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We study the acceleration of an electric current-carrying and axially symmetric string loop initially
oscillating in the vicinity of a Schwarzschild black hole embedded in an external asymptotically uniform
magnetic field. The plane of the string loop is orthogonal to the magnetic field lines and the acceleration of
the string loop occurs due to the transmutation effect turning in the deep gravitational field the internal
energy of the oscillating strings to the energy of their translational motion along the axis given by the
symmetry of the black hole spacetime and the magnetic field. We restrict our attention to the motion of
string loop with energy high enough, when it can overcome the gravitational attraction and escape to
infinity. We demonstrate that for the current-carrying string loop the transmutation effect is enhanced by the
contribution of the interaction between the electric current of the string loop and the external magnetic field
and we give conditions that have to be fulfilled for an efficient acceleration. The Schwarzschild black hole
combined with the strong external magnetic field can accelerate the current-carrying string loop up to the
velocities close to the speed of light v ∼ c. Therefore, the string loop transmutation effect can potentially
well serve as an explanation for acceleration of highly relativistic jets observed in microquasars and active
galactic nuclei.
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I. INTRODUCTION

Current-carrying string loop represents a simplified 1D
model of magnetized-plasma structures [1]. The plasma
may exhibit a stringlike structure arising from either
dynamics of the magnetic field lines in the plasma [2–4]
or thin isolated flux tubes produced in plasma [5–8].
Tension of such a string loop governs an outer barrier of
the string loop motion, while its world sheet current
introduces an angular momentum barrier preventing the
loop from collapse.
Dynamics of an axially symmetric string loop along the

axis of symmetry of Kerr black holes has been investigated
in [1,9], and extended also to the case of Kerr naked
singularities [9]. The string loop dynamics in the spheri-
cally symmetric spacetimes has been studied for the case of
Schwarzschild–de Sitter (SdS) black holes [10] and brane-
world black holes or naked singularities described by the
Reissner-Nordstrom spacetimes [11]. Such a configuration
was also studied in [12,13].
Quite recently, it has been demonstrated that small

oscillations of string loop around a stable equilibrium radii
in the Kerr black hole spacetimes can be well applied in

astrophysical situations related to the high-frequency qua-
siperiodic oscillations observed in microquasars, i.e.,
binary systems containing a black hole [14].
On the other hand, it has been proposed in [1] that

the current-carrying string loops could be relevant in an
inverse astrophysical situation, as a model of formation and
collimation of relativistic jets in the field of compact
objects. The acceleration of jets is possible due to the
transmutation effect where the chaotic character of the
string loop motion around a central black hole enables
transmission of the internal energy in the oscillatory mode
to the kinetic energy of the linear mode [1,10]. It has been
demonstrated in [11,15] that ultrarelativistic escaping
velocities of string loop can be really obtained even in
spherically symmetric black hole spacetimes. Efficiency of
the transmutation effect is slightly enhanced by the rotation
of the central Kerr black hole as demonstrated in [9].
Enhancement of the efficiency of the transmutation process
can be substantial in the innermost parts of the Kerr naked
singularity spacetimes [9], similarly to the acceleration
process occurring in the particle collisions [16].
The string loop accelerated by the gravitational field of

nonrotating black holes thus can potentially serve as a new
model of ultrarelativistic jets observed in microquasars
and active galactic nuclei. This is an important result since
the standard models of jet formation are based on the
Blandford-Znajek effect [17] that requires rapidly rotating
Kerr black holes [18]. The rotation of the central black hole
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is an important aspect also in the alternate model of
ultrarelativistic jet formation based on the geodesic colli-
mation along the rotation axis of the Kerr spacetime
metric [19,20].
It is generally assumed that the strong interaction of the

magnetic field with the gravitational field of a compact
object plays a crucial role in the processes of the formation
and ejection of relativistic jets in the accreting systems
orbiting the compact objects. The magnetohydrodynamics
(MHD) of plasma in such processes enables the energy
transfer from accreting matter to jets in the standard
Blandford-Znajek model [17]. The recent observational
data and theoretical study of compact systems show that the
magnetic field has to exist in the black hole environment
[21,22] (see, e.g., discussion in [23]).
Understanding the dynamics of charged particles in the

combined magnetic and gravitational fields is necessary for
modeling the MHD processes. The single-particle dynam-
ics is relevant also for collective processes modeled in the
framework of kinetic theory [6–8]. Charged particle motion
in electromagnetic fields surrounding the black hole or in
the field of magnetized neutron stars has been studied in a
large variety of works for both equatorial and general
motion (see e.g., [24,25]). The special class of the off-
equatorial circular motion of charged particles in combined
gravitational and electromagnetic fields of compact objects
has been studied in papers [26–28]. Detailed analysis of the
astrophysics of rotating black holes with electromagnetic
fields related to the Penrose process has been discussed in
[29,30]. The Blandford-Znajek mechanism applied for a
black hole with a toroidal electric current was investigated
in [31]. The oscillatory motion of charged particles around
equatorial and off-equatorial circular orbits could be
relevant in the formation of magnetized string loops [6,32].
For the model of ultrarelativistic jet formation based on

the transmutation effect in the string loop dynamics, it is
important to clear up the role of the external influences,
namely those based on the cosmic repulsion and the large-
scale magnetic fields. It has been demonstrated in [15] that
the escaping string loops will be efficiently accelerated by
the cosmic repulsion behind the so-called static radius
[33,34] that plays an important role also in the accretion
toroidal structures [35] or motion of gravitationally bound
galaxies [36]. Here we shall study the role of an asymp-
totically uniform external magnetic field in the transmuta-
tional acceleration of electrically charged current-carrying
string loop in the field of nonrotating black holes. The
acceleration of the string loop is assumed along the direc-
tion of the vector of the strength of the magnetic field.
Because of the axial symmetry of the investigated system
of the string loop and the central black hole immersed in the
magnetic field, we are able to describe the string loopmotion
by an effective potential similar to those of the charged
particle motion. Using the results of our preceding paper
[37], wewill show that the presence of even aweakmagnetic

field can sufficiently increase the possibility and efficiency
of conversion of the internal oscillatory energy of the string
loop into the kinetic energy of its linear transitional motion.
We focus our attention to the simple case of the

asymptotically uniform magnetic field in order to illustrate
the large scale role of the magnetic field on the string loop
motion. For the transmutation effect itself, the local strength
of the magnetic field is relevant, but the subsequent motion
is influenced by the large scale structure of the magnetic
field. Estimates related to the magnitude of the magnetic
field in astrophysically plausible situations related to the
magnetic field around neutron stars, stellar black holes and
supermassive black holes in the galactic nuclei are presented
in Appendix A. According to these estimates, the magnetic
field can be always considered as a test field, having a
negligible influence of the spacetime structure.
The paper is organized as follows. In Sec. II, the general

relativistic description of the string loop model is presented,
the fundamental quantities that characterize the electric
current-carrying string loop through the action function and
the Lagrangian formalism are given. In Sec. III, the motion
of the string loop in the combined electromagnetic and
gravitational fields of a Schwarzschild black hole immersed
in an asymptotically uniform magnetic field is studied. Due
to the symmetries of the string loop and the combined
electromagnetic and gravitational background, the string
loop dynamics can be governed by a properly defined
effective potential, which is compared to the effective
potential governing motion of charged particles. At the
end of Sec. III, the physical interpretation of the string loop
model through the superconductivity phenomena of plas-
mas in accretion disk is discussed. In Sec. IV, the trans-
mutation effect and the acceleration of the string loop are
studied. Dependence of the ejection speed (relativistic
Lorentz γ factor) on the intensity of the external uniform
magnetic field is given. It is shown that the maximal
acceleration of the string loop, up to the ultrarelativistic
velocities (v≃ c, γ ≫ 1) is possible for the special ori-
entation of an electric current and the case of strong
magnetic field. The concluding remarks and discussions
are presented in Sec. V. In Appendix A, the estimation of
the realistic magnetic field intensity is presented and
discussed. In Appendix B, the dimensional analysis of
the characteristic parameters of the string loop model is
presented, along with estimates of the physical quantities
that characterize the string loop.

II. RELATIVISTIC ELECTRIC
CURRENT-CARRYING STRING LOOP

Generally, the string loops are assumed to be thin circular
objects that carry a current and preserve their axial
symmetry relative to the chosen axis, or the axis of the
black hole spacetime. The string loops can oscillate,
changing their radius in the loop plane, while propagating
in the perpendicular direction as shown in Fig. 1. Let us
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consider first a string loop moving in a spherically
symmetric spacetime with the line element

ds2 ¼ gttdt2 þ grrdr2 þ gθθdθ2 þ gϕϕdϕ2: ð1Þ

We will specify the components of the metric tensor gαβ for
the Schwarzschild black hole case in Sec. III. The spheri-
cally symmetric Schwarzschild black hole is assumed to be
immersed in an asymptotically uniform magnetic field;
both the spacetime and the external magnetic field define an
axis of symmetry that is considered to be the axis of the
string loop.
In order to give the relativistic description for the motion

of string loop, thereby enabling the derivation of the
equations of motion one may chose the action, which will
reflect the properties of both the string loop and external
fields. However, before giving the definition of the string
action, one has to introduce the string world sheet which is
characterized by a scalar function φ and by coordinates
XαðσaÞ, where α ¼ 0; 1; 2; 3 and a ¼ τ; σ [1]. The world
sheet is thus a two-dimensional subspace which character-
izes the properties of the string loop in a given combined
gravitational and electromagnetic background. Therefore,
the world sheet of a string loop is an analogue of the
worldline of a test particle, i.e., it gives the loci of the events
of existence of the string loop in the given background.
Thus, we can introduce the world sheet induced metric in
the following way [1]:

hab ¼ gαβXα
jaX

β
jb; ð2Þ

where Xja ¼ ∂X=∂a. The current of the string loop
localized on the world sheet is described by a scalar field
φ which depends on the world sheet coordinates τ and σ,
but is independent of the choice of the spacetime coordi-
nates. Dynamics of the string loop moving in the combined
gravitational and electromagnetic field is described by the
action S that should contain along with the term character-
izing the freely moving string loop (see, e.g., [1]), also the
term characterizing the interaction of the string loop and the
external electromagnetic field. This implies the action and
the Lagrangian density in the form L [38]:

S ¼
Z

L
ffiffiffiffiffiffi
−h

p
dσdτ; ð3Þ

L ¼ −
h
μ=cþ k

2
habðφja þ AaÞðφjb þ AbÞ

i
; ð4Þ

where we use the projection

Aa ¼ AγX
γ
ja; ð5Þ

and k is the constant number constrained by the world
constants. For the electrically neutral current, the constant k
is chosen to be equal to unity, k ¼ 1. The first part of (4)
represents the classical Nambu-Goto string action with the
tension μ, the second part describes the scalar field φ,
rescaled according to [1,9], alongwith the potentialAα of the
electromagnetic field, and their interaction.
According to pioneering paper of Goto [39], the constant

μ=c2 can be interpreted as the uniform mass density which
prevents expansion of the string loop beyond some radius,
while the world sheet current introduces an angular
momentum barrier preventing the loop from collapse.
This implies that the parameter μ > 0 characterizes the
tension of the string loop, or its self-force, which preserves
its radius, or squeezes the string loop. We take here the
dimensions of the world sheet coordinates as the length
dimension. Hereafter, we use the geometric units with
c ¼ G ¼ 1. In these units, the constant k is equal to unity as
well. The complete dimensional analysis and full conver-
sion of the quantities describing the string loop motion
from the geometrized units to the Gaussian or CGS units is
given in Appendix B of the present paper, along with
estimates of the string loop parameters in relation to
realistic astrophysical conditions.
In the spherically symmetric spacetimes, the coordinate

dependence of the world sheet coordinates (1) can be
written in the form [12]

Xαðτ; σÞ ¼ ftðτÞ; rðτÞ; θðτÞ; σg; ð6Þ
in such a way that new coordinates satisfy the relations

y

x
z

Black hole

String loop

String trajectory plane 

j

F

F
j

v

FIG. 1. The schematic picture of the oscillations and the
acceleration of the string loop near a black hole embedded in
an external uniform magnetic field. Due to the axial symmetry of
the system, the string trajectory can be presented by a curve lying
on the plane, chosen to be the x-y plane. The direction of the
Lorenz force acting on the string loop depends on the orientation
of the string loop current with respect to the external magnetic
field. The initial position of the string loop is represented by the
solid line, while its positions during the motion are represented by
the dashed lines.

ACCELERATION OF ELECTRIC CURRENT-CARRYING … PHYSICAL REVIEW D 90, 085009 (2014)

085009-3



_Xα ¼ ðtjτ; rjτ; θjτ; 0Þ; X0α ¼ ð0; 0; 0; 1Þ; ð7Þ

where we use the dot to denote derivative with respect to
the string loop evolution time τ, and the prime to denote
derivative with respect to the space coordinate σ of the
world sheet. From the relation (7), we can clearly see that
the string loop does not rotate in the spherically symmetric
spacetime (1) combined with the external uniform mag-
netic field.
The first order derivatives of the scalar field φ with

respect to the world sheet coordinates determine the current
on the string world sheet, φja ¼ ja. The axial symmetry of
the string loop model and the conformal flatness of the two-
dimensional world sheet metric hab allows one to write the
scalar field φ in the form [1,38]

φ ¼ jττ þ jσσ: ð8Þ

In the presence of the external electromagnetic field, the
equations of evolution of the scalar field will be influenced
by the four-vector potential Aμ; we then define the total
current, labeled by the tilde ~ja, in the following form:

~jτ ¼ jτ þ AαXα
jτ; ~jσ ¼ jσ þ AαXα

jσ: ð9Þ

The variation of the action (4) with respect to the scalar
field φ can now be written in the form

ð
ffiffiffiffiffiffi
−h

p
hab~jaÞjb ¼ 0: ð10Þ

Equations of motion (10) for the scalar field φ, and the
string loop axisymmetry imply existence of conserved
quantities ~jτ and jσ . The conserved quantities ~jτ and jσ
correspond to the parametersΩ and n introduced in [38], up
to the constant k. Quantities jτ and ~jσ generally could not
be conserved during string loop motion.
Varying the action (4) with respect to the four-potential

Aα [38], we obtain the electromagnetic current density

Iμ ¼ δL
δAμ

¼ k~jτ _X
μ − k~jσX0μ; ð11Þ

and we can identify the string loop electric charge density q,
and the electric current density j due to the relations

q ¼ k~jτ; j ¼ k~jσ: ð12Þ

Up to the constant k, we can consider the parameters ~jτ and
~jσ to be related to the electric charge and the current
densities. We can deduce from (10) that the electric charge
density q is conserved during the string loop evolution, but
the current density j is changing as it is influenced by the
external electromagnetic field.

It is important to specify the world sheet stress-energy
tensor which can be found varying the action (4) with
respect to the induced metric hab [1]:

Σττ ¼ k
2

~j2τ þ ~j2σ
gϕϕ

þ μ; Σστ ¼ −
k~jτ ~jσ
gϕϕ

;

Σσσ ¼ k
2

~j2τ þ ~j2σ
gϕϕ

− μ: ð13Þ

The string loop canonical momentum density is defined
by the relation

Πμ ≡ ∂L
∂ _Xμ

¼ ΣτagμαXα
ja þ k~jτAμ: ð14Þ

From the Lagrangian density (4) we can obtain the
Hamiltonian of the string loop dynamics in the combined
gravitational and electromagnetic field in the form [38,40]

H ¼ 1

2
gαβðΠα − qAαÞðΠβ − qAβÞ

þ 1

2
gϕϕ½ðΣττÞ2 − ðΣτσÞ2�: ð15Þ

The string loop dynamics is determined by the Hamilton
equations

Pμ ≡ dXμ

dζ
¼ ∂H

∂Πμ
;

dΠμ

dζ
¼ −

∂H
∂Xμ : ð16Þ

The canonical momentum Πμ (14) is related to the
mechanical momentum Pμ by the relation

Πμ ¼ Pμ þ qAμ; ð17Þ

where we use the string loop charge density definition (12).
In the Hamiltonian (15), we use an affine parameter ζ,
related to the world sheet coordinate τ by the transforma-
tion dτ ¼ Σττdζ.

III. DYNAMICS OF STRING LOOP IN UNIFORM
MAGNETIC FIELD AROUND

SCHWARZSCHILD BLACK HOLE

In this section we apply the previous solutions for the
case of the Schwarzschild black hole spacetime immersed
in an axially symmetric magnetic field that is uniform at the
spatial infinity. The plane of the string loop is perpendicular
to the lines of strength of the magnetic field. The string loop
moves along the axis which is chosen to be the y axis as
shown in Fig. 1. The oscillations of the string loop are
restricted to the x-z plane (considered in the x axis due to
the axisymmetry of the string loop), while its trajectory,
because of the symmetry, is considered in the x-y plane.
The Schwarzschild black hole spacetime characterized by
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the mass parameter M takes in the standard spherical
coordinates the form

ds2 ¼ −fðrÞdt2 þ f−1ðrÞdr2 þ r2ðdθ2 þ sin2θdϕ2Þ;
ð18Þ

where the metric “lapse” function fðrÞ is defined by

fðrÞ ¼ 1 −
2M
r

: ð19Þ

Due to the symmetries discussed above for the descrip-
tion of the string loop motion, it is convenient for the proper
description of the string loop motion to work with the
Cartesian coordinates defined as [1,10]

x ¼ r sin θ; y ¼ r cos θ: ð20Þ
In our study we assume the static, axisymmetric

and asymptotically uniform magnetic field. Since the
Schwarzschild spacetime is flat at spatial infinity, the
timelike ξðtÞ and spacelike ξðϕÞ Killing vectors satisfy
the equations □ξα ¼ 0, which exactly correspond to the
Maxwell equations

□Aα ¼ 0; ð21Þ
for the four-vector potential of the electromagnetic field.
The solution of the Maxwell equations can be then written
in the Lorentz gauge in the form [41]

Aα ¼ C1ξ
α
ðtÞ þ C2ξ

α
ðϕÞ: ð22Þ

The first integration constant has to beC1 ¼ 0, because of the
asymptotic properties of the Schwarzschild spacetime (18),
while the second integration constant takes the form
C2 ¼ B=2, where B is the strength of the homogeneous
magnetic field at the spatial infinity. The commuting Killing
vector ξðϕÞ ¼ ∂=∂ϕ generates rotations around the symmetry
axis. Consequently, the only nonzero covariant component of
the potential of the electromagnetic field takes the form [41]

Aϕ ¼ B
2
r2sin2θ ¼ B

2
x2: ð23Þ

The symmetries of the considered background gravitational
andmagnetic fields, corresponding to the t andϕ components
of the Killing vector, imply the existence of two constants of
the string loop motion [1,37],

E ¼ −ξμðtÞΠμ ¼ −Πt; ð24Þ

L ¼ ξμðφÞΠμ ¼ −~jτ ~jσ þ qAφ ¼ −~jτjσ: ð25Þ

wherewehave alreadysetk ¼ 1. The angularmomentumL is
given by two other constants of motions ~jτ and jσ.

