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We investigate the vacuum energy of a scalar massless field confined in a Casimir cavity moving in a
circular equatorial orbit in the exact Kerr space-time geometry. We find that both the orbital motion of the
cavity and the underlying space-time geometry conspire in lowering the absolute value of the
(renormalized) Casimir energy hϵvaciren, as measured by a comoving observer, with respect to whom
the cavity is at rest. This, in turn, causes a weakening in the attractive force between the Casimir plates. In
particular, we show that the vacuum energy density hϵvaciren → 0 when the orbital path of the Casimir
cavity comes close to the corotating or counter-rotating circular null orbits (possibly geodesic) allowed by
the Kerr geometry. Such an effect could be of some astrophysical interest on relevant orbits, such as the
Kerr innermost stable circular orbits, being potentially related to particle confinement (as in some
interquark models). The present work generalizes previous results obtained by several authors in the weak
field approximation.
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I. INTRODUCTION

The vacuum state of a quantum field exhibits a nontrivial
structure in presence of boundaries, which can be real
material media or represent some peculiar topology of the
space. As a result, we are faced with two main phenomena,
namely vacuum polarization and particle creation. The
former has a beautiful manifestation in the celebrated
(static) Casimir effect, in which an attractive force arises
between two parallel uncharged conducting plates. Such a
force is due to a negative quantum vacuum energy
associated with the field between the plates.
Since the pioneering Casimir’s work [1,2], a lot of effort

has been devoted to a deeper investigation of vacuum
fluctuations in various physical configurations. It has been
found that the Casimir force does depend on the topology
as well as on the peculiar geometry of the boundaries [3,4].
A number of authors have investigated the influence of

external gravitational fields on Casimir vacuum energy
[5–11]. It has been proved that Casimir energy gravitates,
according to the equivalence principle [12–14]. Inertial
effects due to rotation have been considered in [15–18].
Also, quantum vacuum energy has been discussed in
cosmological models allowing for field confinement, as
in the static Einstein universe [19,20], or in other closed
models [21].
In a recent paper, Bezerra et al. [22] have evaluated the

renormalized vacuum energy density for a massless scalar
field in a Casimir cavity placed nearby a massive, spherical,
rotating source, having mass M and angular momentum ~J.
Working in the weak field approximation, they found a
Oðm=rÞ2 small correction to the vacuum energy due to the

source rotation. Such result agrees with that found in [11],
where it was proved that a (weak) gravitomagnetic field
does not influence the Casimir vacuum energy at the first
order in ðm=rÞ. However, a closer look at [22] shows that
calculations are performed in a comoving frame, which is
assumed to rotate just with the angular velocity Ω required
to reduce the space-time metric to its diagonal form. This
means that Ω ¼ ωd, where ωd ¼ 2J=r3 is (in the weak
limit) the dragging angular velocity of space-time around
the rotating source. In other words, the adopted frame is
that of a ZAMO (zero-angular-momentum observer),
according to whom the Casimir cavity is at rest and the
space-time is locally nonrotating. Now, it seems unlikely
that Ω is the same one of the gravitational source, (say, Ωs),
as assumed in [22]. Actually, in the weak limit
ωd ¼ 2J=r3 ≃ rsch

r Ωs → ωd ≪ Ωs, since, in the adopted
weak limit approximation, one must have rsch ≪ r
(rsch ¼ 2M). We conclude that the results presented in
[22] seem relevant only if the physical measurements are
performed by a ZAMO, comoving with the cavity.
The main purpose of the present paper is to generalize

the results of [10,11,22], relaxing the assumptions of (a)
weak field approximation and (b) a ZAMO comoving with
the Casimir apparatus.
It is well known that the original (flat space-time, non-

rotating) Casimir effect for a quantum field confined in
a cavity arises from the space-time symmetry breaking
induced by the boundaries (the reflecting plates) that change
the trivial R3 space topology into the R2 × ½0; L� topology
(L is the plate separation). Namely, it is the breaking of
translational invariance that causes the shift in the vacuum
energy of the field inside the Casimir cavity. Here, we are
interested in other possible symmetry-breaking mechanisms
that could cause further changes in the field vacuum energy.*sorge@pd.infn.it

PHYSICAL REVIEW D 90, 084050 (2014)

1550-7998=2014=90(8)=084050(9) 084050-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.90.084050
http://dx.doi.org/10.1103/PhysRevD.90.084050
http://dx.doi.org/10.1103/PhysRevD.90.084050
http://dx.doi.org/10.1103/PhysRevD.90.084050


