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The quark-meson model is investigated for the two- and three-flavor case extended by contributions
of vector mesons under conditions encountered in core-collapse supernova matter. Typical temperature
ranges, densities, and electron fractions, as found in core-collapse supernova simulations, are studied by
implementing charge neutrality and local β equilibrium with respect to weak interactions. Within this
framework, we analyze the resulting phase diagram and equation of state (EoS) and investigate the impact
of undetermined parameters of the model. The EoS turns out to be relatively independent on the entropy per
baryon but there are significant changes when going from the two-flavor to the three-flavor case due to the
nontrivial contribution from the strange quarks which stay massive even at high densities. While an
increasing vector meson coupling constant leads to a substantial stiffening of the EoS, we find that the
impact of changing the scalar meson mass is equally strong and results in a softening of the EoS for
increasing values.
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I. INTRODUCTION

The properties of strong interaction matter as described
by quantum chromodynamics (QCD) at high densities and
temperatures can be studied in the laboratory by relativistic
heavy-ion collision experiments. Manifestations of this
extreme state of matter created in the laboratory can be
found in the early universe, neutron star mergers, and core-
collapse supernova explosions.
The processes which are able to turn the collapse of a

massive star into a supernova explosion are not fully
understood yet; see e.g. [1] for a review. A key ingredient
to core-collapse supernova simulations is the nuclear
equation of state at nonzero density, temperature, and
proton fraction. During the supernova evolution high
temperatures and densities can be reached allowing for
the opportunity to explore unknown regimes of the phase
diagram of strong interactions, i.e. the QCD phase diagram.
The conditions might be such that a new phase emerges in
the core of the collapsed star.
A possible phase transition during the supernova evo-

lution has been studied in [2] for a pion-condensed state
and in [3,4] for a first-order phase transition from hadronic
matter to quark matter which can influence the supernova
dynamics such that a delayed explosion can take place.

Quark matter could also appear during the later protoneu-
tron star evolution as studied in [5]. The presence of a new
quark matter phase during the supernova stage has been
studied in more detail in [6,7] by including effects from
neutrinos. If a new phase is present early in the evolution of
the supernova, it can produce a second shock wave with an
accompanying measurable second neutrino burst [8]. In
certain cases, different paths in the phase diagram of QCD
can be swept out by the delayed collapse to a black hole
during the evolution of a core-collapse supernova [9]. The
adopted equations of state (EoS) used above are hybrid
models with a low-density nucleonic equation of state and
the simple MIT bag model extended to nonzero temper-
atures as the high-density part. The merger of pure quark
stars (strange stars) was also simulated within the MIT bag
model in [10] showing distinctly different features com-
pared to ordinary neutron star mergers [11].
However, it is known that the MIT bag model fails in

describing lattice data, see e.g. [12], and is not suited to
describe profound features of dense matter QCD, as chiral
symmetry restoration at high densities. As perturbation
theory breaks down on the scale of interest here and results
from lattice QCD at high densities are not available yet,
improved effective models have to be utilized for studying
the regime of the QCD plasma relevant for astrophysical
applications, as core-collapse supernovae, which we focus
on in the following. The Nambu-Jona-Lasinio (NJL)
model, as a chiral effective model of QCD, has been
studied for nonzero temperature and neutrino chemical
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potential, relevant for protoneutron stars, in [13–16]. First
exploratory investigations of supernova explosions, which
require a given electron to baryon number ratio Ye, were
only undertaken recently within chiral approaches of QCD
in [17]. Here the Polyakov-loop extended version of the
NJL model, the PNJL model, was used and compared to
the MIT bag model. It turned out that there are generic
differences between the two model descriptions of rel-
evance for the supernova dynamics.
In this work the linear sigma model [18] is adopted as an

effective chiral model of QCD to study the high-density
plasma phase, where the fundamental particles are quarks
interacting via scalar and vector meson exchange. The
quark masses are generated by nonvanishing vacuum
expectation values of the scalar fields which act as chiral
condensates and model the spontaneous breaking of chiral
symmetry as observed in the vacuum of QCD. At high
temperature and/or densities the condensates melt away and
the theory becomes approximately chirally invariant. The
order of the phase transition depends on the choice of the
parameters used. A detailed study is performed by varying
the different parameters of the model to delineate their role
for the properties of supernova material. A comparison
between the two flavor model, involving only the light up
and down quarks, and the three flavor model, where also
the strange quark is taken into account, is performed. By
using standard methods of finite temperature field theory,
the EoS is calculated as an improved description of the
high-density QCD plasma phase compared to the MIT bag
model result. Matching the EoS to a hadronic EoS unless
quark matter is absolutely stable can serve as an input
for core-collapse supernova and neutron star merger
simulations.

