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Inspired by the teleparallel formulation of general relativity, whose Lagrangian is the torsion invariant T,
we have constructed the teleparallel equivalent of Gauss-Bonnet gravity in arbitrary dimensions. Without
imposing the Weitzenböck connection, we have extracted the torsion invariant TG, equivalent (up to
boundary terms) to the Gauss-Bonnet term G. TG is constructed by the vielbein and the connection, it
contains quartic powers of the torsion tensor, it is diffeomorphism and Lorentz invariant, and in four
dimensions it reduces to a topological invariant as expected. Imposing the Weitzenböck connection, TG

depends only on the vielbein, and this allows us to consider a novel class of modified gravity theories based
on FðT; TGÞ, which is not spanned by the class of FðTÞ theories, nor by the FðR;GÞ class of curvature
modified gravity. Finally, varying the action we extract the equations of motion for FðT; TGÞ gravity.
DOI: 10.1103/PhysRevD.90.084044 PACS numbers: 04.50.Kd, 95.36.+x, 98.80.-k

I. INTRODUCTION

The central foundation of Einstein’s gravitational ideas is
that gravity is described through geometry. In his first
complete gravitational theory, general relativity (GR), he
made the additional assumption that geometry should be
described only by curvature, setting torsion to zero, along
with vanishing nonmetricity [1]. Technically, this is
achieved by assuming the connection to be symmetric in
coordinate frame, that is using the Levi-Civita connection.
In this framework one can construct the curvature
(Riemann) tensor which carries all the information of the
geometry, and thus of the gravitational field too, and then,
by suitable contractions the simplest (Ricci) scalar R can be
constructed, which contains up to second-order derivatives
in the metric. This Ricci scalar is exactly the Einstein-
Hilbert Lagrangian, whose action gives rise to the Einstein
field equations through variation in terms of the metric.
However, some years later, it was Einstein himself that

realized that the same gravitational equations could arise by
a different geometry, characterized not by curvature but by
torsion [2]. Technically, this is achieved by assuming that
the antisymmetric piece of the connection is not vanishing,
that is using the Weitzenböck connection. In this frame-
work, one can construct the torsion tensor, which carries
all the information of the geometry and therefore of the
gravitational field, and then simple scalars can be con-
structed which contain up to first-order vierbein derivatives.
Finally, one can take a specific combination of these scalars
and define the “torsion” scalar T, which will be used as
the gravitational Lagrangian, demanding its action to give

rise to the Einstein gravitational field equations through
variation in terms of the vierbein. Since these equations
coincide with those of general relativity, Einstein called this
alternative formulation “teleparallel equivalent of general
relativity” (TEGR).
On the other hand, the nonrenormalizability of general

relativity, string theory consequences, and the need to
describe the universe acceleration, led a huge amount of
research toward the modification of gravity at the classical
level. Using general relativity as the starting theory, the
simplest modification is to generalize the action using
arbitrary functions of the Ricci scalar, resulting to the so-
called FðRÞ modified gravity [3,4], which has the advan-
tage of being ghost free. However, one can construct
more complicated generalizations of the Einstein-Hilbert
action by introducing higher-curvature corrections, such
as the Gauss-Bonnet term G [5–7] or functions of it
[7,8], Lovelock combinations [9,10], Weyl combinations
[11], or higher spatial-derivatives as in Hořava-Lifshitz
gravity [12].
Hence, a question that arises naturally is the following:

can we modify gravity starting from TEGR instead of
general relativity, that is from its torsional formulation?
For the moment, and inspired by the FðRÞ modification
of general relativity, only the simplest such torsional
modification exists, namely the FðTÞ paradigm, in which
one extends the teleparallel Lagrangian T to an arbitrary
function FðTÞ [13,14]. Interestingly enough, although
TEGR coincides with general relativity at the level of
equations of motion, FðTÞ does not coincide with FðRÞ, so
FðTÞ is a novel class of gravitational modification with no
(known) equivalent curvature description. This feature led
to a detailed investigation of its cosmological implications
[13–16] and black-hole behavior [17].
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In this work, we are interested in extending the modifi-
cation of TEGR inserting higher-order torsion invariants.
In particular, inspired by the Gauss-Bonnet (GB) modifi-
cation of general relativity, we first construct the teleparallel
equivalent of Gauss-Bonnet term (TEGB) by finding its
“torsion” equivalentTG, which gives theGB field equations.
Then, we use it in order to formulate a modification of
TEGR. As a result, the modification of TEGR plus the
TEGB term does not coincide with the modification of GR
plus theGB term, so it is a novelmodification of gravitywith
no (known) curvature formulation.
The plan of the work is as follows: In Sec. II we review

