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We outline how the Wald entropy formula naturally arises in loop quantum gravity based on recently
introduced dimension-independent connection variables. The key observation is that in a loop quantization
of a generalized gravity theory, the analog of the area operator turns out to measure, morally speaking, the
Wald entropy rather than the area. We discuss the explicit example of (higher-dimensional) Lanczos-
Lovelock gravity and comment on recent work on finding the correct numerical prefactor of the entropy by
comparing it to a semiclassical effective action.
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I. INTRODUCTION

A key feature that is expected from a theory of quantum
gravity is an explanation for the thermodynamic behavior
[1] of black holes observed in classical general relativity
(GR). By today, several approaches to quantum gravity
and semiclassical gravity have addressed this issue and
offered different, at times seemingly unrelated, explan-
ations. Moreover, the different approaches are not
necessarily applicable to all classes of gravitational
theories, such as Lanczos-Lovelock gravity or super-
gravity, or types of black hole solutions such as extremal
or nonextremal black holes. It turns out, however, that
the Wald entropy formula [2], applicable to general
diffeomorphism-invariant theories, agrees with other
approaches where they are applicable. A derivation for
the Wald entropy formula in the context of Euclidean
quantum field theory has been given in [3] for general
diffeomorphism-invariant theories. It is however desirable
to understand the emergence of this general formula for
the black hole entropy also from a more fundamental
theory of quantum gravity.
Loop quantum gravity (LQG) [4,5] has emerged as a

candidate theory for quantum gravity and addressed the
question of black hole entropy with considerable success.
See [6] for a review. In LQG, one has been mainly
interested in black hole entropy calculations for four-
dimensional GR with minimally coupled matter fields.
However, it was shown that for a nonminimally coupled
scalar field, the black hole entropy can be obtained with the
right dependence on the scalar field’s value at the horizon
[7–9], in accordance with the Wald formula. While this
agreement presented an important confirmation for the

robustness of the LQG framework, its proper origin
remained obscure.
In this paper, we will show how the Wald entropy

formula naturally arises in LQG based on the recently
introduced dimension-independent connection variables.
The main idea is that for a generalized theory of gravity,
such as Lanczos-Lovelock gravity or a nonminimally
coupled scalar field, the direct analog of the area operator,
which is a key ingredient in the entropy calculation, does
not measure the area, but the Wald entropy. The reason is
that the fluxes conjugate to the connection are given by
derivatives of the Lagrangian with respect to certain
curvature components, in the same way as in the con-
struction of Wald entropy. Essentially, the canonical con-
jugate to the connection measures Wald entropy.
We present higher-dimensional Lanczos-Lovelock grav-

ity as an explicit example. We shortly comment on general
diffeomorphism-invariant theories, where no robust general
statements can be made from the LQG perspective at the
moment. Our current understanding thus remains restricted
to theories which can be formulated on the phase space of
higher-dimensional GR coupled to standard matter fields.
Also, we restrict to theories which do not have additional
constraints on top of the Hamiltonian and spatial diffeo-
morphism constraints of GR, plus additional gauge con-
straints or the simplicity constraint discussed below. Such
additional constraints may require special treatment on top
of the existing techniques in the LQG entropy calculations.
Since an explicit solution for them might not be available,
their effect on the black hole entropy would remain an open
question. The class of treatable theories thus includes
Lanczos-Lovelock gravity [10,11] with nonminimal
couplings of scalar fields, plus additional minimally
coupled matter fields (the independence of the entropy
on standard minimally coupled matter fields is already well
understood [12]).
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The paper is organized as follows. In Sec. II, we review
some background material concerning the Wald entropy
formula, as well as the black hole entropy calculations in
the isolated horizon framework in LQG. Next, we show in
Sec. III that the entropy calculation for higher-dimensional
Lanczos-Lovelock gravity can be reduced to that of higher-
dimensional GR. We explain how this result can be
understood in general in terms of theWald entropy formula.
The prospects for general diffeomorphism-invariant theo-
ries are discussed in Sec. IV. In Sec. V, we comment on the
interpretation of these results. Section VI contains the
conclusions of the paper. In the Appendix, we provide
some details on the covariant phase-space description
omitted in Sec. III and discuss the first law of black hole
mechanics in Lanczos-Lovelock gravity within the isolated
horizon framework.

II. PRELIMINARIES

We begin with a brief review of the relevant fields. In
Sec. II A, we review the broad status of black hole entropy
in generalized gravity theories. In Secs. II B and II C, we
review the central features of the existing black hole
entropy calculations in LQG.

A. Wald entropy

The black hole entropy formula for general diffeomor-
phism-invariant theories of gravity was first proposed in [2]
and expanded on in [13,14]. Previously, an entropy for the
Lanczos-Lovelock class of theories was derived in [15].
The defining property which motivated the original pro-
posal [2] was the first law of thermodynamics for stationary
black holes.
A key concept in the entropy’s derivation was that of a

Noether potential [16]. For every local gauge symmetry of
a field theory, there exists a Noether potentialQμν. This is a
rank-2 antisymmetric density, analogous to the Noether
current Jμ that is associated with a global symmetry. While
Jμ is integrated over a codimension-1 hypersurface to
obtain a charge, Qμν is integrated over a codimension-2
surface. This is a generalization of the Gauss law from
electromagnetism. In fact, the Noether potential for the
electromagnetic gauge symmetry is just

ffiffiffiffiffiffi−gp
Fμν; its

integral through a codimension-2 spatial surface is the
usual electric flux.
In [2], Wald used the Noether potential associated with

diffeomorphisms, specifically with translations along the
Killing field that becomes null at the event horizon. His
insight was to view the first law of black hole thermody-
namics as a statement about the action variations under
such translations. The expression for the entropy that arises
from the first law is then the integral of the Noether
potential over the black hole’s bifurcation surface. Now,
bifurcation surfaces exist only for eternal stationary black
holes. In [14], it was shown that one can substitute the

bifurcation surface by an arbitrary slice of a Killing
horizon. This extended the applicability of Wald entropy
to black holes that are only currently stationary, having
been formed in a dynamical process in the past.
More explicitly, let the theory’s Lagrangian be given by

L ¼ Lðgμν; Rμνρσ;∇ξ1Rμνρσ;…;∇ðξ1…∇ξnÞRμνρσ;ψ ;

∇ξ1ψ ;…;∇ðξl…∇ξlÞψÞ; ð2:1Þ

where ψ denotes arbitrary matter fields, ∇μ is the covariant
derivative associated with the metric gμν, and Rμνρσ is its
Riemann curvature. LetDþ 1 be the spacetime dimension.
The Wald entropy is then given by [13]

S ¼ −2π
Z

H

ffiffiffi
h

p δL
δRμνρσ

ϵμνϵρσdD−1x: ð2:2Þ

Here, H is a slice of the horizon,
ffiffiffi
h

p
is its area density, ϵμν

is its normal bivector with ϵμνϵ
μν ¼ −2, and δL=δRμνρσ is

the variational derivative of the Lagrangian with respect
to Rμνρσ:

δL
δRμνρσ

≔
∂L

∂Rμνρσ
−∇ξ1

� ∂L
∂∇ξ1Rμνρσ

�
þ � � �

þ ð−1Þn∇ξ1…∇ξn

� ∂L
∂∇ðξ1…∇ξnÞRμνρσ

�
: ð2:3Þ

In particular, for GR, one has

L ¼ 1

16πG
R;

δL
δRμνρσ

¼ 1

32πG
ðgμρgνσ − gμσgνρÞ;

