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Inspired by the teleparallel formulation of general relativity, whose Lagrangian is the torsion invariant 7,
we have constructed the teleparallel equivalent of Gauss-Bonnet gravity in arbitrary dimensions. Without
imposing the Weitzenbock connection, we have extracted the torsion invariant T, equivalent (up to
boundary terms) to the Gauss-Bonnet term G. T is constructed by the vielbein and the connection, it
contains quartic powers of the torsion tensor, it is diffeomorphism and Lorentz invariant, and in four
dimensions it reduces to a topological invariant as expected. Imposing the Weitzenbock connection, T
depends only on the vielbein, and this allows us to consider a novel class of modified gravity theories based
on F(T,Tg), which is not spanned by the class of F(T) theories, nor by the F(R, G) class of curvature
modified gravity. Finally, varying the action we extract the equations of motion for F(T,T) gravity.
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I. INTRODUCTION

The central foundation of Einstein’s gravitational ideas is
that gravity is described through geometry. In his first
complete gravitational theory, general relativity (GR), he
made the additional assumption that geometry should be
described only by curvature, setting torsion to zero, along
with vanishing nonmetricity [1]. Technically, this is
achieved by assuming the connection to be symmetric in
coordinate frame, that is using the Levi-Civita connection.
In this framework one can construct the curvature
(Riemann) tensor which carries all the information of the
geometry, and thus of the gravitational field too, and then,
by suitable contractions the simplest (Ricci) scalar R can be
constructed, which contains up to second-order derivatives
in the metric. This Ricci scalar is exactly the Einstein-
Hilbert Lagrangian, whose action gives rise to the Einstein
field equations through variation in terms of the metric.

However, some years later, it was Einstein himself that
realized that the same gravitational equations could arise by
a different geometry, characterized not by curvature but by
torsion [2]. Technically, this is achieved by assuming that
the antisymmetric piece of the connection is not vanishing,
that is using the Weitzenbock connection. In this frame-
work, one can construct the torsion tensor, which carries
all the information of the geometry and therefore of the
gravitational field, and then simple scalars can be con-
structed which contain up to first-order vierbein derivatives.
Finally, one can take a specific combination of these scalars
and define the “torsion” scalar 7', which will be used as
the gravitational Lagrangian, demanding its action to give
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rise to the Einstein gravitational field equations through
variation in terms of the vierbein. Since these equations
coincide with those of general relativity, Einstein called this
alternative formulation “teleparallel equivalent of general
relativity” (TEGR).

On the other hand, the nonrenormalizability of general
relativity, string theory consequences, and the need to
describe the universe acceleration, led a huge amount of
research toward the modification of gravity at the classical
level. Using general relativity as the starting theory, the
simplest modification is to generalize the action using
arbitrary functions of the Ricci scalar, resulting to the so-
called F(R) modified gravity [3,4], which has the advan-
tage of being ghost free. However, one can construct
more complicated generalizations of the Einstein-Hilbert
action by introducing higher-curvature corrections, such
as the Gauss-Bonnet term G [5-7] or functions of it
[7,8], Lovelock combinations [9,10], Weyl combinations
[11], or higher spatial-derivatives as in Hotava-Lifshitz
gravity [12].

Hence, a question that arises naturally is the following:
can we modify gravity starting from TEGR instead of
general relativity, that is from its torsional formulation?
For the moment, and inspired by the F(R) modification
of general relativity, only the simplest such torsional
modification exists, namely the F(T) paradigm, in which
one extends the teleparallel Lagrangian 7 to an arbitrary
function F(T) [13,14]. Interestingly enough, although
TEGR coincides with general relativity at the level of
equations of motion, F(7) does not coincide with F(R), so
F(T) is a novel class of gravitational modification with no
(known) equivalent curvature description. This feature led
to a detailed investigation of its cosmological implications
[13—-16] and black-hole behavior [17].
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In this work, we are interested in extending the modifi-
cation of TEGR inserting higher-order torsion invariants.
In particular, inspired by the Gauss-Bonnet (GB) modifi-
cation of general relativity, we first construct the teleparallel
equivalent of Gauss-Bonnet term (TEGB) by finding its
“torsion” equivalent 7', which gives the GB field equations.
Then, we use it in order to formulate a modification of
TEGR. As a result, the modification of TEGR plus the
TEGB term does not coincide with the modification of GR
plus the GB term, so it is a novel modification of gravity with
no (known) curvature formulation.

The plan of the work is as follows: In Sec. II we review
the teleparallel formulation of GR in both the coordinate
and the differential form language. In Sec. III we find the
teleparallel equivalent of GB gravity, while in Sec. IV we
derive the equations of motion for the general F(T,Tg)
theory. Finally, a summary of the obtained results is given
in Sec. V of conclusions.