An expected breaking is that of the azimuthal reflection
symmetry ϕ → −ϕ, induced by the rotation of a Casimir
cavity orbiting with angular velocity Ω with the plates
orthogonal to the orbital motion direction.
Considering such orbital motion as an equatorial orbit in

the space-time geometry of a rotating gravitational source
(Kerr space-time), physical intuition suggests that a comov-
ing observer should detect no shift in the vacuum energy as
far as the orbital motion is that of a ZAMO, i.e., if Ω ¼ ωd.
Actually, according to a ZAMO, the ϕ → −ϕ symmetry is
restored, since there is no local rotation at all. On the other
hand, a comoving observer should measure a growing
effect on the field vacuum energy as the difference jΩ − ωdj
increases.
We will see that the Casimir vacuum energy density

indeed suffers a shift due both to the cavity orbital motion
and the gravitational dragging induced by the background
space-time. Such a shift causes a lowering of the absolute
value of the vacuum energy. In particular, we will show that
the (renormalized) vacuum energy density hϵvaciren → 0
when the orbital path of the Casimir cavity comes close to
the corotating or counter-rotating circular null orbits
(possibly geodesic) allowed by the Kerr geometry.
Because of the intrinsic smallness of the Casimir energy,

its coupling with a gravitational background is usually
expected to be too tiny to be experimentally detected,
mainly in the weak field limit, as we will see in the final
discussion. Nevertheless, in presence of strong gravita-
tional fields, as near black holes, the presented effect could
be likely to have some astrophysical relevance, being
potentially related to particle confinement [5].
The plan of the paper is the following. In Sec. II we

briefly recall the main properties of the Kerr space-time
with special concern for the equatorial orbital motion. We
define a local frame, to be employed by a physical observer
comoving with the cavity, according to whom the Casimir
vacuum energy measurements are performed. In Sec. III we
solve (in the local frame of the observer) the Klein-Gordon
equation for a massless scalar field confined in a Casimir
cavity following an equatorial orbit (not necessarily geo-
desic). At variance with [22], we assume that the cavity
plates are placed orthogonally to the direction of the orbital
motion. In such a configuration the breaking of the
azimuthal reflection symmetry, ϕ → −ϕ, induces a dis-
tortion of the discretized field modes inside the cavity. After
a mode normalization and a subsequent regularization
procedure, we get the renormalized vacuum energy density
for the field in the Casimir cavity. We point out the
fundamental role played by the proper cavity length in
obtaining a physically meaningful result (see [10]). In
Sec. IV we discuss several relevant cases, considering
in particular the geodesic motion of the cavity and the weak
field, slow motion limit. Finally, Sec. V is devoted to
some concluding remarks. Throughout the text, unless
otherwise specified, use has been made of natural units:

ℏ ¼ c ¼ G ¼ 1. Greek indices take values from 0 to 3, latin
ones take values from 1 to 3. The metric signature is −2
with determinant g.

II. ORBITAL MOTION IN KERR SPACETIME:
AN OVERVIEW

A. The space-time metric

The Kerr solutions are the only known family of exact,
stationary, axisymmetric (with further reflection symmetry
with respect to the equatorial plane), asymptotically flat
solutions, which are believed to represent the exterior
space-time metric outside a rotating massive spherical
object. The metric can be given in the Boyer-Lindquist
coordinates (t; r;ϕ; θ), namely

ds2 ¼
�
1 −

2Mr
Σ

�
dt2 þ 4Mar

Σ
sin2θdtdϕ

−
Σ
Δ
dr2 − Σdθ2 −

A
Σ
sin2θdϕ2; ð1Þ

where

Σ ¼ r2 þ a2cos2θ; ð2Þ

Δ ¼ r2 þ a2 − 2Mr; ð3Þ

A ¼ ðr2 þ a2Þ2 − a2Δsin2θ

¼ ðr2 þ a2ÞΣþ 2Mra2sin2θ; ð4Þ

M and a ¼ J=M are the mass and the specific angular
momentum of the rotating body. The roots r� of Δ ¼ 0
give the Kerr horizons, while those of gtt ¼ 0 define the
infinite redshift surfaces r0�,

r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
; ð5Þ

r0� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2cos2θ

p
: ð6Þ

To avoid naked singularities we usually assume a < M. In
such a case there exists a region rþ < r < r0þ, termed
ergoregion; r > rþ defines the physically accessible
region, outside the horizon rþ.

