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We develop quantum electrodynamics into a kinetic-theory-like evolution equation for electrons,
positrons and photons. To keep the “collision rules” simple, we make use of longitudinal and temporal
photons in addition to the usual transverse photons. For our explicitly time-dependent approach, we
introduce proper time-correlation functions. We then develop a stochastic simulation technique for solving
the resulting kinetic equation. To illustrate the validity and potential of the proposed ideas, we show how a
very simple simulation of the dynamics of field quanta can be used to obtain the leading-order contribution
to the anomalous magnetic moment of the electron.
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I. INTRODUCTION

The goal of this work is to introduce particle-based
simulations for quantum field theories in real time. Rather
thanwith particles in a classical sense, of course, we actually
deal with field quanta. In the course of time, these field
quanta undergo collisions of the types that we commonly
represent by Feynman diagrams. We develop and illustrate
the ideas in the context of quantum electrodynamics
(QED), where the collisions are given by (i) emission
or absorption of photons by electrons or positrons and
(ii) electron-positron pair production or annihilation. The
simulations to be developed consist of stochastic sequences
of such collisions in time.
Our particle-based simulations are supposed to be devel-

oped into an alternative to the widely used field-based
simulations, which go back toWilson’s famous formulation
of lattice gauge theory [1]. Computer simulations of lattice
gauge theories with dynamic fermions [2,3] have been
established as a very successful tool in nonperturbative
quantum field theory, but they are extremely demanding
from a computational point of view (four-dimensional latti-
ces, continuous evolution by hybrid-molecular-dynamics
algorithms, conjugate-gradient calculations). It is hence
interesting to explore complementary simulation ideas.
In Sec. II, we introduce the notation of the four-photon

approach to free electromagnetic fields and Dirac’s spinor
representation of free electrons and positrons. Interactions
are then introduced in Sec. III, where also the relativistic
covariance of the theory is discussed. Proper correlation
functions for our explicitly time-dependent approach are
presented in Sec. IV; in particular, we consider propagators,
vertex functions and the electron form factor leading to the
magnetic moment of the electron. We then have all the tools
to develop a kinetic-theory-like simulation method for the
field quanta in Sec. V and we present a particularly simple
simulation that allows us to obtain the leading-order

contribution to the anomalous magnetic moment of the
electron. A brief summary and a detailed discussion
conclude the paper (Sec. VI). Some useful definitions
and relations are compiled in the Appendix.
Throughout this paper, we use natural units with

ℏ ¼ c ¼ ϵ0 ¼ 1 where ℏ is the reduced Planck constant,
c is the speed of light, and ϵ0 is the electric permittivity.
In these units, the electric charge is given by e0 ¼ffiffiffiffiffiffiffiffi
4πα

p
≈ 0.30282212, where α is the fine-structure constant.

Only one further unit, naturally taken as mass or energy,
remains to be specified.

II. FREE QUANTUM FIELDS

We begin our development by introducing the notation
for the free electromagnetic and electron-positron spinor
fields.

A. Vector potential

To avoid the need of considering Coulomb interactions
explicitly, we use the four-photon quantization of the
electromagnetic field. This elegant idea was originally
developed in 1950 by Gupta [4] for free electromagnetic
fields and by Bleuler [5] in the presence of charged
matter.
The four-vector potential with components Aμ is intro-

duced as a Fourier transform in terms of polarization states
and the corresponding creation and annihilation operators,

AðxÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ3

p
Z

Aqe−iq·xd3q; ð1Þ

with the Fourier components

Aq ¼
1ffiffiffiffiffiffi
2q

p ðnαqaα†q þ εαnα−qaα−qÞ; ð2Þ

where α ¼ 0; 1; 2; 3 is to be summed over. The temporal
unit four-vector*hco@mat.ethz.ch; http://www.polyphys.mat.ethz.ch/
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n0q ¼

0
BBB@

1

0

0

0

1
CCCA ð3Þ

is actually independent of q. The three orthonormal spatial
polarization vectors are chosen as

n1q ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q21 þ q22
p

0
BBB@

0

q2
−q1
0

1
CCCA; ð4Þ

n2q ¼
1

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q21 þ q22

p
0
BBB@

0

q1q3
q2q3

−q21 − q22

1
CCCA; ð5Þ

and

n3q ¼
1

q

0
BBBB@

0

q1
q2
q3

1
CCCCA: ð6Þ

The polarization vectors n1q and n2q correspond to transverse
photons; n3q corresponds to longitudinal photons. The sign
εα in Eq. (2) (defined as þ1 for transverse and longitudinal
photons, −1 for temporal photons) leads to a non-self-
adjoint nature of the vector potential (1). The spatial
components are self-adjoint, whereas the temporal compo-
nent A0 is anti-self-adjoint. The latter statement can be
expressed as A†

0ðxÞ ¼ −A0ðxÞ ¼ A0ðxÞ, where we have
assumed a Minkowski metric ημν ¼ ημν with signature
ð−;þ;þ;þÞ, that is, η00 ¼ η00 ¼ −1. It is hence important
to note that Eqs. (1) and (3) specify A0 with a lower
index.
The four-photon creation and annihilation operators aα†q

and aαq introduced in Eq. (1) satisfy the usual commutation
relations,

½aαq; aα
0†

q0 � ¼ δαα0δðq − q0Þ: ð7Þ

We can hence build the four-photon Fock space in the usual
way by multiple application of all the operators aα†q for all
q ∈ Rd on a ground state (which is annihilated by any aαq).
The full Hilbert space factorizes into spaces obtained by
repeated application of aα†q for each mode q (see, for
example, Secs. 1 and 2 of [6] or Secs. 12.1 and 12.2 of [7]
for more details on the construction of such Fock spaces).
The Bleuler-Gupta approach uses a modification of

the standard scalar product, which we present as the
construction of bra from ket vectors. If a basis vector of

the ket space contains n temporal photons, the correspond-
ing standard bra vector is multiplied by a factor ð−1Þn. This
minus sign associated with each temporal photon in the bra
space is introduced such that the vector potential (1)
becomes self-adjoint for the modified scalar product.
The use of an indefinite scalar product may be alarming
because it might endanger the probabilistic interpretation of
the results as, for example, the norm of an odd-number
temporal photon state is negative. However, no interpreta-
tion problems arise for physically admissible states, where
admissibility is defined in terms of a proper version of
the covariant Lorentz gauge condition. In particular, the
admissibility condition implies that physical states involve
equal numbers of longitudinal and temporal photons having
the same momentum (see Chap. 17 of [8]), which gives us
an idea of how interpretational problems are avoided.
The physical states have been listed in an elementary
way in Eq. (2.16) of the pioneering work [5]. An elegant
way of characterizing the physical states has been given in
Sec. V. C. 3 of [9]. A nicely general and systematic
justification of the Bleuler-Gupta approach has been given
in the context of BRST quantization (see the original papers
[10,11] and the pedagogical BRST primer [12]). The
general idea is to quantize in an enlarged Hilbert space
and to characterize the physically admissible states in terms
of BRST charges, which generate BRST transformations
and commute with the Hamiltonian. In this approach,
BRST symmetry may be considered as a fundamental
principle that replaces gauge symmetry [12].
Finally, the free Hamiltonian for our massless photons is

given by

Hð0Þ
EM ¼

Z
qaα†q aαqd3q; ð8Þ

where all four photons are clearly treated on an equal
footing. Their energy is given by the relativistic expression
for massless particles. The free Hamiltonian (8) is self-
adjoint both for the standard and for the indefinite scalar
product.