In the spherically symmetric spacetime (18), the
Hamiltonian (16) governing the string loop dynamics
can be expressed in the form [37]

H ¼ 1

2
fðrÞP2

r þ
1

2r2
P2
θ −

E2

2fðrÞ þ
Veff

2fðrÞ ; ð26Þ

with an effective potential for the string loop motion in the
combined gravitational and magnetic fields

Veff ¼ fðrÞ
�
B2x3

8
þ
�
ΩJBffiffiffi

2
p þ μ

�
xþ J2

x

�
2

: ð27Þ

In accord with [1], we have introduced new parameters
that are conserved for the string loop dynamics in the
Schwarzschild spacetime combined with the uniform
magnetic field

J2 ≡ j2σ þ j2τ
2

; ω ≡ −
jσ
jτ
; Ω ≡ −ωffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ω2
p ; ð28Þ

where the parameter J is always positive, J > 0, the
dimensionless parameter ω runs in the interval −∞ <
ω < ∞, and the dimensionless parameter Ω varies in the
range −1 < Ω < 1.
For the uniform magnetic field (At ¼ 0), we can intro-

duce relations between the string loop charge q and the
current j densities (12), and the string loop parameters J,Ω,
in the form

q ¼ jτ; j ¼ jσ þ Aϕ ¼ jσ þ
B
2
x2; jσ ¼

ffiffiffi
2

p
JΩ:

ð29Þ

It is worth recalling that jτ and jσ are conserved quantities
in the uniform magnetic fields.
Note that in absence of the external magnetic field,

B ¼ 0, there exists a symmetry which allows for the
interchange ω ↔ 1=ω; then the interval −1 < ω < 1
covers all possible cases of the string loop motion
[1,10]. In the case of nonvanishing magnetic field, such
a symmetry does not exist, and ω has to range generally in
the interval ð−∞;∞Þ. The sign of the parameter Ω
depends on the choice of the direction of the electric
current with respect to the direction of the uniform
magnetic field. The case Ω ¼ 0 corresponds to the zero
current. The case with Ω > 0, in principle is unstable,
since even a small deviation of the string loop from the
symmetry axis leads to the appearance of a torque
proportional to the product of the current and the magnetic
field and potentially the string loop can be overturned to
the stable configuration with Ω < 0 [37].
The condition H ¼ 0 determines the regions allowed for

the string loop motion, and it implies the relation for the
effective potential (or energy boundary function) governing
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the motion through the string loop and the background
(spacetime and magnetic field) parameters:

E2 ¼ Veffðx; y; J; B;ΩÞ: ð30Þ

Detailed analysis of the boundaries of the string loop
motion has been done in [37], we only recall main results
here. The string loop motion boundaries and related types
of the motion can be distinguished into four classes
according to the possibility of the string loop to escape
to infinity or collapse to the central compact object. The
first class of the boundaries correspond to the absence of
inner and outer boundaries, i.e., the string loop can be
captured by the black hole or escapes to infinity. The
second class corresponds to the situation with an outer
boundary—the string loop must be captured by the black
hole. The third class corresponds to the situation when both
inner and outer boundaries exist—the string loop is trapped
in some region forming a potential “lake” around the black
hole. The fourth class corresponds to an inner boundary—
the string loop cannot fall into the black hole but it must
escape to infinity, see Fig. 2 for the details. For the purposes
of the present paper, the first and fourth classes of
boundaries, when the string loop can escape to infinity,
are relevant.

A. Analogy with test particle motion

The influence of electromagnetic field on the string
loop dynamics can be cleared up, if we compare the
effective potential of the string loop dynamics with those
of the charged test particle motion on circular orbits
around a Schwarzschild black hole immersed in the same
magnetic field B. The Hamiltonian of the motion of a
charged test particle with mass m and charge q is given by
the relation [42]

Hp ¼
1

2
gαβðΠα − qAαÞðΠβ − qAβÞ þ

1

2
m2; ð31Þ

where the mechanical and canonical momenta are again
related by

Pμ ¼ Πμ − qAμ: ð32Þ

We suppose the particle moving on a circular orbit at radius
x, with constant angular velocity ω ¼ Pϕ=m.
In the homogeneous magnetic field B, the Hamiltonian

of the test particle motion (31) can be cast into the (26)
form, but with modified effective potential containing a
constant axial angular momentum L:

VðpÞ
eff ¼ fðrÞ

�
L
x
−
qB
2

x

�
2

þm2: ð33Þ

The effective potentials Veff for both string loop (27) and
test particle (33) motion consist of the part given by the
geometry, fðrÞ, and the part in braces depending only on
the x coordinate. We can compare terms in braces with the
same x dependence for both string and particle cases
revealing their interpretation.
The first and the second term in braces in the effective

potential of the particle motion (33) represent the angular
momentum contribution, ∼x−1, and the Lorentz force
contribution, ∼x, respectively.
The first term in braces in the effective potential of the

string loop motion (27) represents the pure contribution of
the external magnetic field to the “effective” energy—
density of the magnetic field energy is proportional to B2,
and the space volume to x3. The second term in braces in
(27), showing the same dependence, ∼x, as the Lorentz
force, consists from two parts—the pure tension μ, and the
part representing interaction between the electric current
carried by the string loop and the external magnetic field.
This term can be associated to interaction of two magnetic
fields, where one of them is the “global,” external,
magnetic field, ∼B, and the other is the “local,” self-
generated, magnetic field related to the string loop,
∼JΩ=x, in accord with (28). The sign of this term can
be either positive or negative, depending on the sign of Ω,
i.e., the direction of the electric current on the string loop.
We consider Ω to be negative, if the direction of the vector
of the self-generated magnetic field coincides with the
direction of the vector of the external magnetic field, and
positive, if these vectors are directed oppositely. Since the
direction of the external magnetic field is given as an
initial condition, the direction of the Lorenz force acting
on the string is determined by the direction of the current.
The last term in braces of the effective potential (27)
corresponds to the angular momentum generated by the
current of the string loop.

1 2

3 4

FIG. 2. Four possible types of the boundaries of the string loop
motion in the Schwarzschild black hole spacetime and examples
of string loop trajectories escaping to the infinity along the y axis.
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B. Analogy with the superconducting string

The string loop model with the current generated by the
scalar field φ demonstrates an interesting analogy with the
superconductivity. In the pioneering works [43,44], it has
been shown for the cosmic strings that in the case when the
electromagnetic gauge invariance is broken, the string can
be considered as a superconductor carrying large currents
and charges, up to the order of the string mass scale. Under
such circumstances, the carriers of the electric charge can
be either bosons or fermions, depending on the energetic
favor for the charged particle [45]. In a series of papers
[46,47], the dynamics of the superconducting strings has
been considered in the framework of the Nambu-Goto
string theory (see, e.g., [48]), and the so-called “vortex”
theory [46]. In the recent paper [49] the oscillations of the
superconducting cosmic strings has been proposed as a
possible model of the generation of the observed highly
beamed radio bursts. Similarly to the current of the string
loop, the density of the superconducting electric current js
is proportional to the gradient of scalar functionΦ, which is
identified to the phase of the wave function of the super-
conducting Cooper pairs [50,51]:

jsα ¼
2ℏnse
ms

�
∂αΦ −

2e
ℏc

Aα

�
; ð34Þ

where ns and ms represent the concentration and mass of
the Cooper pairs, e is the charge of electron and ℏ is the
Planck constant.
In addition to zero resistivity, the superconductors are

characterized by the existence of the so-called Meissner
effect according to which the magnetic field either is
expelled from a type-I superconductor or penetrates into
a type-II superconductor as an array of vortices. The phase
transition between the superconducting and normal states
can be caused by increase of either temperature or magnetic
field. The highest strength of the magnetic field in a state
with given temperature under which a material remains
superconducting is called critical superconductivity
strength. Further, the superconducting states are possible
only if temperature is lower than the critical temperature Tc,
i.e., the temperature of the phase transition to the super-
conducting state. It has to be underlined that the value of the
critical temperature Tc strongly depends on the pressure,
and, e.g., in the neutron star crust, reaches the values up to
109 ∼ 1010 K [52]. The critical magnetic field at any
temperature below the critical temperature is given by
the relation

Bc ≈ Bcð0Þ
�
1 −

�
T
Tc

�
2
�
; ð35Þ

where Bcð0Þ is the critical magnetic field at zero
temperature.

Suppose superconducting material is in the external
magnetic field B < Bc at T > Tc and start lowering the
temperature. When T < Tc, the medium separates into
two phases: superconducting regions without magnetic
flux (flux expulsion) and normal regions with concen-
trated strong magnetic field that suppresses superconduc-
tivity. Consequently, magnetic flux can pass through the
superconducting material, separated into superconducting
regions without magnetic flux and normally conducting
regions into which the magnetic flux is concentrated, and
as we discussed the nature of the nonsuperconducting
regions depends on the type of superconductor as type I or
type II.
Large-scale, ordered magnetic fields in central parts of

accretion disks around black holes are desirable for
explaining e.g., collimated jet production. However, inward
advection of vertical flux in a turbulent accretion disk is
problematic if there is an effective turbulent diffusivity. A
new mechanism to resolve this problem was predicted in
[53]. Turbulent flux expulsion leads to concentration of the
large-scale vertical flux into small patches of strong
magnetic field and because of their large field strengths,
the patches experience higher angular-momentum loss rate
via magnetic braking and winds. As a result, patches rapidly
drift inward, carrying the vertical flux with them. The
accumulated vertical flux aggregates in the central flux
bundle in the inner part of the accretion disk and accretion
flow through the bundle changes its character. It is necessary
to underline that the new phenomenon called turbulent
diamagnetism when the magnetic field is expelled from
regions of strong turbulence and is concentrated between
turbulent cells was first predicted by Zeldovich [54] and
Parker [55].
Hence, the possibility of appearance of superconductors

near the horizon of black holes, discussed in [53], has an
important analogy with the turbulence in the accretion disk,
namely, the mechanism of efficient transport of the large-
scale external magnetic flux inward through a turbulent
flow can play a role of superconductivity in the accretion
disk and according to [53], suppression of turbulence by a
strong magnetic field is analogous to lifting of the super-
conductor by an applied magnetic field.
For an electric current-carrying string loop immersed in a

magnetic field there exists a similar effect of the vanishing
of the electric current when the magnetic field is reaching a
critical value. In the theory of the string loops no thermo-
dynamic features are contained, and the critical phenomena
are simply relating the magnetic field to the electric current
(and angular momentum) parameters of the string loop. To
find the critical value of the magnetic field, let us consider a
stationary string loop located at a fixed radius r0 in the flat
spacetime. The energy per length of the string loop in an
asymptotically uniform magnetic field B, given by Eq. (30)
where the lapse function is reduced to fðrÞ ¼ 1 in the flat
spacetime, reads
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E
r0