B. Circular equatorial orbits

The 4-velocity of an observer w (or a test particle)
orbiting in the equatorial plane (θ ¼ π=2) in the Boyer-
Lindquist coordinates (1) is

wμ ¼ CðΩÞðδμt þΩδμϕÞ; ð7Þ

where Ω is the orbital angular velocity of w as seen from
spatial infinity and CðΩÞ is obtained from the normaliza-
tion condition wμwμ ¼ 1. One has
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CðΩÞ ¼ ½Ω2gϕϕ þ 2Ωgtϕ þ gtt�−1=2: ð8Þ

Allowed orbiting observers require Ω2gϕϕþ2Ωgtϕþ
gtt>0, so

Ω−ðrÞ < Ω < ΩþðrÞ; ð9Þ

for any allowed orbital radius r, where

Ω�ðrÞ ¼ ωd �
Σ

ffiffiffiffi
Δ

p

A
; r > rþ; ð10Þ

and

ωd ¼ −
gtϕ
gϕϕ

¼ 2Mar
A

ð11Þ

is the angular velocity with which the space-time is
“dragged around” the central rotating body. An observer
(7) having Ω ¼ ωd is termed a ZAMO. With respect to a
ZAMO, the space-time is locally static. Using (10) we can
recast (8) in a more useful form,

CðΩÞ ¼
�
ΔΣ
A

�
1 −

A2

ΔΣ2
ðΩ − ωdÞ2Þ

�
−1=2

: ð12Þ

We point out that Ω�ðrÞ represent, for any R, the angular
velocities of massless test particles moving on circular
equatorial null orbits. Actually, (10) can also be straight-
forwardly obtained from (1), requiring ds2 ¼ 0. In Fig. 1
the curves ν� ≡MΩ� (null orbits) and νd ≡Mωd (the
ZAMO orbits) have been plotted with respect to the
adimensional radial coordinate ρ ¼ r=M for a given value
of the adimensional parameter α ¼ a=M. The shaded area
represents points of the ðρ; νÞ-plane corresponding to
admissible orbits of given radius and angular velocity.
We see that static observers (Ω ¼ 0) are allowed only
outside the ergoregion (ρ > ρ0þ ¼ 2), where both corotat-
ing (Ω > 0) and counter-rotating (Ω < 0) orbits exist.
Inside the ergoregion only corotating orbits are allowed.
Notice that the ZAMO orbits can penetrate the ergoregion,
grazing the horizon. We stress that—generally—the shaded
area in Fig. 1 does not represent geodesic orbits. Usually, an
external force will be required to keep the observer (and the
comoving Casimir cavity) in such a given orbit. In Fig. 1
are also plotted the curves representing the loci of corotat-
ing and counter-rotating geodesic orbits, namely Ωg� ¼
� ffiffiffiffiffi

M
p

=ðρ3=2 � ffiffiffiffiffi
M

p
aÞ in the Kerr geometry which,

in terms of the adimensional parameters, read νg� ¼
�1=ðρ3=2 � αÞ. We see that, for a given parameter α, there
exist two innermost geodesic orbits, corresponding to the
points G� where ν� and Ω� meet. Actually, these are the
null geodesic, corresponding to the (corotating or counter-
rotating) unstable orbits for massless particles moving in
the Kerr geometry.

C. Comoving coordinates

Let w be an admissible observer (7), orbiting in an
equatorial orbit with angular velocity Ω. The coordinate
transformation ϕ0 ¼ ϕ − Ωt changes the metric into
ds2 ¼ g0μνdx0μdx0ν, where

g0tt ¼ C−2ðΩÞ; ð13Þ

g0tϕ0 ¼ gtϕ þ Ωgϕϕ ¼ gϕϕðΩ − ωdÞ ð14Þ

g0rr ¼ grr; g0ϕϕ ¼ gϕϕ; g0θθ ¼ gθθ: ð15Þ

It is straightforward to check that the observer (7) is now
static in the new coordinates in which the metric has been
rewritten. Actually, the observer 4-velocity reads now

w0μ ¼ CðΩÞδμt : ð16Þ
Notice that—as stated above—(16) becomes a ZAMO if
Ω ¼ ωd, since in that case w is static in the coordinates in
which the Kerr metric takes a diagonal form, as g0tϕ ¼ 0.

D. Comoving local frame

Assume that the observer carries a local frame defined by
three spatial rectangular coordinates (x; y; z). Take the x
axis tangent to the orbit and the y axis along the outward

FIG. 1. The curves νþ and ν− (solid lines) represent the allowed
null equatorial circular orbits for massless particles in the Kerr
geometry. The shaded area, delimited by νþ∪ν−, represents the
allowed timelike circular orbits (ρ; ν) for massive particles in
the Kerr geometry outside the horizon rþ, for α ¼ a=M ¼ 0.7.
Also plotted are the ZAMO νd (dashed line), the corotating νgþ
(dotted line), and the counter-rotating νg− (dot-dashed line)
geodesic orbits. The points G� ¼ ν�∩νg� represent the null
geodesics (see text).
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radial direction. Then, locally we have dx¼ rdϕ0;dy¼ dr;
dz¼ rdθ. Let us call x; y; z locally comoving coordinates.
In such a comoving local frame the metric reads
ds2 ¼ ĝμνdxμdxν, where

