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We present a variation of earlier attempts to relate renormalization group equations to higher spin
equations. We work with a scalar field theory in 3 dimensions. In this case we show that the classical
renormalization group equation is a variant of the Vasiliev higher spin equations with Kleinians on AdS4
for a certain subset of couplings. In the large N limit this equivalence extends to the quantum theory away
from the conformal fixed points.
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I. INTRODUCTION

In view of possible generalizations of the AdS/CFT
correspondence away from conformal fixed points and,
perhaps more importantly, deriving it from field theory, an
interesting idea is to think of it as a geometric realization of
the renormalization group (RG) flow (see, e.g., [1–6] for a
selection of various attempts in this direction). One
strategy, [7,8] (and more recently, [9]) is to relate higher
spin (HS) equations to the RG-equation for a nonlocal mass
term in a free field theory.
In this paper we consider a simpler, more restricted

model, consisting of a scalar field theory in 2þ 1 dimen-
sions. After a short review of Polchinski’s form [10] of the
Wilsonian RG-equation we then consider the RG-flow for
local, quadratic, higher derivative couplings. We first map
the linearized RG-flow of these couplings, as functions
of the cutoff scale to the nonpropagating, auxiliary or,
topological sector of the free, nonminimal Vasiliev-type
theory, with outer Kleinians [11] on a four-dimensional
AdS-background.1 This mapping turns out to be a straight-
forward consequence of the simple relation between
the 3- and 4-dimensional HS-algebras in the twistor
representation [13].
Next we consider the representation of HS-gauge trans-

formations on the RG equations. While we are not able to
give an interpretation of generic HS-gauge transformations
we will analyze some simple examples in detail. In
particular, we will see that while four dimensional HS-
gauge transformations do not leave the field theory action
invariant in general, the RG equation transforms cova-
riantly with respect to such transformations.
Finally, we describe how nonlinear terms in the RG flow

affect the HS-equation of motion. At the classical level
these interactions produce an inhomogeneity in the HS
equation which nevertheless preserves HS gauge invari-
ance. The reason for this to work is that while the nonlinear

flow induces a plethora of other couplings in addition to
the higher spin couplings, described so far, these extra
couplings do not effect the RG flow of the latter. At quantum
level this is no longer the case. Nevertheless, we show that in
the usual largeN limit of anN-component scalar field theory
the classical HS system is merely affected by anomalous
dimensions which enter as a HS singlet in the RG equation.
We comment on possible applications of our findings to

the HS-AdS/CFT duality at large N [14–17].

II. POLCHINSKI EQUATION

We start with a single scalar field in d ¼ 2þ 1 dimen-
sions. Following the conventions of [18] the Polchinski
equation, expressed in terms of dimensionless coordinates,
momenta and fields takes the form

� ∂
∂tþDφ ·

δ

δφ

�
St½φ� ¼

1

2

δ

δφ
St½φ� ·G ·

δ

δφ
St½φ�

−
1

2

δ

δφ
G ·

δ

δφ
St½φ�: ð2:1Þ

Here, St½φ� is basically the Wilsonian effective action,
minus the kinetic term, at cutoff scale t ¼ − lnðΛ=Λ0Þ,
expressed in terms of the couplings and dimensionless
fields ΛδφðxΛÞ ≔ ϕðxÞ. Furthermore, δ is the canonical
dimension of φ. St½φ� is essentially local, meaning that
the nonlocality has an all-orders Taylor expansion for small
p2 (see, e.g., [19]). The UV-regularized propagator,
KðpÞ=p2, enters through Gðp2Þ¼2K0ðp2Þ with Kð0Þ¼1,
limp2→∞Kðp2Þ¼0. For simplicity we will also assume that
Kðp2Þ is analytic in the neighborhood of the real positive
semiaxis with essentially exponential falloff at infinity.
Finally, D is the dilatation operator which acts on φ as

DφðpÞ ¼ −ðp∂p þ d − δÞφðpÞ: ð2:2Þ

Expanding St in the fields and couplings we can extract the
renormalization group equations. To illustrate this we set
the right-hand side of (2.1) to zero which is justified in the
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linearized approximation for a quadratic action and neglect-
ing the cosmological constant. For instance, for St ¼
m2

