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This paper explores a novel tractable regime for ultraviolet-complete quantum field theories—the large
Nc limit of non-Abelian gauge theories with quarks in high-dimensional representations (scaling with Nc

faster than N2
c), such as quarks with “a” fundamental indices with a ≥ 3. A smooth and nontrivial Nc limit

can be obtained if g2Na−1
c is held fixed instead of the standard ’t Hooft coupling g2Nc as Nc → ∞ where

g is the gauge coupling. SUðNcÞ gauge theories in 3þ 1 dimensions are not asymptotically free at large
Nc when they contain quarks in representations for which the dimensions scale faster than N2

c and hence
are not ultraviolet complete. However, in lower space-time dimensions (2þ 1, 1þ 1), for any Nc,
renormalization group flow for such theories always has a stable ultraviolet fixed point at g ¼ 0; the theory
is thus ultraviolet complete. For the case of massless quarks, the theory has an infrared fixed point. For

massive quarks, the theory is confining. The confining scale is parametrically of the orderN
2−a
4−d
c and is driven

to zero at large Nc for theories with a > 2 and d < 4 where d is the space-time dimension.

DOI: 10.1103/PhysRevD.90.085008 PACS numbers: 12.38.-t, 11.10.Kk

I. INTRODUCTION

It is challenging to understand strongly coupled non-
Abelian gauge theories, since a perturbative expansion in
the coupling constant is not suitable. This has led research-
ers to investigate different limits of gauge theories to gain
insights. One such limit, the large Nc limit, was proposed
by ’t Hooft in 1973 [1]. In this limit, the number of colors
Nc, was taken to infinity, g → 0, while keeping g2Nc fixed,
where g was the coupling constant. The theory remains
strongly coupled since the relevant coupling is not g2

but g2Nc.
In ’t Hooft’s original analysis, the quarks were in the

fundamental representation of SUðNcÞ, and the number of
flavors was kept constant. This limit has interesting
consequences, one of which is the suppression of quark
loops; thus, the gluodynamics, at leading order, is
decoupled from the quark dynamics. On the other hand,
it was recognized quite early that the large Nc limit of
SUðNcÞ gauge symmetry is not unique; even if the gauge is
fixed, one can include fermions in a variety of ways
yielding physically distinct large Nc limits. For example,
G. Veneziano suggested another interesting limit [2] where
Nf → ∞ and Nc → ∞, keeping Nc=Nf ¼ x and g2Nc
fixed. Another distinct large Nc limit with quarks in the
two-index antisymmetric representation was also suggested
by ’t Hooft [1] and was further explored by Corrigan and
Ramond [3]. This limit has generated considerable interest
of late [4–7]. The two-index antisymmetric representation

[QCD(AS)] labels each quark by two fundamental color
labels with qab ¼ −qba. The large Nc limit of this theory
differs significantly from the standard ’t Hooft large Nc
limit with quarks in the fundamental [QCD(F)] since in
QCD(AS) quark loops are not suppressed compared to the
gluon loops. The phenomenology of this limit was explored
by Kiritsis and Papavassiliou [8], and baryons in this limit
were considered in detail in Refs. [9–12].
Note that if one’s interest is in the formal structure of

gauge theories as opposed to direct application to the
phenomenology of QCD, there are other representations for
quarks which may be of interest. One obvious one is the
adjoint representation, QCD(Adj) in which quarks trans-
form in the same way as do gluons. QCD(Adj) has quarks
in what is effectively a two-index representation with one
index transforming like a fundamental color and the other
as an antifundamental. Another representation of interest is
the two-index symmetric QCD(S) in which each quark is
labeled by two fundamental color labels with qab ¼ qba.
The two-index theories in the large Nc limit have some