S ¼ 1

4G

Z

H

ffiffiffi
h

p
dD−1x ¼ AH

4G
: ð2:4Þ

The entropy formula (2.2) was also recovered in an
analysis of the Euclidean black hole action [3], along the
lines of the Gibbons-Hawking derivation [17] for GR. A
key difficulty was to properly handle the boundary con-
tributions to the action, without the guidance of a standard
variational principle which for GR leads to the York-
Gibbons-Hawking boundary term. The solution was to
notice that the conserved charges fix the boundary con-
tribution at infinity, while at the bifurcation surface a
nonvanishing contribution can only come from the extrinsic
curvature.
Also notable is the detailed agreement between micro-

scopic calculations of black hole entropy within string
theory (first performed in [18]) and the Wald formula. See
e.g. [19]. In this context, one applies the Wald formula to
the effective supergravity action, with higher-derivative
terms (tightly constrained by supersymmetry) arising from
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stringy effects. In some cases, the relevant part of the
effective action can be found exactly, and the comparison
between the Wald and microscopic entropies carried out to
all orders in an asymptotic expansion [20].
A major open question is how to define Wald entropy for

nonstationary horizons. While the Bekenstein-Hawking
area law (2.4) for GR extends unambiguously to a general
horizon slice, that is not true for the more complicated
formula (2.2). This issue has been partially addressed in
[13]. See also [21] for a discussion in the context of
black hole hydrodynamics. For Lanczos-Lovelock gravity,
the imaginary action calculation in [22], as well as its
Euclidean counterpart [23], favors a particular nonsta-
tionary definition that depends only on the intrinsic
geometry of the horizon slice. This result is in agreement
with the more general proposal in [13].
Other issues concern the positivity and increase proper-

ties of Wald entropy. Unlike the area law, the positivity of
(2.2) may be field dependent. This calls into question the
general interpretation of (2.2) as a statistical entropy. Partial
evidence suggests that negative Wald entropy is associated
with pathological theories or solutions. In [24], it was
shown that for a simple fðRÞ theory, the positivity of Wald
entropy is related to cosmic censorship. Also, in [25], it was
suggested that the Wald formula can be viewed as the
ordinary Bekenstein-Hawking entropy, but with the
Newton’s constant read off from the propagator of area
perturbations on the horizon. This implies that the entropy’s
positivity may be correlated with the stability of the
black hole.
Current understanding of entropy increase, i.e. the

second law of thermodynamics, is again partial. In GR,
the area increase theorem implies that the second law holds
for very general processes. In general diffeomorphism-
invariant theories, it was shown [26] that for quasista-
tionary accretion of matter, the second law is an automatic
consequence of energy positivity. Little is known regarding
nonstationary processes. One hope is that the requirement
of entropy increase can serve to fix the correct definition of
entropy for nonstationary horizons. This has only been
achieved [26] for fðRÞ theories, which are equivalent to GR
with a nonminimally coupled scalar. In black hole hydro-
dynamics (a mildly nonstationary regime), the second law
is expressed as a non-negative viscosity. In [27], black hole
hydrodynamics in Lanczos-Lovelock gravity was studied
for planar black holes in 4þ 1d anti—de Sitter (AdS)
space. It was shown there that whenever the AdS back-
ground exists, the viscosity is indeed non-negative. Finally,
as possible evidence against the second law, see the
argument in [28] regarding entropy decrease in Lanczos-
Lovelock gravity during black hole mergers.

B. LQG entropy calculations in 3þ 1d

The LQG calculation of black hole entropy has been
originally performed in 3þ 1 dimensions in terms of the

Ashtekar-Barbero variables. The essential idea is that the
canonical transformation from the Arnowitt-Deser-Misner
(ADM) phase space [29] to Ashtekar-Barbero variables
[30,31] yields a boundary contribution in the form of a
Chern-Simons symplectic potential on the isolated horizon.
The original calculations [12,32–34] were performed using
a gauge fixing of SU(2) to U(1) on the isolated horizon. It
was later shown that the calculation could be performed
without this gauge fixing in a manifestly SU(2)-invariant
manner [35,36]. The recent introduction of a higher-
dimensional and supersymmetric generalization of loop
quantum gravity [37–43] made it necessary to reconsider
these calculations and extend them to the new framework
[44,45]. These results will be summarized in Sec. II C. In
the present subsection, we review the state of affairs in the
original LQG framework, where the quantum aspects are
well developed.
The basic idea of the entropy calculation is as follows.

First, one derives from classical GR a boundary condition
on the isolated horizon, along with a Chern-Simons
symplectic potential. Upon quantization, this gives a
quantum Chern-Simons theory describing the horizon
degrees of freedom. In particular, the total area of the
horizon is related to the Chern-Simons degrees of freedom
by the quantum boundary condition. The dimension of the
Chern-Simons Hilbert space, constrained to a fixed value of
the total area, yields an entropy of the form

S ¼ αAH

γG
: ð2:5Þ

Here, α is some numerical constant, while γ is the Barbero-
Immirzi parameter, a free parameter of the theory. It is
tempting to set γ ¼ 4α in order to obtain the well-known
Bekenstein-Hawking entropy AH=4G. However, this
approach is probably too naive [46]. An intriguing alter-
native has recently been suggested [47], involving an
analytical continuation γ → �i in the large-spin limit.
We defer these issues to Sec. V. For now, we remark that
the area proportionality of the entropy is already a non-
trivial result. In particular, it depends on using the
correct combinatorics for the punctures, which follows
from a proper study of the action of the diffeomor-
phism group.
Any derivation of black hole entropy should be tested on

gravity theories with dynamics other than GR. Simple
examples include Lanczos-Lovelock gravity [11], as well
as GR with nonminimally coupled matter, such as a
conformally coupled scalar. It has been shown [7,8] that
for the conformally coupled scalar, LQG produces the
correct Wald-entropy analog of Eq. (2.5). Specifically, one
performs an LQG quantization using the Ashtekar-Barbero
connection and its canonical conjugate (which is no longer
the usual area flux). The standard isolated-horizon calcu-
lation then leads to the entropy formula:

WALD ENTROPY FORMULA AND LOOP QUANTUM GRAVITY PHYSICAL REVIEW D 90, 084054 (2014)

084054-3



S ¼ αAH

γG
aðϕÞ; aðϕÞ ¼ 1 −

1

6
ϕ2: ð2:6Þ

This is theWald entropy for the conformally coupled scalar,
up to the same constant factor as in (2.5).
In this paper, we aim to place the results (2.5) and (2.6) in

context, as well as to generalize them to higher-derivative
gravity theories. We should note at this point that the result
(2.6), as well as our generalization of it, holds only for a
particular choice of quantization variables. Specifically, the
fundamental connection variable is taken to have the same
geometric meaning as in ordinary LQG, so that the non-
minimal couplings, etc., affect only its conjugate flux. In
Sec. V, we will discuss the implications and interpretation
of different choices of variables. We will also comment
there on how one should compare the LQG results for the
entropy to the semiclassical Bekenstein-Hawking-Wald
formula.

C. Entropy in higher-dimensional LQG

In this paper, we consider an arbitrary numberDþ 1 ≥ 3
of spacetime dimensions. Up to the recent works
[44,48,49], all papers on entropy calculations within
LQG have been based on Ashtekar-Barbero or self-dual
Ashtekar variables. In this subsection, we will briefly
introduce the higher-dimensional connection variables,
and review the entropy results [48,49] that arise from
them. Summarizing, it can be shown that the entropy
computation in higher dimensions can be almost reduced
to the well-studied 3þ 1-dimensional case, up to the
precise form of the area spectrum. This results from an
isomorphism between the horizon Hilbert spaces in differ-
ent dimensions, which has its origin in the implementation
of the simplicity constraints [41].

