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We take string theory in a box of volume V, and ask for the entropy SðE; VÞ. We let E exceed the value
Ebh corresponding to the largest black hole that can fit in the box. Several approaches in the past have
suggested the expression S ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
EV=G

p
. We recall these arguments, and in particular expand on an

argument that uses dualities of string theory. We require that the expression for SðE; VÞ be invariant under
the T and S when E ∼ Ebh. These criteria lead to the above expression for S. We note that this expression
has been obtained also by a imposing a quite different requirement—that the entropy within a cosmological
horizon be of the order of the Bekenstein entropy for a black hole the size of the cosmological horizon.
We recall the earlier proposed model of a “dense gas of black holes” to model this entropy, and discuss its
realization as a set of intersecting brane states. Finally we speculate that the cosmological evolution of such
a phase may depart from the evolution expected from the classical Einstein equations, since the very large
value of the entropy can lead to novel effects similar to the fuzzball dynamics found in black holes.
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I. INTRODUCTION

Consider a box of volume V. In this box we put an
energy E. What is the entropy

S ¼ SðE; VÞ ð1Þ

in the limit when the energy density ρ ¼ E=V
becomes large?
For low values of the E, we expect the phase of matter to

be radiation. This phase has entropy S ∼ Vρd=ðdþ1Þ, where d
is the number of space dimensions [Fig. 1(a)]. At larger E,
we can get more entropy by forming a black hole, whose
entropy is given by the expression S ¼ A=ð4GÞ. As we
increase E, we reach a critical value E ∼ Ebh, where the
radius of the hole Rs becomes order the size L of the box
[Fig. 1(b)].
We are interested in SðE; VÞ in the domain E > Ebh

[Fig. 1(c)]. To see how this question makes sense, consider
a flat cosmology as we follow it backwards towards the
initial singularity. In Fig. 2 we depict a box-shaped region
of physical volume V ≫ ldp, at different times during the
evolution (lp is the Planck length). The energy E in the box
will reach E ∼ Ebh when the density ρbh in the box is still
much below Planck density ρp,

ρbh ≡ Ebh

V
≪ ρp: ð2Þ

If we push back further in time, we find E > Ebh in our
box. Einstein’s equations do not constrain the value of E;
they simply tell us that the box will be expanding at a rate
given by the Friedmann equation�

_a
a

�
2

¼ 16πGρ
dðd − 1Þ : ð3Þ

We will let our box be in the shape of a torus Td; for string
theory, we have d ¼ 9.1 We will assume that the box size is
evolving in the fashion (3). We further assume that in spite
of this expansion, it makes sense to define an entropy
SðE;VÞ. (A similar assumption is made in the standard
treatment of the big bang in the radiation phase; one
assumes thermal equilibrium for most computations even
though the system is not, strictly speaking, in equilibrium.)
Several approaches have suggested the answer

S ¼ C

ffiffiffiffiffiffiffi
EV
G

r
: ð4Þ

Here C is a constant of order unity. We will summarize
these approaches below, but in the present paper our focus
will be on using the duality properties of string theory.
In [1] it was noted that the expression (4) was invariant
under the T and S dualities. We will investigate the allowed
expression for S by requiring such duality invariance, and
asking what possible expressions for S can have these
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1For simplicity, we assume that we are working with Type
IIA/B string theories, which are related by duality to each other.
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invariances. More explicitly, we will require that SðE;VÞ
satisfy the following requirements:

(i) S should be invariant under T duality in any cycle of
the torus.

(ii) S should be invariant under S duality.
(iii) We should get S ∼ Sbh when the box size and shape

is such that E ∼ Ebh for that box.
With these requirements, we argue that we are led to the

expression (4), in the domain

ρbh ≲ ρ≲ ρp: ð5Þ

At the lower end of this range (ρ ∼ ρbh) we will find that the
expression (4) matches onto the area entropy of the black
hole Sbh ¼ A=ð4GÞ. At the upper end ρ ¼ ρp we will find
that (4) gives an entropy of one bit per unit Planck volume.
Thus (4) extrapolates the Bekenstein area entropy [2] to the
domain (5). Since ρ≳ ρbh, we will say that matter is
hypercompressed, i.e., compressed beyond the density of
the largest black hole that can fit in the box.
At this point we recall that the expression (4) was

obtained earlier, by using quite a different line of argument.
Since our box is expanding in the fashion (3), the spacetime
has a cosmological horizon radiusH−1 ¼ ð _aaÞ−1. It has been
suggested several times in the past that that in the very early
universe the entropy in a region of radius H−1 should be
given by the entropy of a black hole with radius ∼H−1; see
for example [3,4].2 Interestingly, this requirement gives the
same expression (4) for the entropy of a box of volume V.
Note that (4) can be written as

S ¼ C

ffiffiffiffiffiffiffi
EV
G

r
¼ C

ffiffiffiffi
ρ

G

r
V; ð6Þ

so that the entropy density is

s ∼
ffiffiffiffi
ρ

G

r
: ð7Þ

From the Friedmann equation we have the radius of the
cosmological horizon

H−1 ∼ ðGρÞ−1
2: ð8Þ

The entropy of a black hole of radius ∼H−1 is
S ∼H−ðd−1Þ=G. If this is the entropy in a cosmological
horizon region, then the entropy density would be

s ∼
S

H−d ∼
H
G
∼

ffiffiffiffi
ρ

G

r
ð9Þ

in agreement with (7).
The expression (4) was obtained in [6] by arguing for a

“spacetime uncertainty relation.” The ideas like those of [3]
were explored further in [7], where it was noted that the
entropy (4) corresponds to an equation of state p ¼ ρ. A
general picture was developed where horizon sized black
holes coalesce as the Universe expands, so that the entropy
in a region of size HðtÞ−1 remains of order the entropy of a
black hole of radius HðtÞ−1.3 In [9] the notion of a causal
connection scale was used to arrive at the same equation of
state (4). In [10] a similar relation was argued to correspond
to the Cardy formula for the density of states.
Can we find a set of matter states which would lead to the

entropy density (7)? When ρ is of order the string scale, it
was argued in [11] that such an entropy density would be
obtained for a closely packed gas of string states which are
at the Horowitz-Polchinski correspondence point [12] (i.e.,
at the point where the string is large enough to be at the
threshold of collapsing into a black hole). We will try to
flesh out this picture somewhat, by noting that states of
black holes in string theory appear to be generated by sets
of intersecting branes, and thus modeling the state at
general ρ by closely packed sets of intersecting branes.
We have noted that an energy density ρ leads to an

expansion (3) if we use the classical Einstein equations.
But in black holes it has been found that the semiclassical
dynamics expected from Einstein’s equations can be altered
by an ‘entropy-enhanced’ tunneling. One finds that the very

FIG. 2. A box of the same physical size at different times in an
expanding cosmology. At an early enough time, the box will
contain more mass than required to make a black hole with size
equal to the size of the box.