¼ μþ 1

2

q2

r20
þ 1

2

j2

r20
¼ μþ J2

r20
þ ΩJBffiffiffi

2
p þ B2r20

8
: ð36Þ

The final expression is the sum of the terms responsible for
the string tension, the electric current, the Lorenz force
and the energy of the magnetic field, respectively.
If one increases the strength of the background magnetic

field B while keeping the string loop at the initial position
r0 with fixed energy E, the electric current of the string loop
has to be modified accordingly. Using the relation (29), we
can write the electric current density j in a form corre-
sponding to those related to the superconducting current
(34), and relate the current to the string loop parameters by

j ¼ φjσ þ Aϕ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−q2 þ 2Er0 − 2μr20

q
: ð37Þ

The dependence of the current jσ ¼ φjσ (being constant of
the motion) on the strength of the magnetic field B is then
determined by the relation

jσ ¼ j −
B
2
r20: ð38Þ

According to Eq. (38), the magnitude of the current jσ
has to be evidently decreasing with increasing magnetic
field B. Therefore, we have to consider the possibility of
disappearance of the electric jσ current when magnitude of
the magnetic field reaches the critical value. The critical
magnitude of the magnetic field for a string loop located at
a given radius r0 with energy E and charge density q takes
the form

Bcr ¼ � 2

r20

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−q2 þ 2Er0 − 2μr20

q
: ð39Þ

The presence of the critical magnetic field is provided by
the existence of the last term of Eq. (36) representing the
energy density of the magnetic field. If the last term in
Eq. (36) vanishes, the current of the string loop could
decrease to arbitrarily small values, but it cannot reach zero
value. The presence of the last term of Eq. (36) also plays
an important role for the benefit of the superconduction–
string loop analogy. The so-called Meissner effect of the
exclusion of the magnetic field from the superconductor
means that the supercurrent generates a magnetic field
having strength that is exactly the same as the strength of
the external magnetic field. In other words, the term which
is proportional to the square of B in Eq. (36) can be in the
case of the superconducting string loop interpreted as the
self-magnetic field generated by the string loop.

IV. STRING LOOP ACCELERATION

Explanation of relativistic jets in active galactic nuclei
(AGN) andmicroquasars could be one of themost important
astrophysical applications of the string loop model. It is

possible because of the acceleration and fast ejection of
the string loop from the black hole neighborhood by the
transmutation effect, i.e., transmission of the energy of
the string loop oscillatory motion in the x direction to the
energy of the linear translation motion along the y direction
related to the string loop symmetry axis [1,12,15].
In the analysis of the acceleration process, it is conven-

ient to use dimensionless coordinates and string loop
parameters. We thus make rescaling of the coordinates,
x → x=M; y → y=M, and the string loop and background
parameters,

J→ J=
ffiffiffi
μ

p
M; E→E=

ffiffiffi
μ

p
M; B→BM=

ffiffiffi
μ

p
: ð40Þ

We will return to the Gaussian units in Appendix B.

A. Maximal acceleration

Since the Schwarzschild spacetime is asymptotically flat,
we have to study the string loop motion in the flat
spacetime in order to understand the transmutation process.
This enables clear definition of the string loop acceleration
process and establishing of maximal acceleration that is
available in a given uniform magnetic field. The energy of
the string loop (30) in the flat spacetime with uniform
magnetic field B, expressed in the Cartesian coordinates,
reads

E2 ¼ _y2 þ _x2 þ Vflatðx;B; J;ΩÞ ¼ E2
y þ E2

x; ð41Þ

where the dot denotes derivative with respect to the affine
parameter ζ and Vflatðx;B; J;ΩÞ is the effective potential of
the string loop motion in the flat spacetime:

Vflat ¼
�
B2x3

8
þΩJBxffiffiffi

2
p þ

�
1þ J2

x2

�
x

�
2

: ð42Þ

The plots of the effective potential for the flat spacetime
VflatðxÞ are illustrated in Fig. 3 for the different values of
magnetic field. The energy related to the motion in the x
and the y directions is given by the relations [15]

E2
y ¼ _y2; E2

x ¼ _x2 þ Vflatðx;B; J;ΩÞ ¼ E2
0: ð43Þ

The energy in the x direction E0 can be interpreted as an
internal energy of the oscillating string, consisting from the
potential and kinetic parts; in the limiting case of coincid-
ing minimal and maximal extension of the string loop
motion, xi ¼ xo, the internal energy has zero kinetic
component. The string internal energy can in a well-defined
way represent the rest energy of the string moving in the y
direction in the flat spacetime [1,15].
The final Lorentz factor of the transitional motion along

the y axis of an accelerated string loop as observed in the
asymptotically flat region is determined by the relation
[1,15]
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γ ¼ E
E0

; ð44Þ

where E is the total energy of the string loop having the
internal energy E0 and moving in the y direction with the
velocity corresponding to the Lorentz factor γ. Clearly,
the maximal Lorentz factor of the transitional motion of
the string loop is related to the minimal internal energy that
can the string loop have, i.e., those with vanishing kinetic
energy of the oscillatory motion [15]

γmax ¼
E

E0ðminÞ
: ð45Þ

It should be stressed that rotation of the black hole (or
naked singularity) is not a relevant ingredient of the
acceleration of the string loop motion due to the trans-
mutation effect [15], contrary to the Blandford-Znajek
effect [17] usually considered in modeling acceleration
of jetlike motion in AGN and microquasars.
Extremely large values of the gamma factor given by

Eq. (45) can be obtained by setting the initial energy E very
large or by adjusting properly the string loop parameters
J;Ω and the magnetic field strength B in order to obtain
very low minimal internal energy related to infinity,
E0ðminÞ. It is crucial to examine properties of the energy
function E0ðx; J;Ω; BÞ, primarily its minimal allowed
value, E0ðminÞðJ;Ω; BÞ, given by the local minimum of
the effective potential Vflat (42).
Recall that the nonmagnetic case, B ¼ 0, implies quite

simple properties of the effective potential Veff , as there is
only one local minimum with the location and the energy
level determined by [15]

xmin ¼ J; E0ðminÞ ¼ 2J: ð46Þ
The effective potential Vflat is always positive in this case.
Now we have to discuss in detail properties of the

effective potential Vflat for the string loop dynamics in the
homogeneous magnetic field in flat spacetime. It is enough
to consider B > 0 as the situation with opposite sign of B
can be described by inversing the sign of Ω. Naturally, also
x > 0. The effective potential diverges for x → 0ð∼J2=xÞ
and x → ∞ð∼B2x3Þ. It is convenient to define a new
parameter b reflecting the interaction of the magnetic field
and the string loop current, modified space coordinate ~x,
and modified energy ~E, by the relations

b ¼ BJ; ~x ¼ x
J
; ~E ¼ E

2J
: ð47Þ

The zero points of the effective potential are then governed
by

~x2ðzÞ�ðb;ΩÞ ¼
−F �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 − 8b

p

b2
; ð48Þ

F ¼ 4þ 2
ffiffiffi
2

p
bΩ: ð49Þ

It is immediately clear that both solutions ~x2ðzÞ�ðb;ΩÞ can be
negative only, being thus physically unrealistic. Therefore,
the effective potential is always positive, Vflat > 0. It has
only one local minimum for all values of the string loop
parameters, and the magnetic field intensity B > 0. The
extremum, given by ∂Vflat=∂x ¼ 0 is located at

~x2min ¼
x2min

J2
¼ 2

ffiffiffi
2

p

3b2
f

ffiffiffiffi
D

p
− ð

ffiffiffi
2

p
þ bΩÞg; ð50Þ

D ¼ 3b2 þ ð
ffiffiffi
2

p
þ bΩÞ2; ð51Þ

that exist for all considered values of the parameters J; B;Ω
or b;Ω. The minimal energy of the string loop in the flat
spacetime with the homogeneous magnetic field B is then
given by

~E0ðminÞ ≡ E0ðminÞ
2J

¼
ffiffiffi
4

p
2

3
ffiffiffi
3

p
ffiffiffiffi
D

p ð ffiffiffi
2

p þ bΩÞ þ 6b2 −D

b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D

p
− ð ffiffiffi

2
p þ bΩÞ

q :

ð52Þ

Positions of the local minima of the effective potential ~x2min,
and the minimal energy ~E0ðminÞ, respectively, are illustrated
as a function of b for characteristic values of the string loop
parameter Ω in Fig. 4(a), and in Fig. 4(b), respectively. The
related local extrema of the ~xminðbÞ; ~E0ðminÞðbÞ functions are
given by the relation

2
ffiffiffiffi
D

p
ðbΩþ

ffiffiffi
2

p
−

ffiffiffiffi
D

p
Þ þ b2ðΩ2 þ 3Þ − b

ffiffiffiffi
D

p
Ωþ

ffiffiffi
2

p
bΩ

¼ 0; ð53Þ

for ~xminðbÞ, and the relation

b4ð−2Ω4 − 3Ω2 þ 9Þ þ 2b3Ωð
ffiffiffiffi
D

p
Ω2 −

ffiffiffi
2

p
ðΩ2 − 6ÞÞ

þ b2ð−9
ffiffiffi
2

p ffiffiffiffi
D

p
þ 12Ω2 þ 30Þ þ 4bð5

ffiffiffi
2

p
− 3

ffiffiffiffi
D

p
ÞΩ

− 8
ffiffiffi
2

p ffiffiffiffi
D

p
þ 16 ¼ 0 ð54Þ

for ~E0ðminÞðbÞ.
In the limit of B → 0, we find the minimum location at

~xmin ¼ 1, and the minimal energy ~E0ðminÞ ¼ 1, i.e., the
values obtained for the empty flat spacetime, given by
Eq. (46). However, these limit values are reached also for a
special value of the magnetic field strength B, or parameter
b, in dependence on the other string loop parameter Ω.
Therefore, it is relevant to discuss the conditions

~xminðb;ΩÞ ¼ 1; ~E0ðminÞðb;ΩÞ ¼ 1 ð55Þ

in dependence on the interaction of the string loop and the
magnetic field expressed by the parameter b ¼ BJ. This
enables one to distinguish qualitatively different string loop
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configurations from the point of view of the acceleration
process. Namely, the condition ~E0ðminÞðb;ΩÞ ¼ 1 separates
the string loop configurations enabling efficiency of the
acceleration process in the magnetic field to be higher in
comparison with those related to the nonmagnetic case,
from those where the efficiency is lower. Equation (55) can
be expressed in the form

