T FT ()

:g Ta i'i Tb lj/d4kelk xX—y g2 ) (k2)

+ (higher orders),

where G(k?) is the ghost propagator, while D(k*) now
stands for the propagator of the associated matter field. The
one-particle-irreducible (1PI) contribution above becomes
subleading in the IR limit, since in this case the points x and
y are largely separated and the cluster decomposition
applies. This can also be seen diagrammatically. Since
the external legs are ghosts, these corrections will involve at
least two ghost-gluon vertices, that carry a derivative
coupling. In fact, as a consequence of the transversality
of the gluon propagator, factorization of the external
momentum takes place, implying the subleading character
of the 1PI contributions.

Therefore, in the limit k — 0, the (full) ghost and matter
propagators alone dictate_the momentum-dependence of
the correlation function (R (k)R (—k)), i.e.

(RU(KRY(=K)) ~ PP (K)D(K).  (36)
Having in mind the nonenhanced ghost propagator, G(k*)~
1/k? (as observed in high-precision pure gauge simulations
in the Landau gauge [10-12]), it is straightforward to
conclude that a finite zero-momentum value for the matter
propagators is a sufficient condition for a ~1/ k* behavior
of the correlation function (R(k)R(—k)) in the deep IR.

As we shall see in the following subsections, both scalar
and fermion propagators display, when coupled to non-
Abelian gauge fields, a shape compatible with a finite zero-
momentum value in the currently available lattice data. We
expect thus a ~1/k* behavior of the correlation function

(R(k)R(=k)) in the matter sector, being in this sense a
universal property associated with the Faddeev-Popov
operator—when coupled to any colored field—in confining
Yang-Mills theories that can be easily probed in the future
via direct lattice measurements.

Moreover, fits of the lattice data are presented for adjoint
scalars in Sec. I A and for fermions in Sec. II B. This
analysis shows that the propagators for gauge-interacting
scalars and fermions are compatible not only with a finite
zero-momentum limit, but also with a complete analytical
form that can be extracted from an implementation of soft
BRST breaking in the matter sector to be presented below,
in Sec. IIL

A. The case of the scalar field in the adjoint
representation

In this subsection, we consider real scalar fields coupled
to a confining Yang-Mills theory:

(35)

1
L= 4FﬁDFfw

A
P+ Lo,
(37)

1 my
S D+ g

where L is the Landau gauge fixing term and ¢ is a real
scalar field in the adjoint representation of SU(N) and there
is no Higgs mechanism, namely (¢) = 0.

We are interested in analyzing the infrared nonperturba-
tive regime, focusing especially on the adjoint scalar
propagator. We resort to the lattice implementation of this
system: currently available in the quenched approximation
with the specific setup described in [48]. Preliminary and
unpublished data points for larger lattice sizes (with lattice
cutoff a=! = 4.94 GeV and N = 30 lattice sites) [51] are
displayed in Fig. 1 for different values of the bare scalar
mass (M, = 0, 1,10 GeV). It should be noticed that this
data is unrenormalized in the lattice sense. The renormal-
ization procedure that fixes the data to a known renorm-
alization scheme and the resulting points will be
discussed below.

First of all, the data tends to show a finite zero-
momentum value for the scalar propagator, irrespective
of its bare mass. This indicates—together with the well-
established nonenhanced ghost propagator—that the cor-
relation function (R R), is indeed nonvanishing in the IR

0.025

0.020

0.015

0.010

unrenorm. prop. D(p) [GeV7?]

0.005 &

momentum p [GeV]

FIG. 1 (color online). Unrenormalized propagator for different
bare masses of the scalar field: my,,. = O(top, black), 1 and
10 GeV (bottom, red). The points are preliminary and unpub-
lished lattice data from quenched simulations [51] (for lattice
cutoff a=! = 4.54 GeV, N = 30 and f = 2.698; cf. also [48] for
more details on the lattice setup and measurements) and the
curves are the corresponding fits, whose parameter values can be
found in Table 1.
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TABLE I. Fit parameters for the unrenormalized propagator in
powers of GeV.

Mpare ﬂi m%(; 0-4 Z )(z/dOf
0 120 0 4913 1.137 0.31
1 46 34 644 1.28 1.84
10 88 158 1267 1.26 0.10

limit, presenting the power-law enhancement ~1/k* that
we have anticipated above.