the teleparallel formulation of GR in both the coordinate
and the differential form language. In Sec. III we find the
teleparallel equivalent of GB gravity, while in Sec. IV we
derive the equations of motion for the general FðT; TGÞ
theory. Finally, a summary of the obtained results is given
in Sec. V of conclusions.

II. CONSTRUCTION OF TELEPARALLEL
EQUIVALENT OF GENERAL RELATIVITY

In this section we present the construction of teleparallel
equivalent of general relativity. We follow the detailed and
conceptually more enlightening way of construction, start-
ing from an arbitrary connection with vanishing curvature
and not restricted to the Weitzenböck one [18–20]. The
benefit of this is that the quantities defined are both Lorentz
and diffeomorphism invariants. In the same spirit we
continue in the next section with the procedure of construct-
ing the teleparallel equivalent of the Gauss-Bonnet combi-
nation. As usual, in the end we focus on the Weitzenböck
connection.
In the whole manuscript we use the following notation:

Greek indices μ; ν;… run over all coordinates of
D-dimensional space-time 1; 2;…; D, while Latin indices
a; b;… run over the tangent space 1; 2;…; D. Note that we
perform the analysis both in the coordinate and the form
languages. Although in the fðTÞ literature the former is
preferred, going to more complicated expressions, such as
the Gauss-Bonnet term, the latter proves much more
convenient.

A. Construction of TEGR in coordinate language

The dynamical variables in torsional formulation of
gravity are the vielbein field eaðxμÞ, and the connection
1-forms ωa

bðxμÞ which defines the parallel transportation.
In terms of coordinates, they can be expressed in compo-
nents as ea ¼ eaμ∂μ and ωa

b ¼ ωa
bμdxμ ¼ ωa

bcec. The
dual vielbein is defined as ea ¼ eaμdxμ. One can express
the commutation relations of the vielbein as

½ea; eb� ¼ Cc
abec; ð1Þ

where Cc
ab are the structure coefficients functions given by

Cc
ab ¼ eaμebνðecμ;ν − ecν;μÞ; ð2Þ

and comma denotes differentiation.
One can now define the torsion tensor, expressed in

tangent components as

Ta
bc ¼ ωa

cb − ωa
bc − Ca

bc; ð3Þ

and in “mixed” ones as

Ta
μν ¼ eaν;μ − eaμ;ν þ ωa

bμebν − ωa
bνebμ: ð4Þ

Similarly, one can define the curvature tensor as

Ra
bcd¼ωa

bd;c−ωa
bc;dþωe

bdω
a
ec−ωe

bcω
a
ed−Ce

cdω
a
be;

Ra
bμν ¼ωa

bν;μ−ωa
bμ;νþωa

cμω
c
bν−ωa

cνω
c
bμ: ð5Þ

Thus, as one can see from (4) and (5), although the torsion
tensor depends on both the vielbein and the connection, that
is Ta

μνðeaμ;ωa
bμÞ, the curvature tensor depends only on the

connection, namely Ra
bμνðωa

bμÞ.
Additionally, there is an independent object which is the

metric tensor g. This allows us to make the vielbein
orthonormal gðea;ebÞ¼ηab, where ηab¼diagð−1;1;…1Þ,
and we have the relation

gμν ¼ ηabeaμebν: ð6Þ

Indices a; b;…. are raised/lowered with the Minkowski
metric ηab. Finally, throughout the work we impose zero
non-metricity, i.e., ηabjc ¼ 0, which means ωabc ¼ −ωbac,
where j denotes covariant differentiation with respect to the
connection ωa

bc.
As it is well known, amongst the infinite connection

choices there is only one that gives vanishing torsion,
namely the Christoffel or Levi-Civita one Γa

b, with
Γabc ¼ 1

2
ðCcab − Cbca − CabcÞ, or inversely Cabc ¼ Γacb −

Γabc. For clarity, we denote the curvature tensor correspond-
ing to the Levi-Civita connection as R̄a

bcd. The arbitrary
connectionωabc is then related to the Christoffel connection
Γabc through the relation

ωabc ¼ Γabc þKabc; ð7Þ

where

Kabc ¼
1

2
ðTcab − Tbca − TabcÞ ¼ −Kbac ð8Þ

is the contorsion tensor. Inversely, one can straightforwardly
find that Tabc ¼ Kacb −Kabc, while the “mixed” contorsion
components write as Ka

μν ¼ − 1
2
ðTa

μν þ Tb
μλebνeaλ þ

Tb
νλebμeaλÞ, that is Ka

μνðeaμ;ωa
bμÞ.