B. Dirac fields and spinor properties

According to Eq. (13.59) of [7], the Hamiltonian
associated with the Dirac equation for the free electron/
positron can be written as

Hð0Þ
e=p ¼

Z
Epðbσ†p bσp þ dσ†p dσpÞd3p; ð9Þ

where Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
gives the energy of a relativistic

particle with mass m and momentum p, and a summation
over the possible spin values σ ¼ �1=2 is implied by the
same index occurring twice. The operators bσ†p and bσp
create and annihilate an electron of momentum p and spin
σ. Similarly, the operators dσ†p and dσp create and annihilate a
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positron of momentum p and spin σ. As we are now
interested in fermions instead of the bosonic photons, we
need to specify the fundamental anticommutation relations
for the creation and annihilation operators. All particle and
antiparticle creation operators anticommute among each
other, and so do the annihilation operators. The only
nontrivial anticommutation relations are

fbσp; bσ
0†

p0 g ¼ δσσ0δðp − p0Þ; ð10Þ

and

fdσp; dσ
0†

p0 g ¼ δσσ0δðp − p0Þ: ð11Þ

The four-component spinor field associated with anni-
hilating an electron or creating a positron, each coming
with the two values �1=2 of the spin, has the Fourier
components [see Eq. (13.50) of [7]]

ψp ¼
ffiffiffiffiffiffi
m
Ep

r
ðvσpdσ†p þ u−σ−pb−σ−pÞ; ð12Þ

where the standard representation of the spinors u and v
is given in the Appendix. In the context of a relativistic
theory, it is useful to introduce ψ̄ ¼ ψ†γ0, where γ0 is
a diagonal 4 × 4 matrix with the diagonal elements
ð1; 1;−1;−1Þ, because ψ̄ has a more natural Lorentz
transformation behavior than ψ† (see Sec. 2.2 of [13]).
In particular, ψ̄ðxÞψðxÞ is a Lorentz scalar, whereas
ψ†ðxÞψðxÞ is not [cf. Eq. (15) for the electric charge
density which, together with the current density, forms a
four-vector]. With the corresponding definitions ū ¼ u�γ0
and v̄ ¼ v�γ0, where an asterisk implies both complex
conjugation and transposition of a vector or matrix, we
obtain the Fourier components

ψ̄p ¼
ffiffiffiffiffiffi
m
Ep

r
ðv̄−σ−pd−σ−p þ ūσpb

σ†
p Þ: ð13Þ

III. INTERACTIONS

The interaction between charged leptons and photons is
given by the Hamiltonian

Hð1Þ ¼ −
Z

d3xJμðxÞAμðxÞ; ð14Þ

where we have made use of the electric charge density,

J0ðxÞ ¼ −e0ψ†ðxÞψðxÞ ¼ −e0ψ̄ðxÞγ0ψðxÞ; ð15Þ

and the electric current density,

JjðxÞ ¼ −e0ψ̄ðxÞγjψðxÞ: ð16Þ

Equations (15) and (16) define a four-vector. Note that, in
the standard scalar product, the Hamiltonian Hð1Þ is not
self-adjoint because A0ðxÞ is anti-self-adjoint. However, in
the indefinite scalar product, the HamiltonianHð1Þ becomes
self-adjoint. As suggested in Eq. (13.61) of [7], we actually
use the normal-ordered versions of the charge and current
densities (all creation operators are to the left of all
annihilation operators in a product) to avoid irrelevant
infinite contributions.

A. Collision amplitudes

The interaction term (14) involves two spinor fields and
one vector potential, and hence such a ternary interaction
corresponds to one photon and two lepton lines in a
Feynman diagram. After inserting the Fourier transforms
(2), (12) and (13), we write the interaction between Dirac
and electromagnetic fields in terms of two contributions,
Hð1Þ ¼ Hð1Þ

ea þHð1Þ
pp . The first contribution describes the

spin-dependent emission and absorption of photons by
electrons and positrons; the second term accounts for pair
production and annihilation. These contributions are of the
following form,

Hð1Þ
ea ¼

Z
d3pd3p0½hσσ0μpp0 b

σ†
p bσ

0
p0 − hσ

0σμ
p0p d−σ†p d−σ

0
p0 �

× ðnαp0−paα†p0−p þ εαnαp−p0a
α
p−p0 Þμ; ð17Þ

and

Hð1Þ
pp ¼

Z
d3pd3p0½ ~hσσ0μpp0 d

−σ
−pbσ

0
p0 þ ~hσ

0σμ
p0p bσ

0†
−p0d

−σ†
p �

× ðnαp0−paα†p0−p þ εαnαp−p0a
α
p−p0 Þμ: ð18Þ

The complex collision amplitudes hσσ
0μ

pp0 and ~hσσ
0μ

pp0 are
proportional to the electric charge e0 and fully characterize
electromagnetic interactions of photons with electrons and
positrons. For the functional form of the collision ampli-

tude hσσ
0μ

pp0 characterizing photon emission, we find

hσσ
0μ

pp0 ¼ 2me0ūσpγμuσ
0

p0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4πÞ3EpEp0 jp − p0j

q : ð19Þ

The collision amplitude ~hσσ
0μ

pp0 for pair production is
given by

~hσσ
0μ

pp0 ¼ 2me0v̄−σ−pγμuσ
0

p0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4πÞ3EpEp0 jp − p0j

q : ð20Þ

These collision amplitudes have the following symmetries,

ðhσσ0μpp0 Þ� ¼ hσ
0σμ

p0p ; ð21Þ
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and

ð ~hσσ0μpp0 Þ� ¼ ~hσ
0σμ

−p0−p; ð22Þ
which are useful for verifying the adjointness properties of

Hð1Þ
ea and Hð1Þ

pp . These properties follow from the symmetry

relations given in the Appendix. The property (21) follows
from Eq. (A16), and (22) follows from Eqs. (A15) and
(A18). In deriving Eqs. (17) and (18), the symmetry
properties (A14) and (A15) have been used, respectively.
Let us consider the following (non-normalized) states

consisting of n electrons, n̄ positrons and ~n photons,

���� σ1 � � � σnσ̄1 � � � σ̄n̄α1 � � �α ~n

p1 � � � pnp̄1 � � � p̄n̄q1 � � � q ~n

�
¼ bσ1†p1 � � � bσn†pn dσ̄1†p̄1 � � � dσ̄n̄†p̄n̄ aα1†q1 � � �aα ~n†

q ~n j0ð0Þi; ð23Þ

where
P

n
l¼1 pl þ

P
n̄
l¼1 p̄l þ

P
~n
l¼1 ql is the total momentum of the multiparticle state. These states are the base vectors

of the Fock space that includes electrons and positrons in addition to photons and hence properly generalizes the
Fock space of Sec. II A. The states (23) are eigenstates of the energy of the noninteracting system with eigenvaluesP

n
l¼1 Epl

þP
n̄
l¼1 Ep̄l

þP
~n
l¼1 ql. We now act with Hð1Þ ¼ Hð1Þ

ea þHð1Þ
pp on a state (23). Although the calculation is

straightforward and the outcome is quite lengthy, we give the explicit result because it clarifies why we refer to a “kinetic-
theory-like” approach and to “collision amplitudes”:

Hð1Þ
���� σ1 � � � σn σ̄1 � � � σ̄n̄ α1 � � � α ~n

p1 � � � pn p̄1 � � � p̄n̄ q1 � � � q ~n

�

¼
Xn
j¼1

X~n

l¼1

h
σσjμ
pjþqlpjεαlðnαlql Þμ

���� σ1 � � � σj−1 σ σjþ1 � � � σn σ̄1 � � � σ̄n̄ α1 � � �αl−1αlþ1 � � � α ~n

p1 � � � pj−1pj þ qlpjþ1 � � � pn p̄1 � � � p̄n̄ q1 � � � ql−1qlþ1 � � � q ~n

�

−
X̄n
k¼1

X~n

l¼1

h−σ̄k−σμp̄kp̄kþqlεαlðn
αl
ql Þμ

���� σ1 � � � σn σ̄1 � � � σ̄k−1 σ σ̄kþ1 � � � σ̄n̄ α1 � � � αl−1αlþ1 � � � α ~n

p1 � � � pn p̄1 � � � p̄k−1p̄k þ qlp̄kþ1 � � � p̄n̄ q1 � � � ql−1qlþ1 � � � q ~n

�

−
Xn
j¼1

X̄n
k¼1

ð−1Þnþjþk ~h
−σ̄kσjμ
−p̄kpj ðnαpjþp̄kÞμ

���� σ1 � � � σj−1σjþ1 � � � σn σ̄1 � � � σ̄k−1σ̄kþ1 � � � σ̄n̄ α1 � � �α ~n α

p1 � � � pj−1pjþ1 � � � pn p̄1 � � � p̄k−1p̄kþ1 � � � p̄n̄ q1 � � � q ~npj þ p̄k

�

þ
Xn
j¼1

Z
d3qh

σσjμ
pj−qpjðnαqÞμ

���� σ1 � � � σj−1 σ σjþ1 � � � σn σ̄1 � � � σ̄n̄ α1 � � � α ~n α

p1 � � � pj−1pj − qpjþ1 � � � pn p̄1 � � � p̄n̄ q1 � � � q ~n q

�

−
X̄n
k¼1

Z
d3qh−σ̄k−σμp̄kp̄k−q ðnαqÞμ

���� σ1 � � � σn σ̄1 � � � σ̄k−1 σ σ̄kþ1 � � � σ̄n̄ α1 � � � α ~n α

p1 � � � pn p̄1 � � � p̄k−1p̄k − qp̄kþ1 � � � p̄n̄ q1 � � � q ~n q

�

þ
X~n

l¼1

ð−1Þn̄
Z

d3p ~hσ−σ̄μ−pql−pεαlðnαlql Þμ
���� σ1 � � � σnσ σ̄1 � � � σ̄n̄ σ̄ α1 � � �αl−1αlþ1 � � � α ~n