The curves in Fig. 1 further show that the data is
compatible with 4-parameter fits of the following form:

P’ Hy
pr 4 pP(mg + pg) + ot + mguy’

D(p) =2 (38)

where Z, 4, my, o are the fit parameters, whose values
are presented in Table 1. In this case we may extrapolate
the fits in order to obtain the specific values at zero
momentum: D(p = 0) =~ 0.028,0.027,0.0073 GeV~2 for
m = 0,1,10 GeV, respectively, so that the nontrivial IR
limit is clear. Moreover, the ¢ parameter—which will be
directly related to the realization of a (RR) # 0 in the
framework of the next section—seems to be nonvanishing.
It is also interesting to point out that the obtained fits
correspond to a combination of two complex-conjugate
poles for all values of bare scalar mass, indicating the
absence of a Killén-Lehmann spectral representation for
this two-point function and the presence of positivity
violation. In this sense the adjoint scalar propagators
consistently represent confined degrees of freedom, that
do not exhibit a physical propagating pole.

An important issue to be addressed is the possibility of
scheme dependence of those findings. To check for this, we
have also analyzed the scalar propagators after renormal-
ization in another scheme. As usual, renormalization is
implemented through the inclusion of mass ém and wave-
function renormalization 0Z counterterms:

Dii(p) = D7 (p) + 6mj, + 6Z(p* + miy,.),  (39)

where the counterterms are obtained by imposing the
following renormalization conditions (for A =2 GeV):
(i) 0,2Dih(p=A) =1
(i) Dgh(p=A) =A*+m,..
The fit functions were used to compute the counterterms
and the renormalized points are obtained from the original
lattice data by adding the same counterterms.” Results are
shown in Fig. 2 and Table 2.

“Direct renormalization of lattice data was avoided, since we
did not have access to the measurement of 0 2D and the number
of data points available was not sufficient for a reliable numerical
derivative to be computed.
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renorm. prop. Dien(p) [GeV~?]

0.0L. ‘ . 2 : ]
0 2 i 6 8 10

momentum p [GeV]

FIG. 2 (color online). Renormalized propagator for different
bare masses of the scalar field: my,, = 0 (top, black), 1 and
10 GeV (bottom, red). The points are obtained from the
unrenormalized lattice data [48,51] displayed in Fig. 1.

The renormalized propagator may be rewritten in the
form (38), with redefined parameters m:i), 0,7
PP+
P+ pP(mi 4 u3) + o™ + muj,

Dren<p) =7 (40)

All the interesting qualitative properties observed in the
unrenormalized data remain valid, namely: (i) finite IR
limit, (ii) compatibility with 4-parameter fits of the same
form, with nontrivial ¢ values, (iii) the fit parameters yield
complex-conjugate poles, so that the renormalized propa-
gator is still compatible with positivity violation and
confinement.

We underline that the present analysis for the scalar
fields is meant to be a preliminary study of the propagator.
As such, the results are still at the qualitative level. A more
quantitative analysis would require further simulations with
improved statistics and even larger lattices.

B. The case of the quark field

In this subsection, we consider the case of gauge-
interacting fermionic fields coupled to a confining Yang-
Mills theory. Of course, the case of QCD is the emblematic
example. We will verify that the same qualitative properties
shown above for scalar fields can also be found in this case,
indicating that the IR enhancement of the correlation
function (RR) ~ 1/k* seems to be universally present
in the confined matter sector.

TABLE II. Counterterms, redefined fit parameters and zero-
momentum values of the renormalized propagator in powers of
GeV.

Mpgre émé 87 mg o™ 7

0 -35.98 0.40
1 -36.49 0416
10 —69.69 0.322

Dren(p = 0)

—28.09 3374.32 0.781 26.7
—8.18 420.84 0.834 0.94
79.19  902.23 0.894 0.01
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L B L B B

L L L B |

T

0.3

0.2

M(p?) [GeV?]

0.1

TTTTTTTTT

S

05 1 15 2 25 3 35 4 45
p [GeV]

FIG. 3 (color online). Lattice quark mass function [50] with
its fit A(p?). Figure extracted from [52]; fit obtained by
O. Oliveira [54].

The fermionic propagator is decomposed as usual,

o 2 _ipﬂyﬂ + A(pZ)
S(p) = Z(p7) 7+ 2
and our interest resides solely on the mass function A(p?),
whose lattice data will be analyzed here.

As already discussed and shown in [52], the data of [50]
for the mass function of the propagator of degenerate up ()
and down (d) quarks with current mass 4 = 0.014 GeV can
be fitted excellently with

M3
A(pz) =—>——>+u with M3 = 0.1960(84) GeV?,
p-t+m

m? = 0.639(46) GeV?

(41)

(y*/d.o.f. = 1.18),

as can be seen in Fig. 3. A recent alternative semianalytic
description of the nonperturbative quark propagator in the
Landau gauge based on an effective gluon mass was
discussed in [53].