ĝtt ¼ C−2ðΩÞ; ð17Þ

ĝtx ¼ −
A
rΣ

ðΩ − ωdÞ ¼ −
A
r3
ðΩ − ωdÞ; ð18Þ

ĝxx ¼ −
A
r2Σ

¼ −
A
r4
; ð19Þ

ĝyy ¼ −
Σ
Δ
¼ −

r2

Δ
; ð20Þ

ĝzz ¼ −
Σ
r2

¼ −1 ð21Þ

(recall that, in the equatorial plane, Σ ¼ r2). Notice that
ĝ ¼ detðĝμνÞ ¼ −1. The inverse metric ĝμν reads

� ∂
∂s

�
2

¼ A
r2Δ

� ∂
∂t
�

2

þ 2
A
rΔ

ðωd − ΩÞ ∂∂t
∂
∂x

−
r2

Δ
C−2ðΩÞ

� ∂
∂x

�
2

−
Δ
r2

� ∂
∂y

�
2

−
� ∂
∂z

�
2

:

ð22Þ

Note that, in the local frame, ŵμ ¼ w0μ.

III. THE CASIMIR CAVITY

The orbiting observer w carries with him a small Casimir
cavity. As discussed in the introduction, we are interested in
the breaking of the azimuthal reflection symmetry ϕ → −ϕ,
suffered by the field modes, possibly due to the orbital
motion and/or to the underlying space-time geometry. Such
breaking can be obtained placing the cavity plates orthogo-
nally to the x axis (see Fig. 2). We will also assume that one
of the plates is at the origin of the local observer’s frame.
Let L be the coordinate (i.e., not physical) separation
between the plates. Assuming—reasonably—that the typ-
ical size of the cavity is much smaller than the orbital
radius, we may assume that the metric ĝμν is almost
constant inside the cavity.
Actually, calling xλ0 ≡ ðt; xi0Þ the orbital coordinates of

the Casimir cavity, we may expand the metric around xλ0,
writing

ĝμνðt; xiÞ ¼ ĝμνðt; xi0Þ þ
∂ĝμν
∂xi

����
xi¼xi

0

· δxi þ � � � ; ð23Þ

where xi ¼ xi0 þ δxi.
For admissible orbits (r > rþ ¼ M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
), the

relevant gradients of the metric tensor are ∼M=r2, so that

the metric variations δĝμν ≃ ∂ĝμν
∂xi L inside the cavity are of

order ML=r2 ≪ 1, provided that L ≪ r. The latter con-
dition is obviously fulfilled for any realistic Casimir cavity
(where L ∼ 1 μm), and even more in the subatomic realm,
where the Casimir effect could have some role [5]. This
justifies the assumption of an almost constant gμν.

A. Scalar field modes

Consider a massless scalar field ψ confined in the
Casimir cavity. It obeys the Klein-Gordon equation [23]

1ffiffiffiffiffiffi
−ĝ

p ∂μ½
ffiffiffiffiffiffi
−ĝ

p
ĝμν∂ν�ψ þ ξRψ ¼ 0: ð24Þ

In a vacuum R ¼ 0. Also, taking into account the approxi-
mation ĝμν ≃ const, we simply have ĝμν∂μ∂νψ ¼ 0. Being
the field confined in the cavity, we adopt as usual the
Dirichlet boundary conditions at the cavity plates, hence
requiring

ψðx ¼ 0; y; z; tÞ ¼ ψðx ¼ L; y; z; tÞ ¼ 0: ð25Þ

Let us seek for solutions of the form

ψ ∼ e−iωntei~k⊥·~x⊥χðxÞ; ð26Þ

where ~k⊥ ¼ ðky; kzÞ and ~x⊥ ¼ ðy; zÞ. Substituting (26) in
the Klein-Gordon equation and using the inverse metric
(22) we get the following solution for χðxÞ:

χðxÞ ∼ e
−iωnAðωd−ΩÞ

r3C−2ðΩÞ x
sin

�
nπ
L

x

�
; n ∈ N; ð27Þ

where the eigenfrequencies ωn satisfy

FIG. 2. A sketch of the Casimir cavity orbiting around a
massive, rotating source. At variance with [22], the cavity plates
are placed orthogonally to the orbital direction. The typical size of
the cavity is assumed small with respect to the orbital radius, so
that ĝμν ≃ const inside the cavity.
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�
ω2
n−C−2ðΩÞ