p1 � � � pnp p̄1 � � � p̄n̄ql − p q1 � � � ql−1qlþ1 � � � q ~n

�

−
Xn
j¼1

X̄n
k¼1

X~n

l¼1

ð−1Þnþjþkδðpj þ p̄k þ qlÞ ~h−σ̄kσjμ−p̄kpj εαlðnαlql Þμ

×

���� σ1 � � � σj−1σjþ1 � � � σn σ̄1 � � � σ̄k−1σ̄kþ1 � � � σ̄n̄ α1 � � � αl−1αlþ1 � � � α ~n

p1 � � � pj−1pjþ1 � � � pn p̄1 � � � p̄k−1p̄kþ1 � � � p̄n̄ q1 � � � ql−1qlþ1 � � � q ~n

�

þ ð−1Þn̄
Z

d3p
Z

d3p̄ ~hσ−σ̄μ−pp̄ ðnα−p−p̄Þμ
���� σ1 � � � σnσ σ̄1 � � � σ̄n̄σ̄ α1 � � � α ~n α

p1 � � � pnp p̄1 � � � p̄n̄p̄ q1 � � � q ~n − p − p̄

�
: ð24Þ

Equation (24) summarizes eight collision rules of QED for
electrons, positrons and photons. The first three terms
decrease the number of particles by one, either through
absorption of a photon by an electron or positron or through
annihilation of an electron-positron pair into a photon.

These terms contain double sums corresponding to the
selection of two particles (to be replaced by one) and do not
involve integrations. The next three terms increase the
number of particles by one, either through emission of a
photon by an electron or positron or through creation of an

HANS CHRISTIAN ÖTTINGER PHYSICAL REVIEW D 90, 085005 (2014)

085005-4



electron-positron pair from a photon. The hallmark of these
terms is a single sum corresponding to the selection of a
disappearing particle (to be replaced by two) and a
momentum integration for one of the two new particles.
The last two terms decrease or increase the number of
particles by three, an electron, a positron and a photon in
either case. They contain a triple sum, corresponding to
selecting three particles, and a double integral, correspond-
ing to the freedom of choosing two momenta, respectively.
Momentum conservation is respected by all of the eight
terms, and each of the terms is proportional to a collision
amplitude h or ~h. These “collision rules” occurring in
Eq. (24) are the core of the simulation of QED to be
developed below.

B. Lorentz invariance

After defining the Hilbert space, the fields and the
various contributions to the Hamiltonian, note that the
proper relativistic form of the resulting equations is not
obvious because the Hamiltonian approach assigns a
special role to time. In the Hamiltonians (8) and (9) for
the free electromagnetic and electron/positron fields, the
relativistic energy-momentum relations for massless and
massive particles provide the proper ingredient. For the
interaction Hamiltonian (14) to be Lorentz invariant, Aμ

and Jμ have to be Lorentz four-vectors. For Aμ, this is
nicely achieved by the four-photon approach which puts
temporal and spatial components on an equal footing,
except for the sign of the Minkowski metric properly
arising from the use of an indefinite scalar product. For Jμ,
Lorentz transformation behavior is achieved by construc-
tion of the spinors, which are chosen to be trivial for
particles at rest and then need to have a suitable momentum
dependence for moving particles. The correct relativistic
transformation behavior is hence hidden in the collision
amplitudes (19) and (20).

IV. CORRELATION FUNCTIONS
AND MAGNETIC MOMENT

As we do not treat time and space on an equal footing, it
is important to introduce the appropriate correlation func-
tions carefully. We here introduce and discuss some useful
time-ordered two- and three-time-correlation functions.

A. Two- and three-time-correlations

We first consider the two-time-correlation function of
two operators A and B. Actually, it is more convenient to
study Fourier transforms. When time ordering is properly
taken into account, the correlation in the frequency domain
is given by

Cð2Þω ðA;BÞ ¼ h0jARωBj0i � h0jBR−ωAj0i; ð25Þ

where we have introduced the evolution operator

Rω ¼ i
Z

∞

0

dte−iHtþiωt−ϵt ¼ ðH − ω − iϵÞ−1: ð26Þ

The plus or minus sign in the definition (25) depends on
how A and B are related to commuting or anticommuting
operators; the small parameter ϵ ensures the convergence
of the time integral. Note that Rω involves the full
Hamiltonian and possesses the perturbation expansion,

Rω ¼ ½1þ Rð0Þ
ω Hð1Þ�−1Rð0Þ

ω

¼ Rð0Þ
ω − Rð0Þ

ω Hð1ÞRð0Þ
ω þ Rð0Þ

ω Hð1ÞRð0Þ
ω Hð1ÞRð0Þ

ω −…;

ð27Þ

where Rð0Þ
ω is defined as Rω in Eq. (26), but with the free

Hamiltonian Hð0Þ instead of H. The simplicity of this
perturbation expansion for Rω actually provides the moti-
vation for considering Fourier transforms. A full perturba-
tion theory of the correlation functions (25) requires an
additional expansion of the vacuum states. It is given by the
following relations between the vacuum states of the free
and interacting theories,

j0i ¼ ½1þ Rð0Þ
0 Hð1Þ�−1j0ð0Þi;

h0j ¼ h0ð0Þj½1þHð1ÞRð0Þ
0 �−1: ð28Þ

To obtain these results, it is important to realize that Hð1Þ is
self-adjoint for the modified, indefinite scalar product. In
the limit of a vanishing regularization parameter ϵ, the
operators Rð0Þ

ω are self-adjoint for both the modified and the
standard scalar products. Moreover, we need to assume
that energy of the vacuum state of the interacting theory
vanishes,

h0ð0ÞjHð1Þj0i ¼ 0; ð29Þ
which fixes a constant that can be added to Hð1Þ. Note the
similarity of the perturbation expansions of the vacuum
state and of Rω for ω ¼ 0.
For time-ordered three-time-correlation functions, the

proper Fourier transform can be expressed as

Cð3Þω0;ωðA;B;CÞ ¼ h0jARω0BRωCj0i
− h0jCR−ωBR−ω0Aj0i
− h0jCR−ωARω0−ωBj0i
þ h0jARω0CRω0−ωBj0i
þ h0jBRω−ω0ARωCj0i
− h0jBRω−ω0CR−ω0Aj0i; ð30Þ

where the signs have been chosen for the case that A and C
are fermion operators, whereas B is a boson operator. Note
that the frequency ω0 occurs all the way between A and B,
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and ω between B and C. If the order of A and B (or B and
C) is reversed, the frequency ω0 (or ω) picks up a
minus sign.