The quark propagator presents clearly a finite IR limit.
This is, in fact, well known in QCD as dynamical mass
generation and is intimately related to chiral symmetry
breaking. Interestingly enough, this is also a sufficient
condition—supposing a nonenhanced ghost propagator—
for the soft BRST breaking in the quark sector through the
IR enhancement of the correlation function (R R). Again,
we predict a ~1/k* IR scaling for this observable, now in
the quark sector. This suggests a close relation between soft
BRST breaking and chiral symmetry breaking, and may
provide an interesting underlying connection between
confinement and chiral symmetry breaking.

(42)

I1IL. IMPLEMENTING THE CORRELATION
FUNCTION (R (k)R(—k)) WITHIN A LOCAL
QUANTUM FIELD THEORY FRAMEWORK

Now that we have established that available lattice
data for different propagators of gauge-interacting matter
seems to be qualitatively compatible with the nontrivial

PHYSICAL REVIEW D 90, 085010 (2014)

(R(k)R(—k)) ~ 1/k* behavior, let us discuss how the
correlation function (32) can be obtained through a local
and renormalizable action. In this section, the example of a
real scalar field ¢¢ in the adjoint representation of the gauge
group will be worked out in detail.

A. Scalar field in the adjoint representation

We start by considering the following nonlocal action
1 my 2
¢$ __ 4 - ab 4b\2 b 1a1a - a pa\2
s /dx<2<Dﬂ¢> 5L +4,<¢¢>>

+ ot / dixdly feg ()M (x, y) fede(y),
(43)

where o is a massive parameter which, to some extent,
plays a role akin to that of the Gribov parameter 7> of the
Gribov-Zwanziger action. Equation (11).

Following now the same procedure adopted in the case
of the Gribov-Zwanziger action, it is not difficult to show
that the nonlocal action (43) can be cast in local form. This
is achieved by introducing a set of auxiliary fields
(7, 7), (6", 6°%), where (7%, n°?) are commuting fields
while (6*°, %) are anticommuting. For the local version of
(43) one gets

Slee = 8 + Sa- (44)
with
Sg _ /d“x(%(Dzb b)2+m7§>¢a¢a +%(¢a¢a)2
+ 7740, D%)be — 0 ( 0, Dab)obe
- af (0,0 DY ) (45)
and
S, = 029/d4xfahc¢a(nbc + ). (46)

As in the case of the Gribov-Zwanziger action, the auxiliary
fields (7%?,7%?), (6°”,0%") appear quadratically, so that
they can be easily integrated out, giving back precisely the
nonlocal starting expression (43). Moreover, in full analogy
with the Gribov-Zwanziger case, the local action S
exhibits a soft breaking of the BRST symmetry. In fact,
making use of Eq. (A5) and of

s¢a — —gf”bcq’?bcc,

$O% — jiab, 57 = 0,
syl = 9, 5% =0, (47)

it follows that
sSP. = 62A?, (48)

where
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A¢=g/d4xfabc(—gfam"¢mcn<i’]bc—I—f]bc)—|—¢a9bc). (49)

Again, being of dimension two in the fields, the breaking term A? is a soft breaking. We now add the local action (44) to the

Gribov-Zwanziger action (11), obtaining

1 1
Stoc = /d“x{z Fi Fq, + b%0,A) + Z‘“@”D;jbcb +

— 0, DiP Y + r*gf " Al + @) — f (0,05 ) (D) i

m3 A .
(DEPGP) + 5" + 35 (0 + 00, D5l

—7*4(N?-1)

+ ﬁac (@Dﬂb)’?bc _ édé' (8,,ijb)0b” + 629f0b0¢a (nbc + ﬁbc) _ gfabc (6ﬂéd€) (Dll;dcd)l,lce } . (50)

As it happens in the case of the Gribov-Zwanziger action,
the local action ;.. can be proven to be renormalizable to
all orders. This important property follows from the
existence of a large set of Ward identities which can be
derived in the matter scalar sector and which restrict very
much the possible allowed counterterms. For the sake of
clarity, the whole Appendix A has been devoted to the
detailed algebraic proof of the renormalizability of the
action (50). As in the case of the Gribov-Zwanziger action,
expression (50) is well suited to investigate the correlation
function

(R (x)R<(y)). (51)
W%wy/&wwwmmww@,wﬂ

JIDRY(s(r* ()0 ())e S, [ DADGS(A)(det MYR (x)R(y)e™ rut 7 HW 57

|

and its relation with the soft BRST breaking in the scalar
field sector, Eq. (48). In fact, repeating the same reasoning
of Egs. (46), (27), (28), one is led to consider the exact
BRST correlation function in the matter scalar field sector

(s(n™ ()07 ()5, = (O (x)0°(y) + 0 ()it (y))s,. -
(53)

Integrating out the auxiliary fields (é“b L6090 79 1) in

expression

n

[ D810 Wi ) + Wi e S (59)

gives

[[D®]e~Six

showing that, in analogy with the case of the gauge field,
the correlation function (51) with a cutoff at the Gribov
horizon is directly related to the existence of the BRST
breaking in the matter sector.

