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We investigate the cosmological implications of the recently constructed five-dimensional braneworld
cosmology with gravitating Nambu-Goto matching conditions. Inserting both matter and radiation sectors,
we extract analytical cosmological solutions. Additionally, we use observational data from Type Ia
supernovae and baryon acoustic oscillations, along with requirements of big bang nucleosynthesis and
cosmic microwave background radiation, in order to impose constraints on the parameters of the model.
We find that the scenario at hand is in good agreement with observations, and thus a small departure from
the standard Randall-Sundrum scenario is allowed. However, the concordance ΛCDM cosmology is still
favored comparing to both the standard braneworld model and the present scenario.
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I. INTRODUCTION

Israel matching conditions [1] are considered as the
standard equations of motion of a classical codimension-1
defect that backreacts on the bulk dynamics. They are
derived by focusing on the distributional part of the
Einstein field equations (or some gravity modification)
where the brane energy-momentum tensor, specified by a
delta function, is included. An equivalent way to derive
these equations is to take the variation of the brane-bulk
action with respect to the induced metric, while the bulk
equations of motion are derived as usual by varying the
bulk action with respect to the bulk metric. However, a
higher codimension defect carrying a generic energy-
momentum tensor is known to be inconsistent with
Einstein’s equations [2–4] (a brane with a pure tension
is a special consistent case [5–13]). In [14] the idea was
considered that a more general theory like Einstein-Gauss-
Bonnet gravity in six dimensions might remove the
previous inconsistency, and the matching conditions of
the theory for a generic energy-momentum tensor were
derived. In [15] the consistency of the whole system of bulk
field equations plus matching conditions was shown for
an axially symmetric codimension-2 cosmological brane.
The spirit of the above proposal for consistency of the

higher codimension defects is to include higher Lovelock
densities [16,17]. However, in D dimensions, the highest
such density is of order ½ðD − 1Þ=2�, and so it is quite

probable that branes with codimensions higher than
½ðD − 1Þ=2� will still be inconsistent. Moreover, four
dimensions that represent effectively spacetime at certain
length and energy scales do not allow generic codimension-
2 or codimension-3 defects. On the other hand, Israel
matching conditions and their generalizations to higher
codimensions do not accept the Nambu-Goto probe limit,
which is the lowest order approximation of a test brane
moving in a curved background. Even the geodesic limit of
the Israel matching conditions is questionable as a probe
limit, since being the geodesic equation is a kinematical
fact that should be preserved independently of the gravi-
tational theory (similar to [18,19]) or the codimension of
the defect, which is not the case for these matching
conditions [14,20–24]. Moreover, even the nongeodesic
probe limit of the standard equations of motion for various
codimension defects in Lovelock gravity theories is not
accepted, since this consists of higher order algebraic
equations in the extrinsic curvature, and therefore, a
multiplicity of probe solutions arise instead of a unique
equation of motion at the probe level. In view of these
observations a criticism to the standard matching condi-
tions appeared in [25], where alternative matching
conditions were proposed. These are the “gravitating
Nambu-Goto matching conditions” that arise by the varia-
tion of the brane-bulk action with respect to the brane
embedding fields, so that the gravitational backreaction
of the brane is taken into account. With these matching
conditions a brane is always consistent for an arbitrary
energy-momentum tensor, and it also possesses the
Nambu-Goto probe limit (the codimension-2 case was
studied in [25,26], while the codimension-1 was studied
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in [27]). In [27] the application of these alternative
matching conditions led to a new five-dimensional brane-
world cosmology that generalizes the conventional brane-
world cosmology [28] in the sense that it contains an extra
integration constant, and vanishing this constant gives back
the standard braneworld cosmology.
In the current work we try to confront this cosmology with

the current cosmological observational data [Type I super-
novae (SNIa), baryon acoustic oscillations (BAO), and big
bang nucleosynthesis (BBN)] in order to construct the
corresponding probability contour plots for the parameters
of the theory. The paper is organized as follows: In Sec. II we
briefly present the alternative matching conditions and the
basic features behind these, and we find in the cosmological
framework the equation for the expansion rate including
both the matter and radiation sectors. In Sec. III, which is the
main part of the work, we impose the observational con-
straints on the parameters of the model. Finally, a summary
of the obtained results is given in Sec. IV.

II. FIVE-DIMENSIONAL BRANEWORLD
WITH GRAVITATING NAMBU-GOTO

MATCHING CONDITIONS

Our system is described by five-dimensional Einstein
gravity coupled to a localized 3-brane source. The domain
wall Σ is assumed to be Z2 symmetric, it splits the
spacetime M into two parts M�, and the two sides of
Σ are denoted by Σ�. The total brane-bulk action is

S ¼
Z
M

d5x
ffiffiffiffiffi
jgj

p
ðM3R − ΛÞ − V

Z
Σ
d4χ

ffiffiffiffiffiffi
jhj

p
− 2M3

Z
Σ�

d4χ
ffiffiffiffiffiffi
jhj

p
K þ

Z
Σ
d4χLmat; ð2:1Þ

where gμν is the (continuous) bulk metric tensor and hμν ¼
gμν − nμnν is the induced metric on the brane with nμ the
unit normals pointing inwards to M� (μ; ν;…, are five-
dimensional coordinate indices). The bulk coordinates are
xμ and the brane coordinates are χi (i; j;…, are coordinate
indices on the brane). The brane tension is V > 0 and the
matter Lagrangian of the brane is Lmat. The only matter
content of the bulk is the cosmological constant Λ < 0 and
the higher dimensional mass scale is M. The contribution
on each side of the wall of the Gibbons-Hawking term is
also necessary here as in the standard derivation of the
matching conditions. K ¼ hμνKμν is the trace of the
extrinsic curvature Kμν ¼ hκμhλνnκ;λ (the covariant differ-
entiation; corresponds to gμν).
Varying (2.1) with respect to the bulk metric we get the