very interesting formal properties. Of particular importance
is the emergence of equivalences between the theories at
largeNc. That is QCD(AS), QCD(S), andQCD(Adj) share a
“common sector” of operators for which all observables in
the sector are identical for the three theories up to correc-
tions which vanish as Nc → ∞ [13,14]. As stressed by
Ref. [13], this is particularly important for the case where
there is only one flavor of quark and it is massless. In this
case, QCD(Adj) is simply super Yang-Mills (SYM). Thus,
certain exact results which can be obtained due to the strong
symmetry constraints in SYM are also valid at large Nc for
the nonsupersymmetric theories of QCD(AS) and QCD(S).
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Since large Nc theories with two-index representations
are so interesting, it seems natural to consider theories
with quarks in representations with three or more indices.
To date, such theories have not been systematically studied
at large Nc. One obvious reason for this is that in 3þ 1
space-time dimensions such theories are sick. They lack
asymptotic freedom and are thus believed to not be ultra-
violet complete. Thus, by themselves, they are not well
defined as theories. However, this does not mean that all
theories of this sort lack meaning. One can consider these
theories in lower space-time dimensions (either 2þ 1 or
1þ 1) where the theories are expected to be UV complete
and therefore perfectlywell defined.QCDhas been explored
in lower space-time dimensions in the past [15–20].
In this paper we investigate the large Nc behavior of

theories with quarks in higher-dimensional representations.
Higher dimensional in this context means that the dimen-
sion of the representation, R, scales with Nc at large Nc as

R ∼ Na
c with a ≥ 3: ð1Þ

One class of such representations is the one with its Young
tableau composed of a boxes, with a independent of Nc
and greater than or equal to 3. These are representations
that can be constructed by combining a fundamental colors.
More generally, we consider representations associated

with a Young tableau consisting of n columns each with a
length of ai (where i runs from 1 to n) and m columns each
with a length of Nc − bj (where j runs from 1 to m). Such
representations scale at large Nc as Na

c , with

a ¼
Xn
i¼1

ai þ
Xm
j¼1

bj: ð2Þ

One can construct such representations by combining
P

iai
fundamental indices with

P
m
j¼1 bj antifundamental ones in

such a way that no pair of fundamental and antifundamental
colors reduces to a singlet.
Clearly such theories do not describe the underlying

dynamics of nature. Indeed, in a mathematical sense, such
theories presumably do not exist except in 2þ 1 space-time
dimensions or fewer. However, it remains of interest to
study these theories because they may help give insight into
some of the major issues of gauge theory, including perhaps
the nature of confinement. Much of the analysis in this
paper will be general. However, at times it will be useful to
illustrate things using a specific example. In these cases, we
will focus on the three-index antisymmetric representation.
In doing the analysis, it is important to be very clear

about precisely what is being held fixed as Nc → ∞.
Following standard analysis, we study correlation functions
in which the external momenta (and quark masses) are held
fixed asNc → ∞. The scaling of the coupling constant with
Nc turns out to be nontrivial. In the next section, we discuss
the scaling of the coupling constant withNc. The β function

will be discussed in the following section. The key issue
there is assuring the existence of an asymptotically free
regime. It turns out the theory is conformal in the IR rather
than confining if the theory has massless quarks but is
confining if the quarks are massive. Following this is a
section on correlation functions for local color-singlet
sources. Both quark bilinear sources and gluonic sources
are considered. The role of confinement is discussed in the
next section. A central issue is that at large Nc for the case
of massive quarks the scale of confinement is parametri-
cally suppressed in powers of 1=Nc relative to the quark
mass and the dynamical scale associated with asymptotic
freedom. Finally, we discuss the results and conclude. In
the discussion, we note that the behavior of these theories is
qualitatively similar to theories with fixed Nc and many
flavors of quarks in any representation, including the
fundamental.