(a) (b) (c)

FIG. 1. (a) At a small value of the energy E, the phase with
maximal entropy is radiation. (b) At larger E, a black hole has
more entropy; this phase continues till the size of the hole
becomes of order the size of the box. (c) We are interested in the
phase where E is taken to yet higher values.

2A more precise version of cosmological entropy bounds has
been developed in terms of the entropy that can pass through light
sheets [3,5].

3Another approach to the entropy of the early universe is
discussed in [8].
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large value of the Bekenstein entropy implies a very large
measure term in the path integral. This measure term can
compete with the classical Einstein action to prevent
standard gravitational collapse through the horizon [13].
We will ask if a similar violation of semiclassical evolution
is possible in the cosmological situation. Note that the
entropy (4) is large; as in the case of the black hole, the
largeness of this entropy stems from the appearance of G
which brings in the Planck scale.
The plan of this paper is as follows. In Sec. II we check

that the expression (4) satisfies the above requirements
(i)–(iii). In Sec. III we examine these requirements in more
detail. In Sec. IV we use the equation of state S ¼ SðE;VÞ
to write down other thermodynamic quantities for our state.
In Sec. V we present a heuristic picture of how the
expression (4) can arise from intersecting brane states; in
the limit E ∼ Ebh this picture reduces to the standard
intersecting brane picture for black holes in string theory.
In Sec. VI we examine the possibility of quantum effects
dominating the expansion rate of the phase (4). Section VII
is a discussion.

II. OUTLINE OF THE DERIVATION

In this section we check that the expression (4) satisfies
the requirements (i)–(iii) listed in Sec. I. The check of
T and S dualities was performed earlier in [1].
We work with 9þ 1-dimensional string theory. Thus the

number of space dimensions is d ¼ 9, and the Newton
constant isG ∼ l8p. We set c ¼ ℏ ¼ 1 throughout this paper.
We take a toroidal box with sides L1…L9. Consider the

expression

X ≡ EV
G

: ð10Þ

We can see that X is dimensionless; thus any function of X
has the correct units to be an entropy S. We now examine
the properties of X.

(i) The string tension is Ts ¼ 1
2πα0. Let us define the

string length as

ls ¼
ffiffiffiffi
α0

p
: ð11Þ

Under T duality in the direction x1 we get

Els → Els
L1

2πls
→

2πls
L1

Li

ls
→

Li

ls
; i ¼ 2;…9

g → g
2πls
L1

: ð12Þ

Hereg is thestringcoupling, andwenote thatNewton’s
constant is given by G ¼ 8π6g2l8s. We thus find

X ¼ EL1L2…L9

8π6g2l8s
→

E
�
ð2πlsÞ2
L1

�
L2…L9

8π6g2
�
ð2πlsÞ2
L2
1

�
l8s

¼ X; ð13Þ

so that X is invariant under T duality on any cycle of
the torus.

(ii) Under S duality, any quantity remains invariant if
it is expressed in Planck units. We define the Planck
length as G ¼ l8p, and the Planck mass as
mp ¼ 1=lp. We see that we can write X entirely
in Planck units,

X ¼ EV
G

¼ ðElpÞðVl−9p Þ; ð14Þ

so that X → X under S duality.
(iii) Let all sides of the torus be equal: Li ¼ L. Consider

the energy E ¼ Ebh for which the radius of the black
hole would be Rs ∼ L. In 9þ 1 dimensions, the
metric of the Schwarzschild hole has the form

ds2 ¼ −
�
1 −

αGM
r7

�
dt2 þ dr2

ð1 − αGM
r7 Þ þ r2dΩ2

8;

ð15Þ

where α is a constant of order unity. Thus the
horizon radius is Rs ∼ ðGEbhÞ17. Setting Rs ∼ L,
we get

Ebh ∼
L7

G
: ð16Þ

At this energy

X ¼ EbhV
G

∼
L16

G2
: ð17Þ

But the black hole entropy is

Sbh ∼
A
G
∼
L8

G
: ð18Þ

Thus at the energy (16) we find

X
1
2 ∼ Sbh ð19Þ

To summarize, if we take

S ∼ X
1
2 ¼

ffiffiffiffiffiffiffi
EV
G

r
; ð20Þ

then this entropy would be invariant under T and S
dualities, and would agree with the entropy of the black
hole at the lower end of the domain (5).
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III. A MORE DETAILED ANALYSIS

In this section we examine the above derivation of (4)
in more detail. First we explain in more detail what we
mean by requiring that our expression for S be invariant
under T and S dualities. Then we explore the constraints
our requirements impose of different possible expressions
for the entropy.

A. Manifest invariance under duality

String theory is characterized by a string length ls ∼
ffiffiffiffi
α0

p
.

One of the models of the early universe is the string gas
[14]. The entropy of the string gas has the form

Ssg ¼ C1ðElsÞ þ C2ðVl−9s Þ; ð21Þ

where C1; C2 are dimensionless constants.4 Thus the string
scale ls appears explicitly in this expression. For this
reason, Ssg is not “manifestly” invariant under S duality.
Under S duality, the elementary string is replaced by the
D string, whose tension is TD ¼ Ts=g. We may define the
D-string length ld analogous to how we defined the string
length ls,

Td ¼
1

g
1

2πα0
≡ 1

2πl2d
;→ ld ¼ g

1
2ls: ð22Þ

Under S duality we get ls → ld, and we see that the
expression (21) for Ssg is not invariant.
Let us clarify here what we mean by the phrase “Ssg is

not manifestly S-duality invariant.” Suppose the string
coupling is weak: g ≪ 1. Let us place an energy E in
our box, with the value of E being such that the phase we
get is the string gas. For small g, the states of the elementary
string are lighter than the states of the D-string. Thus we
expect that the excitations in our box would consist
predominantly of string states, and not of D-string states.
Counting these string states, would lead to the expression
Ssg, which would be a correct result in string theory (for this
value of E). But S duality is an exact symmetry of string
theory. So should the result (21) for the entropy not be
automatically S-duality invariant?
The situation is as follows. If we perform an S duality,

the coupling g gets replaced by 1=g, and the D-string
becomes lighter than the elementary string. The string
length ls in (21) then gets replaced by the D-string length
ld, and with this replacement the expression Ssg again gives
the correct entropy (in our chosen energy range).
Thus S duality is indeed respected by the theory, but the

expression Ssg is not left invariant under this duality. Thus
we say that Ssg is not manifestly invariant under S duality.
In the present paper, on the other hand, we are looking for
an expression SðE; VÞ that would be left invariant under the

dualities. The motivation for this requirement comes from
black holes. The entropy of a black hole Sbh is given in
terms of the Planck length lp ∼ g

1
4ls, which is invariant

under S duality; there is no explicit appearance of the string
length ls in the expression for Sbh. In [16] the black hole
was made from sets of D branes. The tensions of these
branes involved ls and the coupling g, but in the overall
expression for the entropy these variables appeared in a
particular combination which can be written in terms of
the Planck length alone. In our present approach we are
conjecturing that as we push deeper into the domain
E > Ebh the expression for SðE;VÞ will retain the property
that it be manifestly invariant under S,T dualities.
To begin our discussion, let us assume that S depends

on ls and g only through the combination lp. Suppose we
assume further that S depends on the volume V of our torus,
and not on its shape. Then we would have S ¼ SðE;V;GÞ.
Let us also assume for the moment that Swas in the form of
monomial

EaVb

Gc : ð23Þ

(We will consider more complicated forms a little later.)
Since S has no units, we must have

−aþ 9b − 8c ¼ 0: ð24Þ
The T-duality rules (12) give

b − c ¼ 0: ð25Þ
Equations (24) and (25) give

a ¼ b ¼ c; ð26Þ
so we are forced to the form

S ∼
�
EV
G

�
q

ð27Þ

for some power q. Matching onto Sbh at E ¼ Ebh as before,
we find q ¼ 1

2
. Thus under the above assumptions, we

see that (4) is the only expression that satisfies our
requirements.