R
φðpÞφð−pÞ Eq. (2.1) then gives

ð∂tm2−2m2ðd−δÞÞ
Z

φðpÞφð−pÞ

−m2

Z
ðp∂pφðpÞφð−pÞþφðpÞp∂pφð−pÞÞ¼0: ð2:3Þ

Using δ ¼ d−2
2

for a scalar with canonical kinetic term and
performing a partial integration on the last term we recover
∂tm2 − 2m2 ¼ 0. The marginal deformation in 2þ 1

dimensions is St ¼ λ
R
φðp1Þ � � �φðp6Þδ3ðp1 þ � � � þ p6Þ

with Dφ · δ
δφSt ¼ 2ðd − 3ÞSt. We should note that in this

case the second (quantum) term on the right-hand side of
(2.1) acts as a source term for lower order couplings.
Similarly, for St ¼ gab

R
paφðpÞpbφð−pÞ we get

ð∂tgab − 2gabðd − δÞÞ
Z

paφðpÞpbφð−pÞ

− gab
Z

ðpap∂pφðpÞpbφð−pÞ

þ paφðpÞpbp∂pφð−pÞÞ ¼ 0; ð2:4Þ
which, upon partial integration amounts to ∂tgab ¼ 0. More
generally, we consider higher derivative terms of the form

St ¼ ga1���an
Z

pa1 � � �panφðpÞφð−pÞ;

ga1���an ¼ gða1���anÞ: ð2:5Þ

This is a special case of the more general HS coupling
analyzed in [20]. In particular, we can interpret ga1���an as
sources for the integrated higher spin currents. Unlike [20],
we assume the couplings to be independent of the coor-
dinates of the 2þ 1 dimensional field theory because we
want to apply standardWilsonian methods for the RG-flow.
Equation (2.1) then yields at linear order

ð∂tga1���an þ ðn − 2Þga1���anÞ ∂
∂ga1���an St½gt;φ� ¼ 0: ð2:6Þ

As long as St is quadratic in φ this is exact in the linearized
approximation up to the cosmological constant, which
receives corrections proportional to ga1���an through the
second term on the right-hand side of (2.1).
In what follows we shall concentrate on the RG flow

of the traceless subset of couplings of the form (2.5),
first in linearized and classical approximation. In this
case we will show that the RG equation (2.1) is actually
a free HS equation on AdS4. Following [13] we note that
the action of D on momenta has a Weyl star-product
realization in terms of quadratic products of ðy−α ; yþαÞ
satisfying ½y−α ; yþβ�� ¼ δβα. In particular,

D ¼ 1

2
yþαy−α and Pαβ ¼ iy−αy−β ; ð2:7Þ

where Pαβ is the translation generator, whereas

Lα
β ¼ yþαy−β −

1

2
δαβy

þγy−γ ; and Kαβ ¼−iyþα yþβ ð2:8Þ

represent Lorentz transformations and special con-
formal transformations respectively. We then replace
ga1���anðtÞpa1 � � �pan by

gðnÞðtjy�Þ≡e−2tga1���anðtÞðγa1Þα1β1 ���ðγanÞαnβny−α1y−β1 ���y−αny−βn ;
ð2:9Þ

where the factor e−2t is introduced to absorb the spin-
independent factor −2 in (2.6). We should mention that
expressing pμ in terms of the twistor variables ðy−α ; yþαÞ is
one-to-one only for lightlike momenta. However, this does
not mean that the momenta in (2.5) are restricted to be
lightlike since we merely use the twistors to represent the
action of the dilatation operator on ga1���an . For gðnÞðtÞ the
left-hand side of (2.1) is then equivalent to

DtgðnÞ ≡ ∂tgðnÞ þ ½D; gðnÞ��. ð2:10Þ
In particular, the linearized RG equation for this class of
couplings around the free field fixed point becomes
DtgðnÞ ¼ 0.

III. LINEARIZED RG FLOW AS HS
EQUATION ON ADS

In this section we will identify DtgðnÞ ¼ 0 with the
linearized HS equation of motion on AdS4. To do so we
first express Pαβ in terms of 4-dimensional spinor variables
through [13]

Pαβ ¼ iy−αy−β ¼ 1

4
ðiȳα þ yαÞðȳβ − iyβÞ

→
i
4
ȳ _αȳ_β −

i
4
yαyβ þ

1

4
ȳ _αyβ þ

1

4
yαȳ_β: ð3:1Þ

Next we express D in terms of 4-dimensional spinor
variables,

D ¼ 1

2
ϵαβyþαy−β ¼ 1

8
ϵαβðyα − iȳαÞðȳβ − iyβÞ ¼ 1

4
ϵαβyαȳβ

→ −
i
4
ðσ2Þα _βyαȳ _β: ð3:2Þ

We now want to compare (2.10) with the HS equation [11]

dCþW � C − C �W ¼ 0; ð3:3Þ
whereW ¼ Wμdxμ is a HS gauge potential andC is the field
which we will shortly identify with the coupling constants