II. CONSTRUCTION OF TELEPARALLEL
EQUIVALENT OF GENERAL RELATIVITY

In this section we present the construction of teleparallel
equivalent of general relativity. We follow the detailed and
conceptually more enlightening way of construction, start-
ing from an arbitrary connection with vanishing curvature
and not restricted to the Weitzenbock one [18-20]. The
benefit of this is that the quantities defined are both Lorentz
and diffeomorphism invariants. In the same spirit we
continue in the next section with the procedure of construct-
ing the teleparallel equivalent of the Gauss-Bonnet combi-
nation. As usual, in the end we focus on the Weitzenbock
connection.

In the whole manuscript we use the following notation:
Greek indices p,v,... run over all coordinates of
D-dimensional space-time 1,2, ..., D, while Latin indices
a, b, ... run over the tangent space 1,2, ..., D. Note that we
perform the analysis both in the coordinate and the form
languages. Although in the f(T) literature the former is
preferred, going to more complicated expressions, such as
the Gauss-Bonnet term, the latter proves much more
convenient.

A. Construction of TEGR in coordinate language

The dynamical variables in torsional formulation of
gravity are the vielbein field e,(x*), and the connection
1-forms @, (x*) which defines the parallel transportation.
In terms of coordinates, they can be expressed in compo-
nents as e, = e,/0, and 0, = 0, dx" = w",.e‘. The
dual vielbein is defined as e“ = e,dx". One can express
the commutation relations of the vielbein as

[ea’eb] = Ccabem (1)

where C¢;, are the structure coefficients functions given by
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Cup = ea”eby(ecu.u - ecv,y)9 (2)

and comma denotes differentiation.
One can now define the torsion tensor, expressed in
tangent components as

a — a a a
Tbc_wcb_wbc_cbc’ (3)
and in “mixed” ones as

a _ ,a a a b a b
T/w_eu,y_env"i_wbﬂeu_wbyeﬂ' (4)

Similarly, one can define the curvature tensor as

a — a a e a e a e a
Ry =g 0= 0% pe g+ @° g0 oo — 0° 0 1 g — C g0

a —a a a ¢ a ¢
R buy — @O pyy — @ bﬂ,l/+w cu® by =W ¢, D" py (5)

Thus, as one can see from (4) and (5), although the torsion
tensor depends on both the vielbein and the connection, that
isT%,,(e?,, "), the curvature tensor depends only on the
connection, namely Ry, (@,).

Additionally, there is an independent object which is the
metric tensor g. This allows us to make the vielbein
orthonormal g(e,,e,)=n,,, where n,,=diag(-1,1,...1),
and we have the relation

g/u/ = nabeuuebu' (6)

Indices a, b, .... are raised/lowered with the Minkowski
metric 7,;,. Finally, throughout the work we impose zero
non-metricity, i.e., 74 = 0, which means @, = —@pqe,
where | denotes covariant differentiation with respect to the
connection @%,..

As it is well known, amongst the infinite connection
choices there is only one that gives vanishing torsion,
namely the Christoffel or Levi-Civita one I'%,, with
1—‘abc = %(Ccab - Cbca - Cabc)’ or inversely Cabc = 1—‘acb -
I, For clarity, we denote the curvature tensor correspond-
ing to the Levi-Civita connection as R%,.;. The arbitrary
connection . is then related to the Christoffel connection
[",p. through the relation

Dgpe = Fabc + ]Cabcv (7)

where

]Cabc = (Tcab - Tbca - Tabc) = _,Cbac (8)

N =

is the contorsion tensor. Inversely, one can straightforwardly
find that ', = K,0p — Kape» While the “mixed” contorsion
components write as K9, =—1(T%, + T’ 1ep,e™ +
T, ,ep,e™), that is K%, (€%, 0%y,).

As long as the vielbein e, and the connection @,
remain independent from each other, the Einstein-Hilbert
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Lagrangian density eR (with R = e“”eb”RabW the Ricci
scalar and e = det(e?,) = 1/]g|) is a function of e, @,
and thus a first-order formulation is needed.

If we now calculate the Ricci scalar R corresponding to
the arbitrary connection, and the Ricci scalar R correspond-
ing to the Levi-Civita connection, they are found to be
related through

= 1
eR = R + 1 e(T"/T,,; + 2T T,,, 4T, T",)
- Z(eTD"”)’ﬂ
= eR + el —2(eT ™), 9)

where we have defined

1 1
T = 1 THAT 5 + 5 4T, — T#T,,.  (10)

Since e~'(eT,*), =T,*,,, where ; denotes covariant
differentiation with respect to the Christoffel connection,
Eq. (9) is also written as

R=R+T-2T", (11)

We mention that the quadratic quantity 7 is diffeomor-
phism invariant since T,,; is a tensor under coordinate
transformations. Additionally, 7 is local Lorentz invariant,
since T, is a Lorentz tensor.