−3b2 − 2
ffiffiffi
2

p
bΩþ 2

ffiffiffi
2

p ffiffiffiffi
D

p
− 4 ¼ 0; ð56Þ

2b3ðΩ2 − 1Þ2 þ 2
ffiffiffi
2

p
b2Ωð3Ω2 þ 5Þ

þ 12bΩ2 þ bþ 4
ffiffiffi
2

p
Ω ¼ 0: ð57Þ

The numerically determined solutions of the equations
governing the local extrema and the “flat limit” values of
the position and energy functions, given in terms of the

functions bðΩÞ, are represented in Fig. 4(c). We can see
that the solutions exist only in the range of the string
loop parameter Ω ∈ h−1; 0Þ. We denote the solutions
of equations (56) and (57) by b1ðxÞðΩÞ and b1ðEÞðΩÞ, while
bEðxÞðΩÞ and bEðEÞðΩÞ are referred to solutions of (53)
and (54).
For string loop with fixed parameter Ω the maximal

distance of the ~xminðb;ΩÞ function from the B ¼ 0 position,
~xmin ¼ 1, is given by points in Fig. 4(a) and denoted by
~xminðmaxÞ. It is also useful to give the minimal energy
~E0ðminÞðb;ΩÞ of the effective potential at the extremal cases
assuming the parameter Ω fixed and given by the bEðEÞðΩÞ
dependence. The results are illustrated by a sequence of
points in Fig. 4(b)—the minimal values of the energy
~E0ðminÞðb;ΩÞ are denoted by circles, while the ~E0ðminÞðb;ΩÞ
values obtained at the maximal distance from the ~xminðmaxÞ
point are denoted by squares.
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FIG. 4. Properties of the effective potential VflatðxÞ for the string loop dynamics in the flat spacetime with a uniform magnetic field.
Position of the VflatðxÞminima ~xð0Þmin (a), and the minimal energy ~Eð0Þmin (b) are given as a function of b for some characteristic values
of the string loop parameter Ω. In (c), properties of the functions ~xð0Þminðb;ΩÞ; ~Eð0Þminðb;ΩÞ are demonstrated.
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FIG. 3. String loop effective potential VflatðxÞ for the flat spacetime with and without a uniform magnetic field. The effective potential
is presented for three representative values of the string loop parameter Ω ∈ f−1; 0; 1g, keeping constant the current parameter J ¼ 1,
and for various values of the strength of the magnetic field B (denoted by numbers in the plot). Minimum of all the effective potentials is
denoted by the small vertical line, the dotted line corresponds to the string loop energy in the nonmagnetic case B ¼ 0.
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The loci ~xmin of the effective potential Vflat local minima
depend on the string loop parameterΩ, and the parameter b
combining the role of the magnetic field intensity B and the
string loop parameter J. Keeping the string loop parameters
Ω and J constant, we can obtain a unique position of the
minimum ~xmin for each magnitude of magnetic field B > 0
in the case of Ω ∈ h0; 1i. Such minima are located at
xðminÞ < 1, i.e., closer to the coordinate origin as compared
to the nonmagnetic (B ¼ 0) case, see Fig. 4(a).
On the other hand, for Ω ∈ h−1; 0Þ we can obtain a

“binary” behavior of the effective potential, if the other
parameters are properly tuned. For b < b1ðxÞðΩÞ, we can
obtain the same location of the effective potential mini-
mum, xðminÞ, for two different values of parameter b. These
two different string loop configurations at a given radius
will differ in the string loop energy E, and have to be
located at ~xmin > 1, i.e., at larger distance from the origin
than the minimum of the effective potential in the B ¼ 0
case. Such binary string loop configurations can exist only
for subcritical values of the magnetic parameter

b < bbin ¼ 4
ffiffiffi
2

p
=3 ð58Þ

determined by the condition b1ðxÞð−1Þ ¼ 1—see the point
Y in Fig. 4(a). The maximal difference of the location of the
local minimum of the effective potential from the position
~xmin ¼ 1 corresponding to the nonmagnetic case, B ¼ 0, is
given by the point X in Fig. 4(a), i.e., by the local maximum
of the ~xminðbÞ function determined by Eq. (53), taken for
Ω ¼ −1. For this maximum we obtain

bEðxÞð−1Þ ¼ 1=
ffiffiffi
2

p
; ~x2binðmaxÞ ¼ ~x2minð1=

ffiffiffi
2

p
Þ ¼ 4=3:

ð59Þ

The extremal efficiency of the string loop transmutation
process is governed by the minimum of the effective
potential at the flat spacetime containing a homogeneous
magnetic field, ~Eð0Þminðb;ΩÞ, see Eq. (45). If the minimal
energy E0ðminÞ is zero (for example in J ¼ 0; B ¼ 0 case)
the maximal possible acceleration of the string loop
diverges, γmax → ∞.
For positive values of the string loop parameter Ω,

range Ω ∈ ð0; 1i, the minimal energy function ~E0ðminÞðbÞ
is monotonically increasing with increasing parameter b
and diverges for b → ∞, see Fig. 4(b). Since there is
~E0ðminÞ > 1 for all values of b > 0, Ω ∈ ð0; 1i, such
configurations are not advantageous for the string loop
acceleration as compared to the nonmagnetic case B ¼ 0.
Configurations ~E0ðminÞ < 1 implying possibility of more

efficient string loop acceleration than in the nonmagnetic
case B ¼ 0, can exist only for negative values of the
parameter Ω. For Ω ∈ ð−1; 0Þ, the minimum energy func-
tion ~E0ðminÞðbÞ decreases with increasing b for small

enough values of the parameter b reaching a minimum
for the magnetic parameter bEðEÞ [point Z in Fig. 4(b)] and
increases with further increasing of b, crossing the
~E0ðminÞ ¼ 1 line at b1ðEÞ [point W in Fig. 4(b)] and for
larger values of parameter b increases towards infinity. In
the special case of Ω ¼ −1, the minimum energy function
~E0ðminÞðbÞ is monotonically decreasing and tends to zero
value as b increases to infinity.
For negative values of the string loop parameter,

Ω ∈ h−1; 0Þ, and for a given string loop parameter J,
we can always find a properly large values of magnetic
field B to obtain the minimal energy E0ðminÞ of the
effective potential smaller then in the nonmagnetic case
where E0ðminÞ ¼ 2J. The ratio of the minimal energy
~Eð0Þmin considered in the nonmagnetic and magnetic cases
can be put arbitrarily close to zero for large enough values
of the parameter b. This implies the possibility of an
extremely efficient transmutation effect leading to accel-
erations of the string loop up velocities corresponding to
ultrahigh Lorentz factor of the motion of electric current-
carrying string loop with J > 0 in the combined
Schwarzschild gravitational field and the uniform magnetic
field—see Fig. 4(c).

B. Acceleration in combined gravitational
and magnetic fields

Clearly, Ex ¼ E0 and Ey are constants of the string loop
motion in the flat spacetime and no transmission between
these energy modes is possible. However, in vicinity of
black holes or naked singularities, the internal kinetic energy
of the oscillating string can be transmitted into the kinetic
energy of the translational linear motion (or vice versa) due
to the chaotic character of the string loop dynamics [1,15].
In order to get a strong acceleration, the string loop has to

pass the region of strong gravity near the black hole horizon
or in vicinity of the naked singularity, where the string loop
transmutation effect Ex ↔ Ey can occur with maximal
efficiency. However, during the acceleration process, all
energy of the Ex mode cannot be transmitted into the Ey
energy mode—there always remains the inconvertible
internal energy of the string, E0ðminÞ, being the minimal
energy hidden in the Ex energy mode, corresponding to the
minimum of the effective potential.
The opposite case corresponds to amplitude amplifica-

tion of the oscillations in the x direction and deceleration of
the linear motion in the y direction; in this case the trans-
lational kinetic energy is partially converted to the internal
oscillatory energy of the string. All energy of the transitional
(Ey) energy mode can be transmitted to the oscillatory (Ex)
energy mode—oscillations of the string loop in the x
direction and the internal energy of the string loop will
increase maximally in such a situation, while the string loop
will stop moving in the y direction. We shall focus our
attention to the case of accelerating string loop.
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First, we have to discuss the properties of the effective
potential of the string loop motion in the combined
gravitational and magnetic field. The effective potential
is a simple combination of the lapse function fðrÞ of the
spacetime metric, and the effective potential of the string
loop motion in the flat spacetimewith the uniformmagnetic
field Vflat; therefore,

Veff ¼ fðrÞVflat: ð60Þ

The zero point of the effective potential is given by the
vanishing of the lapse function fðrÞ ¼ 0, i.e., at the
Schwarzschild black hole horizon at r ¼ 2. The divergence
occurs at infinity x → ∞, as in the flat spacetime with an
homogeneous magnetic field. The local extrema of the
effective potential cannot be located off the equatorial plane
given by the spherically symmetric spacetime and the
uniform magnetic field. In the equatorial plane y ¼ 0 they
are given by the condition [37]

3

8
B2x5 −

5

8
B2x4 þ

�
1þ BJΩffiffiffi

2
p

�
ðx3 − x2Þ

− J2xþ 3J2 ¼ 0: ð61Þ

The local extrema can thus be determined by the condition
related to the angular momentum parameter of the string
loop

J ¼ JE�ðx;B;ΩÞ ≡ BΩx2ðx − 1Þ ∓ ffiffiffiffi
G

p

2
ffiffiffi
2

p ðx − 3Þ ; ð62Þ

where

G ¼ B2ðx − 1Þ2x2Ω2 þ B2ðx − 3Þð3x − 5Þx2
þ 8ðx − 3Þðx − 1Þ: ð63Þ

There are no zero points of the functions JE�ðx;B;ΩÞ
because the condition

1

8
B2x4ð3x − 5Þ þ x2ðx − 1Þ > 0 ð64Þ

is satisfied at x > 2 for all values of the parameter B.
The positive branch of the solution JEþ is real and

positive above the radius of the photon circular geodesic, at
x > 3, for all combinations of parameters B and Ω. For