We can now have a look at the two-point correlation
function of the scalar field. Nevertheless, before that, an
additional effect has to be taken into account. In very strict
analogy with the case of the Refined Gribov-Zwanziger
action, Eq. (16), the soft breaking of the BRST symmetry
occurring in the scalar matter sector, Eq. (48), implies the
existence of a nonvanishing BRST exact dimension two
condensate, namely

(5B ()™ (x))) = (7 (x)n (x) — 6 (x)0°" (x))) # .
(56)

In order to show that expression (56) is nonvanishing, we
couple the operator (7% (x)n (x) — 6*°(x)0°*(x)) to the
local action S, Eq. (50), by means of a constant external
source J,

am—J/d%@wumw@»—@%mm%m» (57)

[ DAD@S(DA) (det M)e=(Sxutr H(A)+57)

. (55)

|
and we evaluate the vacuum energy £(J) in the presence of
J, namely

o-VEU) _ / Db~ [ @000 (5g)

Thus, the condensate (7% (x)n (x) — 6" (x)0°? (x))) is
obtained by differentiating £(J) with respect to J and
setting J = 0 at the end, i.e.

) o =~ () = B (00 (). (59)

Employing dimensional regularization, to the first order, we
have

(N? - 1)/ dk 2N g\ &
EJ) = 1 k? 27 &,
) 2 ol B\ T ey )T

(60)

where & stands for the part of the vacuum energy which is
independent from J. Differentiating Eq. (60) with respect to
J and setting J = 0, we get
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(G (o (x) =0 (x)0* (x)))

=(N?—1)N¢* 2/ dk 1 :
7] o) R+ mike 4+ 2No

AP 7 0.
(61)

Notice that the integral in the right-hand side of Eq. (61) is
ultraviolet convergent in d = 4. Expression (61) shows
that, as long as the parameter ¢ in nonvanishing, the
condensate ((74?(x)n?? (x) — 0°*(x)0%* (x))) is dynami-
cally generated.

The effect of the condensate (56) can be taken into
account by adding to the action Sj,. the novel term

,ué/d“xs(é“bﬂ“b) :ﬂé/d{x(ﬁabrlab_édbeab)’ (62)

giving rise to the refined action

2
~ m _ _
Sref = Sioc + / d*x (TAZAﬁ - /’tz (QOZb‘/’/atb - wﬁbwﬁb))

— ﬂfZ/) / d4x("7lab’7ab _ éabeab). (63)

Finally, for the propagator of the scalar field, we get
24,2
, k= =+ py,
K (g, +mg )k +2Ng*6* +pgms”
(64)

(9 (k)g" (—k)) =5

which is precisely of the same kind employed in the
previous section in order to fit the lattice data.

B. The quark field

In this subsection we generalize the previous construc-
tion to the case of quark fields. The starting nonlocal action
(43) is now given by

s = [ @stun, Dy = myp)

=M [dxdyip! (x) (T) M (e y) (TP ().
(65)

where the massive parameter M is the analogue of the
parameter o of the scalar field and

D] = 5”8,, — ig(T")"fA,‘j, (66)
is the covariant derivative in the fundamental representa-
tion, specified by the generators (T%)"/. As in the previous
case, the nonlocal action (65) can be cast in local form
through the introduction of a suitable set of auxiliary fields:
(A%, 29 and (&4 &), The fields (A%, A%) are Dirac
spinors with two color indices (a,i) belonging, respec-
tively, to the adjoint and to the fundamental representation.

PHYSICAL REVIEW D 90, 085010 (2014)

Similarly, (&%, £%) are a pair of spinor fields with ghost
number (-1, 1). The spinors (1%, 1%") are anticommuting,
while (&%, £4) are commuting.