1. Choice of bulk variables and constraints

Let us give a little more detail and outline the results of
[37,38]. General relativity in Dþ 1 dimensions can be
rewritten in terms of an SOðDþ 1Þ Yang-Mills phase
space. The conjugate variables are an SOðDþ 1Þ connec-
tion AaIJ and a densitized generalized hybrid vielbein πaIJ,
related to the spatial metric via 2qqab ¼ πaIJπbIJ, where
q ¼ det qcd. Here, a; b ¼ 1;…; D are spatial tensor indices
on the spatial slice σ in the Dþ 1 decomposition of
spacetime. I; J ¼ 0;…; D are internal indices transforming
under SOðDþ 1Þ. In addition to the usual constraints of
GR—a Hamiltonian constraint, a spatial diffeomorphism
constraint and in our case an SOðDþ 1Þ Gauss constraint
—one must also introduce a so-called simplicity constraint.
This constraint, given by πa½IJπ

b
KL� ≈ 0, ensures1 that

πaIJ ¼ 2n½IEa
J�. Here, nI is a unit normal defined by

Ea
I n

I ¼ 0, while Ea
I coincides in the “time gauge” nI ¼

ð1; 0;…; 0Þ with the densitized D-bein derived from a
spatial metric qab, i.e. Ea

i E
b
jδ

ij ¼ qqab, i; j ¼ 1;…; D.
Furthermore, an additional rescaling by a free real param-
eter β takes place, so that the momentum becomes
ðβÞπaKL ≔ πaKL=β. This β is analogous to, but different from,
the Barbero-Immirzi parameter γ. In the quantum theory,
the simplicity constraint can be implemented2 on the links
of a spin network by restricting the representations of
SOðDþ 1Þ to be of class 1, so that their highest weight
vector ~λ is determined by a single non-negative integer λ as
~λ ¼ ðλ; 0;…; 0Þ [50].
As in the standard isolated-horizon calculations

(Sec. II B), the canonical transformation to the variables
above leads to a boundary term in the symplectic potential.
This general phenomenon is related to the gauge invariance
present in the theory and known as “edge states” in
condensed matter physics; see [49] and references therein
for more discussion on this point. As we will recall in
the following, the resulting theory on the boundary can be
written as a higher-dimensional Chern-Simons theory in
even spacetime dimensions, and as a theory of binormals
in general dimensions. As usual, we take the boundary
H ¼ ∂σ of our hypersurface to be a horizon slice.

2. Even spacetime dimensions: Chern-Simons theory

Let us denote the area density and the Euler density onH
by

ffiffiffi
h

p
and EðD−1Þ, respectively. Now, restrict to a part of

phase space where the scalar ratio EðD−1Þ=
ffiffiffi
h

p
is constant

(this is referred to in [44] as the nondistortion condition; we
will see in Sec. III that it can be lifted). This condition
implies in particular that up to a numerical factor,
EðD−1Þ=

ffiffiffi
h

p
is the same as χ=AH, where χ is the Euler

characteristic of H. The second variation of the boundary
symplectic potential can then be rewritten in terms of a
Chern-Simons symplectic structure as [44]

δ½1

Z

σ
∂a

�
1

β
EaIδ2�nI

�
dDx

¼ const ×
AH

βχ

Z

H
Trϵ½δ½1Γ0∧δ2�Γ0∧R0∧ � � �∧R0�: ð2:7Þ

Here, Trϵ½X1X2…XðDþ1Þ=2�≔XIJ
1 X

KL
2 …XMN

ðDþ1Þ=2ϵIJKL…MN ,

Γ0 is a generalization of the Peldan hybrid connection [51]
defined on H, and R0 is the curvature of Γ0. Furthermore,
one can derive the boundary condition:

ϵIJ…KLMNϵαβ…δσR0
αβIJ…R0

δσKL ¼ const ×
βχ

AH
× ŝaðβÞπaMN;

ð2:8Þ

1In four dimensions, a topological sector appears and the
situation is more complicated; see [37].

2See [39,41] for a discussion of possible anomalies and the
implementation on a node.
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where α; β ¼ 1;…; D − 1 are tensor indices on H, ŝa ≡
ϵaβγ…σϵ

βγ…σ=ðD − 1Þ! is the (appropriately densitized)
normal covector to H in σ, and ðβÞπaMN ≔ πaMN=β. It
seems that with such a Chern-Simons boundary theory in
higher dimensions, a stronger form of the boundary
condition is necessary to avoid having local degrees of
freedom on the horizon [44]. We will not discuss these
details here, as they are not important for the arguments
presented in this paper. The quantization sketched in
Sec. II C 4 will be based on the binormals introduced in
the following, and thus valid for any dimensionDþ 1 ≥ 3.

3. General dimensions: Binormals

Insteadofusing the right-hand side of (2.7),we can also use
the left-hand side as a definition of a Poisson bracket on H:

f~sIðxÞ; nJðyÞg ¼ βδIJδ
ðD−1Þðx − yÞ; ð2:9Þ

where ~sI ≡ Ea
I ŝa has unit densityweight onH. The boundary

condition

2=βn½I ~sJ� ¼ ŝaπaIJ ð2:10Þ

now tells us that the proper variables to consider are given by
LIJ ¼ 2=βn½I ~sJ�, that is the restriction of the fluxes toH. We
can compute their Poisson algebra as

fLIJðxÞ; LKLðyÞg ¼ 4δðD−1Þðx − yÞδL�½ILJ�½KðxÞ: ð2:11Þ

The binormals have to be regularized like the fluxes in
the bulk by smearing them over D − 1 surfaces on H. The
resulting Poisson algebra of smeared binormals is just the Lie
algebra soðDþ 1Þ at every puncture and thus agrees with
algebra of the fluxes.

4. Quantization

A quantization based on the binormals as boundary
variables has been given in [48]. Since the Poisson algebra
of the binormals is just the Lie algebra soðDþ 1Þ, the
representation problem is already solved and the boundary
Hilbert space, before imposing any constraints, is a product
of soðDþ 1Þ representation spaces. By the boundary
condition (2.10), the representation is only nontrivial at
punctures.
Since the lapse function has to vanish at H, the

Hamiltonian constraint does not have to be taken into
account for the boundary Hilbert space [12]. However, the
remaining constraints, the spatial diffeomorphism con-
straint, the Gauss constraint, and the simplicity constraint,
have to be dealt with. The spatial diffeomorphism con-
straint is solved in the standard way [34]. As discussed in
[48,49], the Gauss law is implemented by projecting the
boundary Hilbert space to its SOðDþ 1Þ invariant sub-
space. The simplicity constraint restricts the intertwining

representations labeling the invariant subspace in a certain
recoupling scheme to be of class 1. By the results of [41],
the state counting problem is now reduced to the
3þ 1-dimensional case [35] based on SU(2) Chern-
Simons theory, since the boundary Hilbert spaces for a
given set of puncture labels λi have the same dimension
when mapped as λi ¼ 2ji.
From this point on, one can employ any of the strategies

proposed in the literature for computing the black hole
entropy. It is not our aim to provide an overview of these
methods, or to advocate a particular one. We merely point
out that the higher-dimensional computation can be
reduced to the 3þ 1-dimensional case, through the map-
ping of the boundary Hilbert spaces described above.
Similarly, the main result of the present paper, detailed
in Sec. III, is that the computation in Lanczos-Lovelock
gravity reduces to the one in general relativity.