B. Propagators

The standard form of Feynman’s fermion propagator Sαβ
in Fourier space can be introduced by choosing A and B in
Eq. (25) as the Fourier components (12) and (13) of the
fermion field. More precisely, we define

Cð2Þω ðψα;p0 ; ψ̄β;pÞ ¼ −Sαβðω; pÞδðpþ p0Þ; ð31Þ
where, for fermion operators, the minus sign must be used
in the definition (25). In space-time, this corresponds to the
usual definition in terms of a time-ordered product [see, for
example, Eq. (13.72) of [7] or p. 112 of [14]],

i ~Sαβðt; xÞ ¼ ΘðtÞh0jψαðxÞe−iHtψ̄ βð0Þj0i
− Θð−tÞh0jψ̄βð0ÞeiHtψαðxÞj0i: ð32Þ

In a more compact notation, Eq. (32) can be expressed as

i ~SαβðxÞ ¼ h0jT½ψαðxÞψ̄βð0Þ�j0i; ð33Þ
where x ¼ ðt; xÞ and 0 ¼ ð0; 0Þ are four-vectors and T is
the time-ordering operation.
For the free theory, it is straightforward to evaluate the

correlation function in Eq. (31) for the Fourier components
given in Eqs. (12) and (13). We obtain the free propagator

Sð0Þðω; pÞ ¼ −
m
Ep

�
ΛeðpÞ

Ep − ω − iϵ
þ Λpð−pÞ
Ep þ ω − iϵ

�

¼ ωγ0 − pjγ
j þm1

ω2 − p2 −m2 þ iϵ
: ð34Þ

In the second step, we have used Eqs. (A10) and (A11) to
obtain the standard form of the free fermion propagator.
A photon propagator can be introduced in the same way

as the fermion propagator (31), but now with the plus sign
for boson operators in the definition (25),

Cð2Þω ðAμ;q0 ; Aν;qÞ ¼ −Dμνðω; qÞδðqþ q0Þ: ð35Þ
From a straightforward calculation, we obtain the free
photon propagator

Dð0Þ
μν ðω; qÞ ¼ ημν

ω2 − q2 þ iϵ
: ð36Þ

This result illustrates that the four-photon approach corre-
sponds to a particularly convenient gauge.

C. Vertex functions

As important further correlation functions, we introduce
the vertex functions Γν through special cases of a three-
time-correlation function,

Cð3Þω0ωðψα;−p0 ; Aμ;q; ψ̄β;pÞ
¼ e0ffiffiffiffiffiffiffiffiffiffiffi

ð2πÞ3
p δðpþ q − p0Þ ×Dμνðω0 − ω; p0 − pÞ

× ½Sðω0; p0ÞΓνðω0; p0;ω; pÞSðω; pÞ�αβ; ð37Þ

where the Γν are 4 × 4matrices in spinor space, just like the
fermion propagators S. In the compact four-vector notation,
we can write

Cð3Þ−ω0ωðψα;p0 ; Aμ;q; ψ̄β;pÞ

¼ −
1

ð2πÞ11=2
Z

dq0 ×
Z

d4xd4x0d4yeiðp·xþp0·x0þq·yÞ

× h0jT½ψαðx0ÞAμðyÞψ̄βðxÞ�j0i; ð38Þ

where we have made use of the following four-
vectors: x ¼ ðt; xÞ, x0 ¼ ðt0; x0Þ, y ¼ ðt00; yÞ, p ¼ ðω; pÞ,
p0 ¼ ðω0; p0Þ, and q ¼ ðq0; qÞ so that, for example,
p · x ¼ p · x − ωt.
With the propagators Sðω; pÞ, Dðω; qÞ and the vertex

functions Γνðω0; p0;ω; pÞ defined in Eqs. (31), (35) and
(37), we have now introduced the most important corre-
lation functions in QED.

D. Perturbation theory

To gain a better understanding of the vertex functions
Γνðω0; p0;ω; pÞ, we would like to calculate the lowest-order
contributions by perturbation theory. As the definition (37)
involves three fields, the vertex functions vanish for the
free theory. Only odd orders of perturbation theory can
contribute. Even the first-order result

Γμð1Þ ¼ γμ ð39Þ
is already tedious to get within our approach, which is
highly inappropriate for constructing closed-form pertur-
bation expansions. It is hence recommended that perturba-
tion theory should be based on compact expressions of the
form given in Eqs. (33) and (38), for which elegant and
powerful methods based on Feynman diagrams are avail-
able in any textbook on quantum field theory. Following the
standard rules [see, for example, Appendix B of [7] or
Appendix C of [14] with the explicit result actually given in
Eq. (III.6.8) on p. 197], we obtain

Γμð3Þðω0; p0;ω; pÞ

¼
Z

d4q0

ð2πÞ4 iD
ð0Þ
ν0νðq0Þ

× ie0γν
0
iSð0Þðp0 − q0ÞγμiSð0Þðp − q0Þie0γν; ð40Þ

where this contribution results from the Feynman diagram
shown in Fig. 1 after amputating the external legs.
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By inserting the first part of Eq. (34) as well as Eq. (36)
and using Cauchy’s integral formula to perform the
frequency integration over q00, we can rewrite the expres-
sion (40) as a three-dimensional integral,

Γμð3Þðω0;p0;ω;pÞ ¼
Z

d3q0

ð2πÞ3
e20m

2

2q0Ejp0−q0jEjp−q0j
ηνν0

×

�
γν

0
Λeðp0 − q0ÞγμΛeðp− q0Þγν

ðEjp0−q0j þq0−ω0ÞðEjp−q0j þq0−ωÞ

þ γν
0
Λpðq0 − p0ÞγμΛpðq0− pÞγν

ðEjp0−q0j þq0 þω0ÞðEjp−q0j þq0 þωÞ

þ
�

1

Ejp0−q0j þq0 −ω0 þ
1

Ejp−q0j þq0 þω

�

×
γν

0
Λeðp0− q0ÞγμΛpðq0− pÞγν
Ejp0−q0j þEjp−q0j−ω0 þω

þ
�

1

Ejp0−q0j þq0 þω0 þ
1

Ejp−q0j þq0 −ω

�

×
γν

0
Λpðq0− p0ÞγμΛeðp−q0Þγν
Ejp0−q0j þEjp−q0j þω0−ω

�
; ð41Þ

where Λe and Λp may be regarded as projectors to the
electron and positron degrees of freedom, respectively (the
precise definition is given in the Appendix). One still
recognizes the importance of fermion propagators, but now
split into electron and positron contributions.

E. Form factors and magnetic moment

Perturbation theory suggests that Γν can be regarded as
an effective interaction vertex when photons and electron-
positron pairs are around during the basic ternary inter-
action process described by γν. Whereas γν characterizes
the electromagnetic interaction of a structureless point
electron, the full interaction including a cloud of photons

and electron-positron pairs around the electron during
interaction with an external photon is characterized
by Γν. The physics of the effective interactions can be
described elegantly in terms of the electromagnetic
form factors F and G, which occur in the most general
representation of four-vectors (see, for example, Sec. 10.6
of [15] or Sec. III. 6 of [14]),

ūσ
0

p0Γ
νðEp0 ; p0; Ep; pÞuσp ¼ FðxÞūσ0p0γνuσp

þ GðxÞ ðpþ p0Þν
2m

ūσ
0

p0u
σ
p; ð42Þ

where the real functions FðxÞ and GðxÞ depend on

x2 ¼ 2ðEpEp0 − p · p0 −m2Þ: ð43Þ

They satisfy the normalization condition Fð0Þ þ Gð0Þ ¼ 1,
which is consistent with the result of first-order perturba-
tion theory, that is, with the constant form factors FðxÞ ¼ 1
and GðxÞ ¼ 0. In view of the definition (19), it is natural to
define the effective collision amplitude

Hσ0σμ
p0p ¼ 2me0ūσ

0
p0Γ

μðEp0 ; p0; Ep; pÞuσpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4πÞ3EpEp0 jp − p0j

q : ð44Þ

The magnetic moment, which characterizes the inter-
action of a charged particle with an electromagnetic field, is
given by the g factor and can be expressed in terms of the
form factor (see, for example, Sec. 10. 6 of [15] or Sec. III.
6 of [14])

g ¼ 2Fð0Þ ¼ 2 − 2Gð0Þ: ð45Þ
In lowest-order perturbation theory, we find g ¼ 2, whereas
the experimental result is slightly larger,

g ≈ 2.002319; ð46Þ
where significantly more accurate experimental results are
actually available (the relative experimental error for g is
smaller than 10−12). The celebrated approximate one-loop
result of Schwinger [16] corresponding to the Feynman
diagram in Fig. 1 is

g ¼ 2þ α

π
¼ 2þ e20

4π2
≈ 2.002323: ð47Þ

Our goal is to find the anomalous g factor deviating from 2
by kinetic-theory-like simulations.

V. SIMULATIONS

After introducing the proper formulation of
Hamiltonians and correlation functions in the four-photon
approach, we are now in a position to develop a kinetic-
theory-like simulation methodology. The eight collision

FIG. 1. Feynman diagram corresponding to the contribution
Γμð3Þ to the vertex function.
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rules in Eq. (24), together with the collision amplitudes (19)
and (20), provide the cornerstones for the stochastic
simulation technique to be developed here.