For the local version of the action, we get

SW :S0+SM7

loc

(67)

where

So = / d*x(@'y, Dily? — m, iy’ + 1 (=0,D5" )2
+ E4(=0, D) EN — (D,8)gf * (D e™)2%), (68)
and
Su = MY [ @i Tyl g (1)) (69

The nonlocal action S is easily recovered by integrating
out the auxiliary fields (4%, 1%") and (&, &%), As in the
case of the scalar field, the term S, induces a soft breaking
of the BRST symmetry. In fact, from

sy! = —ige®(T*) Iy,
sy = —igylc?(T)",

sgai — /_Iai’ SZai — 0’
sAAl = gai, sE4 =0, (70)
one easily checks that
sSU = sSy = M>2AM, (71)
where
AM — /d4x(i922ai(Ta)ijch(Th)jkwk
— i (T ()41 = gy (1)), (72)

Again, being of dimension 5/2 in the fields, A is a soft
breaking. In the present case, for the quantity (31) we have

Rei(x) = g / (M) (x, 2) (T isl(2),

Ry/() =g [ d2MO g s, (73
where we have
cesa,f=1,2,3,4.

As in the case of the scalar field, the action Si’;c can be
added to the Gribov-Zwanziger action. The resulting
action, (Sgz+ SV.), turns out to be renormalizable.
Although we shall not give here the details of the proof
of the renormalizability of the action (Sgz + SV,.), it is
worth mentioning that it can be given by following the
framework already outlined in [55], where a similar non-
local spinor action has been considered.

Proceeding now as in the case of the scalar field,

one finds

explicitated the Dirac indi-
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f['D(I)] e—(SGz""S?:,C)

showing that the correlation function (R4 (x)??,zj (v)) with
a cutoff at the Gribov horizon is related to the existence of
the BRST breaking, Eq. (71).

Let us end this section by discussing the two-point
correlation function of the quark field. As before, an
additional effect has to be taken into account. Also here,
the soft breaking of the BRST symmetry, Eq. (71), implies
the existence of a nonvanishing BRST exact dimension two
condensate, namely

(s(8(x)2% (x))) = (A" ()2 (x) + & (x)§ (x))) # O,
(75)

whose effect can be taken into account by adding to the

action S} the term

) / s (B ()2 (x))
_ 2 / (1 ()29 (x) + B9 (x)E0 (x)).  (76)

Therefore, including the dimension two condensates, we
end up with the refined action

88 = Spaz + St 42 / (1 ()29 (x) 1 B () ().

(77)

Finally, for the propagator of the quark field, we get
L TR A(K?)

' (i (k) = & = (18)
where
5 FMCp
A(K?) =y g (79)
and
(T (Te Yk = §*Cp, Cp = N;; ! . (80)

Expression (78) is of the same kind employed to fit the
lattice data.

IV. CONCLUSION

One of the striking features of the (R)GZ formulation of
nonperturbative Euclidean continuum Yang-Mills theories
is the appearance of the soft breaking of the BRST
symmetry, which seems deeply related to gluon confine-
ment. Recently, direct lattice investigations [45] have
confirmed the existence of this breaking through the
analysis of the correlation function:

[ DADYDps(9A) (det M)e~Sntr HA)+5)

, (74)

I
(ReP (R () 5 (51)

Rec(x) = g / (M) (x, ) fAS(2). (82)

As pointed in [45], this nonvanishing correlator signals the
breaking of the BRST invariance. Interestingly enough, the
behavior (81) is in quite good agreement with the RGZ
framework.

The aim of the present work is that of providing evidence
that a similar picture can be consistently achieved in the
matter sector. The cases of both adjoint scalars and quarks
indicate that it is possible to introduce an analogous
operator ijf for matter fields,

Re(x) = g / (M) (x, )T FI (). (83)

so that the correlation function (RpRp) is nonvanishing
and, from the available lattice data, seems to behave like
expression (81), namely

(R R ()= (34)
Again, the nonvanishing of (RpRy) indicates the soft
breaking of the BRST symmetry in the matter sector. In this
sense, the correlation function (RzR ) could be regarded
as a direct signature for BRST breaking, being accessible
both analytically as well as through numerical lattice
simulations.

Concerning the analytic side, we have been able to
construct a local and renormalizable action including
matter fields which accommodates the nontrivial correla-
tion functions (RzRp). Our analysis further suggests that
the inverse of the Faddeev-Popov operator M~!, whose
existence is guaranteed by the restriction to the Gribov
region Q, couples in a universal way to any colored field G’
(e.g. gluon and matter fields),

R() =g [ #(M) (TG, (69

giving rise to a nonvanishing correlation function

Rk Ro(~)'F 5. (56)
Therefore, these correlation functions could signal that the
soft breaking of the BRST invariance generated by the
restriction to the Gribov region is transmitted to the colored
objects through the coupling with the inverse Faddeev-
Popov operator (M™')%  as described by Egs. (85)
and (86).

