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We present the geometry of spacetimes that are tangentially approximated by de Sitter spaces whose
cosmological constants vary over spacetime. Cartan geometry provides one with the tools to describe
manifolds that reduce to a homogeneous Klein space at the infinitesimal level. We consider a Cartan
geometry in which the underlying Klein space is at each point a de Sitter space, for which the combined set
of pseudoradii forms a nonconstant function on spacetime. We show that the torsion of such a geometry
receives a contribution that is not present for a cosmological constant. The structure group of the obtained
de Sitter–Cartan geometry is by construction the Lorentz group SOð1; 3Þ. Invoking the theory of nonlinear
realizations, we extend the class of symmetries to the enclosing de Sitter group SOð1; 4Þ, and compute the
corresponding spin connection, vierbein, curvature, and torsion.
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I. INTRODUCTION

In theories of gravity, the strong equivalence principle
implies that spacetime M is locally approximated by the
spacetime underlying special relativity [1]. Since the laws
that govern special relativistic physics are covariant with
respect to the Poincaré group ISOð1; 3Þ, i.e., the semidirect
product of the Lorentz group SOð1; 3Þ and the group of
Poincaré displacements, the corresponding spacetime is the
affine Minkowski space M. Although finite Poincaré
translations are not defined for a generic spacetime, the
equivalence principle indicates that locally they are in one-
to-one correspondence with infinitesimal active diffeomor-
phisms, for both sets generate translations along spacetime
[2]. Mathematically speaking, there is a 1-form, called the
vierbein, which at any point is valued in the algebra of
Poincaré translations t ¼ isoð1; 3Þ=soð1; 3Þ. The vierbein
pulls back or solders the geometric and algebraic structure
of t to spacetime. For example, the Minkowski metric on t
gives way to a metric of the same signature on M, from
which it follows that the vierbein can be chosen to be an
orthonormal frame—an idealized observer—along space-
time. Due to the equivalence principle, Lorentz transforma-
tions of these observers constitute a symmetry and are
therefore elements of the structure group of the geometry,
which in turn leads to the introduction of a spin connection.
The right mathematical framework for the setting just

outlined is due to Elie Cartan [3], in which the soð1; 3Þ-
valued spin connection and the t-valued vierbein are
combined into an isoð1; 3Þ-valued Cartan connection,
thereby defining a Riemann-Cartan geometry [2]. It is
explained comprehensibly in [4] how the isoð1; 3Þ-valued
connection gives a prescription for rolling without slipping
the affine Minkowski space along the integral curves of

vector fields on spacetime. It is indeed the central idea
behind Cartan geometry that a homogeneous model space
is generalized to a nonhomogeneous space, for which the
local structure is algebraically isomorphic to the one of the
model space [5], and where the degree of nonhomogeneity
is quantified by the presence of curvature and torsion. In the
manner thus explained, the choice for a Riemann-Cartan
geometry to describe spacetimes underlying theories of
gravity is implied by the equivalence principle, together
with the assumption that the local kinematics are governed
by the Poincaré group.
When the isoð1; 3Þ-valued Cartan connection is replaced

by one that is valued in the de Sitter algebra soð1; 4Þ,
spacetime is locally approximated by a de Sitter space
dS in place of the affine Minkowski space, a structure we
shall call a de Sitter–Cartan geometry. Since the vierbein
is valued in the space of de Sitter transvections
p ¼ soð1; 4Þ=soð1; 3Þ, translations in a de Sitter–Cartan
spacetime are generated by elements of p. This implies that
the commutator of infinitesimal translations is proportional
to a Lorentz rotation. The constant of proportionality is
essentially the cosmological constant of the tangent de
Sitter spaces [4]. It is then sensible to identify this geo-
metric cosmological constant with the dark energy on
spacetime. Such an interpretation is in concordance with
the MacDowell-Mansouri model for gravity [6]. In this
model, the fundamental field is indeed a soð1; 4Þ-valued
Cartan connection, for which the action is equivalent, up to
topological terms, with the Palatini action for general
relativity in the presence of a cosmological constant [4,7].
At any point in a de Sitter–Cartan spacetime, the

cosmological constant is related to a length scale defined
in the commutation relations of the de Sitter transvections.
Therefore, it is rather straightforward to generalize to
geometries in which this length scale becomes a non-
constant function on spacetime. In Sec. II, we claim some*hjennen@ift.unesp.br
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originality for constructing a de Sitter–Cartan geometry
that provides spacetime with a cosmological function Λ,
which in general does not satisfy dΛ ¼ 0. We shall see that
a nonconstant Λ gives rise to a new term in the expression
for the torsion of the de Sitter–Cartan geometry.