A. Basic ideas

The simulations proposed in the present paper are
strongly inspired by the powerful stochastic simulation
techniques for quantum master equations [17–20]. Instead
of looking for a deterministic solution of the Schrödinger
equation

djψ ti
dt

¼ −iðHð0Þ þHð1ÞÞjψ ti; ð48Þ

with Hð0Þ ¼ Hð0Þ
EM þHð0Þ

e=p and H
ð1Þ ¼ Hð1Þ

ea þHð1Þ
pp , we con-

sider a stochastic process jψ ti in Hilbert space such that the
expectation Eðjψ tiÞ satisfies Eq. (48). Let us consider an
important example of a stochastic process jψ ti. In that
example, the process starts from a deterministic initial
condition jψ0i and continuously evolves according to the
Schrödinger equation (48) for the free Hamiltonian in the
absence of interactions,

djψ ti
dt

¼ −iHð0Þjψ ti: ð49Þ

Instead of having a continuously acting Hamiltonian Hð1Þ,
we introduce a rate parameter r that determines the
occurrence of random times at which the following jump
occurs,

jψ ti → jψ ti −
1

r
iHð1Þjψ ti: ð50Þ

The expectation of the stochastic process with continuous
evolution (49) and random jumps (50) occurring with rate
r solves the Schrödinger equation (48). The inverse rate
1=r plays the role of a time step that, however, occurs
randomly according to an exponentially decaying distri-
bution with average 1=r. For large r, we recover an
almost continuous evolution with small jumps. For small
r, we have rare but large jumps according to the prefactor
1=r in Eq. (50). The weaker the interaction, the smaller
can the jump rate r be chosen, and the more efficient
becomes the simulation. The proposed stochastic tech-
nique is hence expected to be particularly powerful when
a problem is amenable to perturbation theory. By
choosing a finite rate r, however, nonperturbative results
should be accessible.
According to Eq. (24), the action of the HamiltonianHð1Þ

in the jump (50) involves sums and integrals. In our
stochastic approach, it is most natural to perform such
sums and integrals by Monte Carlo methods. This intro-
duces a second source of randomness into our Hilbert space

process. After averaging, we still obtain a solution of the
Schrödinger equation (48).
In n jumps of the type (50), the trajectory typically

progresses by n times 1=r. In view of the exponential time
distribution, however, all positive values of time increments
are possible, with the following probability density for the
n-jump contribution at time t,

Z
t

0

dt0rne−rðτ1þ…τnÞδðτ1 þ…τn − t0Þe−rðt−t0Þ; ð51Þ

with the waiting times τ1…τn for the jumps 1…n to occur.
The last factor is the probability for having no further jump
between t0 and t. In view of the δ function in Eq. (51), it is
particularly convenient to calculate the n-jump contribution
to the Fourier transform (26) of the evolution operator. We
then obtain

Rω ¼
X∞
n¼0

ð−1ÞnðHð0Þ − ω − iϵ − irÞ−1

× ½ðHð1Þ þ irÞðHð0Þ − ω − iϵ − irÞ−1�n: ð52Þ

For r ¼ 0, this corresponds to the usual perturbation theory
in Eq. (27). For large r, factors ð1 − iHð1Þ=rÞ associated
with a time-stepping scheme with time step 1=r, properly
staggered with the free time evolution, occur naturally.
Note that we have eliminated the stochastic aspect of
the jump rate in calculating Fourier transformed time-
correlation functions, but the randomness associated with
Monte Carlo summations and integrations remains in the
simulation. By varying the rate parameter r in our simu-
lations, we can go all the way from continuous integration
(large r) to perturbation theory (small r). The simulation
corresponds to the perturbation theory given by Eqs. (27)
and (28). However, the formal regularization parameter ϵ is
replaced by the rate parameter r, where 1=r is an average
time step and, moreover, ir is added to the interaction. We
have thus found a very simple recipe for how to proceed
from perturbation theory to an integration scheme with
average time step 1=r. Whether the convergence problems
of perturbation theory [21] affect simulations at finite 1=r
remains to be explored.
In the numerical evaluation of Eq. (52), we suggest to

introduce a factor qnN into the nth term of the series (52), so
that we recover the exact result for qN → 1. The deviation
of the fugacity parameter qN from unity then controls the
average of the number of time steps N ¼ qN=ð1 − qNÞ
which, in a simulation, we can sample from a geometric
distribution with parameter qN. For this procedure
of controlling the number of time steps, we can easily
analyze the convergence behavior based on a closed-form
expression:

½Hð0Þ þ qNHð1Þ − ω − iϵ − irð1 − qNÞ�−1 !
qN→1

Rω: ð53Þ
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This limit is much better controlled than the one obtained by
truncation of the series (52) after a fixed number of terms.

B. Procedure

We are now in a position to describe the stochastic
simulation procedure for calculating correlation functions.
During the simulation of a trajectory in Hilbert space, we
always have exactly one of the base vectors (23) together
with a corresponding complex coefficient. The free evo-
lution between interactions is easy to evaluate because,
during the entire simulation, we always keep eigenstates
of the energy of the noninteracting system, as given in
Eq. (23). Free evolution merely changes the coefficient but
not the base vector.
Let us assume that we wish to calculate the time-

correlation function h0jAe−iHtBj0i or its Fourier transform
h0jARωBj0i occurring in Eqs. (25) or (32). The basic idea is
to start from the vacuum state j0ð0Þi of the free theory, to
initiate by a sufficiently large number of time steps, to
apply the operator B, to perform the time steps for the
evolution from B to A, to apply the operator A, to finalize
by a sufficiently large number of time steps, and to project
onto h0ð0Þj. “Initializing” and “finalizing” should be rec-
ognized as the counterparts of the two parts of Eq. (28); in a
sense, we need to find the vacuum state j0i of the
interacting theory by “equilibration” when we start from
the vacuum state of the free theory. For these equilibration
steps, we should use Eq. (52) with ω ¼ r ¼ 0. Going to a
large time step seems appropriate for producing the vacuum
state of the interacting theory. When we apply Rω for
the evolution from B to A, the rate parameter r and the
average number of time steps N in Eq. (52) should be
adjusted to the frequencies ω we would like to explore
(ω ≪ r, Nω ∼ r).
Whenever we applyHð1Þ according to Eq. (24), there is a

number of summations and integrations to be carried out.
For each sum or integral we choose only one single term;
the full sums and integrals are obtained by averaging over
many realizations. For example, we can choose the prob-
ability pruleðjÞ for using one of the eight collision rules
j ¼ 1;…8 to be 1=8 and then multiply the estimate for
the randomly chosen term j by 8 [more generally, by
1=pruleðjÞ]. The other summations and integrations in
Eq. (24) are performed with randomly selected particles,
spins, polarizations or randomly selected momenta.
Whenever we make a random choice, we need to introduce
the reciprocal of the corresponding probability as a weight
factor. In the final part of the simulation, one should only
admit random selections that can still lead towards the free
equilibrium state, with correspondingly larger probabilities
and smaller weight factors.
A subtlety is introduced by the δ function in rule number

seven in Eq. (24), which reduces the number of integrations
by one. One hence needs to develop procedures for fixing
appropriate momenta, which can only be done a posteriori.

Note that, in principle, the proper averages are
obtained for any choice of the probabilities for randomly
selecting rules, particles, spins, polarizations or momenta.
However, the efficiency of the simulation, or the size of
the statistical error bars, depends crucially on the choice
of these probabilities for the simulation algorithm. The
more uniform the weight factors, the more efficient is the
simulation. The art of developing good Monte Carlo
simulations consists of finding probabilities that reflect
the summations and integrations in Eq. (24) as faithfully
as possible.