bulk equations of motion

Gμν ¼ −
Λ

2M3
gμν; ð2:2Þ

where Gμν is the bulk Einstein tensor. In this variation,
beyond the basic terms proportional to δgμν that give (2.2),

there appear, as usual, extra terms proportional to the
second covariant derivatives ðδgμνÞ;κλ, which lead to a
surface integral on the brane with terms proportional to
ðδgμνÞ;κ. Adding the Gibbons-Hawking term, the normal
derivatives of δgμν, i.e., terms of the form nκðδgμνÞ;κ, are
canceled, and considering as a boundary condition for the
variation of the bulk metric its vanishing on the brane
(Dirichlet boundary condition for δgμν) there is nothing left
beyond the terms in Eq. (2.2). The Gibbons-Hawking term
will again contribute in the following variation performed
in order to obtain the brane equations of motion.
According to the standard method, the interaction of

the brane with the bulk comes from the variation δgμν at
the brane position of the action (2.1), which is equivalent to
adding onto the right-hand side of Eq. (2.2) the term
κ25 ~Tμνδ

ð1Þ, where ~Tμν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffijhj=jgjp ðTμν − λhμνÞ, Tμν is the

brane energy-momentum tensor, and δð1Þ is the one-
dimensional delta function with support on the defect.
This approach leads to the standard Israel matching
conditions. Here, we discuss an alternative approach where
the interaction of the brane with bulk gravity is obtained by
varying the total action (2.1) with respect to δxμ, the
embedding fields of the brane position [25]. The embed-
ding fields are some functions xμðχiÞ, and their variations
are δxμðxνÞ. While in the standard method the variation
of the bulk metric at the brane position remains arbitrary,
here the corresponding variation is induced by δxμ, i.e.,
δgμν ¼ −Lδxgμν. The result of this variation gives the
codimension-1 gravitating Nambu-Goto matching condi-
tions [27] (for a reminiscent variation see also [29])

�
Kij − Khij þ 1

4M3
ðTij − VhijÞ

�
Kij ¼ 0; ð2:3Þ

Tij
jj ¼ −4M3ðKij − KhijÞjj; ð2:4Þ

where Kij ¼ Kþ
ij ¼ K−

ij, K
μν ¼ Kijxμ;ixν;j and j denotes

covariant differentiation with respect to hμν. These equa-
tions are supplemented with the bulk equations (2.2) that
are defined as limited on the brane, and therefore, addi-
tional equations have to be satisfied at the brane position
beyond the matching conditions. Using these bulk equa-
tions the system of the above matching conditions (2.3)
and (2.4) is written equivalently as

ðTij − VhijÞKij ¼ 4ðM3R − ΛÞ; ð2:5Þ

Tij
jj ¼ 0; ð2:6Þ

where R is the three-dimensional Ricci scalar.
To search for cosmological solutions we consider the

corresponding form for the bulk metric in the Gaussian-
normal coordinates
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ds25 ¼ dy2 − n2ðt; yÞdt2 þ a2ðt; yÞγ î ĵðχl̂Þdχ îdχ ĵ; ð2:7Þ

where γ î ĵ is a maximally symmetric three-dimensional

metric (î; ĵ;… ¼ 1; 2; 3) characterized by its spatial curva-
ture k ¼ −1; 0; 1. The energy-momentum tensor on the
brane Tij (beyond that of the brane tension V) is assumed to
be the one of perfect cosmic fluids with total energy density
ρ and total pressure p.
The ty, yy bulk equations (2.2) at the position of the

brane are

_Aþ nHðA − NÞ ¼ 0; ð2:8Þ

AðAþ NÞ − ðX þ YÞ þ Λ
6M3

¼ 0; ð2:9Þ

where

A ¼ a0

a
; N ¼ n0

n
;

H ¼ _a
na

;

X ¼ H2 þ k
a2

;

Y ¼
_H
n
þH2 ¼

_X
2nH

þ X; ð2:10Þ

and a prime and a dot denote, respectively, ∂=∂y and ∂=∂t.
The cosmic scale factor, lapse function, and Hubble
parameter arise as the restrictions on the brane of the
functions aðt; yÞ; nðt; yÞ, and Hðt; yÞ, respectively. Other
quantities also have their corresponding values when
restricted on the brane, and since all the following equa-
tions will refer to the brane position, we will use the same
symbols for the restricted quantities without confusion.
Combining Eqs. (2.8) and (2.9) with the matching con-
dition (2.5) [27], we obtain the solution for A,

A ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X −

C
a4

−
Λ

12M3

r
; ð2:11Þ

where C is integration constant, and the Raychaudhuri
equation for the brane cosmology

_H
n
þ 2H2 þ k

a2
−

Λ
6M3

¼ ρþ 3p − 2V
4M3

H2 þ k
a2 −

C
a4 −

Λ
12M3

ρþV
4M3 � 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 þ k

a2 −
C
a4 −

Λ
12M3

q : ð2:12Þ

It is seen from (2.12) that for C ¼ k ¼ ρ ¼ p ¼ 0, the
lower branch contains the Minkowski solution under
the assumption of the Randall-Sundrum fine-tuning
Λþ V2=ð12M3Þ ¼ 0 [30,31]. We will not assume this

condition in our analysis, so in the absence of matter
our cosmology may have a de Sitter vacuum. It is assumed
that the quantity inside the square root of Eq. (2.12) is
positive.
In [27] a single component perfect fluid was considered.