II. SCALING OF THE COUPLING CONSTANT

In the standard large Nc limit of ’t Hooft with quarks in
the fundamental representation, the number of colors goes
to infinity while the coupling constant, g, goes to zero with
g2Nc held fixed [1].
The simplest way to motivate this is via the study of the

gluon propagator. If one wishes the gluon propagator to
have a smooth and nontrivial large Nc limit, then the gluon
polarization tensor must be held fixed as Nc → ∞. To
proceed further, look at the simplest contribution to the
gluon polarization—namely, one-loop diagrams. As seen in
Fig. 1, there are four possible types of one-loop diagrams: a
quark loop (a), two types of gluon loops (b) and (c), and a
ghost loop (d). Using standard counting rules, it is easy to
see that in the conventional ‘t Hooft large Nc limit with
quarks in the fundamental the single quark-loop contribu-
tion to the polarization from diagram a is proportional to g2

FIG. 1. Diagrams contributing to gluon polarization at one
loop. Curly lines stand for gluons, dashed lines for ghost fields,
and solid lines for quarks.
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while the contributions from the gluon and the ghost loops
in (b), (c), and (d) are proportional to g2Nc. Assuming that
the contributions of order g2Nc do not cancel out, one
concludes that the quantity g2Nc must remain finite as Nc
goes to infinity. Of course, the statement that g2Nc must
remain finite is not the same as it remains fixed—it could,
in principle, go to zero as Nc goes to infinity. However, it is
straightforward to show [21] that keeping g2Nc fixed leads
to a nontrivial and self-consistent theory. Note that the
result that quark loops are suppressed compared to gluon
loops seen in the gluon propagator turns out to be general.
Now, let us consider what happens in a theory in which

quarks are in a higher representation, with a dimension
scaling as Na

c . Again, let us motivate the scaling rules by
looking at one-loop contributions to the gluon propagator
as seen in Fig. 1. The gluon and ghost loops contribution
from diagrams (b), (c), and (d) to the gluon polarization
scale as g2Nc as before. However, the quark loop of
diagram (a) yields a contribution to the polarization which
scales as g2Na−1

c . For a > 2, the quark loop scales more
rapidly than the gluon loop. Thus, to keep the gluon
polarization finite, one should take the scaling to be

Nc → ∞

g → 0

g2Na−1
c fixed for a > 2

g2Nc fixed for a ≤ 2: ð3Þ

Note that the scalings are very different for a > 2 and
a < 2. As will be shown below, this reflects qualitatively
different physics in the two regimes. In the a < 2 regime,
the dynamics is dominated by gluons, and the effects of
quarks are suppressed. However, for a > 2 the dynamics is
dominated by quarks, and gluons play a subsidiary role. For
the case of a ¼ 2, quarks and gluons both contribute at
leading order.
It is straightforward to show that this scaling is self-

consistent for the case of a > 2. First, note that since the
gluon polarization has been constructed to scale as N0

c at
leading order in the 1=Nc expansion, in considering the full
class of leading-order diagrams, it is efficient to sum
polarization insertions to all orders leading to a renormal-
ized propagator as in Fig. 2. This is efficient since, in
considering all diagrams which contribute at leading order,
one can now use this resummed propagator everywhere and
exclude explicit quark loop contributions to the polarization

everywhere. This allows one to treat infinite classes of
leading diagrams at once.
Next, consider a leading-order diagram, and ask what

happens to the Nc counting if one adds an extra resummed
gluon line in it. As in the standard case of QCD with quarks
in the fundamental, the addition of a gluon will contribute
an additional two factors of g and at most a combinatoric
factor of Nc (if the gluon is planar). Thus, the addition of an
extra internal gluon line to a diagram will contribute a
factor scaling as g2Nc or less. However, for the case of
higher representations, Eq. (3) implies that the combination
g2Na−1

c is held fixed as Nc → ∞ for a > 2. Rewriting g2Nc

as ðg2Na−1
c ÞN2−a

c , one sees that the addition of an extra
resummed gluon line to a diagram characteristically
reduces the scaling of the diagram by a factor which scales
as N2−a

c . Similarly, removing a resummed gluon line from a
diagram increases the scaling of the diagram by a factor
which scales at least as N2−a

c .
The upshot of this scaling is that for quarks in higher

representations (a > 2) the maximum Nc scaling of any
class of diagrams necessarily consists of diagrams with the
smallest number of resummed gluon lines consistent with
the type of diagram under study. Thus, for example, the
leading vacuum amplitude (i.e., a zero point function) of
quark bilinear sources will be from a single-quark loop and
will scale as Na

c . Similarly, the leading contribution to
correlation functions of any number of quark bilinear
sources will consist of a single-quark loop embellished
by the sources and will scale as Na

c . On the other hand, the
leading-order correlation functions for sources which
couple to glue such as TrðFμνFμνÞ will consist of a single
loop of the resummed gluon embellished by the sources
and will scale as N2

c.
At first sight, the scaling rules may appear to be trivial.