II. EXTENDED LINEAR SIGMA MODEL

A. Standard quark-meson model

The Lagrangian of the linear sigma model with Nf
flavors is given by (see e.g. [19])

L ¼ ψ̄ði∂ − gϕÞψ þ LNf
; ð1Þ

ϕ ¼ Taϕa ¼ Taðσa þ iγ5πaÞ: ð2Þ

The quark spinors are of the form ψ ¼ ðu; dÞ for Nf ¼ 2
flavors and ψ ¼ ðu; d; sÞ for Nf ¼ 3 and involve also the
color degrees of freedom Nc ¼ 3. The Yukawa coupling
between quarks and members of the scalar or pseudoscalar
meson nonets σa=πa is controlled by the scalar coupling
constant g. The generators of the underlying UðNfÞ
symmetry group are denoted by Ta ¼ λa=2 with
a ¼ 0;…; N2

f − 1, which are the Pauli matrices or the
Gell-Mann matrices. The pure mesonic contributions LNf

for Nf flavors are of the form [18,20]

L2 ¼
1

2
∂μσ∂μσ þ 1

2
∂μ~π∂μ~π

−
λ

4
ðð~π2 þ σ2Þ − v2Þ2 þ hσ; ð3Þ

L3 ¼ Trð∂μϕ
†∂μϕÞ −m2Trðϕ†ϕÞ − λ1½Trðϕ†ϕÞ�2

− λ2Trðϕ†ϕÞ2 þ cðdetðϕÞ þ detðϕ†ÞÞ
þ Tr½Hðϕþ ϕ†Þ�: ð4Þ

The first part of Eq. (3) is the standard kinetic term for the
mesons, while the potential part involves the Mexican hat
potential, which is invariant under chiral transformations
and leads to spontaneous symmetry breaking, as well as an
explicit symmetry breaking term, controlled by the param-
eter h. These symmetry breaking terms generate a finite
vacuum expectation value (VEV) for the σ meson and thus
a finite quark mass through (1).
The parameter v is determined by the requirement that

the minimum of the potential lies at the pion decay constant
fπ and the fact that the VEVof the pion field has to vanish
due to its parity. From this follows

v2 ¼ f2π −
h
λfπ

: ð5Þ

The masses of the π and σ mesons in the ground state are
given by the second derivatives of the potential with respect
to the fields evaluated in the vacuum at T ¼ 0 which fixes

h ¼ fπm2
π; ð6Þ

λ ¼ m2
σ −m2

π

2f2π
: ð7Þ

The pion mass is directly related to the explicit symmetry
breaking term and for h ¼ 0 the pions become the massless
Goldstone bosons. The light quark masses are given
according to

ml ¼
g
2
hσi: ð8Þ

The Lagrangian (4) for three flavors contains also a
standard kinetic term, as well as a meson mass term.
Additionally, there are quartic interaction terms involving
the coupling constants λ1 and λ2. The determinant term is a
cubic coupling term between the fields, which corresponds
to the Uð1ÞA anomaly. The last part is again an explicit
symmetry breaking term, with H ¼ haTa. Analogously to
the SUð2Þ case, through the spontaneous symmetry break-
ing, the σ fields get nonvanishing VEVs, while again the
VEVs of the π fields have to vanish due to their pseudo-
scalar character. Following [20] we introduce the notation

hϕi≡ ϕ̄≡ Taσ̄a: ð9Þ
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Shifting ϕ by their VEVs and taking into account that only σ̄0, σ̄3, and σ̄8 do not vanish, because they respect the quantum
numbers of the vacuum, the potential takes the form [21]