B. Examining different shapes of the torus

In the above discussion we have assumed that the
parameters of the torus enter into the expression of S only
through the overall volume V. But it is possible in principle
that the expression for S depends on the ratios of the sides
Li=Lj. To examine this possibility, we let d of the space
directions have a length l while the remaining 9 − d
directions have a length L. We take

L ≫ l ð28Þ4Brane gases have a similar entropy [15].

ALI MASOUMI AND SAMIR D. MATHUR PHYSICAL REVIEW D 90, 084052 (2014)

084052-4



and ask if our criteria imposed on S suggest an answer
different from (4).
The requirements (i) of T duality and (ii) of S duality

remain the same as before, and thus imply no change to (4).
The requirement (iii) that S ∼ Sbh at E ∼ Ebh needs to be
reexamined however, because the black hole at energy Ebh
will be forced to a different shape. Under the condition
(28), we should treat the d small directions as compact
internal directions, so that we really get a hole in 9 − d
noncompact space dimensions. (In other words, the black
hole becomes a black string, extending along the d small
directions, so that the horizon now has a topology
S8−d × Td.) The metric for such hole has the form

ds2 ¼ −
�
1 −

αdG10−dM
r7−d

�
dt2 þ dr2

ð1 − αdG10−dM
r7−d

Þ
þ r2dΩ2

8−d; ð29Þ

where αd is a constant of order unity and

G10−d ¼
G
ld
: ð30Þ

The Schwarzschild radius is now Rs ∼ ðG10−dEbhÞ 1
7−d.

Setting Rs ∼ L we get

Ebh ∼
L7−d

G10−d
¼ L7−dld

G
ð31Þ

and

Sbh ∼
L8−d

G10−d
∼
L8−dld

G
: ð32Þ

We see that

EbhV
G

∼
�
L7−dld

G

�
ðL9−dldÞ 1

G
¼

�
L16−2dl2d

G2

�
; ð33Þ

and thus at E ¼ Ebh,

S ∼
ffiffiffiffiffiffiffi
EV
G

r
∼ Sbh: ð34Þ

Thus we find that the expression (4) does not need to be
modified for very asymmetrical shapes of the torus, and
we conjecture that the parameters of the torus enter only
through the volume V and not through the moduli Li=Lj.

C. The expression in different dimensions

We have used 9þ 1-dimensional string theory for our
analysis, since this choice makes it easy to see the effect of
T and S dualities. It is known however that the full structure
of string theory is best seen through M theory, which lives

in 10þ 1 dimensions. The extra space direction, usually
called x11, has a length L11 that depends on the coupling
constant g of string theory. Since g does not appear
explicitly in (4), one may wonder if this expression for
entropy is indeed symmetrical in all ten space dimensions
of M theory. The 10-dimensional Newton constant G is
related to the 11-dimensional Newton constant G11 by

G ¼ G11

L11

: ð35Þ

Thus

ffiffiffiffiffiffiffi
EV
G

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EVL11

G11

s
¼

ffiffiffiffiffiffiffiffiffiffiffi
EV11

G11

s
; ð36Þ

where V11 ¼ VL11 is the volume of the 10-dimensional
spatial box which now includes the direction x11. Thus our
expression (4) is indeed unchanged when viewed as an
expression in M theory.
Similarly, we may regard d of our space dimensions

as internal directions on which we dimensionally reduce.
Let the volume of these directions be Vc. Then the Newton
constant for the remaining directions is

G10−d ¼
G
Vc

; ð37Þ

and we can write the expression for the entropy in terms of
the noninternal quantities only,

ffiffiffiffiffiffiffi
EV
G

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EV=Vc

G=Vc

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
EV9−d

G10−d

s
: ð38Þ

We again see that the expression (4) remains valid for the
dimensionally reduced theory.
Put another way, the expression (7) for the entropy

density has the property that even if we regard some of the
directions as small ‘internal’ directions, we can write

s ¼ C

ffiffiffiffi
ρ

G

r
; ð39Þ

where s, ρ and G are quantities that are defined using the
noninternal directions alone.

D. Eliminating more complicated expressions

In Sec. III Awe have seen that if we take the ansatz for S
to be a single monomial in E; V;G, then we are led to (4)
as the only possibility. But one might imagine a more
complicated expression which involves terms with different
powers of these variables, such that the overall sum is
invariant under T and S dualities. Based on the discussion
above in Sec. III B, we assume that the Li appear in our
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expression only through the volume V. Let us first write S
as a sum of terms with different powers of our variables,

S ¼
X
α;β;γ

CαβγðElpÞαðVl−9p Þβgγ; ð40Þ

where we have used the Planck length to make dimension-
less quantities. Under S duality we have

ðElpÞαðVl−9p Þβgγ → ðElpÞαðVl−9p Þβg−γ; ð41Þ

so that we need

Cαβγ ¼ Cαβ;−γ: ð42Þ

To see the effect of T duality we write our terms using the
string scale ls ∼ g−1=4lp,

ðElpÞαðVl−9p Þβgγ ∼ ðElsg1=4ÞαðVl−9s g−9=4Þβgγ: ð43Þ

Under a T duality in the direction x1, we get

ðElsg1
4ÞαðVl−9s g−

9
4Þβgγ

→

�
ðElsg1

4Þα
�
2πls
L1

�α
4

��
ðVl−9s g−

9
4Þβ

�
2πls
L1

�
−β
4

��
gγ
�
2πls
L1

�
γ
�

¼ðElsg1
4ÞαðVl−9s g−

9
4Þβgγ

�
ls
L1

�α−β
4
þγ

: ð44Þ

We have assumed that the lengths Li appear in our
expression only through the overall volume V ¼ Q

Li,
so we need

α − β

4
þ γ ¼ 0 ð45Þ

for each term in (40). But from (42) we see that this is
possible only if all the terms in the series have γ ¼ 0.
Then (45) gives α ¼ β, and we see that S is a function
of EVl−8p ¼ EV

G .
Note that in our physical problem have S ≫ 1. Matching

onto Sbek at E ¼ Ebh then gives (4) at leading order. But we
are still allowed to add lower powers of EVG ; for example, we
could have

S ¼ C

ffiffiffiffiffiffiffi
EV
G

r �
1þ α1 log

�
EV
G

�
þ α2

�
EV
G

�
−1
2 þ…

�
: ð46Þ

We are interested only in the leading order expression for
the entropy, so we will work with (4).