The leading-order contribution to correlators of the quark
bilinear sources is simply a single-quark loop, as one would
have in a weak coupling. However, the theory differs
markedly from the case of a pure weak coupling theory.
Note that the leading corrections involve the resummed
gluon propagator and as such contain the coupling constant
to all orders. Similarly, the leading-order correlation func-
tions for color-singlet sources coupling to gluons again
involve the resummed gluon propagator and as such
contain the coupling constant to all orders.

III. RENORMALIZATION GROUP FLOW

As noted in the Introduction, large Nc gauge theories
with quarks in higher representation are not asymptotically

=

= ++ +   ....

+

FIG. 2. The bold gluon propagator indicates the resummed one in which the polarization is resummed to all orders.
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free in 3þ 1 space-time dimensions. Accordingly, we
consider theories in fewer space-time dimensions, either
2þ 1 or 1þ 1. The gauge coupling g, while dimensionless
in theories in 3þ 1 space-time dimensions, is dimensionful
in lower dimensions: in d space-time dimensions the
coupling constant has a dimension of 4−d

2
. It is useful to

define a dimensionless coupling ~g, which we do by
introducing an arbitrary renormalization scale μ:

g ¼ ~gμ
4−d
2 : ð4Þ

The β function is defined as βð~gÞ ¼ ∂ ~g
∂ logðμÞ. It has two

contributions: one coming from the explicit dependence of
μ in the naive scaling dimension of the coupling and the
other coming from quantum loops. For simplicity, we first
consider the case in which all quarks are massless. Thus,
the β function is given by

βð~gÞ ¼ ~g
d − 4

2
þ ~βð~gÞ

where

~βð~gÞ ¼ ~gðb1 ~g2 þ b2 ~g4 þ b3 ~g3 þ � � �Þ

¼ ~g

�
b1

Na−1
c

ð~g2Na−1
c Þ þ b2

ðNa−1
c Þ2 ð~g

2Na−1
c Þ2

þ b3
ðNa−1

c Þ3 ð~g
2Na−1

c Þ3 þ � � �
�
: ð5Þ

The form for ~β follows from a loop expansion with the
coefficient bi associated with i loops. The second form for
~βð~gÞ is introduced to emphasize the scaling behavior of
Eq. (3) for the case of quarks in higher representations.
Note that the loop contributions in the β function can

involve either quarks or gluons and ghosts. For higher
representations, quark loops yield a contribution propor-
tional Na−1

c while gluon or ghost loops yield contributions
proportional to Nc. The factors of bi=ðNa−1

c Þi, thus, will go
to zero as Nc → ∞ except for contributions in which all of
the loops are quark loops. However, the structure of the
quantum loops which yield the renormalization group
equation implies that the only contribution in which all
loops are quark loops is at one loop. This is because
additional loops will invariably require one or more gluon
or ghost lines, each of which will contribute a factor of
N2−a

c to the diagram. This means that the diagrams are
parametrically small. This is illustrated in Fig. 3. Thus, at
large Nc, the renormalization group equation assumes the
form

βð~gÞ ¼ ~g

�
d − 4

2
þ cd
ða − 1Þ!NFð~g2Na−1

c Þ
�
; ð6Þ

where cd is a numerical constant which depends on the
dimensions of space-time cd ¼ 1

32
in 2þ 1 dimensions and

is 1
2π in 1þ 1 dimensions. NF is the number of (massless)

flavors. It is straightforward to solve the differential
equation for the large Nc coupling as a function of μ,

g2ðμÞ Na−1
c

ða − 1Þ! ¼ Λ4−d
�
4 − d
2cdNF

�
1

1þ ðΛμÞ4−d
; ð7Þ

where Λ, the natural scale of the theory, is fixed from the
initial condition of the differential equation. As expected,

g2Na−1
c or g2 Na−1

c
ða−1Þ! stays fixed at large Nc, and the theory

encodes asymptotic freedom—while gðμÞ asymptotes to a
fixed value at large μ, the dimensionless coupling ~gðμÞ goes
to zero. In the infrared, g2ðμÞ Na−1

c
ða−1Þ! asymptotes to 4−d

2cdNF
μ4−d.