Uðσ̄0; σ̄3; σ̄8Þ ¼ m2

�
σ̄20 þ σ̄23 þ σ̄28

2

�
− c

�
σ̄30
3

ffiffiffi
6

p −
σ̄38
6

ffiffiffi
3

p −
σ̄0σ̄

2
3

2
ffiffiffi
6

p −
σ̄0σ̄

2
8

2
ffiffiffi
6

p þ σ̄23σ̄8
2

ffiffiffi
3

p
�

þ λ1

�
σ̄40 þ σ̄43 þ σ̄48

4
þ σ̄20σ̄

2
3 þ σ̄20σ̄

2
8 þ σ̄23σ̄

2
8

2

�

þ λ2

�
σ̄40
12

þ σ̄43 þ σ̄48
8

þ σ̄20σ̄
2
3 þ σ̄20σ̄

2
8

2
þ σ̄23σ̄

2
8

4
þ σ̄0σ̄

2
3σ̄8ffiffiffi
2

p −
σ̄0σ̄

3
8

3
ffiffiffi
2

p
�
−h0σ̄0 − h3σ̄3 − h8σ̄8: ð10Þ

The σ fields are identified with the known scalar mesons
and the π fields with the pseudoscalar ones

ðσ0;…; σ8ÞT b¼ ðσ0; aþ0 ; a−0 ; σ3; κþ; κ−; κ0; κ̄0; σ8ÞT; ð11Þ

ðπ0;…; π8ÞT b¼ ðπ0; πþ; π−; π3; Kþ; K−; K0; K̄0; π8ÞT:
ð12Þ

Their masses can be computed analogously to the
SUð2Þ case from the potential part of the Lagrangian (4)
through [20]

ðm2
SÞab ¼

∂2Uðσ; πÞ
∂σa∂σb

����
σ̄

; ð13Þ

ðm2
PÞab ¼

∂2Uðσ; πÞ
∂πa∂πb

����
σ̄

: ð14Þ

The condensate σ3 breaks isospin symmetry explicitly. It is
assumed that the vacuum at zero temperature is isospin
symmetric, so that there holds σ3 ¼ 0. Thus, the explicit
symmetry breaking term has to vanish, h3 ¼ 0. The quark
masses are given by

mu ¼ g

�
1ffiffiffi
6

p σ̄0 þ
1

2
σ̄3 þ

1

2
ffiffiffi
3

p σ̄8

�
;

md ¼ g

�
1ffiffiffi
6

p σ̄0 −
1

2
σ̄3 þ

1

2
ffiffiffi
3

p σ̄8

�
;

ms ¼ g

�
1ffiffiffi
6

p σ̄0 −
1ffiffiffi
3

p σ̄8

�
: ð15Þ

The remaining parameters can then be determined as in
Refs. [19,20].

B. Extension to vector mesons

The standard linear sigma model is extended by a vector
meson contribution. The interaction of quarks through
scalar mesons is attractive while a repulsive force can be
provided by the inclusion of vector mesons. The
Lagrangian of the vector mesons is given by [22]

LV ¼ −
1

4
FμνFμν þ

η2v
2
VaμVa

μ − gaV ψ̄γ
μTaψVa

μ; ð16Þ

where Va
μ are the vector meson fields. Their number

depends on the considered flavors, which are

a ¼ 0;…; 3 for SUð2Þ; ð17Þ

a ¼ 0;…; 8 for SUð3Þ: ð18Þ

The Ta are again the generators of the appropriate groups.
The Lorentz index μ indicates the vector character of the
mesons. The first term in Eq. (16) is the standard kinetic
term for vector particles, while the second one is the mass
term. The vector mesons are coupled to the quark fields by
a Yukawa type interaction term.

C. Grand canonical potential

Assuming local equilibrium allows one to work in a
mean field approximation. The meson fields are treated as
classical fields. As pointed out before, the VEVs of the pion
fields have to vanish due to parity while the σ fields adopt a
finite value. In the case of three flavors a finite VEV is only
investigated for the σ0, σ3, and σ8 fields and it is assumed
for the others to vanish. Furthermore, the spatial compo-
nents of the vector meson fields have to vanish because of
rotational symmetry. Additionally, for two flavors only the
zeroth and third flavor group component do not vanish
because of isospin invariance. For three flavors one ends
up with an additional vector meson field from the eighth
component of the vector field nonet. The mathematical
vector fields can be directly identified with the physical
ones. For Nf ¼ 2 one finds

ω b¼ V̄0
0; ρ b¼ V̄3

0: ð19Þ

For Nf ¼ 3 one decouples the strange quark sector by
assuming ideal mixing and one finds
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ω b¼
ffiffiffi
2