One can now introduce the concept of teleparallelism by
imposing the condition of vanishing Lorentz curvature

R4 =0, (12)

which holds in all frames. One way to realize this condition
is by assuming the Weitzenbock connection @* w Which
is defined in terms of the vielbein e,* in all coordinate
frames as

&)}L/w = ealeauﬂ' (13)

Due to its inhomogeneous transformation law this con-
nection has tangent-space components @“;. = 0, and then,
the corresponding curvature components are indeed
R“bcd =0 (tildes denote the quantities calculated using
the Weitzenbock connection). Note that ¢,/ |, = 0, and thus
the vielbein e, # is autoparallel with respect to the con-
nection @ w- The corresponding torsion tensor is related to
the structure coefficients, the contorsion tensor or the
Weitzenbock connection, through

T“W =e,—el, = —C“bcebﬂe"y (14)
Tabc =—C%, = INCaCb - fcabc (15)
Ti;u/ = &)1144 - 6)/1/41/’ (16)
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while (7) simplifies to

Fabc = _k:abc" (17)

Now inserting the condition R?;., = O into the general
expression (9), we obtain

eR = —eT +2(eT, ) . (18)
or equivalently
R=-T+ 2T, (19)

As we observe the Lagrangian density eR of general
relativity (that is the one calculated with the Levi-Civita
connection) differs from the torsion density —eT only by a
total derivative. Therefore, one can immediately deduce
that the general relativity action

1
SEH 2k 2 dD.X@R (20)
is equivalent (up to boundary terms) to the action

1
— / dPxeT
2

1
=32 /. dPxe(TT 4 + 2TCT g
D

—AT,"T¢,,) (21)

1 a a
S<Te)1[e @ bu]

(K% is the D-dimensional gravitational constant). Indeed,
varying (21) with respect to the vielbein we get equations
which contain up to e“,,;, ®“,,, and imposing the
teleparallel condition these equations coincide with the
Einstein field equations as they arise varying (20) with
respect to the metric [20].

If the Weitzenbock connection (13) is adopted, then the
teleparallel action (21) becomes a functional only of the

vielbein, which is denoted for clarity as St(el)[ . and has

the same functional form as (21), but with tilde quantities.

Varying St(el)[ “,] with respect to the vielbein gives again

the Einstein ﬁeld equations. That is why the constructed
theory in which one uses torsion to describe the gravita-
tional field, under the teleparallelism condition, was named
by Einstein as teleparallel equivalent of general relativity.1
Note that now 7T still remains diffeomorphism invariant,
while the Lorentz invariance has been lost since we have
chosen specific class of frames. The equations of motion,
being the Einstein equations, are still Lorentz covariant.
However, when T in the action is replaced by a general

"The normalization of the actions S(Tle)1 St<el)

such that S( Tel = Sel = Sku-

has been defined
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function f(T), the new equations of motion under Lorentz
rotations of the vielbein will not be covariant (although they
are form-invariant). This is not a deficit (it is a sort of
analogue of gauge fixing in gauge theories), and the theory,
although not Lorentz covariant, is meaningful. Not all
vielbeins will be solutions of the new equations, and those
which solve the equations will determine the metric
uniquely.

An interesting feature of the above analysis is that in (19)
the Lagrangian R has been expressed in terms of torsion
through a splitting into the Lorentz and diffeomorphism
invariant term —7, containing at most first order derivatives
in the fields e, @“;,, plus a total divergence also Lorentz
and diffeomorphism invariant containing the second order
derivatives of e“,. Note that the Riemann tensor R"Upg =
¥y, =T + T 10, =TT I% ; is a sum of the
first-order in e, terms I, 1% ,—T7,I" . plus the
second-order total divergence terms I, ,—I% . A
similar splitting occurs for the Lagrangian density eR,
known as the “gamma-gamma” form [21], however in that
case, the first-order terms as well as the total divergence
terms are not diffeomorphism invariant. Hence, the tele-
parallel splitting provides an advantage since the diffeo-
morphism invariance is maintained in the separate terms.