Ω<−
ffiffiffiffiffi
3

11

r
≐−0.52; B>

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ ffiffiffiffiffi

33
p

18

s
≐ 0.70; ð65Þ

the solution JEþ can be real and positive also below the
photon circular geodesic, at x > 2. Also the solution JE−
can be for (65) real and positive, but only in the region
2 < x < 3. The behavior of the functions JE∓ðx;B;ΩÞ is
demonstrated in Fig. 5.
A given current parameter J represented by a line has

possible multiple intersections with the function JE∓ðxÞ
that determine positions of the local extrema of effective
potential VeffðxÞ function in equatorial plane. The local
extrema of the J2E∓ðxÞ function, given by the condition
∂rJE∓ ¼ 0, enable us to distinguish maxima and minima of
effective potential VeffðxÞ. There can exist only local
minimum JE∓ðminÞ for all combination of parameters B
and Ω, see Fig. 5.
For the string loop immersed in the combined uniform

magnetic field and the spherically symmetric gravitational
field described by the Schwarzschild spacetime, we can
have two intersection points of the J ¼ const line with the
function JE∓ðx; B;ΩÞ (maxima and minima of Veff ) for the
parameter J > JE∓ðminÞ, one intersection point (inflex point
of V eff) for J ¼ JE∓ðminÞ, and none intersection point for
J<JE∓ðminÞ (no extrema ofVeff )—the situation is the same as
in the Schwarzschild spacetime without magnetic field [10].
At the minima (maxima) of the effective potential, stable

(unstable) equilibrium positions of the string loop occur.
Note that energy of the string loop at the stable equilibrium
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positions governs oscillatory motion around the equilib-
rium state, but it is not relevant for the maximal acceleration
of the string loop in the transmutation process—the
maximal acceleration is given by the local minimum of
the effective potential in the flat spacetime [11].

C. Numerical simulations of the transmutation process

In the previous section, the maximal possible acceler-
ation of the string loop has been determined, in dependence
on the parameters J; B;Ω, by finding the minima of the
effective potential of the string loop dynamics in the
uniform magnetic field in the flat spacetime that reflects
the asymptotic properties of the combined Schwarzschild
gravitational field and uniform magnetic field. However, in
realistic transmutation processes in the vicinity of the black
hole horizon, the efficiency is usually lower than the
maximally allowed efficiency corresponding to the max-
imally accelerated string loop when their oscillatory motion
is fully suppressed.
Due to the chaotic character of the string loop equations

of motion, even tiny change in the initial conditions of the
motion can change completely character of the string loop
trajectory. In order to demonstrate the effect of the magnetic
field B on the string loop acceleration, it is useful to
compare the set of trajectories with or without magnetic
field B in dependence on the string loop parameter Ω
introducing the qualitative differences of the character of
the transmutation process, namely in the potential effi-
ciency of the transmutation process reflected by the
maximal acceleration determined by γmax.
The effect of the uniform magnetic field on the string

loop acceleration will be first illustrated by sending the
string loop with fixed current parameters J and Ω towards
the black hole from rest in the initial position with

coordinate xs adjusted in order to have fixed string loop
energy E ¼ 25, but with freely varying impact parameter
ys ∈ ð0; 13Þ—giving displacement from the equatorial
plane, see Fig. 6. Trajectories with large ejection velocity
are assumed to appear for large maximal Lorentz factors,
γmax—due to Eq. (45) this should occur for small values of
the string loop current parameter J, and large values of the
string loop energy E; we will use J ∼ 2 and E ∼ 25. Of
course, we can test different initials parameters, but our
choice is quite reasonable and illustrative [15]. The current
J should be minimized, but since the minimum of the
effective potential Veff is located at xmin ∼ J, it is difficult
for the trajectories of the string loop with J < 2 to jump
over the black hole horizon (see Fig. 6) and many of the
string loop trajectories will end inside the black hole. The
initial starting point at xs corresponds to an initial stretching
of the string loop—for larger xs, we will start with larger
energy E that also could provide for larger Lorentz factor γ
of the string loop far away from the black hole.
For simplicity, we first study the role of the string loop

parameter Ω on the transmutation process in a fixed
magnetic field with intensity B ¼ 0.2, considering the
characteristic values of Ω ¼ −1; 0; 1 and compare the
results to the case of vanishing magnetic field B ¼ 0.
The scattering function γðysÞ, plotted in Fig. 7, demon-
strates some regular scattering regions [for example ys ∈
ð5.2; 11Þ in the B ¼ 0 case], where the γ depends on ys in
a quite regular way, combined with chaotic scattering
regions (chaotic bands [56]), where γ depends on ys in a
completely chaotic way when there is no regular prediction
of final output from neighboring initial positions [for
example ys ∈ ð4.9; 5.1Þ in the B ¼ 0 case]. The reason
why there exist such unregular outcomes from some regions
of the initial positions is the presence of unstable periodic
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FIG. 6. Different types of the string loop motion in the combined gravitational Schwarzschild field and uniform magnetic field B. The
string loop trajectories are represented for appropriately chosen characteristic cases (scattering, backscattering, collapse). The thick line
represents boundary of the motion given by the energy boundary function E ¼ Ebðx; yÞ, gray is the dynamical region below the black
hole horizon. Sensitivity of the string loop motion to the initial conditions is observed in neighborhood of the unstable periodic orbit; an
example is shown in the second and third figures (being enlargements of the first one) by the thick dashed line constructed for
ys ≐ 5.059. We continuously vary the impact parameter ys and determine by numerical calculations the resulting gamma factor γðysÞ;
for the characteristic values of B and Ω the results are given in Fig. 7 and Tables I–III.
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orbits. An illustrative example on the unstable periodic
orbits and behavior of the string loop trajectories in its
vicinity is presented in Fig. 6 for our set of the initial
conditions. The results of the study assuming fixed energyE
are reflected in Fig. 7 by the values of the Lorentz factors γtop
and γmean, giving the maximal and mean values of the
Lorentz factor obtained from the considered sample of the
initial conditions of the string loop motion in the given
magnetic field. The results confirm expectation based on the
properties of the function γmaxðB; J;ΩÞ given by Eq. (45)
that the transmutation process is most efficient for negative
values of the string loop parameter Ω. Notice that for string
loop in the magnetic field, the factor γtop is higher than in the
nonmagnetic caseB ¼ 0 only forΩ ¼ −1, but slightly lower
even for Ω ¼ 0, and substantially lower for Ω ¼ 1. On the

other hand, the value of γmean is higher in the magnetic field
for all three cases of Ω.
Our study seems to be very similar to the problem of

chaotic scattering [56]—the initial vertical displacement,
ys, plays the role of the impact parameter, while we use the
resulting string loop Lorentz factor γ instead of the
scattering angle. One can assume that, due to the chaotic
nature of the string loop motion, the numerical simulations
will be able to find the trajectories with Lorentz factor
having almost the maximal value, i.e., γtop ∼ γmax.
However, our numerical simulations show that such an
assumption is not generally true, as we obtained at least
γtop ∼ 0.5γmax, or slightly larger values—see Fig. 7 or
Tables I–III. This is a general effect of the string loop
transmutation process in the field of black holes, related to
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FIG. 7 (color online). The asymptotic Lorentz factor γ obtained due to the transmutation of the string loop energy in the Schwarzschild
backgrounds with or without uniform magnetic field B is given for three characteristic values of string loop parameter Ω. The Lorentz
factor γ (vertical axis) is calculated for string loop with energy E ¼ 25 and current J ¼ 2, starting from the rest with varying initial
position in the coordinate y0 ∈ ð0; 13Þ (horizontal axis), while the coordinate x0 of the initial position is calculated from Eq. (30).
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the existence of the event horizon capturing the string loop
entering the region of the most efficient transmutation—in
the naked singularity spacetimes, where the efficient trans-
mutation occurs in regions containing no event horizon and
no capturing of the string loop occurs, we observe γtop ∼
γmax frequently [9,11].
Now we have to discuss the influence of the magnitude

of the magnetic field on the transmutation process and
compare the results to those related to the case of B ¼ 0.
The physical reason for distinction of the transmutations
process efficiency in the Schwarzschild black hole without
or with magnetic field B comes from the behavior of the
minimum of the effective potential in the flat spacetime
E0ðminÞ, giving the behavior of the accelerated string loop
far away from the black hole. ForB ¼ 0we have the simple
relation E0ðminÞ ¼ 2J, while for B ≠ 0 the value of E0ðminÞ is
modified by the magnetic field intensity and the string loop
parameter Ω. However, the realistic transmutation process
is also strongly influenced by the presence of the black hole
horizon, since the region of minimum of the effective
potential enabling high efficiency of the transmutation
process is close to the black hole horizon [11,15]. Large
values of the Lorentz factor γ can be achieved by enlarging
the (initial, and conserved) energy E, or by lowering the

minimal string loop energy at infinity, E0ðminÞ, by lowering
J—see Eq. (45). We can achieve low values of the energy
E0ðminÞ (see Fig. 3), and hence large acceleration, by
increasing magnitude of the magnetic field B, or by using
very low values of the current magnitude J of the string
loop with parameter Ω < 0. However, such string loops
minima are very close to the black hole horizon suppressing
thus the probability of observable acceleration process.
In testing the role of the magnetic field, we have to reflect

the problem of the initial conditions that have to be adjusted
in order to enable the comparison with the case of B ¼ 0.
The initial conditions for the string loop motion are given
by the initial position and the initial speed xs; ys; _xs; _ys, the
internal string loop parameters E; J;Ω, and the external
parameter—intensity of the magnetic field B. We cannot
choose arbitrarily all the parameters determining the initial
conditions, for the string loop starting from the rest the
parameters are related by Eq. (30).
If we want to demonstrate the influence of the magnetic

field on the string loop acceleration process by varying the
external parameterB, we have tomodify some of the internal
string loop parameters E; J;Ω, or the initial position and the
initial speed. We will discuss three scenarios for the string
loop starting its motion from rest state, distinguished
according to what parameter is varied due to increase of
the external parameter B, assuming in all the scenarios the
parameter Ω fixed:
(1) Initial position xs is varied, E and J are fixed.
(2) Current parameter J is varied, xs and E are fixed.
(3) String energy E is varied, xs and J are fixed.