Here, since we want to confront the model with real data,
we will be more precise by assuming that the total energy
density ρ consists of the matter component ρm with pm ¼ 0
and the radiation component ρr with pr ¼ 1

3
ρr, i.e.,

ρ ¼ ρm þ ρr. Now, the integration process of (2.12) differs
from that in [27]. The variable

Ξ ¼ 1

2
ln

�
12M3

−Λ

�
H2 þ k

a2
−

C
a4

−
Λ

12M3

��
ð2:13Þ

obeys the differential equation

dΞ
d ln a

¼ ~ρþ 3 ~p
~ρ� 6eΞ

− 2; ð2:14Þ

where

~ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
12M3

−Λ

r
ρþ V
4M3

¼ ρ

ρ�
þ ~V; ð2:15Þ

~p ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
12M3

−Λ

r
p − V
4M3

¼ p
ρ�

− ~V; ð2:16Þ

~V ¼ V
ρ�

; ð2:17Þ

ρ� ¼ 4M3

ffiffiffiffiffiffiffiffiffiffiffiffi
−Λ
12M3

r
: ð2:18Þ

Note that the Randall-Sundrum fine-tuning corresponds to
the value ~V ¼ 3. Using the conservation equation (2.6) in
the standard form

_ρþ 3nHðρþ pÞ ¼ 0; ð2:19Þ
we obtain the equation

d~ρ
d ln a

þ 3ð~ρþ ~pÞ ¼ 0: ð2:20Þ

Finally, changing to the variable

Φ ¼ ð~ρ� 6eΞÞ2; ð2:21Þ
we get from (2.14) and (2.20), after some cancellations, the
differential equation

dΦ
d ln a

þ 4Φ ¼ −2~ρð~ρþ 3 ~pÞ: ð2:22Þ

Each fluid component is conserved independently
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_ρm þ 3nHðρm þ pmÞ ¼ 0; _ρr þ 3nHðρr þ prÞ ¼ 0;

ð2:23Þ
so the solutions are

ρm ¼ ρm0

a3
; ρr ¼

ρr0
a4

: ð2:24Þ

Therefore, Eq. (2.22) becomes a linear differential equation
in terms of a,

dΦ
d lna

þ 4Φ ¼ −
2

ρ2�

�
ρm0

a3
þ ρr0

a4
þ V

��
ρm0

a3
þ 2

ρr0
a4

− 2V

�
;

ð2:25Þ

with general solution

Φ ¼ 1

ρ2�
½ðρm þ ρr þ VÞ2 − 2Vρr� þ

~c
a4

; ð2:26Þ

where ~c is the integration constant.

From the definition (2.21) we can find that

~ρ� 24M3

ρ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 þ k

a2
−

C
a4

−
Λ

12M3

r
¼ ϵ

ffiffiffiffi
Φ

p
: ð2:27Þ

In this equation the sign index ϵ ¼ þ1 or −1 has been used
to denote a new different bifurcation from the previous �
branches. It is seen from (2.27) that the sign ϵ ¼ −1 is only
consistent with the lower � branch, while the sign ϵ ¼ þ1
is consistent with both � branches. The distinction,
however, introduced by the sign index � will be lost in
the expressions for the expansion rate and the acceleration
parameter, and only the sign ϵ will distinguish the two
branches of solutions.
The expansion rate of the new cosmology arises by

squaring Eq. (2.27) and is given by

H2 þ k
a2

−
C
a4

¼
�

ρ�
24M3

�
2
("

ρm þ ρr
ρ�

þ ~V − ϵ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ρm þ ρr

ρ�
þ ~V

�
2

− 2 ~V
ρr
ρ�

þ ~c
a4

s #
2

− 36

)
; ð2:28Þ

where in (2.28) one can set ρr ¼ 0. Redefining the integration constant ~c as c ¼ ρ�
ρr0

~c − 2 ~V, the expansion rate can also be
written as

H2 þ k
a2

−
C
a4

¼
�

ρ�
24M3

�
2
("

ρm þ ρr
ρ�

þ ~V − ϵ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ρm þ ρr

ρ�
þ ~V

�
2

þ c
ρr
ρ�

s #
2

− 36

)
; ð2:29Þ

where in (2.29) one cannot set ρr ¼ 0 since ρr0 is in the
denominator of the definition of c. This solution contains
two integrations constants. The first constant C is associated
with the usual dark radiation term reflecting the non-
vanishing bulk Weyl tensor. The second constant ~c or c
is the new feature that does not appear in the cosmology
of the standard matching conditions [28] and signals
new characteristics in the cosmic evolution. Setting c ¼
0 ⇔ ~c ¼ 2 ~Vρr0

ρ�
in the branch ϵ ¼ −1, we obtain the brane-

world cosmology of the standard matching conditions
H2 þ k

a2 −
C
a4 ¼ ðρmþρrþV

12M3 Þ2 þ Λ
12M3 (if there is no radiation

we just set ~c ¼ 0). Of course, there are always the extra
integration constants ρm0, ρr0 of Eqs. (2.24) that are
adjusted by today’s matter contents, while today’s Hubble
valueH0 is assumed to be given. The solution also contains
three free parameters M, V, Λ or M, ~V, ρ�. In [27] for a
single dust perfect fluid, which approximates well at
least the late-times behavior, it was found analytically
for values of ~V extremely close to the Randall-Sundrum
fine-tuning of the position of the recent passage from a

long deceleration era to the present accelerating epoch.
Moreover, the age of the Universe was estimated, and the
time variability of the dark energy equation of state was
calculated.