B. Construction of TEGR in differential form language

Let us now repeat the presentation of the previous
subsection in differential form language. We will need
the completely antisymmetric symbol €, ,, , which has
€;_p = 1, while the contravariant components €“"~“> =
n“ibr. peotre, , have e'-? = —1. The dynamical var-
iables are the vielbein e“ and the connection 1-forms w“,
with w,, = —w;, due to the vanishing nonmetricity. One
can express the commutation relations (1) in terms of the
dual vielbein as

1
de® = —EC“hc.e” A e°, (22)

where A denotes the wedge product.
One can now define the torsion 2-form as

1
T =de’ + '), A b = ET“bCeb A e, (23)
and the curvature 2-form as
. 1 X d
Rah = dw“b =+ w“c A a)‘,, = ERahcdeL N e”. (24)

The curvature 2-form corresponding to I'*; is denoted by

R4,. The arbitrary connection @w“; is then related to I'“;
through the relation

ICab = _ICba = Wyp — Fab = Kabcec’ (25)
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where K, is the contorsion 1-form. Inversely, one
can straightforwardly find that 7% = K%, A e”. Finally,
note that under the Weitzenbock connection the previous
relation simplifies to

Fah = _k:ah . (26)

The action of general relativity is written in terms of the
connection "% as

1 _
Sep=— [ L. 27
EH 2K2DA/1 1 (27)
where
_ 1 _ _
Ll =——¢€4 o R ANeB A...Ne?» =Rx1,
(D —=2)! “rap
(28)

with * denoting the Hodge dual operator. If we now
calculate the Lagrangian £; corresponding to the arbitrary
connection w?;, it is related to £, through

(D-2)!L, = (D-2)!L,
+d(es,. o) K2 N eB A LA eP)
+ €40y K2 AN d(eB A LA )
+ €ayay (T e A K + K4 AT
+ U AKD2) A e AL A e, (29)

which after some cancellations provides the analogue of (9)

- 1

£1 = ‘Cl +m€a1maolcalc A K92 A e® A L. A efr

+ d(es, o)1 Ne® AL Ae®). (30)

(D-2)!

Finally, imposing the teleparallel condition R’ = 0, we
get the analogue of (18)

- 1
Ly ==T = gy e a0 A e A ne®),
(31)
where
1 .
T = meal.i.a[,l@“c A K2 A e® A LA e
=Te' A... AP (32)

is the TEGR volume form, and

T = Kabc’cha - Iccaalccbb (33)
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the corresponding scalar. Ignoring the boundary term in
(31) we obtain again the teleparallel action (21) of Einstein
gravity

(1) 1 / 1 D
Sey=—— T = — d“xeT. 34
Tel 2K2D i 2K_2D " ( )

In order to obtain the above results it is much more
powerful to introduce the covariant exterior differential D of
the connection @,, acting on a set of p-forms @} as
D®} = dP} + . A D§ — (—=1)P D¢ A @°,. Similarly, the
differential D is defined for the connection I',;,. Then,
R®=R® L DK + K AK?P, T*=De®, DT* =R, Ae?,
DRY, =0, D*®{ =R A G — P4 A RS, Since it is
De? = 0, we get immediately Eq. (30). This is the method
that will be followed in the next section.

III. CONSTRUCTION OF TELEPARALLEL
EQUIVALENT OF GAUSS-BONNET TERM

In this section we will construct the teleparallel equiv-
alent of the Gauss-Bonnet gravity. We will follow the
procedure of the construction of TEGR described above,
based on the corresponding action. The central strategy of
the previous section was to express the curvature scalar R
corresponding to a general connection as the curvature
scalar R corresponding to Levi-Civita connection, plus
terms arising from the torsion tensor. Then, by imposing the
teleparallelism condition R, = 0, we acquire that R is
equal to a torsion scalar plus a total derivative, namely
relation (18). This torsion scalar provides the teleparallel
equivalent of general relativity, in a sense that if one uses it
as a Lagrangian, the same exactly equations with general
relativity are obtained.

In this section we follow the same steps to reexpress the
Gauss-Bonnet combination

G=R?- 4R, R" + RWMR””"‘. (35)
However, for convenience we will use the form language
which leads to simple expressions compared to the coor-

dinate description. The action of Gauss-Bonnet gravity in
terms of the Levi-Civita connection is

1 _
Seg == [ Lo, 36
=52 | (36)

Ly=—r—€4 o RI%2 ANRSBU A €5 A L. A P
=Gx1. (37)

The corresponding Lagrangian when R is replaced by
R?, that is the one that corresponds to an arbitrary
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connection @y, is denoted by L,. The relation between
L, and L, is found to be

(D=M)Ly = (D—4)Ly+ 1y + 21, 4+ 215 + 214 + Is,

(38)
where
Iy =€, o) K1 A2 AKS G AR A e A LA e,
L=¢4 0RO AKS3 A NS N N,
Iy=¢4 0y DKM AKS AN NS NN e,
Iy=¢€, 4 DKY2 ARSBU A e AL A e,
Is=¢,, o, DK ADK%% N A ... N e, (39)