�
Δ
r2
k2yþk2z

��
¼
�
nπ
L

�
2r2

Δ
C−4ðΩÞ; ð28Þ

yielding

ωn ¼
rffiffiffiffi
Δ

p C−2ðΩÞ
��

nπ
L

�
2

þ Δ
r2
C2ðΩÞ

�
Δ
r2
k2y þ k2z

��
1=2

ð29Þ
(the formal asymmetry between the ky− and the kz− sectors
is due to the Boyer-Lindquist coordinates we started with,
which are nonisotropic).
Let us define, for further convenience, the following

parameters:

bn ¼ ωnC2ðΩÞ

¼ rffiffiffiffi
Δ

p
��

nπ
L

�
2

þ Δ
r2
C2ðΩÞ

�
Δ
r2
k2y þ k2z

��
1=2

; ð30Þ

βn ¼
bnA
r3

ðωd − ΩÞ: ð31Þ

Then

χðxÞ ∼ e−iβnx sin

�
nπ
L

x

�
; ð32Þ

and the full mode solutions for the field in the Casimir
cavity read

unðt; x; ~x⊥Þ ¼ Nne−iωntei~k⊥·~x⊥e−iβnx sin

�
nπ
L

x

�
; ð33Þ

where Nn is a normalization constant, to be deter-
mined below.

B. Mode normalization

We now proceed to normalize the modes un by means of
the usual Klein-Gordon scalar product, defined as [23]

hun; umi ¼ i
Z
S
½ð∂μunÞu�m − unð∂u�mÞ�

ffiffiffiffiffi
ĝS

p
nμdS; ð34Þ

where S is a spacelike Cauchy surface, ĝs ¼ −ĝ=ĝtt is the
determinant of the induced metric on S, and w is a timelike
future-directed unit vector orthogonal to S. Putting
dS ¼ dxdydz, we easily find

nμ ¼ r

ffiffiffiffi
Δ
A

r �
A
r2Δ

;
A
rΔ

ðωd −ΩÞ; 0; 0
�
: ð35Þ

From the orthonormality requirement

hun; umi ¼ δð2Þð~k⊥;n − ~k⊥;mÞδmn; ð36Þ

we get

N2
n ¼

1

ð2πÞ2Lωn
·
1

r

ffiffiffiffi
A
Δ

r
C−3ðΩÞ: ð37Þ

C. Casimir vacuum energy

The mean vacuum energy density hϵvaci for the scalar
field inside the cavity (actually, the Casimir energy density)
according to the comoving observer w [see (16)] reads

hϵvaci ¼
1

Vp

Z
V
dxdydz

ffiffiffiffiffi
gS

p
ŵμŵνh0jTμνj0i; ð38Þ

where Vp ¼ R
V dxdydz

ffiffiffiffiffi
gS

p
is the proper volume of the

cavity. Since, in the present approximations, ĝμν ≃ const,
the only dependence on the spatial coordinates is contained
in h0jTμνj0i, through the field modes (33). Hence, we have

hϵvaci ¼
C2ðΩÞ
L

Z
L

0

dx
X
n

Z
d2k⊥Ttt½un; u�n�: ð39Þ

The bilinear form

Ttt½un; u�n� ¼ ∂tun∂tu�n −
1

2
ĝtt½ĝμν∂μun∂νu�n� ð40Þ

reduces, after some algebra, to

Ttt½un; u�n� ¼
1

2
N2

n

�
F nsin2

�
nπ
L

x

�
þ Gncos2

�
nπ
L

x

��
;

ð41Þ

where

F n ¼ ω2
n þ

ωn

bn

�
Δ
r2

k2y þ k2z

�
; ð42Þ

Gn ¼
ω2
nr2

b2nΔ

�
nπ
L

�
2

: ð43Þ

Substituting (41) in (39) and performing the dx integration
we get

hϵvaci ¼
C2ðΩÞ

4

X
n

Z
d2k⊥N2

n½F n þ Gn�

¼ 1

ð2πÞ22L ·
1

r

ffiffiffiffi
A
Δ

r
C−1ðΩÞ

X
n

Z
d2⊥ωn; ð44Þ

where use has been made of (37) and of (30).
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D. Vacuum energy density renormalization

The above expression for the vacuum energy density
hϵvaci is divergent, due both to the infinite sum and to the
d2k⊥ integration. Such divergence is readily removed by
means of dimensional regularization. To be definite, let us
rewrite [see (29)]

X
n

Z
d2k⊥ωn ¼

X
n

Z
d2k⊥
CðΩÞ

�
r2

ΔC2ðΩÞ
�
nπ
L

�
2

þ
�
Δ
r2
k2y þ k2z

��
1=2

: ð45Þ

After a change ~ky ¼
ffiffiffi
Δ

p
r ky, we have

X
n

Z
d2k⊥ωn ¼ C−1ðΩÞ rffiffiffiffi

Δ
p

X
n

Z
d2 ~k⊥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ ~k2⊥

q
;

ð46Þ

where ~k2⊥ ¼ ~k2y þ k2z , d2 ~k⊥ ¼ d~kydkz and

s ¼ r2

ΔC2ðΩÞ
�
nπ
L

�
2

: ð47Þ

We easily perform the d2 ~k⊥ integration employing the
Schwinger proper-time method [24,25]. Also, the
infinite sum can be evaluated using a standard Riemann
ζ-function regularization procedure. We get [recall that
ζð−3Þ ¼ 1=120]