3

r
V̄0
0 þ

1ffiffiffi
3

p V̄8
0; ρ b¼ V̄3

0;

ϕ b¼ 1ffiffiffi
3

p V̄0
0 −

ffiffiffi
2

3

r
V̄8
0: ð20Þ

The rotation of fields into each other results in the change of
the effective coupling constants according to

gV
2

¼ gω ¼ gρ ¼
gϕffiffiffi
2

p ð21Þ

as dictated by SUð3Þ symmetry and ideal mixing. The
fields occur in combination with the Gell-Mann matrices,
that is why also the physical fields have to be given with
respect to a basis which is defined as

χω ¼

0
B@

1 0 0

0 1 0

0 0 0

1
CA χρ ¼

0
B@

1 0 0

0 −1 0

0 0 0

1
CA

χϕ ¼

0
B@

0 0 0

0 0 0

0 0 1

1
CA: ð22Þ

The SUð2Þ mean field Lagrangian is then given by

L ¼ ψ̄

�
i∂ þ μγ0 −

g
2
σ − gωγ0ω − gργ0τ3ρ

�
ψ ð23Þ

−
λ

4
ðσ2 − v2Þ2 þ hσ þm2

ω

2
ω2 þm2

ρ

2
ρ2: ð24Þ

Here also the chemical potential was added. It is a diagonal
matrix with the entries μu and μd. The vector meson
contributions are of the same form and one defines an
effective chemical potential

~μ ¼
�
~μu 0

0 ~μd

�

¼
�
μu − gωω − gρρ 0

0 μd − gωωþ gρρ

�
: ð25Þ

Now we turn to the case of SU(3) flavor symmetry. Analog
to the vector meson fields, also the condensates are rotated
to decouple the strange and nonstrange sectors [19,20]

�
σx
σy

�
¼ 1ffiffiffi

3
p

� ffiffiffi
2

p
1

1 − ffiffiffi
2

p
��

σ0
σ8

�
; ð26Þ

where σx is called the nonstrange condensate and σy the
strange condensate. Using this new notation the meson
potential is rewritten and the SUð3Þ mean field Lagrangian
takes the form

L ¼ ψ̄

�
i∂ þ μγ0 − g

�
σ0

λ0

2
þ σ3

λ3

2
þ σ8

λ8

2

�
−gωγ0ωχω − gργ0ρχρ − gϕγ0ϕχϕ

�
ψ

−
m2

2
ðσ2x þ σ2y þ σ23Þ þ

c

2
ffiffiffi
2

p ðσ2xσy − σ23σyÞ −
1

8
ð2λ1 þ λ2Þðσ4x þ σ43Þ −

1

4
ðλ1 þ λ2Þσ4y

−
λ1
2
ðσ2xσ2y þ σ23σ

2
y þ σ2xσ

2
3Þ −

3

4
λ2σ

2
xσ

2
3 þ hxσx þ hyσy þ

m2
ω

2
ω2 þm2

ρ

2
ρ2 þm2

ϕ

2
ϕ2: ð27Þ

The chemical potential gets an additional entry for the
strange quark of the form ~μs ¼ μs − gϕϕ. The grand
canonical potential is connected to the Lagrangian through
the path integral over the quark fields, which are the only
remaining quantum fields

Ω ¼ −
T
V
lnZ; ð28Þ

Z ¼
Z

Dψ̄Dψ exp

�Z
β

0

dτ
Z

d3xLðψ̄ ;ψÞ
�
: ð29Þ

with the temperature T and β ¼ 1=T. The electron
contribution is omitted here, since it is fully decoupled
and can be computed straightforward. The interesting

thermodynamic quantities can be derived from the grand
canonical potential through the standard equations from
statistical physics,

p ¼ −Ω; s ¼ −
∂Ω
∂T

����
μi¼const

; ni ¼ −
∂Ω
∂μi

����
T¼const

;

ð30Þ

ϵ ¼ Tsþ Ωþ
X
i

μini: ð31Þ

The values of the condensates and vector meson fields are
computed by solving the gap equations
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SUð2Þ∶ ∂Ω
∂σ ¼ ∂Ω

∂ω ¼ ∂Ω
∂ρ ¼ 0; ð32Þ

SUð3Þ∶ ∂Ω
∂σx ¼

∂Ω
∂σy ¼

∂Ω
∂σ3 ¼

∂Ω
∂ω ¼ ∂Ω

∂ρ ¼ ∂Ω
∂ϕ ¼ 0 ð33Þ

in the mean field approximation.