I, is an algebraic term quartic in torsion. Since DR = 0
and De“ =0, I, is an exact form

Iy =d(e,,. o) KD ARG A e AL Ae™). (40)

Similarly, since D*K* = R4 A KP4+ RV A K, we
have

Is =26, )K" ARS AKW“ NS AL Ae

+d(ey, 0pyKD% ADKS% A e A LA eP). (41)
Therefore,
(D—=4)Ly = (D —4)Ly+ 1, + 215+ 2 +dB, (42)
where

Is = €4, 0y R AKSAKC A e® AL A e
+ €4y apyKU2 A RSB A K A€ A LA e,
B =2¢, ., K192 ARS% A e AL Ae™
+ €40y KU ADKB% N AL Ne. (43)

Taking into account that R 4 DK =R% —K¢ NP,
Eq. (42) is written as

(D-4)1Ly = (D—4)\Ly +2Jy— 1, +2J, +dB, (44)

where
Jo= €4, ay R NKBAKW“ N e AL A e,
Ji = €40y K12 ARSAKE A e AL A e,

To finish, from the identity DK¢, = DK%, — 2K, A K¢,
we get RY, = R, + K¢, A K¢, — DK, and substituting
into J; we obtain
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(D—4)1Ly = (D —4)'1Ly +2(Jyg+To) — I
+2J, —2J5+ dB, (45)

where

Jy =64 a)K2 AR AKE G AR A e A LA e,
J3=¢€4, 0, KT NDKB AN A e®S AL A e
= €4, ap (K12 N dKS N K%
+ K192 A @%b, AKEy A K4
+ @9 A KB A @ g AK4) A e A LA e,
Jo=¢€4,. a, KT NANRBNAK N e NN e,
In order to extract the teleparallel equivalent of GB
gravity we set R = 0 in (45) obtaining

- 1
Ez - TG - mdB, (46)

where

1
Teg=——
Y7 (D-4)!
VLN SN I o
4 2K4% A DK%, A KS%) A €% A ... A efr

=Tge' A...A€P (47)

€ay.ay (KMo N2 A KBy A K8

is the TEGB volume form. The corresponding scalar is

T = (Ko Jo0 K0 p KT g — 2% I K KT
+ 2092 B Ko (K g
—+ 2/ 44 O eblCﬂ“‘*C‘d)éZfa”faw- (48)

Here, DK%, = dK*, + o, N Ky + K. N o, =

(Kpeja 4+ 5 K4 T¢q.)e? A e, the covariant derivative

of K¢ with respect to . is K0 g =K e g+ @ 0K po—

@° K oo — 0 g%, the C?y,. is given by Eq. (2), and the

generalized 6 is the determinant of the Kronecker deltas.
The analogue of Eq. (18) is now

e(R* — 4R, R* + R, R*"**) = €T + total diverg. (49)

Obviously, 7 ; is a Lorentz invariant made out of e?, @w“.
Since in D =4 dimensions the GB term Z(ZD:4) is a
topological invariant, so must be T(GD:4). Indeed, it is

TP=Y — (327210, + B), (50)

where

PHYSICAL REVIEW D 90, 084044 (2014)

1 - _ 22 = =
I, = _Feahcdi’la (eR”" A Dn? + §Dn” A Dn¢ A Dnd)
T

(51)

is the second Chern form, n“% is a unit vector with
nn, = e=+1, and ZED:“) = 327%dll,. Therefore, we
have constructed a new Lorentz invariant T g out of e,
', containing quartic powers of the torsion tensor, which
in 4 dimensions becomes a topological invariant.

Ignoring the boundary term B in (46) we obtain the
teleparallel action of Gauss-Bonnet gravity

2 ,a a 1 1 D
ST s = Ts= d“xeT. 52
el [e v b] 2KZD /11; ¢ 2KZD M “le ( )

The action S(Tze)l le?,, ®y,] is diffeomorphism and Lorentz

N a« a a . LG
invariant. Beyond e“,, e, ,, %, which exist in Sy in

(21) too, in S(Tze)1 there appear also e, ;, %, ,, but in a
form such that the equations of motion do not contain
higher than second derivatives in e“,, as expected from the
Gauss-Bonnet term.