III. OBSERVATIONAL CONSTRAINTS

As we analyzed in detail above, the cosmological
scenario at hand leads to the Friedmann equation (2.28),
where the index ϵ ¼ �1 corresponds to two branches of
solutions. The Friedmann equation contains the following
parameters: C, ~c,M, ~V, and ρ�, along with Ωm0, Ωr0, Ωk0. C
and ~c are integration constants, M is the fundamental five-
dimensional Planck mass, and the other two ~V, ρ� are
connected to the fundamental model parameters M, V, and
Λ through the relations (2.17) and (2.18). The identification
of Newton’s constant GN in Eq. (2.28) as a combination of
the model parameters will reduce the number of these
parameters by one. Then, using GN we will define the
various density parameters.
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A. Branch ϵ ¼ −1
The scale factor for the branch ϵ ¼ −1 with ~V < 3 is

bounded from above, and we will not consider this case in
detail. However, the branch ϵ ¼ −1 with ~V ≥ 3 possesses
the late-times asymptotic linearized regime (that is, when
ρm þ ρr ≪ ρ� ~V, ρr=ρr0 ≪ ~V2=~c) with a positive effective
cosmological constant

H2 þ k
a2

≈
Λeff

3
þ 2γρm þ γρr þ

�
C þ γρ� ~c

2 ~V

�
1

a4
; ð3:1Þ

where

γ ¼ V
144M6

; ð3:2Þ

Λeff ¼ 3

�
ρ�
4M3

�
2
�
~V2

9
− 1

�
¼ 1

4M3

�
Λþ V2

12M3

�
: ð3:3Þ

Now, as usual in braneworld or other modified gravity
models, from this late-times Friedmann equation, one reads
Newton’s constant. Since asymptotically the coefficients of
ρm; ρr in (3.1) are different, and ρr ≪ ρm, we associate
Newton’s constant with ρm

γ ¼ V
144M6

≡ 4πGN

3
: ð3:4Þ

With this identification we can go back to the full
Friedmann equation (2.28) and reduce one parameter, for
instance, M. Thus, the expansion rate (2.28) for ϵ ¼ −1,
~V ≥ 3 becomes

H2 þ k
a2

−
C
a4

¼ πGNρ�
3 ~V

("
ρm þ ρr

ρ�
þ ~V þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ρm þ ρr

ρ�
þ ~V

�
2

− 2 ~V
ρr
ρ�

þ ~c
a4

s #
2

− 36

)
: ð3:5Þ

Finally, to complete the steps we rewrite (3.5) as

H2 þ k
a2

−
C
a4

¼ 8πGN

3
ðρm þ ρr þ ρDEÞ ð3:6Þ

with

ρDE ¼ ρ�
8 ~V

("
ρm þ ρr

ρ�
þ ~V þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ρm þ ρr

ρ�
þ ~V

�
2

− 2 ~V
ρr
ρ�

þ ~c
a4

s #
2

− 36

)
− ðρm þ ρrÞ: ð3:7Þ

Note that this ρDE at late times goes to Λeff
8πGN

− ρr
2
þ ρ� ~c

4 ~Va4
,

which asymptotically goes to Λeff
8πGN

, i.e., to a simple
cosmological constant.
So now, we can define the various density parameters

straightforwardly as

Ωm ¼ 8πGNρm
3H2

; ð3:8Þ

Ωr ¼
8πGNρr
3H2

; ð3:9Þ

ΩDE ¼ 8πGNρDE

3H2
; ð3:10Þ

Ωk ¼ −
k

a2H2
; ð3:11Þ

ΩC ¼
C

a4H2
: ð3:12Þ

Finally, assuming that the present scale factor is a0 ¼ 1
and using the redshift as the independent variable
(1=a ¼ 1þ z), we can write the Friedmann equation (3.6)
in the usual form, convenient to observational fittings,

H2 ¼ H2
0

�
Ωk0ð1þ zÞ2 þΩC0ð1þ zÞ4 þΩm0ð1þ zÞ3

þΩr0ð1þ zÞ4 þ 8πGNρDEðzÞ
3H2

0

�
: ð3:13Þ

Here, ρDE, according to (3.7), is

ρDEðzÞ ¼
ρ�
8 ~V

��
3H2

0Ωm0

8πGNρ�
ð1þ zÞ3 þ 3H2

0Ωr0

8πGNρ�
ð1þ zÞ4 þ ~V þAðzÞ

�
2

− 36

�
−
3H2

0Ωm0

8πGN
ð1þ zÞ3 − 3H2

0Ωr0

8πGN
ð1þ zÞ4;

ð3:14Þ
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with

AðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
3H2

0Ωm0

8πGNρ�
ð1þ zÞ3 þ 3H2

0Ωr0

8πGNρ�
ð1þ zÞ4 þ ~V

�
2

−
3H2

0Ωr0
~V

4πGNρ�
ð1þ zÞ4 þ ~cð1þ zÞ4

s
: ð3:15Þ

Alternatively, one could write the last term inside the curly
bracket of (3.13) as ΩDE0ð1þ zÞ3ð1þwDEðzÞÞ, with ΩDE0 ¼
1 − Ωm0 −Ωr0 −ΩC0 −Ωk0 and wDEðzÞ extracted from
(3.14). This normalization at the current values fixes one
of the parameters, e.g., Ωr0.
In summary, Eq. (3.13) is the one wewill fit, with C, ~c, ~V,