D. Parameter fixing

As described before, the parameters of the potentials are
fixed by using measured meson masses and decay con-
stants given by the Particle Data Group [23]. For the SUð2Þ
case it is used

mπ� ¼ 140 MeV; mπ0 ¼ 135 MeV;

mω ¼ 783 MeV; mρ ¼ 775 MeV; ð34Þ

with fπ ¼ 92 MeV. Since we do not distinguish between
the different pions, an averaged value is used. In the SUð3Þ
case more values need to be fixed, additionally

mK� ¼ 494 MeV; mK0 ¼ 498 MeV;

mη ¼ 548 MeV; mη0 ¼ 958 MeV;

fK ¼ 110 MeV; mϕ ¼ 1019 MeV ð35Þ

are used, where again the kaon masses are averaged. The
scalar coupling constant g is fixed by the constituent light
quark mass ml ¼ 300 MeV.
To solve Eqs. (32) or (33) also the temperature and

chemical potentials have to be known. They are computed
by implementing constraints, corresponding to supernova
matter. The baryon density is fixed and given by

nB ¼ nu þ nd þ ns
3

: ð36Þ

As further input in supernovae simulations the electron-
baryon ratio Ye is fixed according to

Ye ≡ ne
nB

¼ 3ne
nu þ nd þ ns

: ð37Þ

As a standard value Ye ¼ 0.2 is used for the typical value at
core bounce of a supernova, following [17]. Demanding
electric charge neutrality yields the condition

0 ¼ qunu þ qdnd þ qsns þ qene; ð38Þ

with the corresponding charges qi of the quarks and the
electron. Additionally, local equilibrium with respect to the
weak interaction process sþ u↔dþ u is assumed for
three flavors, from which it follows that μd ¼ μs.
During the supernova explosion temperatures of several

tens of MeV are reached [24]. The entropy gives a
constraint to determine the temperature relevant for

supernova explosions. For the variation limits of the
entropy we use [24] as guidance. So we choose a standard
value of one kB per baryon and explore the interval
of 0.5 − 4kB=baryon.
Not all parameters can be fixed; the remaining ones are

varied in the further analysis. The vector coupling is altered
around a chosen standard value of gω ¼ 3.0 within an order
of magnitude, since it should be in the same range as the
scalar coupling g.
The mass of the σ meson is not determined well

experimentally yet. Recently, it has been identified with
the resonance f0ð500Þ [23] that has replaced the broad
f0ð600Þ resonance. Other approaches assign the f0ð1370Þ
resonance with the σ meson [25]. Hence, it will be varied
in the range of (400–1000) MeV, but the standard value
mσ ¼ 600 MeV is used [19]. The upper bound is deter-
mined by the fact that the model saturates around
mσ ≈ 1100 MeV [19].
To study the influence of the electron-baryon rate, Ye

will also be varied in the range (0.0–0.5).

III. PHASE DIAGRAM

In Fig. 1 the phase diagram for the SUð2Þ and SUð3Þ
flavor case for Ye ¼ 0.2 and Ye ¼ 0.5 is shown. A first-
order phase transition is observed for all cases at low
temperatures represented by the solid lines. This phase
transition is associated with the approximate restoration of
chiral symmetry in the light quark sector where the σx field
serves as a corresponding order parameter.
For both flavor cases a critical endpoint is observed

which lies approximately at the same temperature
(T ≈ 80 MeV). For higher temperatures the phase transi-
tion is a crossover, i.e. the system goes smoothly from one
phase into the other so that no jump in the order parameter
appears and no mixed phase of the low- and high-density

FIG. 1 (color online). Phase diagram in μQ − T space for the
different flavor cases, with the standard Ye values, gω ¼ 3.0,
mσ ¼ 600 MeV.
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phase is present. The phase transition lines for the different
cases shown are quite close to each other. However, one
recognizes that for a lower electron fraction the phase
transition happens at lower quark chemical potential for the
three flavor case. The phase transition line for Nf ¼ 3 is
located at higher quark chemical potential compared to
Nf ¼ 2 for Ye ¼ 0.2.
The location of the transition line is similar to the findings