For dimensionless coupling ~g, this corresponds to asymp-

totic behavior in the infrared corresponding to ~gðμÞ2 Na−1
c

ða−1Þ!
going to 4−d

2cdNF
. This is easy to understand: from Eq. (6), it

can be seen that the beta function vanishes for

~g2 Na−1
c

ða−1Þ! ¼ 4−d
2cdNF

. Thus, the theory approaches a fixed point

in the infrared; it becomes conformally invariant. Unlike
pure Yang-Mills, the theory has no mass gap. Note of
course that as written Eq. (7) is valid only for the case of
massless quarks, since in the massless case the one-quark
loop contribution to the β function depends on μ only
implicitly through g. Moreover, for massless quarks, the
result is exact at large Nc. However, when nonzero quark
masses are taken into account, the running of the coupling
depends on the ratio of μ to mq. Note that Eq. (7) remains
valid for μ ≫ mq since in that case the quark mass is
irrelevant and the behavior is that of the massless case. For
the purposes of verifying asymptotic freedom, this is
sufficient. On the other hand, for μ ≪ mq the quarks are
frozen out. Since the quark loop is the only source of
running at large Nc, one expects that ~g, the dimensionless
coupling, follows Eq. (7) at large μ, but it slows down as μ
approaches the regime of mq and stops asymptotically as μ
gets much smaller than mq. If there are multiple flavors of
quarks with different masses, then one expects the form of

FIG. 3. A one-loop diagram with quarks running in the loop as
compared to a two-loop diagram with an additional gluon line
which brings in an extra factor of N2−a

c . The blobs represent
meson sources.
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Eq. (7) to hold for μ well away from any of the quark
masses with Nf equal to the number of active quarks
(quarks with masses well below μ). The values of Λ used in
Eq. (7) will differ in the various regions; they will be fixed
by the property that the coupling constant as a function
of μ needs to smoothly connect from below the threshold
in which a quark is inactive to the one above it.

IV. CORRELATION FUNCTIONS

Correlation functions in these theories are of interest. By
“glueball-glueball” correlation function, we mean the
correlator for the purely gluonic local color singlet sourceP

aF
a
μνFa μν where a represents color. Similarly the

“meson-meson” correlation functions are the correlators
for quark bilinear sources. As it happens, the glueball-
glueball and the meson-meson correlation functions are
both exactly calculable in the large Nc limit. This is
because, as was shown in the previous section, the addition
of an extra resummed gluon line to a diagram character-
istically reduces the scaling of the diagram by a factor

which scales as N2−a
c . Thus, the leading diagrams are those

with the fewest number of resummed gluon lines.
In the case of the meson-meson correlation function, the

one-loop diagram is of the order Na
c, and any higher loop

diagram is suppressed by powers of N2−a
c . For concreteness

we illustrate the general issues associated with meson
correlators in the case of scalar sources for one flavor of
massless quarks in the three-index antisymmetric repre-
sentation for QCD in 2þ 1 space-time dimensions. A
quark in this theory is of the form qijk where i; j; k run from
1 to Nc and where qijk ¼ −qjik ¼ −qkji. The scalar meson
correlation function in general is given by

Πmesonðk2Þ ¼
Z

hT½q̄ijkqijkðxÞq̄lmnqlmnð0Þ�ieikxd3x; ð8Þ

where T indicates time-ordered product and the color
indices i; j; k; l; m; n are summed. At leading order in
Nc, we have

ΠLO
mesonðk2Þ ¼

N3
c

3!