ρ�, andΩm0 as parameters (for simplicity we fixΩk0 to their
PlanckþWPþ highLþ BAO best fit values, namely
Ωk0 ¼ −0.0003 [32]). Concerning H0 we include the
direct H0 probe from the Hubble Space Telescope
(HST) observations of Cepheid variables with H0 ¼
73.8� 2.4 km s−1Mpc−1; that is, we set it as a free
parameter to fit the HST data.
The C term in (3.6) corresponds to dark radiation, so it is

proportional to 1=a4. This term, in particularΩC0, cannot be
constrained efficiently by the low-redshift observations we
are going to use in our analysis. However, since this dark
radiation component was present at the time of BBN too,
that is, at redshift zBBN ∼ 109, we can use BBN arguments
in order to constrain it. Specifically, the data impose an
upper bound on the amount of total radiation (standard and
exotic), which is expressed through the parameter ΔNν of
the effective neutrino species [33–35]. Thus, in our case,
this bound imposes a constraint on ΩC0, namely,

ΩC0 ¼ 0.135ΔNνΩr0: ð3:16Þ
The recently released Planck results impose a quite tight
constraint on the effective number of neutrino species [32]:
Neff ¼ 3.30þ0.54

−0.51 (95% C.L.) from the PlanckþWPþ
highLþBAO data combination. Therefore, the 95% C.L.
upper limit of ΔNν is ΔNν < 0.776. This leads to a very
tight constraint on the dark radiation component of the
scenario at hand, namely, ΩC0 < 5 × 10−6 (95% C.L.).
Thus, we can safely neglect this term in the remaining
analysis, and the remaining parameters to be fitted are ~c, ~V,
ρ�, and Ωm0.
As a starting analysis, let us fit the case where ~c is set

to its value that corresponds to the standard braneworld
cosmological scenario [28], namely, ~c ¼ 2 ~Vρr0=ρ� (which
is exactly zero in the absence of radiation). Thus, in this
case we have only three free parameters, namely ~V, ρ�, and
Ωm0. In Fig. 1 we provide the two-dimensional contour
plots on (Ωm0; ~V), using SnIa and SnIaþ BAO data
combinations. The details of the fitting procedure are
presented in the Appendix. As we observe, when we use
SnIa data only, the constraints on ~V are relatively weak,
namely 3 < ~V < 5.5 at the 95% confidence level.
However, addition of the BAO data introduces an extra

constraining power, and the total constraint becomes
tighter, namely 3 < ~V < 3.4 (95% C.L.) from SnIaþ
BAO data. Finally, as we describe in the Appendix, the
efficiency of the fitting is quantified by χ2, which for this
case is χ2 ≈ 570.
Let us now proceed to the general case, that is consid-

ering ~c as an additional free parameter. In the upper graph
of Fig. 2 we present the contour plots of ~V versus Ωm0,
while in the lower graph of Fig. 2 we depict the contour
plots of ~c versus Ωm0. As we observe, the SnIa constraints
on the parameter ~V are much weaker than those of Fig. 1,
due to the additional fitting variable. In particular, the
95%C.L. bound is 3 < ~V < 15.3 (additionally note that the
parameter space Ωm0 < 0.2 is now allowed by the SnIa
data, exactly due to the presence of nonzero ~c). Concerning
~c the SnIa data lead also to the relatively weak constraint
log10 ~c < 0.1 (95% C.L.). However, for the combined
SnIa with BAO data, the constraints become much tighter.
At 95% confidence level they are 3 < ~V < 3.7 and
log10 ~c < −1.6, while their best fit values are very close
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FIG. 1 (color online). Two-dimensional likelihood contours in
the (Ωm0; ~V) plane for the ϵ ¼ −1 branch and fixed ~c to its
Randall-Sundrum value (~c ¼ 2 ~Vρr0=ρ�) from the SnIa (red and
pink) and SnIaþ BAO (blue and light blue) data combinations.
The light regions (pink and light blue, respectively) correspond to
the 2σ confidence level, while the darker regions (red and blue,
respectively) correspond to the 1σ confidence level. Note that in
this specific plot the 1σ bound of the SnIa (red) data combinations
is inside the 2σ bound of the SnIaþ BAO (light blue) data
combinations.
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to 3 and 0, respectively. Finally, the corresponding χ2

is χ2 ≈ 570.
Let us now refer to the constraints of the cosmic

microwave background (CMB) radiation on the scenario
at hand. One can use such high-redshift probes, in
particular the distance information of CMB, the shift
parameter R, and the acoustic scale lA, from WMAP9
or Planck data [32]. Their definitions are R ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩmH2

0

p
χðz�Þ=c and lA ¼ πχðz�Þ=χsðz�Þ, where χðz�Þ

and χsðz�Þ denote the comoving distance to the decoupling
epoch z� and the comoving sound horizon at z�, respec-
tively. The current CMB data imply that at z� ∼ 1100 the
Universe is dominated by matter, that is, HðzÞ2 ∼ ρmðzÞ. If
in our model we neglect Ωk, Ωr, and ΩC terms, and

we insert the present value of the critical density
ρc0 ¼ 3H2

0=8πGN , then (3.6) becomes H2 ¼ ρmðzÞþ
ρDEðzÞ ¼ H2

0ΩðzÞ, where

ΩðzÞ ¼ 1

2

��
Ωm0ð1þ zÞ3ffiffiffiffiffiffiffiffiffi

Ω� ~V
q þ

ffiffiffiffiffiffiffiffiffi
Ω� ~V

q �
2

− 9
Ω�
~V

�
; ð3:17Þ

with

Ω� ≡ ρ�
ρc0

: ð3:18Þ

Apparently, we deduce that if wewant the term ρmðzÞ2 to be
significantly smaller than ρmðzÞ, we need