IVO SACHS PHYSICAL REVIEW D 90, 085003 (2014)

085003-2



describing perturbations of the RG fixed point. The inte-
grability condition for (3.3) reads dW þW �W ¼ 0. The
form (3.2) of the dilatation operator D picks the AdS4
solution to this latter equation. Indeed, the AdS4 solution is
given by

W0ðxjYÞ ¼ e0ðxjYÞ þ ω0ðxjYÞ; ð3:4Þ
where (in Poincaré coordinates)

e0ðxjYÞ ¼
1

4i
dxμ

z
ðσμÞα_βyαȳ_β;

ω0ðxjYÞ ¼ −
1

4i
dxi

z
ððσizÞαβyαyβ þ ðσ̄izÞ _α _βȳ

_αȳ_βÞ:

Our conventions for the 4D sigma matrices are ðσμÞα _β ¼
ð1; ~σÞα _β, ðσ̄μÞ _αβ ¼ ð1;−~σÞ _αβ. The 3D gamma matrices
are then obtained by deleting the matrix with space-
time index μ ¼ 2, i.e., ðγaÞαβ ¼ ð1; σ1; σ3Þαβ. Identify-
ing t ¼ ln z we then see that expression (3.2) for D is
identical with ðW0ÞtðxjYÞ. Thus the tree-level, linearized
RG-flow [left-hand side of (2.1)] is identified with the HS
equation [11]

∂tCðxjYÞ þ ½ðW0ÞtðxjYÞ; CðxjYÞ�� ¼ 0; ð3:5Þ

whereCðxjYÞ is given by gðnÞðtjy�Þ as in (2.9) but expressed
in terms of 4-dimensional spinor variables using

4ðγaÞαβy−αy−β ¼ ðγaÞαβðȳαȳβ − yαyβ − iȳαyβ − iyαȳβÞ
¼ −iðγaÞαβðȳαyβ þ yαȳβÞ þ ϵabcðγbcÞαβðȳαȳβ − yαyβÞ
→ −iðσaÞα _βyαȳ _β − iðσaÞ _αβȳ _αyβ þ ϵabcððσ̄bcÞ _α _βȳ _αȳ_β − ðσbcÞαβyαyβÞ
¼ −2iðσaÞα _βyαȳ_β þ 2iððσ̄zaÞ _α _βȳ _αȳ_β þ ðσzaÞαβyαyβÞ; ð3:6Þ

and we defined γab ¼ 1
4
½γa; γb�. In order to verify the other

components of the equation (3.3), i.e.,

∂aCþ ðW0Þa � C − C � ðW0Þa ¼ 0; ð3:7Þ

we then observe that (3.6) is proportional to ðW0Þa in (3.4).
This then implies that (3.7) is satisfied so long CðxjYÞ does
not depend on xa, ie. CðxjYÞ ¼ CðtjYÞ.
To summarize, Eq. (3.5) is the tree-level linearized

RG-equation for the couplings gðnÞ around the
Gaußian fixed point while (3.7) encodes translation
invariance.
Note that in (3.5) and (3.7) the commutator ½ðW0Þa; C��

rather than the twisted commutator ðW0Þa � C − C � ð ~W0Þa
with ~fðxjy; ȳÞ≡ fðxj − y; ȳÞ enters in the equation for
CðxjYÞ. This means that CðxjYÞ is a nonpropagating
(auxiliary) field. This is to be expected since the RG
equation is a first order rather than a second order equation.
In other words, the auxiliary sector is responsible for
couplings (moduli) of the theory. A similar observation
was made in 3-dimensional HS theory considered in [21]
which describes HS interactions of 3d matter fields of an
arbitrary mass. In this case, as explained in that paper, the
mass parameter is directly related to the value of some of
the auxiliary fields.
To make the relation between HS and RG equations

complete we should also consider the Vasiliev equations
involving the auxiliary spinor connection, SðZ; Y; k; k̄Þ ¼
sαdzα þ s _αdz _α, that is [11]

S � S ¼ −idzαdzαð1þ FðBÞ � κÞ
− idz _αdz _αð1þ F̄ðBÞ � κ̄Þ;