in [19] for the QM model. Small differences are present
even for the isospin symmetric case and should account
for the fact that effects from vector meson exchange are
considered here, which are expected to be of more relevance
for the high-density moderate temperature region of the
QCD phase diagram of interest in the present study.
In the following the change of the transition line due to

changes in the parameters will be illustrated in more detail.
To understand the phase transition structure, the evolu-

tion of the relevant scalar fields shall be discussed. We find
that only the nonstrange condensate σx shows a strong jump
across the phase transition line and reaches values close to
the one of a chirally fully restored phase. Although a small
jump in the strange scalar field σy is observed, its value
stays high (over 0.5) and so the strange quarks remain
massive. This behavior is expected, as electric charge
neutrality and the electron fraction are implemented.
Since the up quark is the only remaining positively charged
particle and down and strange chemical potentials are the
same, the density of the strange quark has to be suppressed
by a large mass term, represented by a large value of σy.
Following this, for lower values of Ye the strange quark
condensate melts away at lower densities, as a higher
number density of strange quarks is favored.
The value of the third scalar field, σ3, relevant for isospin

breaking effects, stays always low, so that the mass
difference between up and down quark remains small.
Figure 2 shows how the electron fraction influences the

phase diagram for three quark flavors. The phase transition
takes place at lower quark chemical potential for an
increased electron fraction. For a higher value of Ye the
strange quark gets suppressed, because of charge neutrality,
and so the light quark density is higher leading to a larger
contribution in the gap equation and an onset of the chiral
phase transition at lower densities. For the SUð2Þ case the
system is not as sensitive to changes in Ye as for the three
flavor case, since the strange quarks are not available to be
replaced by the light quarks.
The dependence of the phase transition line on the vector

coupling gω is shown in Fig. 3. The phase transition gets
smoother with increasing vector coupling constant because
of the repulsive character of the vector mesons. Thus, the
jumps in the condensates become smaller, until the tran-
sition is a crossover at all considered temperatures. The
transition line also moves to higher quark chemical
potential μQ, since the effective chemical potentials are
lowered as the vector meson contribution increases with

increasing gω. Therefore a larger μQ is needed for the phase
transition to happen. Our findings are in line with the results
in the Nambu-Jona-Lasinio model with vector interactions;
see e.g. Ref. [26,27].
The critical endpoint is located at lower temperature

for increasing values of gω, as it is expected from the
discussion above, but it varies only slightly between the
different flavor and Ye cases. For gω ¼ 9.0 the critical
endpoint vanishes from the phase diagram, so that the
phase transition is always a crossover. Additionally, it is
observed that the sensitivity to changes in gω is much
higher compared to the changes in Ye.
Figure 4 illustrates the changes of the phase diagram

with the mass of the σ meson mσ. For very high σ masses

FIG. 2 (color online). SUð3Þ phase diagram in μQ − T space for
different Ye with gω ¼ 3.0,mσ ¼ 600 MeV. The phase transition
line is shifted to lower values of μQ for increasing Ye.

FIG. 3 (color online). SUð3Þ phase diagram in μQ − T space for
Ye ¼ 0.2, mσ ¼ 600 MeV and different vector coupling con-
stants gω. The critical endpoint moves to smaller temperatures
for an increase in gω until the phase transition is a crossover over
the whole plane. The transition line moves to larger μQ for
growing gω.
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the phase transition does not take place until very high
chemical potentials are reached, as also seen in Ref. [19].
The role of mσ can be understood more easily within the
SUð2Þ model. The σ mass fixes the λ parameter in the
meson potential. Thus for an increasingmσ also λ increases
and the potential becomes deeper. Therefore, more energy
is needed to develop the second minimum and the phase
transition is shifted to higher values of μQ and becomes
smoother. For the SUð3Þ case the situation is less trans-
parent, since the scalar meson mass is fixed by solving a
system of nonlinear equations [19,20]. However, the
dependence of the phase transition line on mσ turns out
to be the same. For large values of mσ, the phase transition
is always a crossover, as it was also observed for large
values of the vector coupling constant gω, i.e. for a large
vector repulsion between the quarks.
For a lower σ meson mass the phase transition appears at

considerably smaller values of μQ. Note, that the effect of a
lower value ofmσ can be compensated by an increase in the
vector coupling gω to shift the phase transition line back to
larger values of μQ. In the mσ parameter range that is
considered here, the changes of the critical quark chemical
potential are similar to the case when the vector coupling
constant gω is varied within the adopted range considered
to be natural. But one should recall, that the gω parameter
range was only fixed by analogy arguments, while the mass
mσ is varied according to the mass range motivated by
experimental data.