Z
d3q
ð2πÞ3 Trace

��
iðγμqμ þmqÞ

q2 −m2
q

��
iðγμkμ þ γμqμ þmqÞ

ðqþ kÞ2 −m2
q

��

¼ −iN3
c

6π

Z
1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

q − k2xð1 − xÞ
q

dxþ const ¼ −iN3
c

6π

�
mq

2
−
ðk2 − 4m2

qÞcoth−1ð2mqffiffiffiffi
k2

p Þ
4
ffiffiffiffiffi
k2

p
�
þ const; ð9Þ

where the constant arises due to the need to renormalize the
(divergent) composite operator.
The general structure of Eq. (9) holds for scalar meson

correlators for theories in 2þ 1 space-time dimensions
with quarks in any higher representation and with any
number of degenerate flavors. The only modification is a
different overall factor. A few simple comments about this
structure are in order. The first is that, after neglecting the
additive constant, −iΠLO

mesonðk2Þ is purely real for k2 < 4m2
q.

It develops an imaginary part at k2 ¼ 4m2
q, which

corresponds to the threshold for unconfined q̄-q pair
production. This may be a bit of a surprise: while the
massless theory is conformal in the IR, the theory with
massive quarks is confining. However, as will be discussed
in Sec. V, the scale of confinement is parametrically
suppressed in Nc, and thus the correlator is accurately
described by the expression for unconfined quarks except
right in the immediate vicinity of the would-be threshold.
The massless limit of the correlator is of interest:

ΠLO
mesonðk2Þ → −i4N3

c
3π

ffiffiffiffiffiffiffiffi
−k2

p
þ const.

The glueball correlation functions at leading order are
also straightforward. One simply calculates the one-loop
correlation function using the dressed (i.e., resummed)
gluon propagator from Fig. 2. The leading-order diagrams
go as N2

c. Corrections associated with diagrams with

additional gluon lines are suppressed by powers of N2−a
c .

The first step is to compute the dressed gluon propagator.
It is worth noting that the dressed propagator involves
renormalization and must be specified at a scale. To keep
the calculation consistent with that of the β function, it is
natural to set the scale for the dressed propagator to be the
same as the scale of the couplings used in the bubble sum.
The result is particularly simple in the massless case,

DRab
μν ðq2; μÞ

¼ gμνδab

ðq2 þ iϵÞð1þ 2cdNf ~gðμÞ2 Na−1
c

ða−1Þ!
�
i μffiffiffiffi

q2
p − 1

��

¼ gμνδab

ðq2 þ iϵÞ
 
1þ

i μffiffiffi
q2

p −1

μ
λþ1

! ; ð10Þ

where R in the superscript stands for resummed and a; b are
color indices. The expression for the resummed propagator
for the case of massive quarks is significantly more
complicated, but it, too. can be expressed in closed form.
This dressed propagator can directly be used to obtain

the glueball-glueball correlator, i.e., the correlator betweenP
aF

a
μνFa μν and

P
bF

b
ρσFb ρσ operators. There does not
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appear to be any closed-form expression for this correlator,
even in the massless case. However, it can be evaluated
numerically in a straightforward way.

V. CONFINEMENT

The theory with massive quarks—unlike the case of
massless ones—is confining. The reason is simple: the
infrared physics is dominated by gluons at scales well
below the quark mass since the quarks are frozen out and
the gluodynamics is confining, not conformal. However,
this gives rise to an apparent puzzle: if the theory is
confining, then Eq. (9) may seem problematic. After all,
this expression is nothing but the correlation function for
noninteracting quarks. How can a confining theory yield
the correlator for unconfined quarks ?
Actually, there is a very natural way for this to occur. To

understand this, it is useful to recall what happens to
correlators of quark bilinears with 4-momenta that are large
compared to ΛQCD in ordinary QCD in 3þ 1 dimensions.
As is well known, such correlators are accurately described
by free-field correlation functions and become increasingly
well described this way as the 4-momentum increases.
Now, this is usually understood as resulting from asymp-
totic freedom—the theory becomes increasingly weakly
coupled, and for the purposes of describing the correlator
the quarks act, to good approximation, as though they are
free and unconfined. This understanding is correct so far as
it goes.
However, there is an alternative way to think about the

behavior of the large q2 correlator in QCD which sheds
light upon the present problem. From general principles
[22], the correlator can be written in Kallen–Lehman
representation,

πðq2Þ ¼
Z

ds
ρðsÞ

q2 − sþ iϵ
; ð11Þ

where ρðsÞ is the square of the amplitude for the quark
bilinear source to create a physical state with mass of

ffiffiffi
s

p
.