C. Truncations

In a practical implementation of the simulation pro-
cedure, a number of truncations are required. We have
already discussed how to control the number of time steps
in the expression (52) for Rω by the fugacity parameter qN.
The smaller the frequency ω, or the larger the probed time
scale, the more time steps need to be performed.
It may be convenient to limit the maximum number of

electrons, positrons and photons present in a simulation at
any given time. Note however that, in the course of the
simulation, a much larger number of electrons, positrons
and photons can occur (and disappear). In that sense, we
deal with a theory with an unlimited number of interactions
over large time scales.
In practice, we actually set minimum and maximum

values for the photon momenta to avoid possible infrared
and ultraviolet problems. This is done through the choice of
momenta according to a probability density fðqÞ. If one
starts with a probability density for q, one needs to find an
algorithm to sample according to that distribution. We
hence prefer to start with an algorithm for generating q and
then determine the corresponding probability density. As
we anticipate logarithmic divergences at large and small
wave vectors in QED, a natural choice for the length of the
wave vector of a photon is given by

q ¼
�
qmax

qmin

�
r̂
qmin ¼ qr̂maxq1−r̂min ; ð54Þ

where qmin and qmax are the lower and upper cutoffs and r̂ is
a uniform random number on the interval [0, 1]. If the
orientation of the vector q is chosen randomly, this choice
corresponds to an isotropic power law probability density
for the three-dimensional wave vector given by

fðqÞ ¼ 1

4π lnðqmax=qminÞ
1

q3
: ð55Þ

As an alternative, one can try a uniform distribution of q,

q ¼ r̂qmax þ ð1 − r̂Þqmin; ð56Þ

which implies the probability density
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fðqÞ ¼ 1

4πðqmax − qminÞ
1

q2
: ð57Þ

The most efficient choice of the probability density fðqÞ is
expected to depend on the quantity of interest and needs to
be found empirically.

D. Example

In order to illustrate our simulation approach, we
consider a very simple simulation in which the interaction
is applied only three times (three very large time steps).
Even such a toy simulation contains interesting physics, in
particular, as the big success of QED is in the perturbative
domain. According to Fig. 1, such a simulation should be
sufficient to get the leading-order correction to the effective
collision amplitude and hence to the magnetic moment of
the electron. The Feynman diagram in Fig. 1 represents the
contribution to the vertex function given in Eq. (40), that is,
it involves momentum four-vectors and four-dimensional
integrations. Our Hamiltonian time-evolution approach,
on the other hand, is focused on time evolution, momen-
tum three-vectors and three-dimensional integrations, as
is clearly visible in all expressions for the various
Hamiltonians. We need to identify the possible sequences
of three interactions that are consistent with the Feynman
diagram of Fig. 1 in our approach. If we amputate the
external legs from this Feynman diagram and focus on the
core triangle representing Γμð3Þ, we obtain the Feynman
diagrams for the corresponding three-step simulation
shown in Fig. 2. For our kinetic-theory-type simulation,
these six diagrams are not equivalent because they corre-
spond to the six possible permutations of three interaction
events occurring in the course of time; they correspond to
the six terms of Eq. (30), in the same order, from which we
get the respective frequencies and signs coming with each
term (possible minus signs are actually taken into account
by the amputation procedure so that we can use positive
signs for all terms contributing to the vertex function). The
information about the full diagrams with external legs
can be reconstructed by extending the fermion line by an
incoming electron of momentum p and spin σ and an
outgoing electron of momentum p0 and spin σ0, and by
attaching an incoming photon line with momentum q ¼
p0 − p and space-time index μ to the kink of the fermion
line. Therefore, the six diagrams in Fig. 2 specify the three-
step simulations for the vertex function in a unique way.
The first two Feynman diagrams in Fig. 2 correspond to

absorption of an external photon by an electron or positron,
the next two diagrams correspond to pair production, and
the last two diagrams correspond to pair annihilation. The
simulation steps associated with the first diagram are shown
in detail in Fig. 3. In the middle, we show the sequence of
states of the form (23) for the trajectory in Fock space; for
this diagram, the visited states consist of only one electron
and of up to two photons. On the left-hand side, we show

the collision amplitudes occurring for each of the three
interactions according to the collision rules in Eq. (24). For
the contribution associated with the kink in the fermion
line, the polarization vector is missing because, in the
definition (44) of the effective collision amplitude, we have
multiplied Γμ with the spinors but not with the polarization
vectors. On the right-hand side of Fig. 3, we show the
factors resulting from the free evolution according to Rð0Þ
with the frequencies obtained from Eq. (30) where, in view
of Eq. (42), we choose ω ¼ Ep and ω0 ¼ Ep0 [Eq. (37) then
implies that the incoming and outgoing electrons are on the
mass shell]. To amputate the external legs, only the
propagating particles shown in Fig. 2 need to be taken
into account for the energy calculations.
For example, in the first step of Fig. 3, an electron with

momentum p and spin σ emits a photon with momentum q0
and polarization α0, whereupon the electron momentum
changes to p − q0 and the spin to σ̄. From the fourth rule in
Eq. (24) we hence read of the collision amplitude
hσ̄σνp−q0pðnα

0
q0 Þν, which is the first factor on the left-hand side

of Fig. 3. Of the electron and the two photons of the
resulting state, only the electron (with energy Ejp−q0j) and
one photon (with energy q0) are propagated in the lower
half of the first Feynman diagram in Fig. 2 because the
external photon (with energy q) is amputated. For the
action of the free evolution operator, this implies

FIG. 2. Feynman diagrams for the vertex function in the
Hamiltonian approach; time increases from bottom to top.
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Rð0Þ
ω ¼ 1

Ejp−q0j þ q0 − ω
; ð58Þ

where the frequency ω has been identified from the first
term of Eq. (30), which corresponds to the first Feynman
diagram in Fig. 2. With ω ¼ Ep, we obtain the first factor
on the right-hand side of Fig. 3. The remaining factors can
be found by analogous arguments.

A sequence of steps like the one shown in Fig. 3 can be
associated with each of the six Feynman diagrams in Fig. 2
(a further example is given in Fig. 4). By collecting all the
factors associated with each of the six diagrams and using
the completeness of the photon polarization states, we
obtain the following effective collision amplitude for a
three-step simulation [the order of the terms corresponds to
the order of the Feynman diagrams in Fig. 2 and hence also
to the order of the terms in Eq. (30)]:

Hσ0σμ
p0p ¼ hσ

0σμ
p0p þ

Z
d3q0

1

Ejp−q0j − Ep þ q0
1

Ejp0−q0j − Ep0 þ q0
hσ

0σ̄0ν0
p0p0−q0h

σ̄0σ̄μ
p0−q0p−q0h

σ̄σν
p−q0pηνν0

þ
Z

d3q0
1

Ejp−q0j þ Ep þ q0
1

Ejp0−q0j þ Ep0 þ q0
~hσ

0σ̄0ν0
−p0q0−p0h

σ̄0σ̄μ
q0−p0q0−p

~hσ̄σνp−q0pηνν0

−
Z

d3q0
1

Ejp−q0j þ Ep þ Ejp0−q0j − Ep0

�
1

Ejp−q0j þ Ep þ q0
þ 1

Ejp0−q0j − Ep0 þ q0

�
hσ

0σ̄0ν0
p0p0−q0

~hσ̄
0σ̄μ

q0−p0q0−p
~hσ̄σνp−q0pηνν0

−
Z

d3q0
1

Ejp−q0j − Ep þ Ejp0−q0j þ Ep0

�
1

Ejp−q0j − Ep þ q0
þ 1

Ejp0−q0j þ Ep0 þ q0

�
~hσ

0σ̄0ν0
−p0q0−p0

~hσ̄
0σ̄μ

p0−q0p−q0h
σ̄σν
p−q0pηνν0 : ð59Þ

With the exception of photon emission by a positron, all
possible collision rules have been used to obtain Eq. (59),
so that our toy simulation provides a serious first test of the

proposed simulation approach (in particular, for the effi-
ciency of the Monte Carlo integrations). For a formal proof
of the suitability of the amputation rules in our simulation,
one should compare Eqs. (41) and (59). After multiplying
Eq. (41) with the proper factors to obtain the effective
collision amplitude (44), we see the claimed equivalence
after using the definitions (A10) and (A11) for the electron
and positron projectors. This reformulation demonstrates
nicely that perturbation theory focuses on propagators
whereas our simulations focus on collision rules and
collision amplitudes.
For our actual simulations of the various terms in

Eq. (59), we choose the convenient momentum vectors

p ¼
0
@

y

−x=2
0

1
A; p0 ¼

0
@

y

x=2

0

1
A; ð60Þ

and we hence have

E2
p ¼ E2

p0 ¼ x2

4
þ y2 þm2: ð61Þ

The corresponding polarization vectors nαq defined in
Eqs. (3)–(6) for α ¼ 0, 1, 2, 3 are given by