IV. THERMODYNAMIC PROPERTIES

Let us compute the values of different thermodynamic
quantities that follow from the equation of state

S ¼ C

ffiffiffiffiffiffiffi
EV
G

r
: ð47Þ

The first law of thermodynamics gives

TdS ¼ dEþ pdV: ð48Þ
Thus

T ¼
�∂S
∂E

�
−1

V
¼ 2

C

ffiffiffiffiffiffiffi
EG
V

r
ð49Þ

p ¼ T

�∂S
∂V

�
E
¼ E

V
¼ ρ: ð50Þ

Writing p ¼ wρ we see that

w ¼ 1: ð51Þ
This fact was noted earlier in [6,7], and a detailed dynamics
was conjectured for such an equation of state in [17].
Note that the speed of sound is given by

v ¼
�∂p
∂ρ

�1
2

s
¼ 1: ð52Þ

Thus compression waves in this phase travel at the speed of
light, mimicking a massless scalar.

V. A PICTORIAL MODEL

The entropy (4) was obtained in [7] from a model where
the Universe was filled with a closely spaced gas of black
holes. We first reproduce this estimate. Then we conjecture
that the black holes could be replaced by sets of intersecting
branes, extending the model of [11] where the black holes
were replaced by states of the elementary string for the case
when ρ was string scale.

A. The entropy of a black hole gas

Consider a gas of black holes, where the holes are closely
spaced; i.e., the separation between holes is not much more
than the size of the holes. We work in 9þ 1-dimensional
string theory and let the spacelike directions be a toroidal
box T9.
Let the torus T9 have volume V. Let each black hole have

radius Rs. The number of holes is then

Nhole ∼
�
V
R9
s

�
: ð53Þ

The entropy of each hole is

Shole ∼
R8
s

G
: ð54Þ

Thus the total entropy is
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S ∼ NholeShole ∼
V

RsG
: ð55Þ

We see that we can make S as big as we want by making Rs
small enough. In particular, the entropy of such configu-
rations can exceed the entropy given by the surface area of
the box. The energy of each hole is

Ehole ∼
R7
s

G
: ð56Þ

Thus the total energy is

E ∼ NholeEhole ∼
V

R2
sG

: ð57Þ

From this expression we have

Rs ∼
�

V
EG

�1
2

: ð58Þ

Substituting this in (55) we find

S ∼
1

Rs

V
G
∼
�

V
EG

�
−1
2 V
G
∼

ffiffiffiffiffiffiffi
EV
G

r
; ð59Þ

which agrees with (4).
The expression (57) for the energy E in our box increases

as we take Rs to smaller values. It appears reasonable
however to require

Rs ≳ lp; ð60Þ

since we do not expect black holes with size smaller than
Planck scale. The highest entropy and energy are then
obtained for Rs ∼ lp, with values

Smax ∼
V
lpG

∼
V
l9p

ð61Þ

and

Emax ∼
V
l2pG

∼
V
l9p
mp: ð62Þ

We see that Emax corresponds to Planck density (order
Planck mass per unit Planck volume), while Smax corre-
sponds to an entropy of order one bit per unit Planck
volume.
Recall that the lowest energy E ∼ Ebh that we have

considered corresponds to having just one black hole with
radius of the order of our box size. As we increase E above
this value, the configuration splits into many black holes,
till at the value Emax we have Planck energy density and
Planck entropy density. Thus as we traverse the range

ρbh ≲ ρ≲ ρp; ð63Þ

the entropy expression S ∼
ffiffiffiffiffi
EV
G

q
goes from an entropy

given by the surface area in Planck units to an entropy given
by the volume in Planck units.

B. Replacing the black holes by string states

We have noted that the entropy density (7) was obtained
in [7] from a model where space was filled by a set of
closely spaced black holes, with the size of each hole being
of order the Hubble radius. In [11] a model was proposed
where string states would give the required entropy. The
idea was to consider highly excited states of the elementary
string, at the coupling where they are about to collapse into
a black hole under their own gravity. This coupling is called
the Horowitz-Polchinski correspondence point [12], and
at this point the mass and entropy can be matched, up to
factors of order unity, to the mass and entropy of small
black holes. It was noted in [11] that If we take a closely
spaced lattice of such string states, then the energy density
ρ is string scale, and the entropy density of this lattice
agrees with (7) for this particular value of ρ.
Such states of the elementary string correspond to what

are called “small black holes” in string theory, where the
title ‘small’ refers to the fact that the radius of the hole is of
order the string length ls. To understand the states of black
holes with larger radii in string theory, one has to use other
elementary objects of the theory like branes. Black holes
are somewhat esoteric objects, possessing a horizon and a
singularity. We are interested in see if we can replace the
black holes in the description of [7] by objects that we can
understand in more traditional terms.
In string theory we have learnt that there is a useful

‘approximate’ picture of black hole microstates that is
obtained in terms of intersecting branes. More precisely, we
can count the number of configurations of such intersecting
branes, and thereby reproduce the black hole entropy. We
will review the relevant results below. We will see in the
next section that the gravitational solution corresponding to
these intersecting branes is a fuzzball, which has no horizon
or singularity. But for the purposes of this section, we can
just regard the intersecting branes as a generalization of the
string states considered in [11] which allows us to obtain
the entropy density (7) at any energy density ρ.

C. Black holes in string theory

Consider radiation in d space dimensions, in a fixed
volume V, with energy E. The entropy increases with E as
S ∼ Eα, where

α ¼ d
dþ 1

< 1: ð64Þ

We have T ¼ ðdSdEÞ−1 ∼ E1−α, and the specific heat is
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cv ¼
�
dE
dT

�
∼

1

1 − α
Eα: ð65Þ

Note that to get cv > 0 we need α < 1. In string gas, we
have S ∼ E, and cv → ∞. Schwarzschild black holes on the
other hand have S ∼ Eα with α > 1; for example in 3þ 1
dimensions we have S ∼ E2. The specific heat is this
situation is negative. It is a challenge for any microscopic
model to reproduce this behavior of S, since any system
described by a canonical ensemble partition function Z
has a positive specific heat. To describe the black hole we
need a nonequilibrium system—one with a large number of
metastable states, and the number of such states should
grow rapidly with energy.
Let us first consider extremal holes. These holes have

positive specific heat, but still manifest the behavior S ∼ Eα

with α > 1. To get a hole in 3þ 1 noncompact directions
we can compactify six directions y1…y6 on a torus T6. We
wrap n1 D3 branes on the cycle ðy1y2y3Þ≡ ð123Þ, n2 D3
branes on the cycle (145), n3 D3 branes on (246) and n4 D3
branes on (356). The number of points where branes of all
four types intersect is nint ¼ n1n2n3n4 [Fig. 3(a)]. The
entropy of such configurations is then given by [16,18]