Although this construction has been presented in the case
of the Landau gauge, it can be generalized to other gauges,

like, e.g. the Maximal Abelian Gauge [56].
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APPENDIX: ALGEBRAIC RENORMALIZATION
OF THE SCALAR ACTION S,

In order to prove the renormalizability of the action S,
Eq. (50), we proceed as in [18-23] and we embed the
theory into an extended action X enjoying exact BRST
symmetry, given by

2
m A
S L (P + @D, DiP gl — a9, Dl

— (9, ) (DL et — Nos Db — Mc [ DSPge — g > (D] — B Dbl
- NGE DS ale — g (DY) i) — FISEMSE + NN GS +7(8, DyP)e — (9, D)0 — g (2,6°) (DL e e
+ gfabc f/add)hncd + gfubc V“d(—gfhdeqﬁdceéc‘l + ¢b’7]cd) +p(‘70b yab _ f]ah Uah) + gfabc f]al (gflade¢dcencl _ ¢h9cl)

+gfuchud¢héCd _ KZDthh +gfabcLacbcc _gfathad)hcc}’

where (MSh, M3 Neb Nab, vabe yebe yabe @¢)  are
external sources. The original local action S, (50),
can be reobtained from the extended action X by
letting the external fields to assume their physical values
namely

ab — pgab — ,,25ab .
M;wlphys - Mﬂl/|phys =7 o 5;wa

ab __ ysab _ 2sab.
14 |phys =V |phys =070 ’

NZzlz)lphys = sz‘phys = Uablphys = ﬁab|phys =0.
K;:L“:F“:O’ (AZ)
so that
lehys - Sloc + Vp6492N(N2 - 1)’ (A3)

where the parameter p has been introduced in order to take
into account possible divergences in the vacuum energy
associated to the term o*. This term stems from the source
term pV*?“Vaebe_ which is allowed by power counting. In
the physical limit the vertex ¢cf remains nonvanishing.
Though, it is harmless, due to the absence of mixed
propagators (cf) and (c0).

It is easy to check that the extended action X enjoys exact
BRST invariance, i.e.

ST =0, (A4)

where

(Al)
sAL = —Dibcb,
st = —gfbegpb e
sed — %gfahcchcc’
sct = b, sb* =0,
sl =it spit =0,
5@t = wi’, sof? =0,
séab _ ﬁah’ sﬁuh =0,
sneb = g, 56 =0, (A5)
and
sMgb = Nab: sNab = 0;
sNab = Map; sMab = 0;
sU% = v, sV =0,
svVeb =y, sUh = 0;
sK9 = sL% = sF* = 0. (A6)

As noticed in [18-23], it is useful introducing a multi-index
notation for the localizing auxiliary fields (@4, @4’
@t @) = (¢¢, 9¢, @¢ @) where the multi-index i=
(b, u) runs from 1 to 4(N* — 1). The important reason in
order to introduce the multi-index notation is related to the
existence of a global symmetry U(4(N? — 1)) in the index
i, which plays an important role in the proof of the algebraic
renormalization. Analogously, one can introduce a second

index [ for the localizing fields of the matter scalar sector
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(7 b, 6%, 6%0) = (79! p! 6™, 0°1), where I = 1, ..., (N? — 1). Again, the introduction of the index I is related to the
existence of a second global symmetry U(N? — 1). In the multi-index notation, the action (A1) reads

1 1 m A
I= / d“x{;1 FiFfy + b"0,AL + 20, ¢! + 5 (D) + =L 9 + 15 (°9°) + 50, D o) — 0, Di o)

2
— gf*"(9,@7)(Dple?)pf = N Dy ? — My D@ — gf ¢ (D )] = M D} + N, [DiP o — gf P (Dje?) ]
— MZiMzi + NZiNZi + ;lal(aﬂDzb)rlbI _ éal(aﬂDzb)HbI _ gfabc(aﬂéal>(Dzdcd)nc1 + gfabc ‘7al¢bncl

+ gfuhcval(_gfhde¢dceéd + ¢hi,‘[cl) +p(‘7alvul _ UuanI) + gfubc[]al(gfhde¢dcel1d _ ¢b901)
+ gfabc Ua1¢bécl _ KZDZbe + gf“bCLaCbCC _ gfacha¢bcc } . (A7)
We are now ready to write down the large set of Ward identities fulfilled by the action (A7). These are

given by:
(1) The Slavnov-Taylor identity:

S(Z) =0, (A8)
where
S(3) /d4 525Z+5262+5252+ba52+ a52+_a52
= X " !
0K} 6A;, ~ OF* ¢ OL® 6c” oc " ogf @i 0w
X X X _ 5L~ . 6% ox
T—— N¢, M — 4+ V' — + y : A9
+n 59(11 + 5’7111 + L 5MZ:’ + ui 5NZ:’ + 5Ua1 + 5Va1 ( )
For future convenience, let us also introduce the so-called linearized Slavnov-Taylor operator By,
given by
B /d4{525+525+525+625+525+525 . 0
= = X a a a a a a a a a a a a ~da
0K 6A;  0A; 6K, OF“ 6" S6¢p SF  SLY ¢t o OL oc
0 o6 g 6 0 0 ) ~g 0 0
¢ 7 of — 40— + N, Mo ——+ V' — + U . A10
T S T ey T e O e T N T M Y e T v (A10)
|
The operator By enjoys the important property of s 5 5
being nilpotent — 4+ 0, = —gf*"*M\. — =0, (Al5)
sa¢ " SN, " oK,
BZBZ - 0 (Al 1) B
(i1) The gauge-fixing and antighost equations: E + ox
a H a
o oM i
ox ox ox
— = 0,A¢ —+0,—=0. (A12) oz oz _ X
Sh HE Sc4 * SKa —gfre | =@l +— @S —=N¢.— | =0,
¢ " gf She (pz +5E‘b a)l Y2 5K/ZZ
(iii) The linearly broken Ward identities: (A16)
0 ) 0
ox ox d*x|ct 0 N4, =0, (Al17
—+ M?ZO’ (A13) / X{C 560?"'(”; oc - . 5KZ] ( )
ops My,
) ~g 0~ 6
/d4x ¢+ 0 — — U |T =0,
53 4o S5 fabe 5T _, 0 (AL4) 00° oc? oF*
_ _ )’ = s
sa  wane, I pe (A18)
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o ~ 0 0 ~ug O
d4 _ abc UHI_ _ abe | yal _~ 901_ Y= / d4 abc Val c7 Al19
/ x[én”’ qf A Ul il xgf’ ¢ (A19)
dix| 2 gpaveger O Ny o [ ggpasegralge, (A20)
s 5b°
/ d*x 6 gfabc vel g — / d4ngabc Ucl¢b (A21)
69al s 5Fb ’
Z
/d4x~—b1 - / d*xgfebevel ge. (A22)
on
(iv) The ghost equation:
ga (Z) = Aglass’ (A23)
where
0 0 0 5 0 ) ~p; O
a — | 4y abe | =b NP oY -
g / [5a+g ( 5o " 5 wigNe, g, T G
o ~ o 0 1)
bl "~ Uhl b Vhl A24
n 506’ + 5‘/01 + 5UCI ( )
and
Al = /d“ng“bC(KfjA; —LPct + FPo°). (A25)
(v) The global symmetry U(f = 4(N* —1)):
1) o o o 1) 1) 1) _ 5
L;i(Z)= [ d*x|¢pf—— ¢ - Me, - M-, FNY —-N&——12=0. (A26
i) / * [q" 505 o T owr “isas Muigagg, Miisare HNuigye N g j] (A26)
(vi) The global symmetry U(f' = (N> —1)):
0 1) 0 0 o =~ O 0 - 0
Uisy— | 4. gbl obl bl al al L yral al _
£Y(z)= / dx [9 70 S VS VU 50‘”] $—0. (A27)
Let us also display below the quantum numbers of all fields and sources
(vii) Table of quantum numbers (“B” is for bosonic fields and “F” is for fermionic fields):
A ¢ c c b 7 17 0] @ n n 0 0
Dim 1 1 0 2 2 1 1 1 1 1 1 1 1
Ghost# 0 0 1 -1 0 0 0 1 -1 0 0 1 -1
Charge-q, 0 0 0 0 0 1 -1 1 -1 0 0 0 0
Charge-q ¢ 0 0 0 0 0 0 0 0 0 1 -1 1 -1
Nature B B F F B B B F F B B F F
M M N N U U 14 v K L F
Dim 2 2 2 2 2 2 2 2 3 4 3
Ghost# 0 0 1 -1 1 -1 0 0 -1 -2 -1
Charge-g 1 -1 1 -1 0 0 0 0 0 0 0
Charge-q¢ 0 0 0 0 1 -1 1 -1 0 0 0
Nature B B F F F F B B F B F
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1. Algebraic characterization of the invariant Bg(Z.,) =0, (A29)

counterterm and renormalizability . .
implying that X. belongs to the cohomology of the

linearized Slavnov-Taylor operator in the sector of the
local integrated polynomials of dimension bounded by
four. From the general results on the cohomology of Yang-
Mills theories, see [57], the counterterm X, can be para-
metrized as follows

In order to determine the most general invariant counter-
term which can be freely added to each order of perturba-
tion theory, we follow the Algebraic Renormalization
framework [57] and perturb the complete action X by
adding an integrated local polynomial in the fields and
sources with dimension bounded by four and vanishing
ghost number, Z.,, and we require that the perturbed action,