III. ENTROPY IN LANCZOS-LOVELOCK
GRAVITY FROM LQG

A. Canonical structure

Lanczos-Lovelock gravity [11] is the most general
higher-derivative theory of pure gravity that has no more
than two time derivatives, so that it can be formulated on
the same phase space as (higher-dimensional) GR. Up to a
boundary term given in [52], the Lanczos-Lovelock action
reads

S ¼
Z

M
dDþ1x

ffiffiffiffiffiffi
−g

p
L ¼

Z

M
dDþ1x

ffiffiffiffiffiffi
−g

p X⌊Dþ1
2
⌋

m¼0

cmLm;

ð3:1Þ
where cm are coupling constants, e.g. c1 ¼ 1=ð16πGÞ, and

Lm ¼ ð2mÞ!
2m

R½μ1ν1 ½μ1ν1R
μ2ν2

μ2ν2…Rμmνm�
μmνm�: ð3:2Þ

The canonical formulation of this theory can be developed
in analogy to the well-known ADM treatment [29], and is
given in [53]. There is a certain problem in the analysis,
since the extrinsic curvature cannot be expressed uniquely
in terms of the metric and its canonical conjugate. This can
lead to a multivalued Hamiltonian constraint. However, this
does not seem to be of direct concern to us, since the
constraint algebra and the spatial diffeomorphism con-
straint are unaffected [53]. The Hamiltonian constraint does
not enter the calculation, since the lapse function vanishes
at the horizon [12]. Maximally symmetric black hole
solutions of the type considered in [44] have been discussed
in [54] for higher-dimensional Lanczos-Lovelock gravity.
The thermodynamics of Lanczos-Lovelock gravity has first
been studied in [55], where it is shown that the entropy
acquires a nontrivial prefactor depending on the coupling
constants and the Riemann curvature of the horizon slice.
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Our goal in this section is to derive the canonical variables
of Lanczos-Lovelock gravity that are relevant for the entropy
calculation, and to relate them to the corresponding canoni-
cal variables in pure GR.Wewill omit some details about the
phase-space description that are not necessary for under-
standing the main point; these will be provided in the
Appendix. It is more instructive to use the first-order
Palatini formulation of the theory, since we want to calculate
the momentum conjugate to the connection. Interestingly,
Lanczos-Lovelock gravity is the only higher-derivative
generalization of GR for which the first-order Palatini-type
action agrees with the second-order Einstein-Hilbert-type
action [56]. In particular, it follows from the field equations
that the curvature of the connection is given by the Riemann
tensor. This extends also to the vielbein-based first-order
formulations considered in this paper.
In first-order form, the Lanczos-Lovelock Lagrangian

reads

L ¼ −
X⌊Dþ1

2
⌋

m¼0

cm
ð2mÞ!
2m

e½μ1I1
eν1J1…eμmIm e

νm�
Jm
Fμ1ν1

I1J1

× Fμ2ν2
I2J2…Fμmνm

ImJm ; ð3:3Þ
where Fμν

IJ is the curvature of the SOð1; DÞ connection
Aμ

IJ. The minus sign is chosen to agree with the con-
ventions in [38]. The gauge group here is not SOðDþ 1Þ,
since we are starting from a covariant framework. The
transition from SOð1; DÞ to SOðDþ 1Þ as an internal
gauge group while maintaining the Lorentzian signature
of spacetime is detailed in [37,38], and involves a canonical
transformation. The reason that this trick works is based on
the fact that both sets of connection variables are related via
phase-space reductions to an ADM-type phase space,
which coincides for Euclidean and Lorentzian signature.
The signature of spacetime is encoded in the Hamiltonian
constraint of the theory, in case of GR as a relative sign
between two terms. To avoid confusion, we will keep
SOð1; DÞ as the internal gauge group for the rest of this
paper. The transition to SOðDþ 1Þ would only change
some signs.
The canonical momentum conjugate to AIJ

a reads

πaKL ¼ e
∂L

∂ _Aa
KL

¼ −2
ffiffiffi
q

p
nμ

∂L
∂Fμa

KL

¼ 4
ffiffiffi
q

p
nμ

X⌊Dþ1
2
⌋

m¼1

m
ð2mÞ!
2m

cme
½μ
Ke

a
Le

b2
I2
ec2J2…

× ebmIm e
cm�
Jm

Fb2c2
I2J2…Fbmcm

ImJm: ð3:4Þ

For m ¼ 1, we obtain the usual momentum πaIJ ¼ 2n½IEa
J�

with Ea
J ≔

ffiffiffi
q

p
eaJ , familiar from the canonical analysis of

the higher-dimensional Palatini action [38]. For consis-
tency with [38], we set 8πG ¼ 1, i.e. c1 ¼ 1=2. We note
that in even spacetime dimensions, the topological (Gauss-
Bonnet in 3þ 1) contribution cðDþ1Þ=2 ≠ 0 does not affect
the equations of motion; however, it does change the
canonical momentum, which will be important in what
follows.
While we will show in the next paragraph that ŝaπaIJ is

“simple” on H, that is, it splits in the form n½InKŝaπajJ�K
with nI ¼ nμeIμ, this is not true for πaIJ on generic phase-
space points. However, in order to apply the result of [37]
that the canonical pair fAaIJ; πbKLg can be reduced to the
ADM-type canonical pair f ~qab; ~Pcdg with −2~q ~qab ¼
πaIJπbIJ, we need that πaIJ is simple. This intermediate
step is needed before a phase-space extension to SOðDþ 1Þ
connection variables as in [37] can be performed. Examining
(3.4), we see that a sufficient condition for this to hold is that
nIFabIJ ¼ 0. On shell, this reduces to

D½aKb�c ¼ 0; ð3:5Þ

with Da being the covariant derivative with respect to qab
(the physical spatial metric) and Kab the extrinsic curvature.
We will impose this condition as an operator in the quantum
theory, and give more details on it in Sec. III C. With this
restriction, we can treat Lovelock gravity in the same way as
higher-dimensional general relativity and readily apply the
results of [44]. The question of whether the condition (3.5)
can be relaxed is left for future research.
We are interested in the effect of the new canonical

momentum (3.4) on the black hole calculations. Thus, in
analogy to [7–9], we must rewrite the boundary condition
and the symplectic structure in terms of the new momen-
tum. Here, several simplifications arise. We are only
interested in the canonical momentum on the horizon,
and only in its ŝaπaIJ component (recall that ŝa is an
appropriately densitized normal to H within the hypersur-
face σ). This component reads

ŝaπaKL ¼ −
ffiffiffi
h

p
ϵμν

∂L
∂Fμν

KL

¼ 2
ffiffiffi
h

p
ϵμν

X⌊Dþ1
2
⌋

m¼1

m
ð2mÞ!
2m

cme
½μ
Ke

ν
Le

α2
I2
eβ2J2…eαmIm e

βm�
Jm

× Fα2β2
I2J2…Fαmβm

ImJm : ð3:6Þ

We see that all the field strengths in (3.6) are pulled back to
H. It can be shown [44] that this pullback equals
FαβIJ ¼ R0

αβIJ ¼ ðD−1ÞRαβ
γδeγIeδJ, where ðD−1ÞRαβγδ is the

Riemann tensor of the intrinsic metric onH. It then follows
that the KL indices in (3.6) must lie in the plane of the
binormal ϵKL ¼ 2n½KsL�. We get

N. BODENDORFER AND Y. NEIMAN PHYSICAL REVIEW D 90, 084054 (2014)

084054-6



ŝaπaKLjH ¼ 1

2

ffiffiffi
h

p
ϵKL

∂L
∂Fμν

IJ ϵμνϵ
IJ

¼
ffiffiffi
h

p
ϵKL ×

X⌊Dþ1
2
⌋

m¼1

2mcm
ð2m − 2Þ!