The behavior of the effective potential in these three
scenarios is represented in Fig. 8.
For the first scenario (initial position xs varied with B),

the results of the numerical calculations of the Lorentz γ
factor are summarized in Table I for two characteristic
values of B. As we can see from Table I, the string loop is
forced to start closer to the black hole horizon for B > 0, if
we wish to keep its current J and energy E, the initial
position xs decreases with increasing B and decreases with

TABLE II. The characteristic values of the string loop asymp-
totic Lorentz factor, γtop and γmean, numerically obtained for the
set of trajectories in the acceleration scenario 2 are compared to
the maximal Lorentz factor γmax. In scenario 2 we keep coordinate
xs ¼ 25 and energy E ¼ 25, while current J is varied according to
increase of the strength of the magnetic field B.

J γmax γtop γmean

B ¼ 0 5.0 2.5 2.5 1.4
B ¼ 0.01 Ω ¼ −1 7.2 1.8 1.8 1.3

Ω ¼ 0 4.5 2.8 2.7 1.4
Ω ¼ 1 2.8 4.5 3.2 1.5

B ¼ 0.02 Ω ¼ −1 9.4 1.4 1.4 1.1
Ω ¼ 0 2.3 5.5 4.0 1.6
Ω ¼ 1 0.6 23.4 4.0 1.6

TABLE III. The characteristic values of the string loop asymp-
totic Lorentz factor, γtop and γmean, numerically obtained for the
set of trajectories in the acceleration scenario 3 are compared to
the maximal Lorentz factor γmax. In scenario 3 we keep coordinate
xs ¼ 25 and current J ¼ 2, while energy E is varied according to
increase of the strength of the magnetic field B.

E γmax γtop γmean

B ¼ 0 24.2 6.0 4.0 1.5
B ¼ 0.1 Ω ¼ −1 39.6 10.6 6.6 1.7

Ω ¼ 0 43.0 10.7 6.9 1.7
Ω ¼ 1 46.4 10.8 6.6 1.7

B ¼ 0.2 Ω ¼ −1 92.6 26.8 15.5 2.2
Ω ¼ 0 99.4 24.6 14.8 2.3
Ω ¼ 1 106.2 23.3 12.1 2.1

TABLE I. The characteristic values of the string loop asymp-
totic Lorentz factor, γtop and γmean, numerically obtained for the
set of trajectories in the acceleration scenario 1 are compared to
the maximal Lorentz factor γmax. In scenario 1 we keep energy
E ¼ 25 and current J ¼ 2, while coordinate xs is varied accord-
ing to increase of the strength of the magnetic field B.

x0 γmax γtop γmean

B ¼ 0 25.8 6.3 3.9 1.6
B ¼ 0.1 Ω ¼ −1 19.5 6.7 4.5 1.7

Ω ¼ 0 18.4 6.2 3.8 1.7
Ω ¼ 1 17.3 5.8 3.3 1.6

B ¼ 0.2 Ω ¼ −1 14.7 7.2 4.3 1.9
Ω ¼ 0 13.7 6.2 3.7 1.7
Ω ¼ 1 12.7 5.5 3.0 1.7
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increasing Ω. There is a slight increase of the maximal
allowed acceleration, γmax, with increasing parameter B for
Ω < 0, while it decreases for Ω > 0, in accord with the
discussion of the properties of the function E0ðminÞðB; J;ΩÞ
in the previous section. For the string loop with Ω ¼ −1,
the topical value of the Lorentz factor, γtop, exceeds the

value corresponding to the case B ¼ 0, while it is lower for
Ω ¼ 0; 1. The value of the γtop decreases with increasing B
in all the cases of Ω ¼ −1; 0; 1.
For the second scenario (string loop current parameter

J varied with B), the data of the numerical simulations
giving the Lorentz γ factors are given in Table II for two

B 0

B 0.1

B 0.1 y

2 3 5 7 10 15 20 30
0

10

20

30

40

50

x

E

case 1
B 0

B 0.04

B 0.04 y

2 3 5 7 10 15 20 30
0

10

20

30

40

50

x

E

case 2

B 0

B 0.1

B 0.1 y

2 3 5 7 10 15 20 30
0

10

20

30

40

50

x

E

case 3

FIG. 8. The string loop effective potential VeffðxÞ plotted for various combinations of the parameters J; B;Ω are illustrated for the flat
or Schwarzschild spacetime in a way giving the energy that can be used for the string loop acceleration during the transmutation process
in dependence on the magnetic field strength B. In the Schwarzschild spacetime we use the thick curve for B ¼ 0, and the thin curve for
B > 0; the case of the magnetic field in the flat spacetime is dashed. Wewill demonstrate the influence of the magnetic field on the string
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J. In all figures the string loop parameter Ω ¼ 0.
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characteristic values of B that are by one order smaller
than in the previous case. We have to use smaller values
of the magnetic field B, since a critical value Bcrit of the
magnetic field intensity exists for which the current
J ¼ 0, see Sec. III B. In this scenario, the parameter J
decreases significantly with increasing Ω and increasing
B. We have found an increase of the maximal allowed

acceleration γmax in comparison to the case B ¼ 0 due to
a decrease of the current J for Ω ¼ 0; 1, while for Ω ¼
−1 the current J increased and γmax decreased. The value
of γtop decreases with increasing B for string loop with
Ω ¼ −1 being lower than in the B ¼ 0 case, while it
increases with increasing B for Ω ¼ 0; 1 due to the strong
decrease of J.
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FIG. 10 (color online). String loop acceleration in the Schwarzschild spacetime with and without the external homogeneous magnetic
field with B ¼ 0.2, plotted for various starting points of the string loop and correspondingly modified energy. The string loop is starting
from rest at the points from the region xs ∈ ð0.1; 30.1Þ; ys ∈ ð0.1; 30.1Þ with the angular momentum parameter fixed to values of J ¼ 2
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For the third scenario (string loop energy E varied with
B), the results of the numerical simulations for the Lorentz
γ factor are summarized in Table III for the same two
characteristic values of B as in the first scenario. In
comparison to the case of B ¼ 0, we need an increase of
the energyE and we observe a large increase of the maximal
allowed acceleration γmax that increases with increasing Ω
for the smaller value of B ¼ 0.1, but it decreases with
increasing Ω for B ¼ 0.2. The Lorentz factor topical value
γtop also demonstrates a substantial increase in comparison
to the case B ¼ 0, especially for the larger magnetic field
B ¼ 0.2. Large γ factors are observed for the Ω ¼ −1 case,
while for Ω ¼ 0; 1 the increase is smaller; in both cases it is
caused by the large increase of the string energy E.
In the framework of the third scenario we give also data

of the numerically calculated Lorentz γ factors in depend-
ence on the magnetic field intensity B for the string loop
parameters Ω ¼ −1; 0; 1 and fixed J ¼ 2, fixed initial
position of the string loop starting at rest, with energy E
varied correspondingly. The data are plotted in Fig. 9; we
observe increasing of the Lorentz γ factor with increasing
B. We also observe combination of the regions of regular
behavior of the function γðBÞ, with regions of quite chaotic
character, similar to those occurring in Fig. 7. Notice that
γtop takes highest value for the value of Ω ¼ 1 due to
highest increase of the energy E parameter. On the other
hand, it takes the lowest value for Ω ¼ −1; moreover, in
this case the efficient acceleration can occur only in the field
with B < 0.3—clearly, for larger values of B the efficient
transmutation processes occur very close to the horizon and
the string loop is efficiently captured by the black hole.
The transmutation between the oscillatory motion and

the transitional accelerated motion can be properly repre-
sented by their distribution in the space of initial states
xs − ys. The numerical simulations are giving the resulting
Lorentz γ factor for two characteristic values of the
magnetic field B ¼ 0 and B ¼ 0.2, two characteristic
values of the string loop parameter J ¼ 2 and J ¼ 11,
and the three characteristic values of the string loop
parameter Ω ¼ −1; 0; 1. The results are given in Fig. 10,
along with the E ¼ const levels for the considered cases of
the internal and external parameters of the string loop in the
combined gravitational and magnetic fields. We observe
that strong acceleration and large final Lorentz γ factors can
be obtained.
In astrophysically realistic situations, our results are

valid up to the regions distant from the black hole where
the magnetic field can be well approximated as uniform.
Clearly, the condition of magnetic field uniformity assumed
to be valid in the black hole vicinity and reasonably large
distance will be violated in regions very distant from the
black hole. Then a crucial question arises—how the string
loop dynamics will be influenced by decreasing intensity of
the magnetic field in distant regions described by the flat
spacetime. We plan to study this problem in a future paper.

Nevertheless, we can expect that no change will occur in
the flat spacetime far away from the black hole in the
energy of the translational motion Ey. This energy has to be
conserved since no energy transmutation is possible in the
flat spacetime, and the energy mode Ey is independent on
the intensity of the magnetic field, i.e., the string loop
translational velocity along the y axis has to be conserved
as well. However, we can expect the change in the energy
of the string loop oscillations in the x direction since both
the total energy, E, and the x-mode energy, Ex, will be
modified by decreasing intensity of the magnetic field.
Another interesting question for future study arises, if we

assume the uniform magnetic field that is not parallel to the
string loop axis. Then a new force arises that turns the string
loop axis to be parallel with the magnetic field. The
nonparallel magnetic field case also opens up the question
of stability of the string loops in Ω > 0 configuration—any
perturbation may overturn the string loop to the Ω < 0
configuration that is energetically more favorable.