½Ωmð1þ zÞ3�2
Ω� ~V

≪ 2ðΩmð1þ zÞ3Þ ⇒ Ωmð1þ zÞ3
2 ~V

≪ Ω�:

ð3:19Þ

Since ~V ≳ 3, it is implied that if we desire to satisfy the
CMB data, we need Ω� ≫ 0.05ð1þ z�Þ3 ∼ 107.
Proceeding forward, combining Eqs. (2.17), and (3.4) we

obtain for the fundamental mass scale M the relation

M6 ¼
~Vρ�

192πGN
: ð3:20Þ

The likelihood contours of the dimensionless quantity
M6GN=ρc0 versus Ωm0 is shown in Fig. 3. We can then
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FIG. 2 (color online). Two-dimensional likelihood contours in
the (Ωm0; ~V) and (Ωm0; log10 ~c) planes for the ϵ ¼ −1 branch from
the SnIa (red and pink) and SnIaþ BAO (blue and light blue)
data combinations. The light regions (pink and light blue,
respectively) correspond to the 2σ confidence level, while the
darker regions (red and blue, respectively) correspond to the 1σ
confidence level.
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FIG. 3 (color online). Two-dimensional likelihood contours of
the dimensionless quantity M6GN=ρc0 versus Ωm0, where ρc0 is
the current critical density, for the ϵ ¼ −1 branch from the SnIaþ
BAO data combinations. The lighter region corresponds to the 2σ
confidence level, while the darker region corresponds to the 1σ
confidence level.

COSMOLOGICAL SOLUTIONS AND OBSERVATIONAL … PHYSICAL REVIEW D 90, 084049 (2014)

084049-7



straightforwardly estimate that at the 1σ confidence level
0 < M < 0.042 GeV. Moreover, to give an estimate
for the value of the brane tension V, we use the relation
V ¼ 192πGNM6, which leads to 0 < V < 2.22 ×
10−44 GeV4 at the 1σ confidence level. That is,
0 < V < 0.87 × 103ρΛ0, where ρΛ0 is the current value
of the energy density of the observed cosmological
constant.
Finally, we close this subsection by examining the

constraints on the model from the age of the Universe.
In general, the age of the Universe is given by

t0 ¼
Z

∞

0

dz
ð1þ zÞHðzÞ ; ð3:21Þ

where in the scenario at hand HðzÞ is given by Eq. (3.13).
Thus, taking into account the constraints on the model
parameters elaborated above, we can construct the contour
plots of H0t0 versus Ωm0, which is presented in Fig. 4. We
can then straightforwardly estimate the age in gigayears
(Gyr), finding 12.23 Gyr ≤ t0 ≤ 14.13 Gyr at the 1σ con-
fidence level (for the ΛCDM model with Ωm0 ¼ 0.28
the corresponding age is 13.5 Gyr). We observe from
Eqs. (2.28) and (3.21) that larger values of the mass scaleM
in the range found above correspond to larger values of the
age of the Universe. Thus, since larger ages are preferable,
the most probable estimations for M lie closer to the
upper bound.
In summary, as we observe, the cosmological observa-

tions constrain ~V and ~c close to their Randall-Sundrum
values, namely, ~V ¼ 3 and ~c ≈ 0 (~c ¼ 0 in the case of
radiation absence). However, note that the data allow for a
departure from the Randall-Sundrum scenario. In particu-
lar, although the present model has an additional parameter
compared to the Randall-Sundrum one, the corresponding
χ2 is the same in two models, namely, χ2 ≈ 570. This means
that braneworld models with gravitating Nambu-Goto
matching conditions are in “equal” agreement with obser-
vations as the standard braneworld models.

Last, if we desire to compare the scenario at hand
with the concordance paradigm of standard ΛCDM cos-
mology, we can be based on the Akaike Information
Criterion (AIC) [36]

AIC ¼ −2 lnLmax þ 2k; ð3:22Þ

where lnLmax ¼ −χ2min=2 is the maximum likelihood
achievable by the model (with χ2min=2 the corresponding
χ2 of the analysis) and k the number of parameters of the
model. Hence, we obtain the difference on the AIC between
the standard ΛCDM cosmology and our gravitating
Nambu-Goto matching conditions model as

ΔAIC ¼ AICðgravitating Nambu-Goto match condÞ − AICðΛCDMÞ
¼ χ2minðgravitating Nambu-Goto match condÞ − χ2minðΛCDMÞ þ 2Δk; ð3:23Þ

where Δk ¼ kðgravitating Nambu-Goto match condÞ − kðΛCDMÞ is the difference of the number of parameters between
the models. Thus, although in our model we obtain a χ2min similar to that of ΛCDM cosmology [χ2minðΛCDMÞ ≈ 570], the
fact that we use two additional parameters gives ΔAIC ≈ 4. Thus, we deduce that ΛCDM cosmology is more favored
compared to the scenario at hand, since the two extra parameters do not improve the late-times fitting behavior.