X
n

Z
d2k⊥ωn ¼ −

2π

3
C−1ðΩÞ r

Δ
s−3=2

¼ −
π4r4

180Δ2C4ðΩÞL3
: ð48Þ

Inserting this result in (44) we obtain the renormalized
vacuum energy density

hϵvaciren ¼ −
π2r3

1440Δ2L4C5ðΩÞ

ffiffiffiffi
A
Δ

r
: ð49Þ

E. Proper cavity length

The renormalized vacuum energy density (49) is still
expressed in terms of local coordinates. In particular, the
quantity L appearing in (49) is a mere coordinate length,
hence unphysical. In order to get a physical content we
need to express L in terms of the proper cavity length, Lp,
as measured by the comoving observer w. Now, recalling
that ĝμν ≃ const inside the cavity, we have [26]

Lp ¼
Z

L

0

dx

�
−ĝxx þ

ĝ2tx
ĝtt

�
1=2 ≃ L ·

�
−ĝxx þ

ĝ2tx
ĝtt

�
1=2

:

ð50Þ

From (21) and (12) we get

Lp ¼ CðΩÞ
ffiffiffiffi
Δ

p

r
L: ð51Þ

Solving (51) for L and substituting in (49) we finally obtain
the desired result,

hϵvacirenjw ¼ −
π2

1440L4
p

ffiffiffiffiffiffiffiffi
A
r2Δ

r
C−1ðΩÞ

¼ −
π2

1440L4
p

�
1 −

A2

r4Δ
ðΩ − ωdÞ2

�
1=2

: ð52Þ

We recognize in the first factor of (52) the well-known
result for the vacuum Casimir energy density in flat space-
time, namely ϵð0Þvac ¼ − π2

1440L4
p
, so

hϵvacirenjw ¼ ϵð0Þvac

�
1 −

A2

r4Δ
ðΩ − ωdÞ2

�
1=2

: ð53Þ

We see that the space-time geometry and the orbital motion
of the cavity both modify the (negative) Casimir energy
density, generally lowering its absolute value, hence
increasing the energy content of the whole system (recall
that Δ ≥ 0 in the region r ≥ rþ).

IV. DISCUSSION

In what follows we will analyze some particular cases
considering, for a given value of the radial coordinate, the
ratio between the Casimir energy density and its corre-
sponding flat space-time, nonrotating limit, namely

Rðr;Ω;M; aÞ ¼ hϵvacirenjw
ϵð0Þvac

¼
�
1 −

A2

r4Δ
ðΩ − ωdÞ2

�
1=2

:

ð54Þ

As a first remark, let us note that Rðr;Ω;M; aÞ depends
basically on the quantity ðΩ − ωdÞ2 [27]. In the static case
(Ω ¼ 0) a weak field analysis performed up to the first
order in the (small) quantities ðM=rÞ and ða=rÞ gives no
shift effect upon the Casimir energy. This agrees with the
results of, e.g., [10,11,22]. On the other hand, if Ω ≠ 0, we
are faced with a sort of coupling between the rotation and
the gravitational space-time dragging (ωd). This can give
rise to a non-null result also at the first order in ðM=rÞ and
ða=rÞ, as we will see below in Sec. E.
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A. Flat space-time

This case refers to a cavity moving on a circular
trajectory in a Minkowskian background. We obtain

Rðr;Ω; 0; 0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2Ω2

p
; ð55Þ

i.e., hϵvacirenjw ¼ ϵð0Þvac

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2Ω2

p
→ 0 as the cavity velocity

approaches the limit value Ωr ¼ 1. It is interesting to
compare the above result with the energy E of a particle
having mass m, moving on a circular path of radius r with
angular velocity Ω. For a comoving observer E ¼ m

ffiffiffiffiffi
ĝtt

p ¼
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2Ω2

p
(see, e.g., [28]).

B. Schwarzschild geometry

1. Static Casimir cavity, Ω ¼ 0

Consider now a nonrotating cavity in the Schwarzschild
field. We simply obtain Rðr; 0;M; 0Þ ¼ 1, i.e., hϵvacirenjw
has exactly the same value as in the flat space-time case.
Actually, in the present case the azimuthal symmetry ϕ →
−ϕ is preserved. It is worth noting that this result basically
agrees with that obtained in the weak field approximation
[10,11,22].