IV. EQUATION OF STATE

In the following, we consider quark-meson matter under
conditions prevailing in core collapse supernovae which
evolves adiabatically at a fixed entropy per baryon s.

We stress that the results presented here are the equation
of state of the high-density QCD plasma phase. Thus they
should be matched at low-energy densities to a hadronic
EoS for most cases, unless strange quark matter is abso-
lutely stable at vanishing temperature.
In Fig. 5 the equation of state is shown for a fixed value

of s ¼ 1.0kB=baryon for the SUð2Þ and SUð3Þ flavor cases.
The value of Ye ¼ 0.3 was chosen to compare our results
with Ref. [17].
One notices that the quark-meson matter equation of

state has a larger slope in the SUð2Þ flavor case compared
to the SUð3Þ flavor case. The electron fraction Ye has a very
little influence on the equation of state. It seems that the
computed EoS in the SU(3) case follows approximately the
EoS of a free gas of relativistic massless particles, p ¼ ϵ=3,
as chiral symmetry is approximately restored. However,
due to the explicit symmetry breaking terms the particles
are never really massless. Additionally, there is a contri-
bution from the vector mesons. Both effects combine to the
observed slope of the EoS. For two flavors the system with
a smaller electron fraction has a larger pressure, while for
three flavors the pressure in the system with more electrons
is higher. The difference between the SUð2Þ and SUð3Þ
flavor cases is due to the presence of the strange quark,
which does not become massless [28]. The EoS for the
SUð3Þ case with a higher electron fraction lies above the
one with the lower electron fraction, because the strange
quark fraction is lower in the first case.
The effect of varying the entropy per baryon is shown in

Fig. 6. The differences are so small that the lines lie nearly
on top of each other for all values of s in the given interval.

FIG. 4 (color online). SUð3Þ phase diagram in μQ − T space for
Ye ¼ 0.2, gω ¼ 3.0 and different scalar meson masses mσ . The
critical endpoint moves to lower temperatures for increasing mσ ,
until for all temperatures a crossover is observed. The transition
line moves to larger μQ for higher values of mσ .

FIG. 5 (color online). Quark-meson matter equation of state
for different Ye and number of flavors with s ¼ 1.0kB=baryon,
gω ¼ 3.0, mσ ¼ 600 MeV. A nearly linear relation between
pressure and energy is found. At a given energy density, the
two flavor case provides a larger pressure compared to the three
flavor one with a larger slope. The nonzero energy density at
vanishing pressure is due to the used Maxwell construction from
the vacuum to the matter phase. At T ¼ 0 MeV no quarks are
present before the phase transition takes place.
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This is caused by the low temperatures involved, so that
the thermal contributions are small while the shape of the
quark-meson matter EoS is mostly determined by the
chemical potentials and the interactions.
For an increasing value of gω the slopes of the quark-

meson matter equations of state rise, as shown in Fig. 7.
This behavior is quite generic and well known from the
relativistic σ − ω model for nuclear matter [29,30] and is
also seen in NJL model calculations with vector coupling
terms; see e.g. the discussion in [31] and Ref. [32] for an
explicit plot. In principal the EoS would eventually
reach the limit p ¼ ϵ, which would mean that the speed
of sound equals the speed of light setting the causal limit.

This high-density limit originates from the inclusion of the
vector meson exchange, otherwise the limit would be
p ¼ ϵ=3. Hence, a nonzero vector coupling results in the
wrong high-density limit as dictated by asymptotic freedom
of QCD; see [12,33] and the discussion in [34]. But at the
energy densities that are considered here the impact of the
contribution from the vector mesons are not strong enough
to enter this regime. For the cases of a first-order phase
transition from the vacuum to the matter phase an almost
vanishing pressure for a nonvanishing energy density is
found followed by a linear increase in the pressure. This
behavior is not observed if the phase transition is a
crossover as found for the largest considered vector
couplings, since there is no jump in the energy density.
The influence of the σ mass on the quark-meson matter

equation of state is shown in Fig. 8. One notices that
the impact of varying the sigma meson mass is different for
the low- and high-energy density regions. The slope of the
curves are unaffected and the EoS is just shifted parallel in
the high-energy density limit when varying mσ. For a more
massive scalar meson, the EoS has a lower pressure at the
same energy density. However, differences occur at low-
energy densities. If the phase transition from the vacuum
to the matter phase is a crossover, i.e. for high σ meson
masses, the slope of the EoS is much smaller compared to
the high-energy density limit. Here, the EoS for higher
values of mσ has a higher pressure at the same energy
density, contrary to the high-energy density limit.