2m−1

× ðD−1ÞR½α2β2
½α2β2…ðD−1ÞRαmβm�

αmβm�

¼ −
ffiffiffi
h

p
ϵKL

∂L
∂Rμνρσ

ϵμνϵρσ ¼ ∶
ffiffiffi
~h

p
ϵKL; ð3:7Þ

where ϵμν ¼ 2n½μsν� is the binormal from Sec. II A. Note
that the equality between the first and fourth lines on the
right-hand side of (3.7) follows from the equivalence
between the first-order and second-order Lanczos-
Lovelock actions. The factor 1=2 between the first and
the third line comes from different conventions for the
definition of the derivative used in the literature: for the first
line, we are consistent with [38], while for the third line, we
are consistent with [2]. Again, the minus sign between
these lines comes from the sign choice [38] for the first-
order Lagrangian.
We see that ŝaπaKL basically measures not the area

density
ffiffiffi
h

p
, but the density

ffiffiffi
~h

p
of Wald entropy in units

of 1=4G ¼ 2π [this entropy density also has a geometric
interpretation of sorts: roughly, the mth order term is the
topological Euler density in 2ðm − 1Þ dimensions times the
area density in Dþ 1 − 2m dimensions]. For the confor-
mally coupled scalar field [7–9], we would have a similar
result, with

ŝaπaKL ¼
ffiffiffi
~h

p
ϵKL ¼ −

ffiffiffi
h

p
ϵKL

∂L
∂Rμνρσ

ϵμνϵρσ

¼
ffiffiffi
h

p
ϵKL

�
1 −

ϕ2

6

�
: ð3:8Þ

Coming back to Lanczos-Lovelock theory, it remains to
rewrite the boundary symplectic structure and the boundary
condition from Sec. II C using the Lanczos-Lovelock
conjugate variables. We then find that (2.7) becomes

δ½1

Z

σ
∂a

�
1

β
~EaIδ2�nI

�
dDx

¼ const ×
~AH

χβ

Z

H
Trϵ½δ½1 ~Γ0∧δ2� ~Γ0∧ ~R0∧ � � �∧ ~R0�: ð3:9Þ

Here, ~AH is the “area” given by the integral of
ffiffiffi
~h

p
, i.e. the

Wald entropy in units of 1=4G ¼ 2π. The connection ~Γ0

with curvature ~R0, which in [44] were built from the
horizon metric, can now be built from any metric3 whose

area density is
ffiffiffi
~h

p
. As in [44], the only additional

restriction4 on this metric is that the associated Euler
density ~EðD−1Þ satisfies ~EðD−1Þ=

ffiffiffi
~h

p
¼ const on H. As

for the boundary condition (2.8), it becomes

ϵIJ…KLMNϵαβ…δσ ~R0
αβIJ… ~R0

δσKL ¼ const ×
χβ
~AH

× ŝaðβÞπaMN:

ð3:10Þ

The analog statement for the binormals is that ~sI and thus
also LIJ are densitized with the Wald entropy density as
opposed to the area density.

B. Entropy computation

The quantization of [48], as sketched in Sec. II C 4, goes
through as before, except the bulk states are now subject to
the stronger condition (3.5), as we discuss in Sec. III C. The
only conceptual difference is that we are now counting
states which correspond not to a given macroscopic area
AH, but to a given value of ~AH. Indeed, the analog of the
area operator built from the Lanczos-Lovelock fluxes
has the familiar discrete spectrum [39] const ×ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðλþD − 2Þp

; λ ∈ N0, but measures ~AH rather than
AH. Using a straightforward generalization of the tech-
niques developed in [57] to calculate the entropy (neglect-
ing logarithmic corrections), one arrives at

SLovelock ¼
~α ~AH

βG
; ð3:11Þ

which is the correct Wald entropy up to a constant
coefficient. ~α in (3.11) is a numerical constant analogous
to α in (2.5), which depends on the number of dimensions.
We remark that the properties of isolated horizons used

in [44] remain valid in Lanczos-Lovelock gravity (and
indeed in any theory), since they are of geometric origin
and do not involve the field equations.5

At this point, it becomes apparent why the Wald entropy
formula and the LQG black hole entropy calculations
agree: the generalized area operator is constructed roughly

3More precisely, given a metric ~hαβ satisfying detð ~hαβÞ ¼ ~h,
we construct a Dþ 1-bein ~eIα such that ~hαβ ¼ ~eIα ~eβI and
~eIαnI ¼ ~eIαsI ¼ 0. Then, ~Γ0 ¼ Γ0ð~eÞ.

4It seems that a metric satisfying these two requirements can
always be found for suitable horizon topologies: take a spheri-
cally symmetric metric hsab on H. Pick a diffeomorphism Φ on H

such that
ffiffiffi
~h

p
¼ Φ�ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det hsαβ
p Þ. Then, ~hαβ ≔ Φ�ðhsαβÞ also sat-

isfies the nondistortion condition, since this condition is a scalar.
Thus, the nondistortion condition does not pose any restriction on
the actual spacetime metric. Still, χ ¼ 0 would lead to ill-defined
expressions in the Chern-Simons treatment and we exclude this
particular case.

5This is not quite true given the definition in [44] for pure GR.
There, one imposes a version of the dominant energy condition
on the energy-momentum tensor, which implies a similar con-
dition on the Ricci tensor via the field equations. In a generalized
theory, we must instead impose the condition directly on the Ricci
tensor.
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as ~A ∼
ffiffiffiffiffiffiffiffiffiffi
flux2

p
. The flux variables ðβÞπaKL conjugate to the

connection are not measuring the (internal bivector-valued)
area, but the derivative of the Lagrangian with respect to the
curvature tensor component Rμνρσϵ

μνϵρσ ∼ Rnsns as in the
Wald entropy formula. Here, the first n index comes from
the time derivative of the connection when defining the
conjugate momentum. The first s index comes from the sa
component of the momentum that is relevant for the
entropy calculation. The second n and s result from the
fact that for Lanczos-Lovelock gravity plus nonminimally
coupled scalars, only the internal s½InJ� component is
nonvanishing. Whether this last statement is true in more
general situations is presently unclear.

C. Condition on extrinsic curvature

Imposing (3.5) at the classical level would lead us to use
Dirac brackets, since this condition would gauge fix the
Hamiltonian constraint. This would lead to a noncanonical
symplectic structure, and the quantization methods of loop
quantum gravity would cease to be applicable directly.
Therefore, we choose to impose it at the quantum level in
the form of a master constraint [58], which can also deal
with second-class constraints. The details of this treatment
turn out not to be important for the following reason: using
the standard regularization techniques, which lead to an
anomaly-free Hamiltonian constraint in the case of pure
general relativity [59], the master constraint automatically
vanishes on trivial (two-valent) vertices and extraordinary
vertices (three-valent with two edges having parallel tan-
gents). Therefore, the constraint acts nontrivially only in the
bulk. Also, given any solution to the master constraint in the
bulkwith a certain set of spins puncturing the horizon, we can
change the spins puncturing the horizon arbitrarily by adding
edges and extraordinary vertices, and therefore generate
another solution with arbitrary puncturing characteristics.
A few more remarks concerning the master constraint

treatment should be given. Since we are dealing with
second-class constraints, we have to expect quantum
corrections at the order of ℏ, as opposed to ℏ2, comparable
to a shift in energy, and corresponding to a classical
reduction of degrees of freedom due to the constraints
[60]. In fact, imposing III C on top of the Hamiltonian
constraint is a stronger condition on the bulk states than the
usually assumed implementation of the Hamiltonian con-
straint. However, as remarked before, given a single
solution, we can generate more solutions with arbitrary
puncturing characteristics, which is sufficient to reduce the
entropy computation to the usual case. One might object to
this procedure on the grounds that the solutions thus
generated might dominate the entropy. A similar effect
has been observed in [61], where volume zero vertices are
“overlooked” in a master constraint treatment of the Gauss
constraint. However, the same criticism can also be applied
to the usual treatment, where one assumes a solution of the
Hamiltonian constraint.