2. Orbiting Casimir cavity, Ω ≠ 0

Now the symmetry ϕ → −ϕ is broken by the orbital
motion of the cavity; we have

Rðr;Ω;M; 0Þ ¼
�
1 −

2M
r

�
−1=2

�
1 −

2M
r

− r2Ω2

�
1=2

:

ð56Þ

As Ω → � 1
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M=r

p
[see (10) with a ¼ 0 for the

Schwarzschild case], R → 0. So hϵvacirenjw → 0, too.
This could happen, for example, when the orbital motion
of the cavity comes close to a null geodesic orbit at r ¼ 3M
(see Fig. 3). As another interesting example, for a Casimir
cavity orbiting on an ISCO (innermost stable circular orbit),
at r ¼ 6M, we have R ¼ ffiffiffi

3
p

=2.

C. Kerr geometry

1. Static Casimir cavity, Ω ¼ 0

In the Kerr geometry such a static case can be realized
only outside the ergoregion (r > r0þ). In this case, the
symmetry ϕ → −ϕ is broken by the gravitational dragging
and we get Rðr;Ω;M; aÞ ≤ 1, i.e., in the Kerr field a static
Casimir cavity will experience an increase in the (negative)
vacuum energy density. The complete expression for R is
not so illuminating. However, its limit for r → ∞ is

Rðr;Ω;M; aÞ ¼ 1 −
2J2

r4
; r → ∞: ð57Þ

So, as expected, the angular momentum of the source
causes a shift in the vacuum energy, reducing its absolute
value. This gravitomagnetic effect (quadratic in a ¼ J=M)
is dominating in the asymptotic region of space, when
compared to the bare gravitoelectric effect of the source.

2. Orbiting Casimir cavity, Ω ≠ 0 and the ZAMO

As in the case of the Schwarzschild geometry,
hϵvacirenjw → 0 when the angular velocity of the orbiting
Casimir cavity approaches the values Ω�ðrÞ of the corotat-
ing or counter-rotating circular null orbits [see (10)]. On the
other hand, when Ω ¼ ωd, namely when the cavity is
comoving with a ZAMO, such a latter observer will
experience no shift in the Casimir energy. This result is
an interesting example of the relevant role played by zero-
angular-momentum frames in the Kerr geometry. Actually,
according to a ZAMO, the ϕ → −ϕ symmetry is restored,
since there is no local rotation at all.

D. Geodesic orbital motion

We found a vanishing Casimir energy density (R → 0) as
the cavity orbital motion approaches the boundary νþ∪ν−
of the shaded region in Fig. 1. Although—as stated above
—such a region does not generally represent the locus of
geodesic orbital motion, we see that there are indeed two

FIG. 3. Plots of the functions Rþðρ; αÞ (dashed line), R−ðρ; αÞ
(dotted line) for the circular corotating and counter-rotating
geodesic orbits in the Kerr geometry. Also plotted, for compari-
son, is Rðρ; 0Þ for the geodesic orbits in the Schwarzschild
geometry (continuous line). In both the considered geometries,
the zeroes of Rðρ; αÞ are in correspondence of the geodesic
(unstable) null orbit for a massless particle, i.e., r ¼ 3M
(Schwarzschild space-time) and rþ ≃ 2M, r− ≃ 3.7M (Kerr
space-time with α ¼ 0.7).
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points (G�; see Fig. 1) in which the curves corresponding
to the geodesic circular orbits meet the curves ν�. As
pointed out in Sec. II A, such points represent null geodesic
orbits.
Putting Ωg� in (54) and rewriting the resulting expres-

sion in terms of the adimensional quantities ρ and α, we get
the ratio between the vacuum energy density and its flat-
nonrotating value in the case of a Casimir cavity following
a general geodesic orbit, namely

R�ðρ; αÞ ¼
�
1 −

ð�2α
ffiffiffi
ρ

p − ρ2 − α2Þ2
ðρ2 þ α2 − ρÞðρ3=2 � αÞ2

�
1=2

; ð58Þ

where the (�) sign refers to the corotating or counter-
rotating motion. In Fig. 3 we have plotted R� for the two
limiting cases: a Schwarzschild black hole (where α ¼ 0
and the two functions obviously coincide: Rþ ¼ R− ≡ R);
and a Kerr black hole with α ¼ 0.7. In Fig. 4 we see that (as
pointed out in Sec. IV B) in the Schwarzschild geometry
the vacuum energy density vanishes when the geodesic
orbit approaches the prehorizon limit at ρ ¼ 3 (r ¼ 3M),
which is the (unstable) null geodesic orbit followed by
massless particles, as the photons. We also find a similar
behavior in the Kerr background (dotted and dashed lines).
Solving R�ðρ; αÞ ¼ 0 with respect to ρ, we finally get the
radii of the innermost null geodesic orbits (having
Ω ¼ Ω�) as a function of the Kerr parameter α, namely
ρ�ðαÞ. A plot of such functions is given in Fig. 4.