S ∼
ffiffiffiffiffiffiffi
nint

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1n2n3n4

p
: ð66Þ

Let each of the ni be large and of the same order ni ∼ n.
Then for a given size of the torus T6 we have

E ∼ n; S ∼ n2; S ∼ E2; ð67Þ

which agrees with the behavior of the entropy of the 3þ 1-
dimensional extremal hole. Done carefully, this computa-
tion reproduces the correct numerical factor as well, so we
get S ¼ Sbh ¼ A

4G.
A homogeneous cosmology is expected to be charge

neutral, since the flux lines have no place to escape. Thus
we now recall the results on nonextremal holes in string
theory. The first extremal black hole to be studied was the
D1D5P hole in 4þ 1 noncompact dimensions. There are

three charges: D1 branes, D5 branes, and momentum
modes. The numbers of these charges are denoted by
n1; n5; np, respectively, and the entropy is [16]

S ¼ 2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1n5np

p
: ð68Þ

If we let n1; n5 ≫ np, then the entropy of the near extremal
hole is given by momentum-antimomentum pairs [19]

S ¼ 2π
ffiffiffiffiffiffiffiffiffiffi
n1n5

p ð ffiffiffiffiffi
np

p þ ffiffiffiffiffi
n̄p

p Þ; ð69Þ

where n̄p gives the number of antimomentum modes. If we
let n5 ≫ n1; np the entropy is reproduced by the expression

S ¼ 2π
ffiffiffiffiffi
n5

p ð ffiffiffiffiffi
n1

p þ ffiffiffiffiffi
n̄1

p Þð ffiffiffiffiffi
np

p þ ffiffiffiffiffi
n̄p

p Þ; ð70Þ

so we have D1 branes and anti-D1 branes, as well as
momentum and antimomentum modes. What is remarkable
is that the entropy S can also be exactly reproduced in this
case by the configuration depicted in Fig. 3(b). Here the
entropy comes from the states of an effective string of
tension TD=n5, living inside the D5 branes, where TD is the
tension of the D1 brane [20]. If we think of the left side
of this loop as ‘winding’ along the cycle in the vertical
direction, then we can think of the right side of the loop as
antiwinding along this cycle. Thus branes and antibranes
can join up to make localized objects. (The momentum and
antimomentum modes are similarly given by excitations of
the string running clockwise and anticlockwise around this
string loop.) The lesson we extract from this picture is the
branes and antibranes that arise in nonextremal configura-
tions can form local compact configurations that need not
extend all the way across the torus.
If all charges are comparable (n1 ∼ n5 ∼ np) and we have

an arbitrary amount of nonextremality, then the entropy is
reproduced by the expression [21]

S ¼ 2πð ffiffiffiffiffi
n5

p þ ffiffiffiffiffi
n̄5

p Þð ffiffiffiffiffi
n1

p þ ffiffiffiffiffi
n̄1

p Þð ffiffiffiffiffi
np

p þ ffiffiffiffiffi
n̄p

p Þ: ð71Þ

In particular this reproduces exactly the entropy of the
Schwarzschild hole in 4þ 1 dimensions when all net
charges are set to zero.
From the above discussion, we extract the following

lessons:
(a) String theory has highly entropic configurations given

by intersecting branes.
(b) Neutral configurations can be obtained by taking both

branes and antibranes.
(c) Branes and antibranes can join up into compact

localized excitations that do not have to wrap all
the way around the cycles of the bounding torus.

D. The entropy in a box

In the black hole states discussed above, some directions
were compactified to a torus. But other directions were

(a) (b)

FIG. 3. (a) Branes wrapped on different cycles have intersection
points; the number nint of such intersections determines the
entropy as S ∼ ffiffiffiffiffiffiffi

nint
p

. (b) Branes and antibranes can join up to
make effective local objects that do not wrap all the way around
the cycles of the torus; in the case depicted, the string winding-
antiwinding and momentum-antimomentum modes join up to
make an effective string loop.
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noncompact, where the configuration can expand to take
the shape suggested by the classical black hole horizon. In
our present cosmological problem such is not the case; we
have compactified all space directions, and allowed enough
energy E so that the Schwarzschild radius RsðEÞ corre-
sponding to this energy is bigger than the size of our box.
What do we expect for the entropy S in this situation?
It is sometimes said that a single black hole is the

configuration with largest entropy for a given energy;
breaking it up into many smaller holes will reduce the
overall entropy. One may conclude from this that the
maximal possible entropy in our box can be no more than
the surface area of the box.
But as we have seen in Sec. VA, such a conclusion is not

correct. The above statement about black hole entropy
holds only when enough volume is available to allow a
single large black hole to exist in that volume. If we limit
our volume to a give value V, and allow sufficiently large
energy E, then a set of small black holes can give more
entropy that predicted by the surface area of the box.
Let us now describe the heuristic brane model that will

reproduce the conjectured entropy expression (4). In line
with the lessons (a)–(c) of the above section, we imagine
the brane configuration depicted in Fig. 4. We have
intersecting branes of compact form, producing local
structures that tile up to fill up torus. The entropy of each
intersecting brane set should be similar to the entropy of a
black hole, so we can estimate the overall entropy by
considering a lattice of black holes tiling the torus. This will
give us the entropy density (7). While the computation of
entropy is the same as in the ‘black hole gas’ model of [7],
the picture in Fig. 4 replaces the black holes by states that
can be understood in more traditional terms.

E. Relation to the intersecting brane gas of [22]

In [22] an expression was proposed for the entropy in
cosmology based on the above discussed expressions for
the entropy of black holes in string theory. But the
expression in [22] was different from the expression (4)
that we have studied in this paper. In this section we note
that the difference between these expressions can be traced
to a difference in the assumptions about which states can fit
in our box.

The set up in [22] was similar to the one here: we take a
box of volume V, put an energy E in it, and ask for SðE;VÞ.
The conjecture for the entropy, however, was derived by a
direct extrapolation of the expressions for black hole
entropy in terms of branes and antibranes. Consider for
example the case where string theory is compactified on T5;
the entropy of the black hole in the remaining 4þ 1
noncompact dimensions is given by (71) where three types
of branes and antibranes are wrapped around the cycles of
the compact T5. A similar expression gives the entropy of
the hole in 3þ 1 noncompact dimensions; now the com-
pact directions form a T6 and there are four sets of
intersecting branes and antibranes [23]:

S¼2πð ffiffiffiffiffi
n5

p þ ffiffiffiffiffi
n̄5

p Þð ffiffiffiffiffi
n1

p þ ffiffiffiffiffi
n̄1

p Þð ffiffiffiffiffi
np

p þ ffiffiffiffiffi
n̄p

p Þð ffiffiffiffiffi
nk

p þ ffiffiffiffiffi
n̄k

p Þ:
ð72Þ

If we compactify all directions, we can wrap even more
types of branes on the cycles of the torus. Let the different
types of branes (i.e., branes wrapping different sets of
cycles) be labeled by i ¼ 1;…N. We take ni branes and ni
antibranes of each type, so that the configuration is overall
neutral. Extrapolating expressions like (71), (72), it was
conjectured in [22] that the entropy would be5