0
BBBB@

1

0

0

0

1
CCCCA;

0
BBBB@

0

1

0

0

1
CCCCA;

0
BBBB@

0

0

0

−1

1
CCCCA;

0
BBBB@

0

0

1

0

1
CCCCA; ð62Þ

respectively.
FIG. 3 (color online). Sequence of interactions associated with
the first Feynman diagram in Fig. 2.
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To identify the form factors F and G, we have listed the
two building blocks occurring in the representation (42) for
our choice (60) of the momenta p and p0 in Tables I and II.
According to Eq. (62), the rows for the spatial components
μ ¼ 1 and μ ¼ 3 correspond to the physically observable
transverse photon polarizations. For symmetry reasons, we
can focus on the two double-underlined components in
these tables.
From Table I, we conclude that the imaginary part

of H1=2;1=2;1
p0p þH1=2;−1=2;3

p0p results exclusively from the
second contribution in Eq. (42). From Eqs. (42), (44)
and Table II, we hence find the form factor

GðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
ð4πÞ3

p
mEpðEp þmÞ
e0y2

ffiffiffi
x

p

× ImðH1=2;1=2;1
p0p þH1=2;−1=2;3

p0p Þ: ð63Þ

By extrapolating to x ¼ 0, we then obtain the g factor for
the electron according to Eq. (45).
To gain a better intuition why the deviation of the g factor

from 2 is given by Gð0Þ, one should look at Table III. The
observation “Table I ¼ Table II − Table III” is known as
the Gordon decomposition. By means of this decomposi-
tion, one can rewrite the representation (42) of the vertex
functions in terms of the momentum- and spin-dependent
terms in Tables II and III, so that the occurrence of the
magnetic moment becomes plausible.
For our toy simulation of Hσ0σμ

p0p , the summations over
spin values and spatial components in Eq. (59) can actually
be performed in a deterministic manner rather than by
Monte Carlo methods. Only the integrations over the
photon momentum q0 in Eq. (59) need to be done by
Monte Carlo simulations. We have tried the sampling
procedures (54) and (56) for the photon momentum; it
turned out that, for our simulation of the form factor G, the
error bars for the procedure (54) are about 2 times larger
than for the procedure (56), so that we adopted the latter
one. To reproduce the symmetry properties in Tables I–III
rigorously, we have actually symmetrized the integrands in
Eq. (59) in the two-component of q0. All quantities have

FIG. 4 (color online). Sequence of interactions associated with
the fourth Feynman diagram in Fig. 2.

TABLE I. Components of the four-vector 2mūσ
0

p0 γ
μuσp for the

momenta given in Eq. (60); the pairs of spin values σ, σ0 are given
in the first row, the values of the space-time index μ in the first
column; our data analysis is focused on the two double-underlined
components.

1
2
, 1
2

− 1
2
, − 1

2
1
2
, − 1

2
− 1

2
, 1
2

0 2mþ 2y2−xyi
Epþm 2mþ 2y2þxyi

Epþm 0 0

1 2y − ix 2yþ ix 0 0

2 0 0 0 0
3 0 0 ix ix

TABLE II. Components of the four-vector ūσ
0

p0u
σ
pðpþ p0Þμ for

the momenta given in Eq. (60); the pairs of spin values σ, σ0 are
given in the first row, the values of the space-time index μ in the
first column; our data analysis is focused on the two double-
underlined components.

1
2
, 1
2

− 1
2
, − 1

2
1
2
, − 1

2
− 1

2
, 1
2

0 Ep½2þ x2þ2xyi
2mðEpþmÞ� Ep½2þ x2−2xyi

2mðEpþmÞ� 0 0

1 y½2þ x2þ2xyi
2mðEpþmÞ� y½2þ x2−2xyi

2mðEpþmÞ� 0 0

2 0 0 0 0
3 0 0 0 0

TABLE III. Components of the four-vector iūσ
0

p0σ
μνðp0 − pÞνuσp

for the momenta given in Eq. (60); the pairs of spin values σ, σ0
are given in the first row, the values of the space-time index μ in
the first column; our data analysis is focused on the two double-
underlined components.

1
2
, 1
2

− 1
2
, − 1

2
1
2
, − 1

2
− 1

2
, 1
2

0 x2þ2xyi
2m

x2−2xyi
2m 0 0

1 ixþ y x2þ2xyi
2mðEpþmÞ −ixþ y x2−2xyi

2mðEpþmÞ 0 0

2 0 0 0 0
3 0 0 −ix −ix
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been made dimensionless by setting m ¼ 1. The full
simulation code consists of about a hundred commands.
Our simulation results for the form factor of the electron

for y ¼ 2 are shown in Fig. 5. According to Eq. (63), the
result forGðxÞ should be independent of our choice of y; an
intermediate value of y seems to be most natural for the
simulations (we have checked that y ¼ 5 works equally
well). For each data point, 40 × 106 photon momenta have
been sampled for the integrations. The required computer
time on a single Intel Xeon 2.6 GHz processor is about two
minutes per data point. Curves for qmin ¼ 0 and three
different values of qmax are shown Fig. 5. For small x, each
of the curves is linear in x2 and can easily be extrapolated to
x ¼ 0. The extrapolated results are collected in Table IV.
Larger qmax leads to larger error bars. One should hence
keep the cutoff as small as possible and then extrapolate to
infinite cutoff, as shown in Fig. 6. Our final extrapolated
simulation result for infinite cutoff corresponds to

g ¼ 2.002321ð3Þ; ð64Þ
in perfect agreement with Eq. (47). Of course, we could
easily achieve higher precision by investing more than two
minutes of CPU time per data point. However, the main
point of our toy simulation is to demonstrate that a short
and simple simulation program can reproduce the anoma-
lous magnetic moment of the electron with minor computa-
tional effort. In view of our unsophisticated Monte Carlo

sampling procedure, the efficiency of the simulations is
truly amazing.
With the help of symbolic computation (series expan-

sions and integrations handled by MATHEMATICA), the
four integrals in Eq. (59) in the limit of small x and y
have actually been calculated in closed form by Kröger
[22], thus reproducing Schwinger’s famous result for g
given in Eq. (47). The resulting relative contributions
to g − 2 of the four integrals in Eq. (59) are given by
ð47þ 7π þ 34 ln 2Þ=30 ≈ 3.085 for absorption of a pho-
ton by an electron, ð−21 − 7π þ 34 ln 2Þ=30 ≈ −0.647 for
absorption of a photon by a positron, and equal values of
ð1 − 17 ln 2Þ=15 ≈ −0.719 for pair production and pair
annihilation. Simulations show that, for increasing y, the
contributions from absorption of a photon by a positron,
pair production and pair annihilation become less relevant
(while the total result, apart from the magnitude of the
error bars, is independent of y, as pointed out before).
For large y, say y ≥ 100, the result for g is entirely
dominated by the absorption of a photon by an electron,
that is, by the first Feynman diagram in Fig. 2 or, in other
words, by the sequence of collisions shown in Fig. 3.

VI. SUMMARY AND DISCUSSION

We have rewritten QED as a kinetic-theory-like real-
time-evolution equation with complex collision amplitudes
in the Fock space of electrons, positrons and photons. By
using longitudinal and temporal in addition to transverse
photons, the collision rules for photon emission/absorption
and electron-positron pair production/annihilation become
particularly simple. This specific procedure of first intro-
ducing unphysical degrees of freedom and then character-
izing the physical states corresponds to fixing a gauge (the
covariant Lorentz gauge). The Fourier transforms of time-
ordered correlation functions can be evaluated by stochastic
simulations of trajectories in Fock space consisting of

0 0.2 0.4 0.6 0.8 1
1.7

1.8

1.9

2

2.1

2.2

2.3

x2

−
2 

G
(x

) 
× 

10
3

expected

50

10

q
max

 =  5

FIG. 5 (color online). Simulation results for the form factor
GðxÞ of the electron.