We point out that the innermost (unstable) null geodesic
orbits plotted in Fig. 4 can be actually occupied only by
massless particles. Hence, they are not described by
physically admissible observers, or by any realistic (mas-
sive) Casimir cavity.
Nevertheless, a system cavityþ observer moving nearby

such orbits may be conceivable; in that case too a comoving
observer should detect a vanishing value of the Casimir
energy, e.g., measuring an almost zero attractive force
between the cavity plates.

E. Weak field limit

Let us consider, as a simple example, the case of a
Casimir apparatus placed at rest at the equator of a rapidly
spinning neutron star. Up to the first order in the (small)
quantities M=r and a=r we rewrite (54) as

Rðr;Ω;M;aÞ≃
�
1−

2M
r

�
−1=2

�
1−

2M
r

− r2Ω2þ 4JΩ
r

�
1=2

;

ð59Þ

where r, J ¼ Ma, and Ω now represent the radius, the
angular momentum, and the angular velocity of rotation of
the star. For typical values M ≃ 1.4M⊙, r≃ 104 m,
Ω≃ 190 rad=s, we obtain (using J ¼ ð2=5ÞMr2Ω)

Rðr;Ω;M; aÞ≃
�
1 − r2Ω2

�
1 −

8M
5r

��
1 −

2M
r

�
−1
�
1=2

≃ 1–2.3 × 10−5; ð60Þ
which represents indeed an extremely small first order
correction to the flat-nonrotating value of the Casimir
energy. In spite of its smallness, the result is theoretically
interesting. Actually, looking at (59) we find that at the
lowest order of approximation in the weak field limit all the
influence of the background gravitational field disappears
when the rotation of the cavity is stopped. In other words,
the ϕ → −ϕ symmetry breaking, due to cavity rotation,
appears as a higher order effect, as previously stated.
Yet, we found in Sec. IV C 1 that if Ω ¼ 0 such

symmetry breaking can take place as well, when discussing
the asymptotic behavior of the Casimir energy in the Kerr
background. But in that case the effect appears at the
second order in ða=rÞ [see (57)].

V. CONCLUDING REMARKS

In this paper we have analyzed the influence of the Kerr
geometry on the vacuum energy density in a Casimir cavity
orbiting in the equatorial plane of a massive rotating
gravitational source. Assuming a typical cavity size much
smaller than the orbital radius, we succeeded in evaluating
the shift in the vacuum energy using the exact form of the
Kerr solution. We found that both the orbital motion of the
cavity and the underlying space-time geometry conspire in

FIG. 4. Plots of the functions ρþðαÞ (dashed line) and ρ−ðαÞ
(dotted line), respectively, for the innermost circular corotating
and counter-rotating null geodesic orbits in the Kerr geometry. A
cavity moving nearby these orbits will be characterized by a
vanishing vacuum energy density.
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reducing the absolute value of the Casimir energy, as
measured by a comoving observer, with respect to whom
the cavity is at rest. This, in turn, causes a weakening in the
attractive force between the Casimir plates.
We have considered in some detail a few limiting cases,

showing that, on general grounds, hϵvacirenjw → 0 when the
angular velocity of the orbiting Casimir cavity approaches
the values Ω�ðrÞ of the corotating or counter-rotating
circular null orbits. On the other hand, we have shown
that a ZAMO comoving with the Casimir cavity does not
experience any shift in the vacuum energy. This is an
expected result, since the Kerr space-time is locally static
with respect to a ZAMO. (Incidentally, let us note that the
corresponding non-null result found in [22] is basically due
to the assumed nonuniformity of the gravitational field
inside the cavity.)
We have pointed out that the energy shift is related to the

ϕ → −ϕ symmetry breaking suffered by the quantum field,
due both to the cavity orbital motion and to the dragging
effect induced by the Kerr geometry.
On lack of rotation (i.e., jΩ − ωdj ¼ 0, according to a

locally nonrotating observer), vacuum fluctuations have
null stress-energy flux, Ttx ¼ 0 (i.e., no net linear

momentum). Roughly speaking, the linear momenta of
the virtual field particles inside the cavity cancel each other,
yielding no net coupling with the external gravitomagnetic
field of the rotating massive source M. On the other hand,
when jΩ − ωdj ≠ 0, ϕ → −ϕ symmetry breaking appears,
Ttx ≠ 0 and we have a non-null gravitomagnetic coupling,
resulting in a modification of the field vacuum energy.
Although a physical (timelike) Casimir cavity cannot

move on a null geodesic orbit, it is however worth noting
that hϵvacirenjw can suffer an important modification also on
very relevant orbits, as on the ISCOs of almost extremal
Kerr black holes (a=M ≃ 1) [29], where the ratio
Rðr;Ω;M; aÞ ¼ hϵvacirenjw

ϵð0Þvac
is likely to reach very small values

as well.
The effect we have considered could be of some

astrophysical interest, being potentially related to particle
confinement (as in models based on string interquark
potentials [5]).
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