Now, choosing the Weitzenbdck connection w®;,. = 0,
the action (52) becomes

@ _ 1 a ca as a
S =S | o (K A AR K
—2Kma /\’Ca3c /\ch A JCdas
—2K 492 NS A A A e AL A e, (53)

Note that the tildes denoting the quantities corresponding to
the Weitzenbock connection are omitted for simplicity. In
coordinate language it is

1
2 a eda a a
St<el) =22 dPxe(K“ Ko, K 3fclcf *d
DJM

_ 2]Calﬂza]Ca3eb]C€fC]Cfa4d
F2KNe K Ko K
+ 2’Calaza’Ca3 eblCeaAC.d)ég?gfa3a4’ (54)

where now

T = (K oo, K% p T4 g = 242 % ), KO G
+ Z]Calazalcazeb]cewj.]Cde

+ 2| azaK@ eb’cea4 c.d)5g{7(;;ia3a4 . (55)
The action Sgl) is a functional of e,, namely St(ezl) [e?,], and
although T in (55) contains e, ;, the arising equations of
motion contain only e, ,; and not higher derivatives, as
expected. The quantity T in (55) is a diffeomorphism
invariant containing quartic scalars of the torsion (or
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contorsion) tensor. However, Lorentz invariance is lost since
preferred autoparallel orthonormal frames have be chosen.
As in Einstein gravity, this is not a deficit, it is a sort of
analogue of gauge fixing in gauge theories. In four
dimensions, as the general T; of Eq. (48) is a topological
invariant, here 7'z of Eq. (55) is also a topological invariant
constructed out of torsion. This is due to the fact that 7';
differs from the Gauss-Bonnet term, which is topological in
four dimensions, only by a total derivative. Note that the

@) ¢

normalization of the actions Sy, S,/ has been defined such

that S(Tze)1 = 5% = Sg- In case of Einstein-Gauss-Bonnet

tel
theory the total action iS Sggg =Sgy+aSgp = St(;l) + aSt(fl),

with « the relevant coupling.

IV. F(T,Tg) GRAVITY AND EQUATIONS
OF MOTION

In the previous section, we constructed a new quartic-
torsion invariant 7', arising from the teleparallel equivalent
of Gauss-Bonnet gravity. Therefore, in analogue with the
F(T) gravitational modifications, we can formulate new
modified gravity theories in arbitrary dimensions by con-
sidering general functions F(T) in the action. Obviously,
since T is quartic in torsion, F (T ) cannot arise from any
F(T). Supplementing the proposed class of modifications
with the usual F(T) term, the total modified gravitational
action takes the form

N dPxeF(T,Tg), (56)

N 2k3,
which is clearly different from F(R, G) gravity [7,8,22] (for
other constructions of actions including torsion see
[23,24]). Obviously, the usual FEinstein-Gauss-Bonnet
theory arises in the special case F(T,Tg) = -T + alg
(with o the Gauss-Bonnet coupling), while TEGR (that is
GR) is obtained for F(T,Tg) = —T.

In the following, we will extract the equations of motion
of F(T,Tg) gravity by varying the action (56). Variation
with respect to the vielbein gives

2k36,S = /de(eFTéeT + eFr,6,T + Fée), (57)
where Fr = OF /0T, Fy, = OF /0T ;. Since the variation
of 6,7 is very complicated, we find it more convenient to

make the variations §,7; and 6,7 using forms. In
particular, we have

2k35,S = / (Fr6,T + Fr,6,7 )

+ / de(F - TFT - TGFTG)ée. (58)

Let i, denote the inner derivative of a p-form ¢ =
ﬁ%,...ape”‘ A ... A e% with respect to the vector field

PHYSICAL REVIEW D 90, 084044 (2014)

v =, ie., for any p —1 vector fields vy, ...,v,_y, it
holds  (i,@)(vy.....v,1) = @(v, vy, ...,v,_y). We are
interested in combining this definition with variations.
An immediate property is

ieaée” + i&,ue” =0, (59)

which arises from the equations Je® = eb"ée“”eb,
Se, = eb Se ey, i, S’ =etbe’,, and ig, € = eP,Se .
Using the definition (23) of the torsion, Eq. (59),
the linearity of i, in both wv,¢, and the relations
iyd+di,=£,, i,(oAp)=i,pry+(=1)Ponriy, we
can find

S, (i, T)=£, 5¢” +£5e, e’ +i, b NS +is, 0" A e,
(60)

where £ denotes the Lie derivative.