For the large q2 correlators to be accurately described by
the free quark-antiquark result, ρðsÞmust also be accurately
described by the free theory result at large s. But ρðsÞ
describes the amplitude for creating physical states, and the
physical states are made of hadrons, with quarks confined
in them. Somehow the spectral density, although actually
composed of contributions from physical multihadron
states, manages to simulate the behavior of a free quark-
antiquark pair for sufficiently large s. A necessary con-
dition on the regime where this happens is that s should be
much larger than the confinement scale for the theory—i.e.,
the scale that controls the detailed dynamics of the confined
hadronic state. The reason for this is simply that in the
regime of interest the spectral function is a smooth function
reflecting the phase space for the would-be free quark-
antiquark pair. Thus, the spectral function cannot be

sensitive to the details of the individual confined hadrons
which actually compose the state. This will happen only if
there is enough phase space available that the system
averages over all of the detailed physics of the individual
hadrons at the confinement scale.
Of course, in ordinary QCD in 3þ 1 dimensions, these

two perspectives on the correlator at large q2 are comple-
mentary. They are different ways to think about the
problem and deal with different aspects. However, the
two perspectives are completely consistent with each other:
in QCD, there is essentially only one scale—ΛQCD—and it
sets both the scale at which asymptotic freedom sets in and
the scale where confinement begins. Thus, when q2 ≫
ΛQCD one expects that asymptotic freedom forces the
correlator to look like the free-field one, and in the same
regime, one expects the spectral function to be insensitive
to the confinement dynamics enabling the spectral function
to do so.
The question of interest here is the behavior of large Nc

QCD with quarks in higher representations and lower
spatial dimensions. For these models, the behavior is a
bit more subtle. The key thing, which we will show below,
is that, unlike for the case of ordinary QCD, the scale which
controls the asymptotic behavior of the coupling is para-
metrically well separated from the confinement scale. In
particular, the ratio of the confinement scale, Λconf , to Λ
scales as

Λconf

Λ
∼ N

2−a
4−d
c : ð12Þ

Thus, for example a three-index representation in 2þ 1
space-time dimensions, Λconf=Λ, scales as 1=Nc. Since the
analysis done in Sec. III was in the limit of Nc going to
infinity with masses, external momenta, and Λ held fixed,
the regime studied implicitly had q ≫ Λconf . Given this
scaling, it is perfectly understandable why the dynamics of
confinement do not play a role in the meson-meson
correlator: one is simply working at a scale well above
the confinement scale even though it is not well above Λ.
It is easy to derive the scaling in Eq. (12). Let us return to

the analysis of Sec. II and for simplicity assume nonzero
quark masses with either a single flavor of quarks or
degenerate flavors so that there is only one quark mass in
the problem. It was argued in Sec. II that Eq. (7) holds for
q ≫ mq. It was stated that the running of the dimensionless
coupling slows down as q becomes comparable to mq and
stops asymptotically as q gets much smaller thanmq. This is
correct as far as it goes. However, this analysis holds only for
q of order N0

c when the leading-order dynamics dominates.
For sufficiently small q, one cannot neglect the subleading
effect in 1=Nc associated with gluon exchange, and running
begins again.Wewill see that “sufficiently small”means a q

which is parametrically of the orderN
2−a
4−d
c (and thus is pushed

to zero in the limit of large Nc).
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Let us consider the value of the coupling at renormal-
ization scale μ, gðμÞ in a regime in which μ is both much
smaller than mq but also of order N0