We remark that the Schwarzschild-type black hole
solutions [54] we are interested in satisfy condition (3.5)
in the standard time-independent slicing, since Kab ¼ 0
clearly implies (3.5). This special case corresponds to a
time slice intersecting the bifurcation surface.

IV. THE PROSPECTS FOR GENERAL
DIFFEOMORPHISM-INVARIANT THEORIES

It was shown in [3] that general diffeomorphism-
invariant theories with Lagrangian of the form (2.1) can
be rewritten as a higher-dimensional gravity theory with no
higher derivatives, coupled to additional (partially sym-
metric) tensor fields. Essentially, the additional degrees of
freedom resulting from the higher time derivatives are
traded for these tensor fields. In this process, new equations
of motion which relate the tensor fields to derivatives of
the Riemann tensor have to be imposed via Lagrange
multipliers. In the canonical formalism, this translates into
additional constraints.
These results are an important step towards treating

general diffeomorphism-invariant theories within LQG, in
the manner illustrated in Sec. III. However, there remain
several problems that prevent us from making any solid
statements about LQG black hole entropy calculations for
such theories.
(1) The canonical Dþ 1 decomposition of symmetric

tensor fields leads to additional terms proportional to
the extrinsic curvature in the split action, and the
calculation of the canonical conjugate to the ex-
trinsic curvature becomes complicated. The expres-
sion of the split action given in [3] hints at the
conjugate of the extrinsic curvature being related to
(2.3), thus potentially leading to an LQG derivation
of the proper Wald entropy. However, this relies on
treating the metric and extrinsic curvature as inde-
pendent variables, which comes at the cost of
additional second-class constraints.

(2) Symmetric tensor fields have not been treated so far
by LQG methods (unlike p forms—see [43]). It
seems that a construction similar to the connection
variables for the metric might be necessary, which
could yield additional boundary degrees of freedom.
These degrees of freedom could contribute to the
entropy.

(3) After quantizing, one must take into account any
leftover constraints. While the lapse function and
thus the smeared Hamiltonian constraint vanish at
the horizon, it is not clear what effects the additional
first-class constraints might have on the entropy.

The situation for general diffeomorphism-invariant the-
ories is thus rather unclear at the moment. It seems that the
best way to proceed is to study simple examples on a case
by case basis to get a better feeling for them. We leave this
for further research.
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V. INTERPRETATION AND THE CHOICE OF
QUANTIZATION VARIABLES

In the above, we have generalized the LQG entropy results
(2.5) and (2.6) to higher-derivative theories of gravity. We
found that if one quantizes using the ordinary LQG con-
nection (in the version appropriate to arbitrary dimensions,
but otherwise retaining its geometric meaning) and its
conjugate flux (which loses its simple geometric meaning),
then the Wald entropy is recovered up to a constant factor.
While this is an interesting result, it represents only a step
towards a full understanding of black hole entropy within
LQG. The caveats that must be raised appear already in the
more familiar setting of LQG with Ashtekar-Barbero var-
iables in 3þ 1d. Since more is known about that setting, we
will use it for the purpose of the discussion. We expect that
our comments below will also be relevant to the more
general setup of Secs. III and IV.

A. Naive interpretation

Let us begin with the standard LQG result (2.5) for GR
with minimally coupled matter. The naive response to this
result is to set γ ¼ 4α, thus recovering by “brute force” the
correct numerical coefficient for the Bekenstein-Hawking
formula S ¼ AH=4G. Now, the Barbero-Immirzi parameter
γ (like the analogous parameter β in the arbitrary-
dimensional setup) defines a family of different quantiza-
tion choices. Each is associated with a choice of
fundamental connection variable, which is to be subjected
to the LQG quantization procedure. Thus, the naive
interpretation of (2.5) would be that there is a single
preferred choice of quantization variables.
For GR with a conformally coupled scalar, this naive

conclusion becomes sharper. One has now a larger selec-
tion of plausible connection variables to quantize. In
particular, the constant parameter γ can be replaced with
a function of the scalar field ϕ. Two choices appear
especially natural. One choice, adopted in [7,8], is to
maintain the standard meaning of the fundamental con-
nection, at the cost of its conjugate flux no longer
measuring area. This is the choice described in Sec. II B
and the direct analog of the choice adopted by us in
Secs. III and IV. It leads to the correct Wald entropy up to a
constant, as shown in Eq. (2.6). Another choice6 [9] is to
maintain the geometric meaning of the fundamental flux as
a measure of areas, at the cost of changing the meaning of
the connection. This leads to the GR entropy formula (2.5)
instead of (2.6), i.e. gives a wrong functional dependence of

the entropy on the scalar field. Thus, again the naive
conclusion is that there is a single preferred choice of
quantization variables that produces the correct Wald
entropy:
(1) One must maintain the geometric meaning of the

connection rather than the flux. This fixes the
quantization variables up to a constant γ and gives
the correct Wald entropy up to a constant.

(2) Then, as in GR, one must fix further γ ¼ 4α.
As we will now review, this interpretation is in fact

unfounded. On the other hand, a modified version of it
appears to hold for large spins, as we will discuss in
Sec. V C.

B. Semiclassical limits and the continuum

The argument in Sec. VA is missing a crucial ingredient.
Onemust always keep inmind that theBekenstein-Hawking
formula refers to a semiclassical regime of gravity. For
instance, the Newton’s constant G appearing there comes
from the prefactor of the semiclassical action. For Wald’s
generalization of the entropy formula, the same remark
applies. Thus, any comparison of the LQG entropy to the
Bekenstein-Hawking-Wald result must be in the context of
some semiclassical limit. See [46] for a discussion.
As discussed in [45], there are two semiclassical regimes

that one may consider in LQG. One is the limit of
continuum GR, which is supposed to emerge from LQG
states with very many spins and intertwiners. If this limit
exists, then it is of course the main focus of physical
interest. If it does not, then the theory must be discarded as
a description of nature. The continuum limit is also the
supposed domain of the LQG entropy formula (2.5), since
the latter receives contributions mainly from many small
spins. However, we have no independent knowledge about
the effective continuum action and its relation to the
parameters of the fundamental theory. In particular, the
relation between the fundamental Newton’s constant
[appearing in the entropy result (2.5)] and the effective
Newton’s constant in the continuum (appearing in the
Bekenstein-Hawking formula) is unknown. Thus, there
is no direct conclusion that can be drawn from
Eqs. (2.5) and (2.6) or from our generalization (3.11). It
may be that, as argued in Sec. VA, there is a unique
quantization that correctly produces the continuum limit.
Or it may be that all quantizations are equally good, and the
results for the entropy are all correct when reexpressed in
terms of the effective continuum action.
LQG has another semiclassical regime, which is not

obviously related to the continuum one, but is much better
understood technically. This is the limit of coherent states
with very large spins—a special subclass of states in the
theory, characterized by large quantum numbers and large
discrete elements of geometry. One then studies the
contributions to the transition amplitudes where the inter-
mediate states are again restricted to large spins. Since it is