S ∼
YN
i¼1

ð ffiffiffiffi
ni

p þ ffiffiffiffi
n̄i

p Þ: ð73Þ

If we take ni ∼ n for all i, we have

S ∼ n
N
2 : ð74Þ

Let each brane have p spatial dimensions, and let the
tensions Ti be of order the Planck scale. Let the length of
each direction of the torus be L. Then the total energy is

E ∼
Lpn

lpþ1
p

∼
V

p
9n

lpþ1
p

: ð75Þ

We find (noting that G ∼ l8p)

S ∼
E

N
2G

Nðpþ1Þ
16

V
Np
18

: ð76Þ

This rises more rapidly with E than the expression (4).
The difference can be traced back to a different choice of
assumptions governing the underlying physics of micro-
states in the large E limit. In (76) it is assumed that all states
that arise from brane intersections can exist inside the given

FIG. 4. A pictorial depiction of the configurations that repro-
duce the entropy (4). Clusters of intersecting branes give the
entropy of order the black hole entropy for each cluster. The
overall entropy is then the sum of these entropies.

5See [24] for a detailed analysis of intersecting branes in the
early universe. The consequences ofU duality for the intersecting
brane gas were studied in [25]. Recently, the behavior of states
made from intersecting branes was studied in [26].
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volume V. As was noted in [27], this need not be the case;
when we limit the volume to a given value, not all the states
corresponding to the entropy (73) may be able to exist as
orthogonal wave functions in this volume. In [28] it was
noted that in the fully solvable case of the 2-charge
extremal hole, if we limited the volume available to the
states to a value smaller than that set by the Schwarzschild
radius, then only a fraction of the full count of states
were able to exist. The entropy (4) suggested by duality
invariance is less than the entropy (76), and so we infer that
not all the states corresponding to the entropy (76) are able
to live in our box of volume V in the density domain (5).
This fact can be seen explicitly in the pictorial depiction

of Fig. 4 which reproduces the entropy (4). The branes in a
given cluster intersect other branes in the same cluster, but
not branes in far away clusters. The entropy expression (73)
assumes that each brane of type i intersects all other branes
of type different from i. Because of the local nature of brane
intersection in Fig. 4(a), the entropy (4) is extensive in V.
The entropy (76), on the other hand is not extensive in V.

VI. THE POSSIBILITY OF LARGE QUANTUM
EFFECTS IN COSMOLOGY

We can put the equation of state (50) in Einstein’s
equations and find the evolution of the metric of our torus.
Note however that 9þ 1-dimensional string theory con-
tains a dilaton field ϕ, and the value of this dilation would
typically change as the torus size evolves. To avoid this
complication it is simplest to work with 11-dimensional M
theory, where the size of the extra direction encodes the
dilation. Now all the 10 directions of the spatial torus are on
a symmetrical footing in Einstein’s equations, and there is
no additional dilation field. The lengths Li ≡ ai of the sides
of this M-theory torus are scale factors for our cosmology.
The general solution of Einstein’s equations with an
equation of state of the form pi ¼ wiρ was given in
[22]. We have already noted in (36) that our expression
(4) for the entropy remains unchanged when expressed in
M-theory variables, and we have seen in (51) that this
expression for the entropy corresponds to wi ¼ 1 for all
directions i. Let us set all directions to have the same length
Li ≡ ai ¼ a. Then the Einstein equations give�

_a
a

�
2

¼ 8πG
45

ρ ð77Þ

ä
a
¼ −

8πG
45

ð4ρþ 5pÞ ¼ −
8πG
5

ρ; ð78Þ

which gives

a ∼ t
1
10; ρ ∼

1

a20
: ð79Þ

While the evolution (79) arises from the classical Einstein
equations, it is not clear if these equations should hold as

they stand in the present situation. In black holes, it has
been observed that quantum effects are large enough to
alter the semiclassical physics at the horizon. In this section
we recall how these effects arise for black holes, and
discuss the possibility of similar effects in cosmology.

A. Large quantum effects in black holes

In black holes, quantum gravity effects can be large
because the black hole has a large degeneracy of states,
given by N ∼ Exp½Sbh�, where

Sbh ∼
A
G
∼GM2: ð80Þ

Here we used the relation A ∼ ðGMÞ2 for the 3þ 1
Schwarzschild hole. The classical action for black hole
collapse is

Scl ∼
1

G

Z
R

ffiffiffiffiffiffi
−g

p
d4x ∼

1

G
ðGMÞ2 ∼GM2; ð81Þ

where we have assumed that all length scales are∼GM, and
noted that R ∼ ðGMÞ−2. In the path integral

Z ∼
Z

D½g�e−Scl½g�; ð82Þ

we expect that the measure term is order Exp½Sbek�. We then
see that in the process of gravitational collapse, the measure
term competes with the classical action, and semiclassical
physics based on Scl alone need not be accurate [13]. More
precisely, we find the following possible scenario. In string
theory we understand the nature of the Exp½Sbek� micro-
states of the hole; they are given by fuzzballs, whose
structure we will discuss below. Eq. (81) can be used to
estimate the amplitude A for the collapsing shell to tunnel
into one of the fuzzball microstates:

A ∼ e−Scl : ð83Þ
While this gives a very small tunneling probability, we
must multiply this probability with the large number
Exp½Sbek� of possible final states. One then finds that the
smallness of the tunneling probability can be cancelled by
the largeness of the degeneracy of final states, and the
collapsing shell can change into a linear combination of
fuzzball states in a short time. Thus the semiclassical
approximation can be violated in the process of gravita-
tional collapse of the shell.
At first it may appear that the above argument is too

quick, for the following reason. Consider the process of
tunneling in one dimension with the potential VðxÞ given in
Fig. 5. There is a potential well of width a on the left,
followed by a barrier of height V0 and width b, and then we
have a low potential region with large length L. A particle
in the left well can tunnel into the dense band of states in the
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right region. As we let L go to infinity, the density of states
in the right region goes to infinity, but the rate of tunneling
saturates to a finite value; it does not go to infinity. In fact
the rate of tunneling is set by the height and width of the
barrier, and not by the length L which determines the
density of allowed final states. Thus one might think that in
the black hole case it does not help to have the large number
Exp½Sbek� of final states that the collapsing shell can
tunnel to.
But in [13] it was argued that tunneling in the black hole

case should be modeled in a different way from the one-
dimensional potential VðxÞ. Consider the Hamiltonian for
the Schrodinger equation in d dimensions,

Ĥ ¼ −
∂2

∂x21 −
∂2

∂x22 −…−
∂2

∂x2d þVðx1Þ þVðx2Þ þ…VðxdÞ;

ð84Þ

where each direction xi has the same quantum mechanical
potential as the above one-dimensional problem. We
see that there is a potential well at the center of this
d-dimensional space, given by the region