V. SUMMARY

In this work the structure of the phase diagram and the
high-density QCD plasma EoS calculated from the linear

FIG. 6 (color online). SUð3Þ quark-meson matter equation of
state for Ye ¼ 0.2 and different entropy per baryon values s with
gω ¼ 3.0, mσ ¼ 600 MeV. The different cases lie nearly on top
of each other.

FIG. 7 (color online). SUð3Þ quark-meson matter equation of
state for Ye ¼ 0.2, s ¼ 1.0kB=baryon, mσ ¼ 600 MeV and dif-
ferent vector meson couplings gω. At small energy densities one
recognizes that the mixed phase region of the vacuum and the
matter phase gets smaller with increasing gω. The slope of the
EoS increases for larger values of gω.

FIG. 8 (color online). SUð3Þ quark-meson matter equation of
state for Ye ¼ 0.2, s ¼ 1.0kB=baryon, gω ¼ 3.0 and different σ
meson masses mσ . At large energy densities the EoS shows the
same slope and the curves are just shifted to higher energy
densities with increasing values of mσ . If the phase transition
from the vacuum to the matter phase is a crossover, the lines have
a smaller slope at small energy densities.
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sigma model in a mean field approximation were analyzed.
The model was expanded by adding vector mesons, which
give an additional contribution to the quark chemical
potentials. Calculations for the two and three flavor cases
were presented.
The parameters were fixed by measured meson masses

and decay constants. The remaining free parameter, like the
mass of the σ meson mσ and the vector coupling constant
gω, were varied and their influences on the phase diagram
and the equation of state were investigated. The conditions
characteristic for core-collapse supernova explosions
served as further input. These are charge neutrality, β
equilibrium with respect to weak interactions, and a given
electron-baryon fraction.
The phase diagram was analyzed and a first-order phase

transition from the vacuum to the matter phase at low
temperatures was observed for certain parameters. For
higher temperatures the phase transition line ends in a
critical endpoint, after which the phase transition is a
crossover. By increasing the vector meson coupling con-
stant the phase transition gets shifted to higher μQ, but for
too large values the first-order phase transition vanishes and
a crossover is observed for all temperatures. The same
behavior was seen for increasing σ masses. The effect of a
lowered σ mass could be compensated by an increased
value of gω.
The quark-meson matter equation of state was calculated

for a given entropy per baryon, with typical values found in
supernova simulations. The particular value for the entropy
per baryon has little influences on the EoS. An increasing
vector repulsion, i.e. increasing gω, leads to a higher slope
of the EoS. Higher values of mσ shift the EoS to lower
pressures at constant energy densities. However, the slope
of the EoS at high pressures stays constant, whereas at low-
energy densities differences occur due to the change of the
order of the phase transition.
Whether the computed equation of state is useful in a

supernova explosion has to be tested in simulations.

We stress that the model presented here lacks a low-density
hadronic phase. Thus it should be matched at low-energy
densities to a hadronic EoS for most cases, unless strange
quark matter is absolutely stable at vanishing temperature.
Instead of adding a low-density hadronic EoS to the quark-
meson model the latter also has the potential to be extended
to include baryonic degrees of freedom, leading to one
single equation of state valid over the hole density range.
For work in this direction by including diquarks in two-
color QCD, see e.g. [35,36].
Recent improvements of the Polyakov-loop extension

of the quark-meson model [21,37,38] can be considered in
the presented framework and the conditions of supernova
matter studied here can be worked into the investigation of
the nucleation time scales of a quark phase [39,40].
More importantly, the quark meson model has to be

confronted with the observed new mass limit for compact
stars from the mass measurement of the pulsars PSR J1614-
2230 with a mass of M ¼ 1.97� 0.04M⊙ [41] and
PSR J0348þ 0432 [42] with a mass of M ¼ 2.01�
0.04M⊙. This is work in progress and will allow studies
to constrain the parameter space more strictly than it was
possible in this analysis [43].
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