6In [9], on top of using the physical metric in the choice of
canonical variables, a constant mean curvature gauge fixing of the
Hamiltonian constraint was employed. This leads to fluxes
rescaled by the scalar field, but by a different function from
the one appearing in the Wald entropy. We will neglect this detail
in this paper, as it is not important here, and the calculation in [9]
can also be done without this gauge fixing.
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not known that these contributions dominate, the large-spin
regime may not be a proper limit of the theory at all.
Nevertheless, its study—the study of the spin-foam ampli-
tudes at large quantum numbers—has been fruitful.
With regard to black hole entropy, the situation that

emerges in the large-spin regime is very different from the
one in the continuum, with a conclusion quite similar (but
not identical) to that of Sec. VA. It is the product of some
surprising results [45,47] in standard, 3þ 1d LQG. These
results are highly suggestive, but they are not yet rigorously
understood from first principles.7 Also, at the moment, their
applicability to higher dimensions and Lanczos-Lovelock
gravity is only partial. However, we suspect that this new
picture is important for a proper understanding of black
hole entropy in LQG. We therefore describe it in the
subsection below.
As an aside, the large-spin regime of LQGmay also arise

from a coarse-graining procedure; it would then be a
legitimate rewriting of the continuum limit, rather than a
mere truncation of the theory. However, this is far from
guaranteed, and the theory’s dynamics may be changed
dramatically by RG flow. One favorable possibility is that
LQG yields a continuum limit via a triangulation-invariant
spin-foam model. In fact, if such a model were to arise from
the RG flow of LQG, then we might as well take it as the
fundamental theory, discarding the original one as scaffold-
ing. If this model reproduces the GR action, then it may be
similar to the familiar spin-foam amplitudes at large spins,
since the latter reproduce the GR action as well (though the
details of this are more subtle than previously thought—see
the next subsection).

C. The large-spin limit and sending γ to �i

The recent calculation [47] by Frodden, Geiller, Noui
and Perez suggests a new and intriguing perspective on the
problem of black hole entropy in LQG. They show that for
a fixed number of punctures with fixed large spins, after a
certain analytical continuation, one obtains the Bekenstein-
Hawking formula with the correct prefactor. The analytical
continuation is sending the Barbero-Immirzi parameter to a
self-dual value γ ¼ �i. At the same time, the puncture
spins j are sent to complex values, so that the puncture
areas remain real.8 The analogous computation also works

[9] for GR with a conformally coupled scalar, provided that
one starts with the quantization variables from [7,8], i.e.
does not alter the geometric meaning of the connection.
The use of a fixed number of large-spin punctures in [47]

is very different from the usual approach, where all
configurations are allowed, and small spins dominate.
Accordingly, we are not suggesting that the calculation
of [47] is directly relevant for the continuum limit. Instead,
we view this result in the “toy” context of the large-spin
semiclassical regime, which is distinct from the continuum
as discussed in Sec. V B.
The virtue of the large-spin regime is that we have a

rather good understanding of its dynamics. In particular,
we have at our disposal an effective action derived from
spin-foam amplitudes. The one analyzed in the greatest
detail is the 4-simplex vertex amplitude [62]. Now, it was
shown in [45] that this amplitude reproduces the correct
classical GR action only if one sets γ ¼ �i at the end of
the calculation. This is contrary to previous claims that the
correct action is reproduced for any real γ. The conclusion
of [45] rests on the recent observation [63,22] that the
classical GR action has an imaginary part. A full agree-
ment between the spin-foam amplitude and the classical
action, including the imaginary part, is obtained if and
only if one sets γ ¼ �i.
In the same spirit as [47], the continuation γ ¼ �i in [45]

is viewed as keeping the areas real, at the price of making
the spins complex. Of course, it is not known how to define
the quantum theory for nonreal γ. At the moment, the
closest one can get to a quantum theory based on self-dual
variables is to send γ → �i after the quantum calculation
with real γ. This was the procedure used in [45]. Real γ can
then be viewed as a regulator.
We note that the effective action of [45,62] has the same

Newton’s constant as the fundamental theory. This is an
expected result for coherent states with large quantum
numbers, which need not hold for the continuum. The same
Newton’s constant also appears in the entropy result
of [47].
To sum up, the large-spin limit seems to describe a

semiclassical regime only if one retains the geometric
interpretation of the connection and sets γ ¼ �i after the
quantum calculations have been performed. This procedure
produces both a correct semiclassical action (i.e. a correct
relation between its real and imaginary parts) and a correct
black hole entropy (i.e. a correct relation between the
entropy and the semiclassical action).
So far in this subsection, we have been mostly reviewing

the situation for 3þ 1-dimensional general relativity. In
higher dimensions and for Lanczos-Lovelock gravity, one
can apply the entropy computation of [47] to the boundary
Hilbert space from Sec. II C 4 [64]. By the results of
Sec. III, the punctures will now carry quanta of the
appropriate entropy-proportional quantity, and the method
of [47] will produce the Wald entropy with the correct

7In particular, one would want to analytically continue the
whole spin-foam amplitude to derive the effective action, instead
of only its asymptotic analysis.

8We are referring here to the amended version of [47], which
makes the conceptual framework somewhat more solid. In the
original version, it was the level of the Chern-Simons theory,
rather than the spins, that became complex. The papers [9,45]
were written referring to this original version. They are, however,
fully compatible with the amended version. Note also that the
authors of [47] interpret the analytically continued SU(2) spins as
labeling SU(1,1) representations. This interpretation is not
necessary for our argument.
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prefactor. However, as before, the entropy result is only
meaningful when compared to an effective action, derived
e.g. from a spin-foam amplitude. Writing a spin-foam
model for generalized theories of gravity and calculating its
large-spin behavior is a nontrivial task, and we will not
comment on it further.

D. Quantized Wald entropy

The expectation that black hole entropy has a discrete
spectrum in quantum gravity has been put forward by
several authors, starting with Bekenstein [65]; see also [66]
for a review. A physical argument leading to this con-
clusion is to view black hole entropy as an adiabatic
invariant, which is then expected to obtain a discrete
spectrum in a quantum theory. Also, arguments for an
equally spaced entropy spectrum can be found; see [67] and
references therein. However, these arguments should be
taken with care, since they are using semiclassical reason-
ing, and corrections in a deep quantum gravity regime are
to be expected. A generalization to Lanczos-Lovelock
gravity can also be given [68].
Comparing with the results of this paper, we recall that

the area operator from standard loop quantum gravity had
to be substituted by an operator that, when evaluated on a
nonrotating isolated horizon, measures the Wald entropy.
While its spectrum is not equidistant, it becomes nearly
equidistant when evaluated on a single spin network edge
for large quantum numbers. Such an edge is labeled by a
simple representation of SOðDþ 1Þ, given by a non-
negative integer λ (see [39,41] for details). The eigenvalues
are then given by 8πGβ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðλþD − 1Þp

, behaving as
8πGβðλþ ðD − 1Þ=2Þ þOð1=λÞ for λ → ∞. The reason
why the complete spectrum of this operator is not spaced
equidistantly is this deviation from the equidistant spectrum
for individual edges.9

In light of the present results, it is also interesting to
revisit the interpretation of spin networks as “twisted
geometries” [70]. This interpretation, made in the context
of standard Einstein gravity, relies on the fact that the flux
operator measures precisely the area. Then, the represen-
tation labels on the spin network edges can be interpreted
as the magnitudes of the face areas of a polyhedron.
However, in a general theory of gravity, we have seen that
it is not the (spatial codimension 1) area that is quantized,
but an expression proportional to the Wald entropy when
evaluated on an isolated horizon. It is thus tempting to
speculate that the microstates labeled by spin networks
should have some interpretation which is closer to a
collection of quantum black holes than to a discretized
geometry.