0 ≤ xi ≤ a; i ¼ 1;…d: ð85Þ

Consider an initial condition where a particle is placed in
this central well. In the one-dimensional potential of Fig. 5,
the probability for the particle to remain in the well decayed
with time as PðtÞ ∼ Exp½−ϵt�, where ϵ ≪ 1 if we choose
the barrier to be tall. In the d-dimensional case, the
probability for the particle to remain in the central well
decays as

PðtÞ ¼ P1ðtÞP2ðtÞ…PdðtÞ ∼ e−dϵt: ð86Þ

If we let d be large, so that dϵ ≫ 1, then in a time

ttunnel ∼ ðdϵÞ−1 ≪ 1; ð87Þ

the particle leaves the central well and ends up in a wave
function that is a linear combination of states in the regions
outside the well. Thus we see that having a large number of

different final states to which one can tunnel via different
directions indeed enhances the rate of tunneling.
In [13] it was argued that the black hole case was of this

latter type; there are many possible directions in phase
space leading to possible fuzzball states, and this corre-
sponds to having a large d in the above toy problem. The
fuzzball states can be thought of as eigenstates with massM
for the full string theory Hamiltonian; we may regulate
these eigenstates at infinity by putting them in a large box
of length L. To understand the structure of fuzzballs, we
first recall the structure of the bubble of nothing that can
be formed when we have Minkowski spacetime with an
additional compact circle [29]. In Fig. 6 we depict the
bubble of nothing in a one-dimensional illustration. The
compact circle can pinch-off; the spacetime then ends at
this pinch-off radius R and there is no spacetime region at
r < R. In a fuzzball we have a more complicated pinch-off,
where the compact direction twists to make a KKmonopole
or antimonopole; we denote these two possibilities by ‘þ’
and ‘−’ signs, respectively, in Fig. 7. Additional fields and
sources in string theory support the monopole structure, so
we should just say in general that the spacetime ends in a
collection of allowed string sources. The different choices
of the signs � at different angular positions lead to the
Exp½Sbek� states of the hole [30].
When we examine the tunneling paths that lead to the

states in Fig. 7, we find that there are large number of
possible directions to tunnel into, and so the d-dimensional
model (84) looks more relevant than a one-dimensional
one. With this multidirectional tunneling, the rate of
tunneling can indeed be very high, and the semiclassical
approximation at the horizon can be violated. To write
down the evolution of a collapsing shell, we should first
write the state of the shell in terms of the fuzzball
eigenstates,

jψ shelli ¼
X
i

CijEii; ð88Þ

and the subsequent evolution of this state,

jψ shellðtÞi ¼
X
i

Cie−iEitjEii; ð89Þ

FIG. 5. A one-dimensional potential; the particle wave function
in the well on the left can tunnel through the barrier into the
region on the right.

(a)

(b)

FIG. 6. (a) Minkowski spacetime with an additional compact
direction; for simplicity we depict only one spatial noncompact
direction. (b) The compact circle can “pinch-off,” creating a
“bubble of nothing.”
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will show that a shell changes to a linear combination of
fuzzball states as it approaches the horizon [31]. (Thus one
need not introduce the ‘interior’ of the hole at all in this
computation.) The effective dynamics of the hole is given
by collective modes that describe simple distortions of the
coefficient set fCig; this is described in more detail in [32].
Since this dynamics requires us to consider the amplitudes
Ci for all possible configurations (labelled by i), we see
that the correct way to study the quantum evolution of the
black hole is in “superspace”—the space of all possible
configurations.
In black holes the semiclassical approximation is vio-

lated because the entropy Sbek is large. This largeness stems
from the fact that Sbek ¼ A=4G has the Newton constant G
in the denominator, which brings in the very small length
lp into the computation of the entropy. In our present
cosmological problem the entropy (4) also has a factor G in
the denominator. Thus the degeneracy of states in this phase
is expected to be high, and we may have quantum effects
that invalidate semiclassical dynamics, just as happened for
black holes.

B. Transition into a band: A toy model

Before addressing the case of cosmology, we consider
another toy model where a large degeneracy of states drives
the effective evolution.
Consider the situation depicted in Fig. 8. We have a

graviton hij in a box, with nonzero wave number along the
x axis. In the box we have a a string wound along the y
direction, with winding number Nw. The string can carry
vibrations moving in the positive and negative y directions,
in the form of travelling waves with polarization in any of

the directions transverse to the string. The full Lagrangian
has the form

L ∼
1

2
∂hij∂hij þ 1

2
∂þXk∂−Xk

þ Ahijð∂þXi∂−Xj þ ∂−Xi∂þXjÞ; ð90Þ

where ∂� ¼ ∂t � ∂y, the Xi are the transverse displace-
ments of the string and A is a constant. This is just the
microscopic model used to describe the absorption of
gravitons by the D1D5 black hole [19,33], so we may
borrow the analysis from that treatment. The classical
equations of motion for the excitations on the string give

∂þ∂−Xi ∼ ∂þðhij∂−XjÞ þ ∂−ðhij∂þXjÞ: ð91Þ

Thus if the initial state has no excitations on the string
(∂þXj ¼ ∂−Xj ¼ 0) then, classically, no excitations will be
created on the string. As a consequence the energy of the
graviton will stay in the graviton.
Quantum mechanically, the situation is different. The

cubic coupling in (90) contains a term of the form
âhâ

†
Xþ â

†
X−

which converts the graviton into a pair of
oppositely moving excitations on the string. Since this
pair creation is a quantum effect, it would normally be
considered small. But the situation changes if Nw is very
large, as is the case in the effective string model of
the D1D5 black hole. The density of energy levels on
the string is

ρE ∼
Nw

Ly
; ð92Þ

where Ly is the length of the y direction along which the
string is wrapped. The rate of absorption of the graviton
onto the string is proportional to ρE, and for large ρE, is
quite quick.
When the energy resides in the graviton, we find a

pressure px > 0 in the x direction since the graviton was
chosen to have a wave number in the x direction. With such
a pressure, if we allowed the walls of the box to expand,
they would expand in the x direction. After the graviton is
absorbed onto the string, we find px ¼ 0 but a pressure py

FIG. 7. The fuzzball structure of black hole microstates in string
theory. A compact direction pinches off with a twist that creates a
KK monopole or antimonopole; these two possibilities are
denoted by the � signs. Spacetime ends just outside the location
where the horizon would have formed in the traditional hole. The
different choices of monopole structure at different angular
locations give the Exp½Sbek� microstates of the hole.

x

y

FIG. 8. A graviton is placed in a box with wave number along
the x direction. The box contains strings aligned along the y
direction. If the number of strings is large, the graviton is quickly
absorbed onto the string as a pair of vibrations.
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in the y direction.6 If we allowed the box to expand in
response to this pressure, it would expand along the y
direction.
To summarize, if a system can access a set of states with

very high level density ρE, then its state can move into the
band of such states through a “Fermi golden rule absorp-
tion” at a rate proportional to ρE. As a consequence the
system can evolve in a manner different from that expected
from the classical equations of motion.