S � B − B � S ¼ 0;

dSþW � S − S �W ¼ 0: ð3:8Þ

Here, Z ¼ ðzα; z _αÞ is pair of auxiliary twistor variable zα

with ½zα; zβ�� ¼ −2iϵaβ and dzαdz _α ¼ −dz _αdzα are anti-
commuting differentials. The field BðxjY; ZÞ is such that
BðxjY; ZÞjZ¼0 ¼ CðxjYÞ and otherwise determined by the
Vasiliev equations. FðBÞ is so far an arbitrary function and
κ ¼ kK where k is a Kleinian with the property

kfðzα;dzα;yα;z _α;dz _α;y _αÞ¼ fð−zα;−dzα;−yα;z _α;dz _α;y _αÞk
ð3:9Þ

andK ¼ eizαy
α
is an innerKleinian for the �-productwith the

properties

fðy; zÞ � K ¼ fð−z;−yÞK; and

K � fðy; zÞ ¼ Kfðz; yÞ: ð3:10Þ

To 0th order in B, the first equation in (3.8) is solved by
S0 ¼ zαdzα þ z _αdz _α. The second equation then implies that
B is independent ofZ at leading order (which is the case). To
0th order in B the last equation is then again identically
satisfied. On the other hand, for nonvanishing FðBÞ this
equation implies a correction toW. In the last sectionwewill
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see that in pour case interactions enter in a different way
leaving the connection W invariant.

IV. GAUGE TRANSFORMATIONS

A complete understanding of how to represent arbitrary
HS gauge transformations in RG equations is still lacking.
We can nevertheless develop some intuition by consider-
ing examples. The HS gauge transformations are of the
form [13]

δBðxjY;ZÞ¼−ϵðxjY;ZÞ�BðxjY;ZÞþBðxjY;ZÞ�ϵðxjY;ZÞ;
δWðxjY;ZÞ¼dϵðxjY;ZÞþ½W;ϵ��ðxjY;ZÞ: ð4:1Þ

Let us first assume that ϵ ¼ ϵðtjyα; ȳ _αÞ. In that case the first
line in (4.1) reduces to

δgðnÞ ¼ ½gðnÞ; ϵ��. ð4:2Þ

In order to obtain a 3-dimensional interpretation of δgðnÞ we
should express yα and ȳ _α in terms of y�α. For instance, if we
take ϵ ¼ baðtÞKa where Ka is given by (2.8) expressed in
4D spinor variables, this then amounts to

gðnÞ → gðnÞ þ 2ðg · bÞðn−1ÞDþ 2iðg½abb�Þðn−1ÞLab; ð4:3Þ

which can then be realized in field theory as lower
dimensional, momentum dependent couplings in St.
In (4.3) symmetric (Weyl) ordering is understood. This
transformation does not leave St invariant, generically,2

although some terms may vanish. For instance, for n odd St

does not depend on gðnÞ as we already noted. Similarly, the
Lorentz term on the right-hand side of (4.3) vanishes in St
for n odd while the dilatation term does contribute a
coupling with n even. The connection, on the other hand,
transforms as

D → Dþ ∂tbaKa − baKa: ð4:4Þ

Clearly, W0 þ δW is no longer of the AdS-form, not even
modulo coordinate transformations which are parametrized
by ϵðxÞ. Nevertheless, (2.10) transforms covariantly by
construction. Explicitly,

½D; δgðnÞ� þ ½δD; gðnÞ�
¼ 2nðδgÞðn−1Þ − 2ð _b · gÞðn−1ÞD − 2ið _b½agb�Þðn−1ÞLab

ð4:5Þ

and

∂tδgðnÞ ¼ 2ð _b · gÞðn−1ÞDþ 2ið _b½agb�Þðn−1ÞLab

þ 2ðb · _gÞðn−1ÞDþ 2iðb½a _gb�Þðn−1ÞLab: ð4:6Þ

Since _gðnÞ ¼ −ngðnÞ, (2.10) is satisfied without using
further properties of St. If bðtÞ satisfies the RG equation
then the connection D in (4.4) is invariant so that (2.10) in
its original form is valid for gðnÞ as well as δgðnÞ. It is
interesting to note that the RG equation displays an oð3; 2Þ
covariance even if the action parametrized by fgðnÞg is not
conformal. Of course, we have only considered the linear-
ized flow so far.
As an example of a zα-dependent gauge transformation

we take ϵ ¼ K as in (3.10). Then δB ¼ −K � Bþ B � K or,
equivalently

δgðnÞ ¼ −K � gðnÞ þ gðnÞ � K
¼ −Kðz; yÞgðnÞðzα; ȳ _αÞ þ gðnÞð−zα; ȳ _αÞKðz; yÞ: ð4:7Þ

Remember that gðnÞ was independent of zα in our con-
struction but this is not a gauge-invariant statement. Since
there is no interpretation for zα in 3-dimensions I suspect
that the correct interpretation in 3 dimensions is to set
zα ¼ 0. Thus δgðnÞ ¼ 0.