B. Branch ϵ ¼ þ1

In this case, the full Friedmann equation (2.28) is

H2 þ k
a2

−
C
a4

¼
�

ρ�
24M3

�
2
("

ρm þ ρr
ρ�

þ ~V −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ρm þ ρr

ρ�
þ ~V

�
2

− 2 ~V
ρr
ρ�

þ ~c
a4

s #
2

− 36

)
: ð3:24Þ
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FIG. 4 (color online). Two-dimensional likelihood contours of
H0t0 versus Ωm0 for the ϵ ¼ −1 branch from the SnIaþ BAO
data combinations. The lighter region corresponds to the 2σ
confidence level, while the darker region corresponds to the 1σ
confidence level.
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The branch ϵ ¼ þ1 is completely new compared to the standard braneworld models since the scale factor is bounded from
above for any value of ~V. Therefore, contrary to the branch ϵ ¼ −1, here, there is no pure late-times linearization regime.
However, expanding the expression (3.24), there is a term linear in ρm; ρr, so Newton’s constant GN can also here be
identified. More precisely it is H2 þ k

a2 −
C
a4 ¼ γðρm þ ρr

2
Þ þ � � �, where � � � do not contain terms linear in ρm; ρr, and

γ ¼ V
144M6. Therefore, associating GN with ρm we have the identification

γ ¼ V
144M6

≡ 8πGN

3
: ð3:25Þ

Going back to Eq. (3.24), we eliminate the parameter M and we rewrite the expansion rate for ϵ ¼ þ1 as

H2 þ k
a2

−
C
a4

¼ 4πGNρ�
3 ~V

"
~V
2ρm þ ρr

ρ�
þ
�
ρm þ ρr

ρ�

�
2

þ ~V2 − 18þ ~c
2a4

−
�
ρm þ ρr

ρ�
þ ~V

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ρm þ ρr

ρ�
þ ~V

�
2

− 2 ~V
ρr
ρ�

þ ~c
a4

s #
: ð3:26Þ

This expression takes the standard form

H2 þ k
a2

−
C
a4

¼ 8πGN

3
ðρm þ ρr þ ρDEÞ; ð3:27Þ

where

ρDE ¼ ρ�
2 ~V

"�
ρm þ ρr

ρ�

�
2

−
~Vρr
ρ�

þ ~V2 − 18þ ~c
2a4

−
�
ρm þ ρr

ρ�
þ ~V

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ρm þ ρr

ρ�
þ ~V

�
2

− 2 ~V
ρr
ρ�

þ ~c
a4

s #
: ð3:28Þ

Defining the density parameters as in (3.8)–(3.12), we find Eq. (3.13), where ρDEðzÞ is now given by

ρDEðzÞ ¼
ρ�
2 ~V

��
3H2

0Ωm0

8πGNρ�
ð1þ zÞ3 þ 3H2

0Ωr0

8πGNρ�
ð1þ zÞ4

�
2

−
3H2

0Ωr0
~V

8πGNρ�
ð1þ zÞ4 þ ~V2 − 18

þ ~c
2
ð1þ zÞ4 −

�
3H2

0Ωm0

8πGNρ�
ð1þ zÞ3 þ 3H2

0Ωr0

8πGNρ�
ð1þ zÞ4 þ ~V

�
AðzÞ

�
; ð3:29Þ

with

AðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
3H2

0Ωm0

8πGNρ�
ð1þ zÞ3 þ 3H2

0Ωr0

8πGNρ�
ð1þ zÞ4 þ ~V

�
2

−
3H2

0Ωr0
~V

4πGNρ�
ð1þ zÞ4 þ ~cð1þ zÞ4

s
: ð3:30Þ

In summary, Eq. (3.27) is the one wewill fit, with C, ~c, ~V,
ρ�, and Ωm0 as parameters [again for simplicity we fix
Ωk0 to its (PlanckþWPþ highLþ BAO) best fit values,
namely, Ωk0 ¼ −0.0003 [32] ]. Additionally, we include
the direct H0 probe from the HST observations of Cepheid
variables with H0 ¼ 73.8� 2.4 km s−1Mpc−1. Similar to
the previous subsection, we can safely neglect C since it is
negligible according to BBN analysis. Finally, instead of ρ�
it proves more convenient to introduce the dimensionless
quantity (3.18), namely Ω� ≡ ρ�

ρc0
, where ρc0 is the present

critical energy density of the Universe.
We use combined SnIa and BAO data to constrain ~c, ~V,

Ω�, and Ωm0. In Fig. 5 we present the corresponding

two-dimensional likelihood contours. First, note that in this
case ~V is not theoretically restricted to values greater than 3,
and in particular it is constrained in much smaller values,
namely log10 ~V < 2.0 (95% C.L. upper limit). Additionally,
note that since at late times ρDE acquires negative values,
the constraint on Ω� is very close to zero, namely
log10Ω� < −5.5 (95% C.L.). Because of the strong degen-
eracy between Ω� and ~c, the constraints on ~c are very
different from those in the ϵ ¼ −1 branch case, namely,
7.7 < log10 ~c < 15.9 (95% C.L.). However, note that the
minimal χ2 for this case is χ2 ≈ 688, which is much
higher than that for the ϵ ¼ −1 branch case, which means
that the ϵ ¼ þ1 branch case is not favored by observations.
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This can be additionally seen by calculating the corre-
sponding age of the Universe, which is much smaller than
the ΛCDM value. However, although this branch is not
favored by late-times observations, due to that H2 ≈ const
at early times, it could still play an important role in the
inflationary regime.