II. DE SITTER–CARTAN GEOMETRY WITH
A COSMOLOGICAL FUNCTION

A de Sitter-Cartan geometry is the Cartan geometry
modeled on (soð1; 4Þ; SOð1; 3Þ), which means it consists
of a principal Lorentz bundle P(M; SOð1; 3Þ) over space-
time, on which is defined a soð1; 4Þ-valued Cartan con-
nection A. For a rigorous discussion on Cartan geometry,
see [5,8], while the articles [4,7,9] are very helpful to
develop an intuition that goes along with the mathematics.
The connection A provides spacetime with the information
that it is tangentially approximated by de Sitter space, the
homogeneous Klein space with respect to which inhomo-
geneities are measured [10]. We shall construct a de Sitter–
Cartan geometry, in which these tangent de Sitter spaces
have cosmological constants that are not required to be the
same over spacetime. As a consequence, the thus obtained
geometry describes a manifold with arbitrary curvature and
torsion on which a nonconstant cosmological function Λ is
defined from the onset.
Under the action of a local SOð1; 3Þ transformation h,

the de Sitter–Cartan connection transforms according to [5]

A ↦ AdðhÞðAþ dÞ: ð1Þ

The connection is valued in the de Sitter algebra soð1; 4Þ,
which is characterized by the commutation relations

−i½Mab;Mcd� ¼ ηacMbd − ηadMbc þ ηbdMac − ηbcMad;

−i½Mab; Pc� ¼ ηacPb − ηbcPa;

−i½Pa; Pb� ¼ −l−2Mab; ð2Þ

where ηab ¼ ðþ;−;−;−Þ, while we parametrize an
element of soð1; 4Þ by i

2
λabMab þ iλaPa. The reductive

nature of the algebra schematically reads as

soð1; 4Þ ¼ soð1; 3Þ ⊕ p; ð3Þ

where soð1; 3Þ ¼ spanfMabg is the Lorentz subalgebra and
p ¼ spanfPag the subspace of infinitesimal de Sitter
transvections or translations. The latter are defined by
Pa ¼ Ma4=l, where l is an a priori arbitrary length scale
that effectively determines the cosmological constant of the
corresponding Klein geometry dS ¼ SOð1; 4Þ=SOð1; 3Þ,
namely, [4]

Λ ¼ 3

l2
: ð4Þ

Since the Cartan connection is at any point x ∈ M
valued in a copy of soð1; 4Þ, we may choose the set of
length scales lðxÞ to form a smooth function. Doing so, the
cosmological constants of the corresponding tangent de
Sitter spaces also constitute a generic nonconstant cosmo-
logical function ΛðxÞ on spacetime. In the following
paragraphs we discuss the implications of a nonconstant
Λ for the de Sitter–Cartan geometry.
Corresponding to the reductive splitting (3), we decom-

pose the Cartan connection and its curvature F ¼ dAþ
1
2
½A; A� as

A ¼ i
2
AabMab þ iAaPa and F ¼ i

2
FabMab þ iFaPa;

ð5Þ

from which it follows that Aa and Fa have the dimension of
length. The soð1; 3Þ-valued 1-form Aab is an Ehresmann
connection for local Lorentz transformations [8], i.e., a spin
connection, while the forms Aa constitute a vierbein. Note
that the decompositions (5) are well defined, since local
Lorentz transformations leave the reductive splitting invari-
ant. Due to the presence of a spin connection and vierbein,
it is possible to define local Lorentz and diffeomorphism
covariant differentiation, as well as a metric structure on
spacetime; see, e.g., [11].
Given the commutation relations (2), one computes the

curvature Fab and torsion Fa in terms of the spin con-
nection and vierbein:

Fab ¼ dAab þ Aa
c ∧ Acb þ 1

l2
Aa ∧ Ab

¼ dAAab þ 1

l2
Aa ∧ Ab; ð6aÞ

Fa ¼ dAa þ Aa
b ∧ Ab −

1

l
dl ∧ Aa

¼ dAAa −
1

l
dl ∧ Aa: ð6bÞ

In the limit of an everywhere diverging length scale l, or
equivalently, an everywhere vanishing cosmological con-
stant, the expressions (6) reduce to the curvature dAAab and
torsion dAAa for a Riemann-Cartan geometry [11]. In the
generic case, however, the curvature and torsion are not
given by the exterior covariant derivatives of the spin
connection and vierbein. The extra term in (6a) represents
the curvature of the local de Sitter space. This contribution is
present because the commutator of two infinitesimal de
Sitter transvections equals an element of the Lorentz
algebra. In addition, there is a new term in the expression
(6b) for the torsion if the length scale is a nonconstant
function. This term comes about as follows. The torsion is
the p-valued 2-form Fp ¼ dAp þ ½Ah; Ap� [5], with h ¼
soð1; 3Þ. The first term in this expression is expanded as
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dAp ¼ dðiAaPaÞ ¼ idAaPa − i

�
dl
l
∧ Aa

�
Pa;

since Pa ¼ Ma4=l. By use of the relation (4) between l and
the cosmological function Λ, the last term of the torsion can
be rewritten as

−d ln l ∧ Aa ¼ 1

2
d lnΛ ∧ Aa;

which shows that this contribution depends on the relative
infinitesimal change of the cosmological function along
spacetime, rather than on its absolute change.
Although the curvature and torsion have contributions

that are not there for a Riemann-Cartan geometry, the
Bianchi identities are unchanged:

dA∘dAAab ≡ 0; ð7aÞ

dA∘dAAa þ Ab ∧ dAAb
a ≡ 0; ð7bÞ

where dA is the exterior covariant derivative with respect to
the spin connection.
The transformations that are consistent with the given

geometry are local Lorentz transformations and spacetime
diffeomorphisms, the latter being unphysical as they merely
relabel spacetime coordinates [12]. In contrast, with respect
to elements of SOð1; 4Þ, we see from (5) that the spin
connection and vierbein, and the torsion and curvature form
irreducible multiplets. Due to the reductive nature of
soð1; 4Þ, these geometric objects are well defined up to
local Lorentz transformations only. Since local translational
symmetry may play an important role in theories of gravity,
there is the need to extend the structure group to SOð1; 4Þ,
while preserving the presence of these different objects,
necessary to construct geometric theories of gravity. This
will be discussed for the given de Sitter–Cartan geometry in
the following section.

III. SOð1;4Þ-INVARIANT DE SITTER–CARTAN
GEOMETRY WITH A COSMOLOGICAL

FUNCTION

In order to extend the structure group to SOð1; 4Þ and
have geometric objects that are well defined through the
decomposition of a Cartan connection and curvature
according to the reductive splitting (3), we nonlinearly
realize the de Sitter–Cartan connection of Sec II. To realize
connections on spacetime in a nonlinear way was first
considered by Stelle and West [13,14], while its usefulness
for theories of gravity has been pointed out in, e.g.,
[15–18]. The formalism of nonlinear realizations was
developed to systematically study spontaneous symmetry
breaking in phenomenological field theory [19–21], in
which linearly transforming irreducible multiplets become

nonlinear but reducible realizations, when the symmetry
group is realized nonlinearly by one of its subgroups.
A Cartan connection on a principal Lorentz bundle P