2 m’
_ a pa\2  1a pa -1
(X + €X,,), where ¢ is an infinitesimal expansion param- Zer = doSym + a1 41 (#“¢*)" + az D) ¢ + Be(AT),

eter, obeys the same Ward identities fulfilled by X to the (A30)
first order in the parameter ¢. Therefore, in the case of the
Slavnov-Taylor identity (AS8), we have where ay, a,, a, are free arbitrary coefficients and A~! is an
- ) integrated polynomial in the fields and sources with
SE+eZy) =0+ O(e), (A28) dimension bounded by 4 and with ghost number —1.
which leads to The most general expression for A~! is given by

Al = /d4x{a3 (0,8 + KA + ayLc 4 as¢*F* + ag0,¢0,0] + a78ﬂr]“18ﬂéal
+ agd, @M, + agN®0,0¢ + ayeM4N% + ay VI U + apymiptaf
+ alam(z/,f’laléal + aygftevagh e + aysgfetc U gt
+ a169f "0, ALPL @S 4 ar7gf P ALD D + arggf P ALp? 0,
+ arggf P AGMY @] + axgf T AGNLf + angf 0, Al 6
+ angf abCAffaMbléd + axngf abcA,’f'lblayéd
 Cabed b gt il 4 Cabedgha hbyel 4 CabedlIKLyal b gek et
+ CZbchKLnaléanck;]dL + Cgbcd " []—p?nclédl + Cgbcd ¢ (D{?nclédl

+ Cerliab gl o" + CPedgiatn i + Cy M ptat pipf + Clo M ptat wia ), (A31)

bedijki - ~abedijhl . :
where (C{bed, Cgbed, CqbedlVKL | CybedlIKL Cabed Cabed Cabed Cabed CPW™ C V™) are arbitrary coefficients. After

imposition of all other Ward identities it turns out that the nonvanishing parameters which remain at the end of a lengthy
algebraic analysis are

a3 =dg = a7 = ag = Ay = Ajg = A7 = —d1g = A9 = dp F 0, (A32)
as well as
—as =ajg=ap #0, ap # 0. (A33)
Therefore, for the final expression of the invariant counterterm one finds
A my 58
th = /d4x{a0FZszv + ap 47 (¢a¢u)2 + a27¢¢a¢a + as [(%KI:AA/[; + 8ﬂ5aaﬂcu
: u

+ K20,c% — 9Pl + afPaf — i 0P + 0 920! — p0, MY,
+ N40,af + M%0,¢¢ — 0!d,N4 — N&NG, + M4 M,
+ gf b (=0,c 90,5 — 8Mc“Nzi(pf + 0, c " Mf — a,,can“a,,é“)]
A N _
+as [gf“bCF“qsbcC + DiP ¢ DT + myd g + <¢“¢“>2} Fay (Vv = UU) } (A34)

It remains now to check that the counterterm X, can be reabsorbed into the initial action X, through a redefinition of the
fields, sources and parameters, according to

085010-14
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Z<F’ S? é) + 8th(Fv S’ 5) = Z(FO’ SO’ 50) + O<€2)? (A35)
with
Fo=Z/’F,  Sy=2ZsS and & =Z:£ (A36)

where { F'} stands for all fields, {S} for all sources and {xi}
for all parameters, i.e. £ = g, my, 4, p. Therefore, by direct
application of (A35) we get

22— 1 4e (% + a3> (A37)
2> =1+ eas (A38)
zZ)*=z;'? (A39)
2=z =7,z (A40)
1/2 1/2 —1/25-1/4
z)? =z =27,z (A41)
7y =77 (A42)
W=z (A43)
z)*=7,'" (A44)
ZV? = 71 (A45)
Z'17/2 _ Z’}?/Z _ Z;I/ZZ:M (A46)
Zy =2Z;'? (A47)
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z =2z (A48)
Zy = Ziy =2, 2" (A49)
Zy =2y =2,"2, 7" (A50)
Zy=2," (AS51)
Zy=2,'2)z,'"" (A52)
Zy = Z* (A53)
Zp=2;'2"z,'" (A54)

and
Z,=1- e% (AS5)
Z,,=1+ea (A56)
Z, =1+ ¢a, (A57)
Z,=(1+ean)2;'2)*7;". (AS8)

These equations show that the invariant counterterm X .,,
Eq. (A34), can be reabsorbed into the initial action X
through a multiplicative redefinition of the fields, sources
and parameters. This concludes the algebraic proof of the
all order renormalizability of X.
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