TABLE IV. Extrapolated simulation results for the form factor
Gð0Þ of the electron for various values of the cutoff qmax.

qmax −2Gð0Þ × 103

5 2.146(2)
10 2.281(4)
20 2.308(6)
50 2.318(8)

0 0.01 0.02 0.03 0.04 0.05
2.1

2.15

2.2

2.25

2.3

2.35

1 / q
max
2

−
2 

G
(0

) 
× 

10
3

2.321(3) − 4.34(1) / q
max
2

expected

FIG. 6 (color online). Extrapolation of the simulation results for
the form factor Gð0Þ of the electron given in Table IV to infinite
cutoff; the dashed line represents a linear fit to the data points.
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sequences of such collision processes. Summations and
integrations introduced by the interaction Hamiltonian are
evaluated by Monte Carlo techniques. In the limit of the
average time step of the simulations going to infinity, we
formally recover perturbation theory.
The illustrative toy simulation used here to obtain the

leading-order contribution to the anomalous magnetic
moment of the electron is very close to perturbation theory,
which is known as an extremely successful tool in QED.
Whereas the kinetic-theory-like approach is clearly inap-
propriate for constructing perturbation expansions in
closed form, it may be efficient in numerical evaluations
of perturbation theory (numerical stochastic perturbation
theory is a well-developed topic in the context of lattice
gauge theories [23]; contrary to the simulations devel-
oped here, those simulations take place in an additional
fictitious time). However, the main purpose of the
proposed stochastic particle simulations is not to obtain
high-precision results or to compete with perturbation
theory. The ultimate goal rather is to provide a flexible
tool that can go beyond perturbation theory (by choosing
a finite average time step and controlling the number of
time steps by a fugacity).
The applicability of our stochastic time discretization of

the Schrödinger equation to nonperturbative problems has
not yet been demonstrated. In ongoing work, we investigate
the chiral phase transition of QED and the renormalization-
group flow at strong coupling near the critical point
with the kinetic-theory-like approach. Such investigations,
which allow conclusions about the existence of a Landau
pole (a finite ultraviolet cutoff at which the bare charge
diverges) and the triviality of pure QED, have previously
been performed by extensive lattice simulations (see,
for example, [24–30]). The lattice simulations imply that
QED is a valid theory only for small renormalized charges
[28]. Full consistency of QED can only be obtained in
the bigger settings of electroweak interactions or the
standard model. A major advantage of our particle-based
simulations should be that significantly larger variations of
the cutoff can be achieved than with four-dimensional
lattice simulations. A further advantage is the freedom in
choosing the number of fermion flavors. The applicability
of our kinetic-theory-like simulations to nonperturbative
problems will also be tested for exactly solvable models,
such as the Schwinger model (QED in one spatial
dimension) [31].
A regularization mechanism through an ultraviolet cutoff

in momentum space is significantly different from a lattice
formulation. Consistent simulation results in the low-energy
domain of QED would hence be encouraging; although
they cannot put QED on solid ground as a stand-alone
quantum field theory, they would explain the enormous
success of perturbative QED. For our stochastic simulation
technique, still another regularization mechanism would
be very natural: a rapid dissipative smoothing of the fields

on short length scales [32]. Such a dynamic coarse-graining

approach to quantum field theory actually provided the

original motivation for the kinetic-theory-like stochastic
simulation technique developed in the present work.
A generalization of the proposed simulation techniques

from QED to non-Abelian gauge theories would clearly
be desirable. The generalization of the ideas of Gupta and
Bleuler to obtain a manifestly covariant canonical quanti-
zation of Yang-Mills theories has actually been developed
in a series of papers by Kugo and Ojima [33–36]. As a
key ingredient to their approach, Kugo and Ojima use
the conserved charges generating BRST transformations
[10–12] to characterize the physical states. In addition to
ghost particles, three- and four-gluon collisions make the
kinetic theory for QCD more complicated than for QED.
For electroweak interactions, an additional complication
arises: the Higgs particle needs to be included into the
kinetic-theory-like description. Although the details are
considerably more complicated, the ideas of the present
paper can be generalized to simulate the Yang-Mills
theories for QCD and electroweak interactions and hence
all parts of the standard model.
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APPENDIX: DIRAC MATRICES AND SPINOR
RELATIONS

Pauli’s famous 2 × 2 spin matrices

σ1 ¼
�
0 1

1 0

�
; σ2 ¼

�
0 −i
i 0

�
; σ3 ¼

�
1 0

0 −1

�

ðA1Þ

can be doubled to act on the upper (electron) and lower
(positron) halves of spinors by defining the corresponding
4 × 4 matrices

σjk ¼ ϵjkl
�
σl 0

0 σl

�
for j; k ¼ 1; 2; 3; ðA2Þ

along with σ00 ¼ 0 and σ0j ¼ −σj0 ¼ iγ0γj, where Dirac’s
4 × 4 matrices γj are also defined in terms of Pauli’s
matrices,

γj ¼
�

0 σj

−σj 0

�
for j ¼ 1; 2; 3: ðA3Þ

We have further used the definition
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γ0 ¼

0
BBB@

1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

1
CCCA: ðA4Þ

In the standard representation, the spinors u and v
introduced in the Fourier representation (12) are given by

u1=2p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ep þm

2m

r
0
BBBB@

1

0

p̂3

p̂1 þ ip̂2

1
CCCCA; ðA5Þ

u−1=2p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ep þm

2m

r
0
BBB@

0

1

p̂1 − ip̂2

−p̂3

1
CCCA; ðA6Þ

v1=2p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ep þm

2m

r
0
BBB@

p̂1 − ip̂2

−p̂3

0

1

1
CCCA; ðA7Þ

and

v−1=2p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ep þm

2m

r
0
BBB@

p̂3

p̂1 þ ip̂2

1

0

1
CCCA; ðA8Þ

where we have introduced the notation p̂j ¼ pj=ðEp þmÞ
for conveniently normalized momenta pj ¼ pj.
For p ¼ 0, the column vectors (A5)–(A8) clearly form

an orthogonal basis of the four-dimensional vector space
characterizing the spins of electrons and positrons. For
arbitrary p, we still have orthogonality and completeness
relations. Actually, there are two versions, one for spinors
with equal p and one for spinors with opposite p. For
example, one form of the orthogonality relations reads

ūσpuσ
0

p ¼ −v̄σpvσ
0

p ¼ δσσ0 ; ūσpvσ
0

p ¼ v̄σpuσ
0

p ¼ 0: ðA9Þ

To establish the corresponding completeness relation, we
consider the 4 × 4 matrices obtained as sums over tensor
products of spinors and write them in a compact form in
terms of the Pauli matrices and 2 × 2 unit matrices. We find

ΛeðpÞ ¼
X
σ

uσpūσp ¼
1

2m

� ðEp þmÞ1 −pjσ
j

pjσ
j −ðEp −mÞ1

�

¼ 1

2m
ðEpγ

0 − pjγ
j þm1Þ; ðA10Þ

and

ΛpðpÞ ¼ −
X
σ

vσpv̄σp ¼
1

2m

�−ðEp −mÞ1 pjσ
j

−pjσ
j ðEp þmÞ1

�

¼ 1

2m
ð−Epγ

0 þ pjγ
j þm1Þ: ðA11Þ

For p ¼ 0, we realize thatΛeðpÞ andΛpðpÞmay be regarded
as projectors to the electron and positron degrees of
freedom, respectively. In Eqs. (A9)–(A11), there is no
integration over p and we indicate the summations over σ
explicitly. Equations (A10) and (A11) imply the complete-
ness relation

ΛeðpÞ þ ΛpðpÞ ¼ 1; ðA12Þ
and the additional property

ΛeðpÞ − Λpð−pÞ ¼
Ep

m
γ0: ðA13Þ

As the spinors v are obtained from the spinors u by
exchanging their upper and lower halves and flipping the
spins, we immediately obtain the relations

ūσpγμuσ
0

p0 ¼ v̄−σp γμv−σ
0

p0 ; ðA14Þ

and similarly

ūσpγμvσ
0

p0 ¼ v̄−σp γμu−σ
0

p0 : ðA15Þ

We further find the symmetry property

ūσpγμuσ
0

p0 ¼ ðūσ0p0γμuσpÞ�; ðA16Þ

and, in view of Eq. (A14), we similarly have

v̄σpγμvσ
0

p0 ¼ ðv̄σ0p0γμvσpÞ�: ðA17Þ

These symmetry properties, as well as the further relation

ūσpγμvσ
0

p0 ¼ ðv̄σ0p0γμuσpÞ� ðA18Þ

are a direct consequence of the self-adjointness of the
matrices γ0γμ.
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