The use of the Lie derivative proves very convenient for
the variation procedure. In particular, we use the identity
v(a(w)) = (£,a)(w) + a(£,w), where a is 1-form and v, w
are vector fields, once for v = de,, w = e,, a = e’ to find
(£5,€")(e.) = €”(£, 8e,), and once for v = e, w = Se,,,
a=e¢” to find e’(£, Se,) = e.(e"(Se,)) — (£, e")(Se,) .
Therefore, we obtain

£5.,6" = £, (€"(5e,))e + CP . e(Se,)e". (61)
Thus, the quantity appearing in (60) becomes

ée(ieaT”) = £ea5(3b + £el_(eb(5ea))e" + CP et (5e,) e’
+ @’ 0e¢ + @’ . e?(Se,)eC. (62)
Additionally, we also need to evaluate the quantity
8, (i,,i,,T¢). Using the definition (23) of the torsion,
Eq. (59), the linearity of i, ¢ in both v, ¢, equations i, f =
0 (f O-form), i,(¢ Ay) =i,0 Ay + (=1)Pp A iy, and
the relations i,d + di, = £,, £,i,, — i,£, = i[,,, toO trans-
fer the operators d, £ on the left, we can find

Oelic,ie,T°) = ife, ¢,0€° + i, 50,)€ = i[e, e, 1€

+ (iebwcd><iea56d) - (ieawcd)(iebéed)

+ 2wc[ad]ed(5eb) - 2wc[bd]ed(éea), (63)
where the (anti)symmetrization symbol contains the
factor 1/2. Applying the identity v(a(w)) = (£,a)(w) +
a(f£,w) for v=e, w=2de, a=e‘, and since
ie, 50,1 = e”(£€aﬁeh), we find

i[eﬂﬁeb]ec - £ea (ec (5eb)) + Ccaded(éeb)' (64)

Finally, using (59), we acquire

084044-7
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Oe(le,ic,T) =£, (e(dep)) — £,, (e (e,))
+ C€ yq¢’ (8e,) — C e (Se,) — C e (Sey)
+ 0 yge? (Be,) — € pge (Se,). (65)

Now, the contorsion 1-form can be written as
2Ky = o, T = io, Ty = (ig,ic,Tc)e, (66)
therefore we obtain
26,Kop = 0,1, T) —

Seie,Ta = 8o(ig,ie, To)e" — TepabeC

(67)

Using (62) and (65) we get

Fr

PHYSICAL REVIEW D 90, 084044 (2014)
26,Kyp = £, 0e, — £,,0e, + £, (i,,0e,)e — £, (i, e,)e’
+£,, (i, 8e. )¢ — £, (i, 0e.)e = C? (i, Oe. ) e
+2C4epalic, e e = 2C peya(i,, 57 ) e
+ Teupbe’ + 2w qp6€°, (68)
where e, = n,,¢” are 1-forms and ¢,(Se,) = —i, Sey,.
Varying 7,7 ; from (32) and (47), and due to the fact

that i, 5 = —e“, 8¢, =%, the variation (58) of the
action becomes

2645,5= [ (28Cus NH 1 7 5e)
+ [ (F=TFr=ToF2, )iy de)el AP, (69)

where

Hab — (D - 2)' €aa1..4aD,llcbalea2 -1 4+ G (D 4) (2€ @ ay. l’CbalKaz JCCa3 044 a1
+ €4, 0y LTKPR B % 0 — e, KN K% et 4% DKM K% e -2
1
=+ €“a]___anlDle"llC“Me“‘*...e“Dfl) - Weaa]“_ D(FTGle“IIC“Z“3e“4...e“Dfl) (70)
[
and where 9, =i, (¢! A ... A eP). Thus, setting 5,5 = 0 we
F get the equations of motion for F(T,Ts) gravity
hy=—"—€, o KO K% et
(D —3)1 “fe
FT(; aj ca Kas day 2‘£ehH[ab] - 2i€h£6’c(ecH[ab] + eaH[Cb]) - CdCbied (echb)
+ (D — 5)'€a1...ap_1a(lc CK K d’C
’ + 4C(dc)aieb (eCH[dh]) + (Tahc + 20 [bc])Hhc - (_1 )Dha
_ a,as a c da
2’C 1 ZIC 3CIC d}C 4 +(F_TFT_TGFTG)19HZO (73)
+ 2K DI [ ) e .. e -1, (71)

The quantities H%, h, are D — 1 forms and the A symbols
between K and e are omitted for safety of space.
Moreover, boundary terms have been omitted too. The
above relations hold for D > 4, while for D = 4 all terms
exist too, apart from the term containing (D —5)! in h,,
which is absent.