VI. CONCLUSION

Working with the dimension-independent connection
variables, we have related the LQG black hole entropy
calculation to the Wald entropy formula. The key point is
that the generalized area operators measure a rescaled
version of the area at the horizon, which is essentially
the Wald entropy. The reason for this is that the variable
conjugate to the connection along the ŝa direction (the
spacelike horizon normal) is given by the derivative of the
Lagrangian with respect to the curvature component Rnsns.
The same quantity, integrated over the horizon slice H,
enters the Wald entropy formula. Thus, the canonical
conjugate to the connection essentially measures Wald
entropy. Our analysis has covered nonminimally coupled
scalars and Lanczos-Lovelock gravity.
The main open problem for the entropy calculation is the

comparison with semiclassical actions. In [45], this has
been done for four-dimensional pure gravity in a “trans-
Planckian” large-spin regime. However, in the continuum,
the problem remains open. The same is true even for large
spins in higher dimensions, as well as for nonminimally
coupled matter or Lanczos-Lovelock gravity, due to the
lack of a corresponding spin-foam model. As discussed in
Sec. IV, general diffeomorphism-invariant theories are not
yet under control. Reliable conjectures about their entropy
as derived from loop quantum gravity, if such a calculation
exists at all, cannot be made presently.
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APPENDIX: FIRST LAW AND COVARIANT
PHASE SPACE

In this Appendix, we fill in some details of the phase-
space construction and the first law of black hole mechanics
that were omitted in Sec. III. We still restrict the phase
space to satisfy (3.5); however, we point out that this
condition might be relaxed in future work.

1. Covariant phase space

Following [44], we start with an action principle with
suitable boundary terms, in our case the Lanczos-Lovelock

9See however [69] for a different regularization of the area
operator, resulting in an equidistant spectrum.
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action (3.3). We do not add any boundary term on the
isolated horizon Δ, since the isolated horizon boundary
conditions are already ensuring a well-defined variational
principle. In fact, under these conditions, the first variation
of the action gets no boundary contribution from Δ:

Z

Δ
~ΣIJ∧δAIJ ¼ 0; ðA1Þ

where ~ΣIJ is the D − 1-form from which the flux operators
are constructed:

~ΣIJ ¼
X⌊Dþ1

2
⌋

m¼0

−mcm
2m−1ðDþ 1 − 2mÞ!F

I2J2∧ � � �∧FImJm

∧eK2mþ1∧ � � �∧eKDþ1ϵIJI2J2…ImJmK2mþ1…KDþ1
: ðA2Þ

The calculation is analogous to the one in [44] and will not
be detailed further here. Note that ~ΣIJ

a1…aD−1
ϵa1…aD ¼

−πaDIJ=2. Next, one would like to calculate the second
variation of the action, and show that the integral of the
symplectic current over Δ reduces to a boundary term. This
boundary term will constitute the horizon part of the
symplectic structure. The required calculation is more
involved than in the case of pure gravity [44], and we will
use a shortcut to circumvent it. Note that we are ultimately
interested in switching the internal gauge group to
SOðDþ 1Þ. For this, we have to go back to ADM-type
variables and then apply the canonical transformation
discussed in the previous section. In order to do this, we
can pick a gauge where nI ¼ const and sI ¼ const (at least
in individual charts) and thus δnI ¼ δsI ¼ 0. Then, the
integral over Δ vanishes for the ADM-type variables, and
we can perform the canonical transformation. In the
covariant language, the symplectic structure now reads

Ωðδ1; δ2Þ ¼
Z

Σ
δ½1 ~ΣIJ∧δ2�AIJ þ 2

Z

H
δ½1 ~sIδ2�nIdD−1x

ðA3Þ
for the compact internal gauge group SOðDþ 1Þ.

2. First law

The derivation of the first law of black hole mechanics in
the isolated horizon framework has been given in [33], and
extended to higher-dimensional black holes in anti—de
Sitter spacetimes in [71]. The main idea of the proof is to
show that for an infinitesimal time translation to be a phase-
space symmetry, the first law of black hole mechanics must
hold. The derivations in [33,71] generalize in a straightfor-
ward manner to the case of Lanczos-Lovelock gravity. We
will sketch here the important steps and perform the central
calculation. We do not aim at being self-contained. The
unfamiliar reader is referred to the original literature cited
above for a detailed exposition, where also the inclusion of
additional matter fields is discussed.
Consider a time evolution vector field tμ. The variation

δt ≔ ðLte;LtAÞ, where Lt is the Lie derivative along tμ,
satisfies the linearized equations of motion for suitable
boundary conditions, and can be interpreted as the gen-
erator of time evolution on the covariant phase space.
However, δt constitutes a phase-space symmetry only if
LtΩ ¼ 0, where Ω is the symplectic structure. Since we are
in the nonrotating case, the proper boundary condition for
tμ at the isolated horizon Δ is to become the null normal lμ.
At spatial infinity, tμ becomes an asymptotic time
translation.
For the following calculation, we will use the fact that

internal gauge transformations are already a symmetry of
the symplectic structure. Therefore, we can assume without
loss of generality that the variations δ in the following
calculation do not contain gauge rotations, i.e. that
δnI ¼ δsI ¼ 0, since nI and sI are normalized internal
vectors. A tedious but straightforward calculation yields

Ωðδ; δtÞ ¼
1

2

Z

Σ
ðδ ~ΣIJ∧LtAIJ − Lt

~ΣIJ∧δAIJÞ þ
Z

H
ðδ~sILtnI − Lt ~sIδnIÞdD−1x

¼ 1

2

Z

∂Σ
ðδ ~ΣIJt · AIJ − ðt · ~ΣIJÞ∧δAIJÞ þ

Z

Σ

�
1

2
δFIJ∧t · ~ΣIJ − ðt · FIJÞ∧δ ~ΣIJ

�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼δeI∧ðt·ðLanczos-Lovelock-EOMÞÞI¼0

þ
Z

H
δ~sILtnIdD−1x

¼ −κtδ
Z

H

ffiffiffi
~h

p
dD−1xþ δ

Z

S∞

Et
Lovelockd

D−1x ≔ XtðδÞ; ðA4Þ

where κt is the surface gravity. In the last step, we have used
that t · AIJ ¼ lμΓ0

μIJ − 2κn½IsJ� on H [44] and the Lanczos-
Lovelock equations of motion. Furthermore, the second
term in the first integral of the second line vanishes when

applying the isolated horizon boundary conditions [44] to
the connection and its curvature. Et

Lovelock is proportional to
the generalization of the ADM energy density to Lanczos-
Lovelock gravity. We refrain from writing out Et

Lovelock in
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detail, and just note that the corresponding term in (A4)
becomes a total variation due to the falloff properties of the
canonical variables at spatial infinity. The first term in the
last line of (A4) evaluates to the expression −κtδ ~AH,
familiar from the first law. We are thus in the same situation
as in [33]. It remains to conclude that for the evolution to be
Hamiltonian, XtðδÞmust be closed. This in turn implies that
the surface gravity depends only on ~AH, and that there
exists a function Et

Δ of ~AH such that δEt
Δ ¼ κtδ ~AH. This Et

Δ
can then be interpreted as the horizon energy associated to
the time translation tμ. We refer to [71,72] for further details
on this point. The results of [33,71] thus generalize to
Lanczos-Lovelock gravity in higher dimensions under the

restriction (3.5).10 We leave the treatment of additional
matter fields, as e.g. detailed in [33], to the interested
reader.
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