C. A scenario for evolution in the early universe

Let us now ask how it may be possible to violate the
classical evolution (79) because of the large entropy (4).
A scenario for this violation was discussed in [27]. This
scenario uses the fact noted in Sec. V E that in our chosen
phase, not all states of energy E are able to fit in the volume
V. If the volume V were to quantum fluctuate to a larger
value, then many more states would be able to fit in, while
if it quantum fluctuated to a smaller value, then many fewer
states would fit in. It was then argued that this circumstance
drives an expansion to larger scale factors, above and
beyond any expansion that may result from the classical
Einstein equations.7

Such an effect would of course be present in many
quantum systems, but the circumstance which makes it
interesting in our present cosmological problem is that
the number of states involved is very large; as we noted
above, this largeness stems from the appearance of G in the
denominator of (4) which brings in the Planck scale. For
every state available at one scale factor, there is a densely
spaced band of states into which it can evolve if the scale
factor were larger. The quantum mechanical problem
describing this situation is pictured in Fig. 9. We consider
a sequence of volumes for a spatial box, starting at a
volume V0, and moving through progressively larger
volumes V1; V2;…. The state in the box of volume V0

can be absorbed into a band of states in the volume V1. But
each state in this band can itself be absorbed into a band of
states in the larger volume V2 and so on.
For our cosmological situation we do not know the

amplitudes for the transitions between levels, but we make
a toy model by setting all amplitudes for transition per unit
time to be equal to the same number ϵ. We also let the
energy spacing in each band be the same, ΔE. As the
system evolves, the wave function moves from the state at
volume V0 to the band of states in the volume V1, then to
the states at V2 and so on. We can compute the probability
to be at volume Vk after time t. In particular, we can ask for

the value of kwhere this probability peaks at any given time
t. One finds that the location of this peak is given by [27]

kpeakðtÞ ≈
2πϵ2

ΔE
t: ð93Þ

Note that this expansion V0 → V1 → … is in addition to
any expansion rate obtained from the classical gravity
equations, since it is generated by the phase space measure
describing the degeneracy of states. This measure factor is
small in typical laboratory systems, but can be very large if
the entropy has a gravitational origin involving the Newton
constant G.8

This evolution to larger volumes Vk may be quite rapid,
and may give a kind of ‘inflation’ without the need for an
inflaton field with a slow roll potential. Initial density
fluctuations are likely to arise from an effective action
derived from the free energy, just as was found for the string
gas [36].9 These fluctuations are also likely to stay frozen
in amplitude as the volume evolves through the steps in
Fig. 9, for the following reason. Suppose the local energy
density at a point is a little higher than the average
(ρ ¼ ρavð1þ δÞ). Then this higher value of the local energy
stays fixed as the system moves through the steps of Fig. 9;
it does not dissipate away to neighbouring lower density
points because the evolution of Fig. 9 does not have a
kinetic term that moves energy from one point to neighbor-
ing points. fluctuations. If we do get a rapid expansion with
perturbations that are frozen in amplitude, then we mimic
the results of an inflationary scenario. When the branes of

FIG. 9. The states at each size Vk can transition with amplitude
ϵ to a band of states in volume Vkþ1, with band spacing ΔE; thus
we get a series of Fermi golden rule absorptions, taking us to
larger volumes.

6This pressure arises because the energy EX of a vibration
mode in the nth harmonic on the string behaves as EX ∼ n

NwLy
.

Since this energy is higher for smaller Ly, the vibrations cause a
positive pressure py > 0.

7See also [34] for a discussion of entropy effects in the early
universe.

8It has, however, been argued by Jacobson [35] that the
gravitational entropy leads directly to Einstein equations of
evolution. So it is possible that (by some mechanism that is
not clear to us) the evolution (93) ends up reproducing just the
expected Einstein evolution (3) for the equation of state (50). (We
thank an anonymous referee for pointing out this possibility.)

9The evolution of perturbations in a black hole gas was studied
in [7].
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Fig. 4 finally annihilate to radiation, we would get these
perturbations imprinted onto that radiation.

VII. DISCUSSION

It is interesting that one can reach the entropy expression
(4) from very different arguments. In [6] this expression
was obtained from a spacetime uncertainty relation. In [3,7]
one considers the expansion caused by the matter density ρ,
and assumes that the entropy in a cosmological horizon
region would be of order the Bekenstein entropy for the
largest hole that would fit in this region. The third line of
argument (noted in [1] and analyzed in detail in the present
paper) requires that the expression for entropy be invariant
under the T and S dualities of string theory. This require-
ment limits the possible functional dependences for
SðE;VÞ. In [1] it was argued that we get (4) if we further
require that S be proportional to V. In our analysis we did
not imposed this requirement, but requiring agreement with
the Bekenstein entropy for E ∼ Ebh gave the expression (4).
We have noted that while T and S dualities are exact

symmetries of string theory, it does not follow that the
expression for the entropy S must be invariant under these
dualities. The value of the entropy S will necessarily be
invariant, since the dualities are a symmetry. But the
expression for S need not be invariant; it will in general
only be covariant, changing form as we change duality
frames. Thus the requirement that the expression for S be
invariant is an additional assumption, and it is this
assumption, coupled with the requirement that S ∼ Sbek
at E ∼ Ebh that gave us the entropy expression (4). The
requirement that the expression for S be invariant under
dualities is suggested by the invariances found in the
expressions for the entropy of black holes in string theory.
In [7] it was observed that an entropy like (4) can be

obtained by taking a densely spaced set of black holes,
with the radius of the holes being of order the Hubble
radius. Black holes might appear to be esoteric objects,
but we have learnt in string theory that their entropy can
be reproduced by counting the states of intersecting
branes. In [11] it was noted that when the energy density

ρ is string scale, a dense gas of string states at the
Horowitz-Polchinski correspondence point reproduces the
entropy (4). We have noted that at any density ρ we can
replace the black holes by sets of intersecting branes, so
an entropy like (4) can be realized by states in string
theory. These intersecting brane states do not collapse
into black holes; instead, they generate fuzzball states,
which are complicated states of string theory without
horizons or singularities.
Finally, we explored the idea that the evolution of such a

high entropy state may not satisfy the traditional Einstein
equations. The entropy (4) matches onto the black hole
entropy when E ∼ Ebh. In black holes we get a traditional
horizon if we assume that Einstein’s equations are satisfied
by a shell as it collapses through its horizon. But the
horizon so generated leads to the black hole information
paradox, which is a serious obstruction to the unitarity of
the underlying quantum theory. In string theory the semi-
classical approximation can be violated at the horizon
because the collapsing shell can tunnel into a densely
spaced band of fuzzball states. We can therefore ask if
similar effects can come into play in our cosmological
situation. We have noted that the number of states increases
rapidly with the volume V; this rapid increase can be traced
to the appearance of G ∼ ld−1p in the denominator of (4)
which makes S very large. If the density of state rises very
rapidlywith the volumeV, then the toymodel constructed in
Sec. VI C suggests that there may be a rapid “push” towards
larger V. This push would arise from the measure in the path
integral (which tracks the number of available states) and
would therefore be in addition to any expansion arising from
the classical Einstein equations. This argument is certainly
speculative, but it would be interesting to study it further.
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