c. If such a regime is
approached from above, Eq. (7) is accurate for μ ≫ mq.
The running slows down and stops as μ approaches and
then drops well below mq. A very crude estimate of the
value of g in the regime under consideration would be to
assume that Eq. (7) holds for μ > mq and then running
stops immediately when μ hits mq. The actual value will
differ from this crude estimate due to the running in the
regime μ ∼mq. It is clear that such running can lead to a
correction to the crude estimate by a factor of order N0

c
since the running shuts off over a region of order N0

c. Thus,
the coupling in the regime of interest is given by

g2 ¼ fða − 1Þ!N1−a
c Λ4−d

�
4 − d
2cNF

�
1

1þ ð Λ
mq
Þ4−d ; ð13Þ

where f is the correction factor which accounts for running
with μ ∼mq; f can be explicitly computed, but its precise
value is not of concern here.
Now let us consider what happens if we approach from

below the regime in which μ is both much smaller than mq
but also of order N0

c. Let us begin running with arbitrarily
small μ so that μ is not of the order N0

c and ask what
happens as it grows toward N0

c. In this case, the role of the
quark in the renormalization group flow can be neglected,
but the role of the gluons cannot. Thus, the theory runs the
same way as a pure Yang–Mills theory does. In a pure
Yang–Mills theory, the leading-order contributions in 1=Nc
are planar and always have the coupling in the combination
g2Nc. Thus, the form of the scaling at leading order is

g2ðμÞ ¼ N−1
c Λ4−d

confh

�
μ

Λconf

�
; ð14Þ

where Λconf is the confinement scale associated with the
Yang–Mills theory and h is a function characterizing the
scaling. Note that the lower-dimensional Yang–Mills
theory is asymptotically free in the sense that g2=μ4−d

goes down with increasing μ. It is easy to show from the
renormalization group equation that the dimensionless
coupling asymptotes to a constant. Thus, the function h
has the property that the limit of hðxÞ as x goes to infinity is
a finite, nonzero value which we denote h∞. Thus, as one
approaches the regime of interest from below, the running
stops, and one obtains

g2 ¼ N−1
c Λ4−d

confh∞: ð15Þ

Equating Eqs. (13) and (15) yields Eq. (12).

VI. DISCUSSION

The large Nc gauge theories discussed in this paper are
very different from the typical large Nc gauge theories. In
the regime where external momenta and quark masses are
taken to be of order N0

c, the dynamics is dominated by the
quark loops, and the confining dynamics associated with
gluodynamics is irrelevant. This means that the large Nc, β
function is exactly calculable; it is given by Eq. (6) for the
case of massless quarks. In the massless quark case, the
theory becomes conformal in the infrared. In the case of
nonzero quark masses, the theory is confining. However,
the confining scale is parametrically well separated from
the scale Λ which parametrizes the scaling of the coupling
in the ultraviolet by an amount given by Eq. (12).
Correlation functions for color-singlet quark bilinear and
gluon bilinear sources are easily computed in this limit.
It is worth noting that the behavior seen in this version of

the large Nc limit is qualitatively similar to gauge theories
in other regimes in which the quark loops dominate. Thus,
for example, they will behave quite similarly to gauge
theories with fixed Nc and many degenerate flavors of
quark in any representation including the fundamental. As
in the case of large Nc with quarks in the higher repre-
sentations, such theories are not asymptotically free in
3þ 1 dimensions as the quark loops dominate the beta
function. To have a smooth Nf limit that keeps the gluon
polarization finite, we need to hold g2Nf fixed as Nf → ∞.
Once again if we go to lower space-time dimensions, in the
absence of quark mass, the beta function looks like

βð~gÞ ¼ ~g

�
d − 4

2
þ ~cð~g2NfÞ

�
; ð16Þ

where the constant ~c depends on dimensions of space-time
and number of colors Nc, which is finite in this case. The
form of this beta function is identical to (6), and as before
we approach a noninteracting theory as we go to higher and
higher energies and achieve conformality in the infrared.
The introduction of massive quarks gives rise to confine-
ment as before with the confinement scale parametrically
separated from the ultraviolet scale. The factor separating

the two scales is given by N
1

4−d
f .
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