IV. CONCLUSIONS

In this work we constrained an alternative five-
dimensional braneworld cosmology using observational
data. The difference with the standard braneworld cosmol-
ogy refers to the adaptation of alternative matching con-
ditions introduced in [25] that generalize the conventional
matching conditions. The reasons for this consideration are
possible theoretical deficiencies of the standard junction
conditions, namely the need for consistency of the various
codimension defects and the existence of a meaningful
equation of motion at the probe limit. Instead of varying
the brane-bulk action with respect to the bulk metric at the
brane position and deriving the standard matching con-
ditions, we vary with respect to the brane embedding fields
in a way that takes into account the gravitational back-
reaction of the brane onto the bulk.
The proposed gravitating Nambu-Goto matching con-

ditions may be close to the correct direction of finding
realistic matching conditions since they always have the
Nambu-Goto probe limit (independently of the gravity

theory, the dimensionality of spacetime, or codimension-
ality of the brane), and moreover, with these matching
conditions, defects of any codimension seem to be con-
sistent for any (second order) gravity theory. Compared to
the conventional five-dimensional braneworld cosmology,
the new one possesses an extra integration constant, which
if set to zero reduces the new cosmology to the conven-
tional braneworld one.
In the present work we extended the codimension-1

cosmology of [27] by allowing both a matter and a
radiation sector in order to extract observational constraints
on the involved model parameters. In particular, we used
data from SNIa and BAO, along with arguments from BBN
in order to construct the corresponding probability contour
plots for the parameters of the theory.
Concerning the first (ϵ ¼ −1) branch of cosmology,

we found that the parameters ~V and ~c that quantify the
deviation from the Randall-Sundrum scenario, are con-
strained very close to their Randall-Sundrum values as
expected. However, a departure from the Randall-Sundrum
scenario is still allowed, and moreover, the corresponding
χ2 is the same for both models. This means that braneworld
models with a gravitating Nambu-Goto matching condition
are in “equal” agreement with observations with standard
braneworld cosmology. However, application of the AIC
criterion shows that both the standard braneworld cosmol-
ogy and the extended scenario of the present work are less
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FIG. 5 (color online). Two-dimensional likelihood contours in the (Ωm0; ~V), (Ωm0; log10 ~c), (Ωm0;Ω�), and ( ~V; log10 ~c) planes, for the
ϵ ¼ þ1 branch, from the SnIaþ BAO data combinations. The lighter regions correspond to the 2σ confidence level, while the darker
regions correspond to the 1σ confidence level.

KOFINAS, SARIDAKIS, AND XIA PHYSICAL REVIEW D 90, 084049 (2014)

084049-10



favored by the data if we compare them with the concord-
ance ΛCDM cosmology since the two extra parameters do
not improve the fitting behavior. Furthermore, the obtained
age of the Universe is 12.23 Gyr ≤ t0 ≤ 14.13 Gyr, which
is an additional observational advantage of the model.
Finally, concerning the fundamental mass scale M, the
current age estimations imply that the preferred values ofM
lie well below the GeV scale.
Concerning the second (ϵ ¼ þ1) cosmological branch,

which is completely new and with no correspondence in the
Randall-Sundrum scenario, we extracted the corresponding
likelihood contours. Although this case is still compatible
with observations, the corresponding minimal χ2 is much
higher than that for the ϵ ¼ −1 branch case, which means
that this branch case is not favored by late-times observa-
tions. However, although this branch is not favored by late-
times observations, due to H2 ≈ const at early times, it
could still play an important role in the inflationary regime.
In summary, cosmology with gravitating Nambu-Goto

matching conditions offers an extension to the standard
Randall-Sundrum scenario. Apart from interesting solu-
tions, we see that it is in agreement with observations since
the data allow for a small deviation from the Randall-
Sundrum cosmology. Therefore, it should be worthwhile to
further study the cosmological implications of the model,
such as the inflationary behavior and the late-times asymp-
totic features, since especially a successful inflationary
regime is something that cannot be obtained in the
framework of ΛCDM cosmology.
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APPENDIX: OBSERVATIONAL DATA
AND CONSTRAINTS

In this Appendix we review the main procedures of
observational fittings used in the present work, namely
SNIa and BAO.

1. Type Ia supernovae constraints

We use the Union 2.1 compilation of SnIa data [37] in
order to incorporate supernovae Type Ia constraints. This is

a heterogeneous data set, which includes data from the
Supernova Legacy Survey, the Essence survey, and the
Hubble-Space-Telescope observed distant supernovae.
The χ2 for this analysis is written as

χ2SN ¼
P

N
i¼1 ½μobsðziÞ − μthðziÞ�2

σ2μ;i
; ðA1Þ

where N ¼ 580 is the number of SNIa data points. In the
above expression μobs is the observed distance modulus,
which is defined as the difference of the supernova apparent
magnitude from its absolute one. Furthermore, σμ;i are the
errors in the observed distance moduli, which are assumed
to be uncorrelated and Gaussian, arising from a variety of
sources. If we introduce the usual (dimensionless) lumi-
nosity distance DLðz; aiÞ, calculated by

DLðz;aiÞ≡ ð1þ zÞ
Z

z

0

dz0
H0

Hðz0;aiÞ
; ðA2Þ

with H0 the present Hubble parameter, then the theoretical
distance modulus μth has a dependence on the model
parameters ai as

μthðzÞ ¼ 42.38 − 5log10hþ 5log10½DLðz; aiÞ�: ðA3Þ

Finally, the marginalization over the present Hubble
parameter is performed following [38], which eventually
provides the χ2 likelihood contours for the model param-
eters that are involved.

2. Baryon acoustic oscillation constraints

To handle the BAO observational constraints we use the
definition [39]

A≡DVðz ¼ 0.35Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩmH2

0

p
0.35c

¼ 0.469� 0.017; ðA4Þ

where c is the light speed. In the above expression we have
defined the “volume distance” DVðzÞ as

DVðzÞ≡
�ð1þ zÞ2D2

AðzÞz
HðzÞ

�
1=3

; ðA5Þ

where

DA ≡ rðzÞ=ð1þ zÞ ðA6Þ

is the angular diameter distance. Finally, the BAO like-
lihood is written as

χ2BAO ¼ ðA − 0.469Þ2
0.0172

: ðA7Þ
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