Now, we plague expression (68) in the variation (69),
and after use of the identity £, =i, d+ di,, and the
obvious equations i, (£, (e AHI)Y A Se, ) =0, o, (£, (€N
H ) Abe,)=0, i, (C?pe AH® Abe,) =0, iy, (Claeae A
H ASe?) =0, we obtain (omitting the boundary terms)

2k2,5,S = / Se,[2£, HI) = 2i, £, (e¢H®) + ed HIT)

- Cdcb ied (echb) + 4C(dc)aie;, (eCH[db])
+ (T + 20 ) H"

— (=1)Ph* + (F = TFy — TgFr,)9%], (72)

The set 9, forms a basis in the subspace of D — 1 forms,
therefore H%?, h® can be expressed in components as

H = Habey — ho = paby,. (74)

Hence, the equations of motion (73) for F(T, T) gravity is
written in components as

2(H[ac]b+H[ba]c_
(2H ac d+Hdca)Cb +4H[db]cc(dc)a

+ (T g+ 20 q ) H

—(=1)Ph +-(F=TFy—TgFr, )n* =0. (75)

H[cb]a) . +2(H[ac]b +H[ba]c _H[cb]a)cddc

Focusing to the most interesting case of four dimensions
we can rewrite the expressions for H?? and h, as
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Hab = 7T€acdflcbcedef - €acde(FTGICbCICdf) + FTG (2€acdebCqu’qu + ECdfq}CaCKbd’qu

e K K G e DK P €€ 4y DI G (76)
and
hy = =Fr€apeakC’ ;K7 6. (77)
Since ¢4 A ¥ A e = €19, et A e’ = —L1e?e49,,, where 9, = i, 9,, the above expressions become

Habc — FT(naC’ded _ ,Cbca) 4 FTG |:€cprt<2€adkflcbkplcdqr + eqdkflcakplcbdr 4 eabkflckdplcdqr)lcqf,

1
+ €Cprl€“bkdlcfdp <1Ckfr.t - EICquthr + a)kqtlcqfr + a)qfr’ckqt>

: 1
+ ec‘prteakdflcdfp (K:bkn[ - EKbkqutr + a)bqt’qur + qurlcbqt>:|

i 1
+ Fre?eay {F (Fr KK )+ €1 K KA + (0, K9, + 00t K2 ) K,

Tg

+ (@?,, K4, + wfqplqu,)lek,}

(78)

hab = FTeadeebpqd’CkprCqu' (79)

Choosing additionally the Weitzenbock connection o, = 0, for D = 4 we finally obtain

2(H[ac]b + H[ba]c _ H[cb]a) o+ 2(H[ac]b +H[ba]c

_ H[cb]a)cddc + (2H[ac]d + Hdca)cbcd + 4H[db]cc(dc)a + TaCdHCdb — pab

+ (F=TFy —TgFr,)n" =0, (80)
where
Fabe — FT( e Kbdd _ IChca) + FTG [ecprt(zeadkf Kbk p ,qur + €qais ,Cakp ]der + €ahkf ,dep ]qur) fcaf .
+ ePrea, KT (ICff,,, - %IC"MC‘I,,> + ePriek KU, (ICbk,’, - %ICbkqu,,ﬂ
+ €l [(Fr KM%, KU L)+ Fr, €O, K0 K ,]] (81)
and V. CONCLUSIONS

hab = FTGadeé'bpqd’Ckfp]Cfcq. (82)

Equations (80) are the equations of motion for F(T, T)
gravity in four dimensions, for a general vielbein (or
equivalently for a general metric) choice. For specific cases,
such as the homogeneous and isotropic Friedmann-
Robertson-Walker and the spherically symmetric geom-
etries, the above equations are significantly simplified.
Thus, one can straightforwardly investigate the application
of F(T, T) gravity in a cosmological framework. Since this
study lies beyond the scope of the present work, it is left fora
separate project [25].

Inspired by the teleparallel formulation of general rela-
tivity, whose Lagrangian is the torsion invariant 7', we have
constructed the teleparallel equivalent of Gauss-Bonnet
gravity in arbitrary dimensions. Implementing the telepar-
allel condition, but without imposing the Weitzenbdck
connection, we have extracted the torsion invariant 7,
equivalent (up to boundary terms) to the Gauss-Bonnet term
G. T is made out of the vielbein e“ and the connection @,
it contains quartic powers of the torsion tensor, and it is
diffeomorphism and Lorentz invariant. In four dimensions
it reduces to a topological invariant, as expected. Imposing
the Weitzenbdck connection, a simpler form for 7'; arises
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containing only the vielbein. This allows us to define a new
class of modified gravity theories based on F(T, T;), which
is not spanned by the class of F(T) theories. Moreover, it is
also distinct from the F(R, G) class. Hence, F(T, T ;) theory
is a novel class of modified gravity. Finally, varying the
action with respect to the vielbein, we extracted the
equations of motion for a general vielbein (metric) choice.
Since F(T,Tg) gravity is a new modified gravitational
theory, it would be interesting to study its cosmological

PHYSICAL REVIEW D 90, 084044 (2014)

applications, and this is performed in a separate publica-
tion [25].
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