V. CONCLUSION

We have investigated acceleration of the electric current-
carrying string loop due to the transmutation process in the
gravitational field of the Schwarzschild black hole com-
bined with an asymptotically uniform magnetic field. We
have pointed out a physical interpretation of the string loop
model through the superconductivity phenomena of plasma
in accretions disks. We also give correspondence of the
parameters of the string loop model of jets to real physical
quantities and estimate such quantities in realistic astro-
physical conditions.
In the pure spherically symmetric gravitational field the

string loop dynamics is degenerated, being independent of
the string loop motion constant Ω. In the combined
gravitational and magnetic field that have a common axial
symmetry only, the degeneration is canceled, and the
dynamics is strongly dependent on the parameter Ω. The
effective potential of the string loop dynamics allows for one
stable and one unstable equilibrium points of the string loop.
The maximal acceleration of the string loop is, however,
determined by the minima of the effective potential of the
string loop dynamics in the uniform magnetic field
immersed in the flat spacetime.
The numerical analysis given in Tables I–III confirms

significant acceleration (large γ factor) in the cases, where
large γmax is possible. The string loop acceleration is given
by the transmutation process governed by two key ingre-
dients: possibility of the string loop to escape with large
ratio of the initial energy E to the minimum energy at
infinity E0ðminÞ, and existence of the transmutation region
of strong gravitational (magnetic) fields where the chaotic
regime of the string loop dynamics occurs and transmission
of energy of the oscillatory motion to the energy of the
translational motion is possible. It has been proved that
presence of the external homogeneous magnetic field B
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allows the string loop to escape to infinity with large
Lorentz γ factor, the magnetic field can significantly
increase the maximal acceleration given by γmax.
We have demonstrated that for the positive values of the

parameter Ω, the presence of the magnetic field decreases
the efficiency of the transmutation effect, while it increases
the efficiency for negative values of the parameter Ω. We
have shown that for the intensity of the magnetic field high
enough, the string loop with negative parameter Ω can be
strongly accelerated up to ultrarelativistic velocities of
their translational motion. Therefore, the string loops
accelerated in the field of magnetized Schwarzschild black
holes could serve as an acceptable model of ultrarelativistic
jets observed in active galactic nuclei. The black hole fast
rotation is thus not necessary in the framework of the string
loop acceleration model.
One of the most important consequences of our current

paper, considered from the point of view of astrophysics
and observable phenomena, is that the magnetic field
substantially increases the efficiency of the acceleration
mechanism of the string loop. The ultrarelativistic accel-
eration necessary in modeling the jets observed in micro-
quasars and active galactic nuclei is shown to be possible
even for nonrotating black holes in the string loop model.
This is a clear opposite to the model of ultrarelativistic jets
based on the Blandford-Znajek process that requires fast
rotating black holes. Therefore, this difference can poten-
tially give clear signature of relevance of string loop
models.

ACKNOWLEDGMENTS

The authors would like to express their acknowledge-
ments for the Institutional support of the Faculty of
Philosophy and Science of the Silesian University at
Opava, the internal student grant of the Silesian
University SGS/23/2013 and the EU grant Synergy
CZ.1.07/2.3.00/20.0071. Z. S. and M. K. acknowledge the
Albert Einstein Centre for Gravitation and Astrophysics
under the Czech Science Foundation Grant No. 14-30786G.
Warm hospitality that has facilitated this work to B. A. by
Faculty of Philosophy and Science, Silesian University in
Opava (Czech Republic) and to A. T. and B. A. by the
Goethe University, Frankfurt am Main, Germany is thank-
fully acknowledged. The research of B. A. is supported in
part by Projects No. F2-FA-F113, No. EF2-FA-0-12477,
and No. F2-FA-F029 of the UzAS and by the ICTP through
the OEA-PRJ-29 and the OEA-NET-76 projects and by the
Volkswagen Stiftung (Grant No. 86 866).

APPENDIX A: ESTIMATION OF MAGNETIC
FIELD INTENSITY IN THE VICINITY OF

BLACK HOLES

Throughout the present paper we assume that the
external electromagnetic field is weak in the sense that it

is test one and does not effect the background black hole
geometry (18).
The rough estimation indicates that the local spacetime

curvature produced by the energy of the magnetic field of
intensity B is of the order of GB2=c4, whereas the
spacetime curvature is of the order of 1=M2 near the event
horizon of a black hole with the total mass M. The critical
value BM of the magnetic field which starts to contribute to
the spacetime curvature at the reasonable level can be found
from the simple estimation [23]:

GB2
M

c4
∼

c4

G2M2
: ðA1Þ

In other words, the local curvature of the spacetime
generated by the magnetic field B is of the same order or
larger than the gravitational curvature of the black hole
spacetime when [23]

B > BM ≈
c4

G3=2M⊙

�
M⊙
M

�
≈ 1019

M⊙
M

G: ðA2Þ

Consequently for the test magnetic field B ≪ BM when
its influence on the spacetime curvature is totally negli-
gible. According to the estimations made in [25,57], the
maximal strength of the magnetic field in the vicinity of the
event horizon of astrophysically realistic stellar mass black
holes or supermassive black holes in the active galactic
nuclei can be approximated as

B ≈ 108 G; for M ≈ 10M⊙; ðA3Þ

B ≈ 104 G; for M ≈ 109M⊙: ðA4Þ

The main condition B ≪ BM is well satisfied for stellar
mass and supermassive black holes both and the magnetic
field practically cannot affect motion of neutral particles.
The self-magnetic field related to the current-carrying

string loop has been estimated in our preceding paper [37],
where we have demonstrated that the self-magnetic field of
the string loop is much smaller than the external magnetic
field, and its influence on the string loop motion can be
abandoned.

APPENDIX B: DIMENSIONAL ANALYSIS AND
ESTIMATES OF STRING LOOP PARAMETERS

In the geometrized units the gravitational constant G and
the speed of light c are taken to be dimensionless units. Their
values in the Gaussian units or so-called CGS units are

G ¼ 6.67 × 10−8 cm3 g−1 s−2; c ¼ 3 × 1010 cm s−1:

ðB1Þ

Along with G and c, other world constants are also set to
unity in some unit systems, e.g., Coulomb or electrostatic
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constant ke ¼ 1=ð4πε0Þ ¼ 1. The conversions of the fun-
damental quantities characterizing the string loop motion
from the geometrized units to the Gaussian units are shown
in the Table IV. The table allows one to perform trans-
formation from the geometrized units to the CGS units, and
vice versa, for any dynamical quantity describing the string
loop dynamics.
The string loop model enables one to apply and compare

the derived solutions for different physical mechanisms to
obtain the estimates of the parameters characterizing the
string loop dynamics. In order to make the estimate of the
tension μ strength, one can use, e.g., the similarity between
the role of the parameter μ and the Lorentz force acting on a
charged particle in the action governing the string loop
dynamics. By comparison of the forces, one can obtain the
tension for the string loop which is generated by charged
particles orbiting in the vicinity of the black hole. In other
words, for such a comparison the tension of the string loop
is considered as an analogue of the Lorentz force acting on
the string loop. Using Eqs. (27), (33) and (A3), this
estimate gives in the Gaussian units the tension in order

μðLÞ ¼ 7.2 × 108 dyn: ðB2Þ

For the tension taken as (B2), one can find the values of the
current and charge densities related to a stable electric
current-carrying string loop. According to our previous
papers [10,11,37], the stable configuration of the string
loop implies the values of the dimensionless quantity cJ2=μ
in the order

cJ2

μ
∼ 10; ðB3Þ

i.e., we obtain for the parameter J2 ∼ 0.24 g s−1. For the
electric current-carrying string loop, i.e., when the param-
eters jσ and jτ are expressed in units given by Table IV, one
has to set in the definition of the action (4) the parameter

k ¼ 1=c3 and rewrite the definition of the current parameter
J including the constant c as

J2 ¼ k
2
ðj2σ þ c2j2τÞ: ðB4Þ

In a particular case given by the relation j2σ ¼ c2j2τ ,
i.e., when ω ¼ �1, one gets the following estimated
values for the charge density and the current of the
string loop:

jτðLÞ ≈ 8.5 × 104 statC · cm−1;

jσðLÞ ≈ 2.5 × 1015 statA:
ðB5Þ

Note, that the estimates given in (B2) and (B5) are
obtained on the assumption that the current carriers by
the string loop are the elementary particles like electrons
or protons, i.e., the string loop is generated by individ-
ual charged particles. We call it a “Lorentz” case, and it
can be considered as the lower limit of our string loop
model, giving minimal estimates of the values of the
fundamental parameters, i.e., the tension, the current,
and the charge density, characterizing the stable, electric
current-carrying string loop.
On the other hand, we can find estimates of the

fundamental string loop parameter values related to the
so-called cosmic strings, giving the upper limit of
the application of the string loop model. The cosmic strings
are theoretical constructions describing topological defects
occurring in the very early universe with ultralarge mass
densities due to the spontaneous symmetry breaking of
fundamental physical interactions [44]. The recent sum-
mary of the study of the cosmic strings [58] demonstrates
that the Nambu-Goto type cosmic strings have an upper
limit given by the following dimensionless quantity
Gμ=c4 < 2.6 × 10−7, which implies an upper limit for
the tension given by

μðCSÞ < 3.15 × 1042 dyn: ðB6Þ

TABLE IV. Units and dimensions of the physical quantities of the string loop in Gaussian (CGS) and geometrized
system of units.

Quantity Symbol Gaussian Geometrized Conv.

Length r 1 cm 1 cm 1
σ coordinate σ 1 cm 1 cm 1
τ coordinate ½τ� ¼ ½ct� 1 cm 1 cm 1
Time t 1 s 2.99 × 1010 cm c
Mass m 1 g 7.42 × 10−29 cm G=c2

Energy E 1 erg 8.26 × 10−50 cm G=c4

Tension μ 1 dyn 8.26 × 10−50 G=c4

Neutral current kφ2
ja 1 g · s−1 2.48 × 10−39 G=c3

Electric current jσ 1 statA 9.59 × 10−36
ffiffiffiffi
G

p
=c3

Charge q 1 statC 2.87 × 10−25 cm
ffiffiffiffi
G

p
=c2

Charge density jτ 1 statC · cm−1 2.87 × 10−25
ffiffiffiffi
G

p
=c2

Magnetic field B 1 Gs 8.16 × 10−15 cm−1 ffiffiffiffi
G

p
=c
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Applying again the relation (B3) for the tension, we can
find the upper limits for the charge density and the current
carried on the cosmic strings as

jτðCSÞ < 5.6 × 1021 statC · cm−1;
jσðCSÞ < 1.7 × 1032 statA: ðB7Þ

Therefore, we can conclude that the minimal range of
applicability of the string loop model for the stable string
loop is approximately determined as

μðLÞ ≤ μ < μðCSÞ; ðB8Þ
jτðLÞ ≤ jτ < jτðCSÞ; jσðLÞ < jσ ≤ jσðCSÞ: ðB9Þ
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