V. ADDING THE INHOMOGENEITY

Let us finally return to the right-hand side of (2.1). In [8]
it was suggested to include this terms in a redefinition of
W0. However, we shall see below that this is realized
differently in the HS description. For a free field theory the
quantum term on the right-hand side can only contribute to
the cosmological constant which we already discussed and
which is not part of the higher spin spectrum. Let us now
turn to the first (tree-level) term on the right-hand side of
(2.1) which corresponds to the graph in Fig. 1a. This graph
contributes a source term to (2.6) of the form3

Z
φð−pÞga1���amgb1���bnK0ðp2Þpa1 � � �pampb1 � � �pbnφðpÞ:

ð5:1Þ
Of course, the product of two traceless couplings as in (5.1)
need not be traceless so that traceful couplings will be

2It is conceivable that an invariant action can nevertheless be
found along the lines [22] where a consistent coupling of a scalar
to higher spin external fields is constructed.

3In x-space this sources a nonlocal coupling through

∂tgaq���anþmðxÞð∂a1 � � � ∂amþn
φðyÞÞφðxþ yÞ

¼ ga1���anganþ1���anþmK0ðxÞð∂a1 � � � ∂amþn
φðyÞÞφðxþ yÞ:

Taking the symmetrized, traceless part of both sides this
amounts to

DtgðnþmÞðt;xÞ
¼K0ðxÞe−2tga1;���;anðtÞganþ1;���;anþmðtÞγα1β1a1 ���γαnþmβnþm

anþm y−α1 ���y−βnþm
:
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generated along the RG flow. In order to clarify the
algebraic structure it is then useful to define a product
“·” on the space of couplings through

ga1���am · gb1���bn ¼ gða1���amgb1���bnÞ; ð5:2Þ

where ð� � �Þ stands for symmetrization of the indices. This
product is clearly associative. If we furthermore divide out
the ideal generated by elements containing traceful cou-
plings (corresponding to deformations of St that involve
powers of the d’Alembertian, or, p2) then the set of
traceless symmetric higher derivative couplings with the
above product form an Abelian algebra.4

In order to describe the contribution from (5.1) to
the flow of the traceless couplings we expand K0 as
K0ðp2Þ ¼ K0ð0Þ þOðp2Þ. Then, recalling that representa-
tion of the momenta pa in term of spinor variable as in (2.7)
takes care of symmetrization and projection onto vanishing
trace automatically the nonlinear correction to (3.5) can be
written as

∂zCðtjYÞ þ ½ðW0ÞzðtjYÞ; CðtjYÞ�� ¼ K0ð0ÞCðtjYÞCðtjYÞ:
ð5:3Þ

As it stands this equation does not look covariant under
higher spin gauge transformations (4.1) not even when
restricted to gauge parameters ϵðxjY; ZÞ that are indepen-
dent of Z. Note, however, that we may as well replace
CðtjYÞCðtjYÞ by the star products CðtjYÞ � CðtjYÞ since on
functions that depend only on y−α both products agree. Thus
(5.3) is, in fact, covariant under higher spin gauge trans-
formations. Finally, the traceful couplings sourced by (5.1)
and sitting in the ideal defined above, do not “backreact” on
the traceless couplings at tree level.
Let us now analyze what happens in the presence

of interactions. Here we focus on the quartic term
λ
R
φðp1Þ � � �φðp4Þδ3ðp1 þ � � � þ p4Þ in St which is inter-

esting in connection with theOðNÞmodel. At tree level, the
RG flow (2.1) produces, among higher order couplings,
also traceless couplings of the form (Fig. 1b)

2λK0ð0Þga1���an
Z

qa1 � � �qanφðqÞφðp2Þ � � �φðp4Þ

× δ3ðqþ � � � þ p4Þ ð5:4Þ

which are not captured by the higher spin system (5.3) but,
again do not effect the running of the traceless, quadratic
couplings at tree level and thus the system (5.3) is indeed
closed at tree level.
At quantum level [2nd term on the right-hand side of