may be thought of as an Ehresmann connection on a
principal SOð1; 4Þ bundle Q over M that is reduced to P
[5]. This is in essence a symmetry breaking process [15],
for the reason that it corresponds to singling out a section ξ
of the associated bundle Q ×SOð1;4Þ dS of tangent de Sitter
spaces, thereby reducing the structure group SOð1; 4Þ
pointwise to SOð1; 3Þξ, the isotropy group of the point
ξðxÞ in the internal de Sitter space dSx [22,23]. Most
importantly, the reduction is not canonical, i.e., the section
ξ can be chosen arbitrarily, and the broken symmetries are
nonmanifestly restored by realizing them nonlinearly
through elements of the Lorentz group. Consequently,
decomposing a nonlinear de Sitter–Cartan connection
according to the reductive splitting of soð1; 4Þ gives way
to true geometric objects, well defined with respect to all
elements of SOð1; 4Þ.
Before we construct a nonlinear de Sitter–Cartan geom-

etry with a nonconstant cosmological function, we recall a
handful of facts on nonlinear realizations for the de Sitter
group; see also [24,25]. Within some neighborhood of the
identity, an element g of SOð1; 4Þ can uniquely be
represented in the form

g ¼ expðiξ · PÞ ~h;

with ~h ∈ SOð1; 3Þ and ξ · P ¼ ξaPa. The ξa parametrize
the coset space SOð1; 4Þ=SOð1; 3Þ so that they constitute a
coordinate system for de Sitter space. This parametrization
allows us to define the action of SOð1; 4Þ∋g0 on de Sitter
space by

g0 expðiξ · PÞ ¼ expðiξ0 · PÞh0; h0 ¼ ~h0 ~h−1;

where ξ0 ¼ ξ0ðg0; ξÞ and h0 ¼ h0ðg0; ξÞ are in general non-
linear functions of the indicated variables. In case g0 ¼ h0
is an element of SOð1; 3Þ, the action is linear and the
transformation of ξ is given explicitly by

h0∶ iξ · P ↦ iξ0 · P ¼ iξ · Adðh0ÞðPÞ:

If on the other hand g0 ¼ 1þ iϵ · P is an infinitesimal pure
de Sitter translation, the variations δξa and δhab satisfy

expð−iξ · PÞiϵ · P expðiξ · PÞ − expð−iξ · PÞδ expðiξ · PÞ

¼ i
2
δh ·M;

where i
2
δh ·M ¼ h0 − 1 ∈ soð1;3Þ and δh ·M ¼ δhabMab.

This equation is solved by
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δξa ¼ ϵa þ
�
z cosh z
sinh z

− 1

��
ϵa −

ξaϵbξ
b

ξ2

�
; ð8Þ

δhab ¼ 1

l2
cosh z − 1

z sinh z
ðϵaξb − ϵbξaÞ; ð9Þ

where we made use of the notation z ¼ l−1ξ and
ξ ¼ ðηabξaξbÞ1=2.
Subsequently, let ψ be a field that belongs to some linear

representation σ of SOð1; 4Þ. Given a local section of the
associated bundle of homogeneous de Sitter spaces, i.e.,
ξ∶ U ⊂ M → U × dS, the corresponding nonlinear field is
constructed pointwise as

ψ̄ðxÞ ¼ σ( expð−iξðxÞ · PÞ)ψðxÞ: ð10Þ

Under a local de Sitter transformation g0, it rotates
only according to its SOð1; 3Þ indices, namely, ψ̄ 0ðxÞ ¼
σ(h0ðξ; g0Þ)ψ̄ðxÞ. It is manifest that the irreducible linear
representation ψ has given way to a nonlinear and reducible
realization ψ̄ .
In concordance with the prescription (10) to construct

nonlinear realizations, the nonlinear soð1; 4Þ-valued Cartan
connection is defined as [14]

Ā ¼ Ad( expð−iξ · PÞ)ðAþ dÞ: ð11Þ

Under local de Sitter transformations, the field Ā transforms
according to

Ā ↦ Ad(h0ðξ; g0Þ)ðĀþ dÞ:

Because elements of SOð1; 4Þ are nonlinearly realized as
elements of SOð1; 3Þ, the reductive decomposition Āh þ Āp
is invariant under local de Sitter transformations. It is then
sensible to define the spin connection and vierbein through
these projections as ω ¼ Āh and e ¼ Āp, respectively.
The spin connectionω and vierbein e can be expressed in

terms of the section ξ and the projections Ah and Ap of the
linear SOð1; 4Þ connection. These relations follow from
(11), in which the different objects appear according to

i
2
ωabMab þ ieaPa

¼ Ad( expð−iξ · PÞ)
�
i
2
AabMab þ iAaPa þ d

�
:

To carry out the computation of the right-hand side we
utilize the techniques of [14,24], explained in their appen-
dices. In short, one expands the adjoint action of the
exponential as a power series in the adjoint action of its
generating element −iξ · P. The latter is just the Lie
commutator and is given explicitly in (2). We find

ωab ¼ Aab −
cosh z − 1

l2z2
½ξaðdξb þ Ab

cξ
cÞ

− ξbðdξa þ Aa
cξ

cÞ� − sinh z
l2z

ðξaAb − ξbAaÞ; ð12aÞ

ea ¼ Aa þ sinh z
z

ðdξa þ Aa
bξ

bÞ − dl
l
ξa

þ ðcosh z − 1Þ
�
Aa −

ξbAbξ
a

ξ2

�

−
�
sinh z
z

− 1

�
ξbdξbξa

ξ2
: ð12bÞ

These expressions are almost identical to the corresponding
objects found by Stelle and West [14]. The difference to
note is that we have a new term in the expression (12b) for
the vierbein, namely, −l−1dlξa. This term is present
because it is possible that the internal de Sitter spaces
are characterized by cosmological constants that are not
necessarily equal along spacetime. More precisely, one has
to take into account the possibility that the in p defined
length scale is a nonconstant function; see Sec. II. On the
other hand, the results of [14] specialize for the case that the
local de Sitter spaces have the same pseudoradius at any
point in spacetime. When l is a constant function, one
naturally recovers the results of [14].
Upon the action of local de Sitter transformations, the

linear curvature F rotates in the adjoint representation.
Therefore, one deduces that the nonlinear Cartan curvature
F̄ is equal to the exterior covariant derivative of the
nonlinear connection, i.e.,

F̄ ¼ Ad( expð−iξ · PÞ)ðFÞ ¼ dĀþ 1

2
½Ā; Ā�; ð13Þ

which complies with the structure of a Cartan geometry.
The nonlinear Cartan curvature is a soð1; 4Þ-valued 2-form
on spacetime, which we decompose once again according
to F̄ ¼ F̄h þ F̄p. Since F̄ transforms—in general, non-
linearly—with elements of SOð1; 3Þ, the reductive splitting
is invariant under local de Sitter transformations. This
suggests that F̄h and F̄p must be considered the genuine
curvature and torsion of the Cartan geometry, which are
denoted by R and T, respectively. The definition (13)
implies that

i
2
RabMab þ iTaPa

¼ Ad( expð−iξ · PÞ)
�
i
2
FabMab þ iFaPa

�
;

from which one is able to express the curvature and torsion
in terms of ξ, Fh and Fp:
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Rab ¼ Fab −
cosh z − 1

l2z2
ξcðξaFb

c − ξbFa
cÞ

−
sinh z
l2z

ðξaFb − ξbFaÞ; ð14aÞ

Ta ¼ sinh z
z

ξbFa
b þ cosh z Fa þ ð1 − cosh zÞ ξbF

bξa

ξ2
:

ð14bÞ

From (13) it furthermore follows that

Rab ¼ dωωab þ 1

l2
ea ∧ eb and Ta ¼ dωea −

1

l
dl ∧ ea:

These equations, which express the curvature and torsion in
terms of the spin connection and vierbein, are the ones
expected for a Cartan geometry. Because the exterior
covariant derivative of F̄ is always zero, there are two
Bianchi identities that are formally the same as those given
by (7), i.e.,

dω∘dωωab ≡ 0 and dω∘dωea þ eb ∧ dω ωb
a ≡ 0:

When the section ξ is gauge fixed along spacetime, and
for convenience at any point is chosen the origin of the
tangent de Sitter spaces, i.e., ξaðxÞ ¼ 0, all the expressions
reduce to those of Sec. II. This is to be expected, because
the broken symmetries are not considered, and the geom-
etry is described simply by a SOð1; 4Þ Ehresmann con-
nection for which only SOð1; 3Þ transformations—the
isotropy group of ξa ¼ 0—are taken into account. This
has precisely been the way in which the de Sitter–Cartan
geometry of Sec. II was set up.
Finally, let us remark that if Aab and Aa can be made to

vanish everywhere, so that also Fab and Fa are equal to
zero, it follows that

Rab ¼ 0 and Ta ¼ 0:

This shows that the nonhomogeneity ofM is encoded in A
and F, and naturally independent of the section ξ.

IV. CONCLUSIONS AND OUTLOOK

In this work we have generalized the geometric
framework of de Sitter–Cartan spacetimes with a cos-
mological constant to the case of a nonconstant cosmo-
logical function Λ. A de Sitter–Cartan spacetime consists
of a principal Lorentz bundle over spacetime, on which is
defined a soð1; 4Þ-valued Cartan connection. It accounts
for a spin connection and vierbein, as well as for their
curvature and torsion, whereas spacetime is locally
approximated by de Sitter spaces. The cosmological
constants of these tangent de Sitter spaces are determined

by a length scale, defined in the translational part of
soð1; 4Þ. By letting this length scale depend arbitrarily on
the spacetime point in Sec. II, we obtained a de Sitter–
Cartan geometry that accommodates a cosmological
function by construction. Most importantly, it was shown
that a nonconstant Λ gives rise to an extra contribution in
the expression for the torsion, in which the cosmological
function appears through its logarithmic derivative. In the
limit Λ → 0 one recovers the well-known Riemann-
Cartan spacetime with arbitrary curvature and torsion.
In Sec. III, the de Sitter–Cartan connection has been
realized nonlinearly in order to obtain SOð1; 4Þ-covariant
definitions for the spin connection and vierbein, and
likewise for the curvature and torsion. This generalized
previous results to include a nonconstant Λ.
The cosmological function could be used to model dark

energy that changes along space and time, in which way it
might give an alternative description for one of the models
for time-evolving dark energy [26,27]. To determine the
value of the cosmological function along spacetime, an
adequate action for the gravitational field coupled to matter
will have to be defined. By including invariants of the
torsion tensor on the gravitational side, the first derivative
of the cosmological function will automatically be present.
Matter fields can be coupled both minimally to the
gravitational field and in another nonminimal way. The
analysis of such models that make use of the framework
outlined in this paper is an interesting and important subject
of future research. Since the cosmological function quan-
tifies the lack of commutation of two infinitesimal space-
time translations, the local kinematics on spacetime depend
on Λ. Consequently, there would be a link between the
dynamical character of the cosmological function and its
kinematical implications.
Another point of interest comes about upon noting that,

when the de Sitter algebra is contracted to the Poincaré
algebra, namely, when l → ∞ in the commutation relations
(2), the geometric objects of Sec. III reduce to those of
teleparallel gravity [28,29]. This observation suggests that
the geometry of spacetime that underlies teleparallel gravity
is described by a Riemann-Cartan geometry (with vanish-
ing curvature), for which the Poincaré translations are
realized nonlinearly as elements of SOð1; 3Þ. In fact, from
(9) one sees that the nonlinear element of the Lorentz
algebra, which corresponds to an infinitesimal Poincaré
translation with parameters ϵa, vanishes, for

δhab ¼ lim
l→∞

1

l2
cosh z − 1

z sinh z
ðϵaξb − ϵbξaÞ ¼ 0:

One then concludes that any Poincaré translation is trivially
realized by the identity transformation, a property that is
relied upon in the interpretation of teleparallel gravity as a
gauge theory for the Poincaré translations. Given the
knowledge that the geometric structure of teleparallel
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gravity is such a Riemann-Cartan spacetime, the de Sitter–
Cartan geometry of Sec. III might be the right framework to
generalize teleparallel gravity to a theory that is invariant
under local SOð1; 4Þ transformations, in place of the
elements of the Poincaré group.
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