(2.1)] the above decoupling no longer takes place. Indeed,
at one-loop the iterated flow equations will involve con-
tributions to the flow of ga1���an that include the graph
displayed in Fig. 1c, that is

ga1���anλK0ð0ÞðgðsÞ; gðsÞÞ
Z

ðp2ÞsðK0ðp2ÞÞ3; ð5:5Þ

where ðgðsÞ; gðsÞÞ ¼ ga1���asga1���as is an element in the ideal.
This, and other contributions of this type to the flow can be
incorporated by noticing that they affect the dimension
γðgðsÞ; λÞ of ga1���an as a HS singlet. They are thus consistent
with our HS equation (5.3) provided we modify the
definition (2.9) as

gðnÞðtÞ≡ ΓðtÞe−2tga1���anðtÞðγa1Þα1β1 � � �
× ðγanÞαnβny−α1y−β1 � � � y−αny−βn ; ð5:6Þ

where ΓðtÞ is the iterative solution to ∂tΓ ¼ γðtÞΓ. The
corresponding HS-RG equation can again be brought to
the form (5.3) by a reparametrization s ¼ fðzÞ with
f0ðzÞ ¼ Γ−1ðzÞ. The HS covariance of (5.3) then follows
from the fact that γðgðsÞ; λÞ is invariant under HS symmetry
transformations. Higher loop corrections to γ in λ arise
among others from the “bubble diagrams” (see, e.g., [23]).
Note that all diagrams discussed so far and which

contribute to the running of gðnÞ are proportional to
K0ð0Þ. This implies, in particular that, if we choose a
cutoff function such that K0ð0Þ ¼ 0, then these contribu-
tions vanish. The scalar coupling is an exception since there
is a contribution to the running of the mass gð0Þ due to
standard mass renormalization in φ4-theory. Of course,
there are many more diagrams that contribute to the running
of gðnÞ even for K0ð0Þ ¼ 0. One such diagram is depicted in
Fig. 1d. While this latter contribution can be absorbed in

FIG. 1. Classical and quantum contributions the right-hand side of (2.1). A fat line represents an insertion of K0ð0Þ and the squares
represent traceless, quadratic higher derivative couplings, gðnÞ.

4If we allow the couplings to depend on the coordinates of the
2þ 1 dimensional field theory this algebra is no longer Abelian.
In that case, upon suitable ordering of the derivatives as in [22]
the couplings generate the higher spin algebra.
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the anomalous dimension as in (5.5) we do not expect this
to be the case for all higher diagrams of this type.
A substantial simplification occurs, however, if we

consider the large N limit of this vector model with
Lagrangian (see, e.g., [23])

L ¼ 1

2
∂αφ

i∂αφi þ 1

2
m2φiφi þ λ

4!N
ðφiφiÞ2: ð5:7Þ

Contributions of the form Fig. 1d are then suppressed in the
large N limit. Thus we conclude that
In the large N limit the RG equations for the traceless

higher derivative couplings gðnÞ are precisely given by (5.3)
except the mass term gð0Þ. Furthermore, for K0ð0Þ ¼ 0
equation (5.3) reduces to the free equation (3.5).
It is reassuring to note that the higher spin couplings gðnÞ,

n ≥ 2 are (marginally) irrelevant in the IR so that the IR
fixed point is independent of the value of K0ð0Þ.

VI. DISCUSSION

In this paper we found that the classical RG flow for
traceless higher derivative couplings that are quadratic in
the fields is an interacting HS equation of motion for the
auxiliary, nonpropagating sector on an AdS background. In
the large N limit of an N-component interacting scalar field
theory this equivalence extends to the full quantum theory
even away from the conformal fixed points. The fact that
the auxiliary sector is related to couplings in the RG
equation seems physically sensible since the RG flow is
a first order flow. Although our derivation was done for
a scalar field in 2þ 1 dimensions other types of fields

can be treated on same footing. Generalizations to other
space-time dimensions should also be possible but the
3-dimensional case is particularly intuitive due to the
simple relationship between 3- and 4-dimensional twistor
variables. An interesting question is whether the relation
found here can be extended to finite values of N.
Another interesting question is whether the HS nature of

the RG equation is useful in explaining the origin of the HS/
O(N)-model duality which involves the physical, propa-
gating sector of the Vasiliev theory. Perhaps progress can be
made in combining the map constructed her here with
previous ideas developed in [20] for instance. One possible
hint comes from the observation that in a covariant
formulation of the interaction HS theory, the auxiliary
HS modes which were related to the couplings in this paper
source physical HS modes [11]. From our point of view it is
therefore natural to interpret the latter modes as vevs. We
hope to come back to this issue in the future.
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