As long as the vielbein eaμ and the connection ωa
bμ

remain independent from each other, the Einstein-Hilbert
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Lagrangian density eR (with R ¼ eaμebνRabμν the Ricci
scalar and e ¼ detðeaμÞ ¼

ffiffiffiffiffijgjp
) is a function of eaμ;ωa

bμ,
and thus a first-order formulation is needed.
If we now calculate the Ricci scalar R corresponding to

the arbitrary connection, and the Ricci scalar R̄ correspond-
ing to the Levi-Civita connection, they are found to be
related through

eR ¼ eR̄þ 1

4
eðTμνλTμνλ þ 2TμνλTλνμ − 4Tν

νμTλ
λμÞ

− 2ðeTν
νμÞ;μ

¼ eR̄þ eT − 2ðeTν
νμÞ;μ; ð9Þ

where we have defined

T ¼ 1

4
TμνλTμνλ þ

1

2
TμνλTλνμ − Tν

νμTλ
λμ: ð10Þ

Since e−1ðeTν
νμÞ;μ ¼ Tν

νμ
;μ, where ; denotes covariant

differentiation with respect to the Christoffel connection,
Eq. (9) is also written as

R ¼ R̄þ T − 2Tν
νμ

;μ: ð11Þ

We mention that the quadratic quantity T is diffeomor-
phism invariant since Tμνλ is a tensor under coordinate
transformations. Additionally, T is local Lorentz invariant,
since Tabc is a Lorentz tensor.
One can now introduce the concept of teleparallelism by

imposing the condition of vanishing Lorentz curvature

Ra
bcd ¼ 0; ð12Þ

which holds in all frames. One way to realize this condition
is by assuming the Weitzenböck connection ~ωλ

μν which
is defined in terms of the vielbein eaμ in all coordinate
frames as

~ωλ
μν ¼ eaλeaμ;ν: ð13Þ

Due to its inhomogeneous transformation law this con-
nection has tangent-space components ~ωa

bc ¼ 0, and then,
the corresponding curvature components are indeed
~Ra

bcd ¼ 0 (tildes denote the quantities calculated using
the Weitzenböck connection). Note that eaμjν ¼ 0, and thus
the vielbein eaμ is autoparallel with respect to the con-
nection ~ωλ

μν. The corresponding torsion tensor is related to
the structure coefficients, the contorsion tensor or the
Weitzenböck connection, through

~Ta
μν ¼ eaν;μ − eaμ;ν ¼ −Ca

bcebμecν ð14Þ
~Ta

bc ¼ −Ca
bc ¼ ~Ka

cb − ~Ka
bc ð15Þ

~Tλ
μν ¼ ~ωλ

νμ − ~ωλ
μν; ð16Þ

while (7) simplifies to

Γabc ¼ − ~Kabc: ð17Þ

Now inserting the condition Ra
bcd ¼ 0 into the general

expression (9), we obtain

eR̄ ¼ −eT þ 2ðeTν
νμÞ;μ; ð18Þ

or equivalently

R̄ ¼ −T þ 2Tν
νμ

;μ: ð19Þ

As we observe the Lagrangian density eR̄ of general
relativity (that is the one calculated with the Levi-Civita
connection) differs from the torsion density −eT only by a
total derivative. Therefore, one can immediately deduce
that the general relativity action

SEH ¼ 1

2κ2D

Z
M
dDxeR̄; ð20Þ

is equivalent (up to boundary terms) to the action

Sð1ÞTel½eaμ;ωa
bμ� ¼ −

1

2κ2D

Z
M
dDxeT

¼ − 1

8κ2D

Z
M
dDxeðTabcTabc þ 2TabcTcba

− 4Tb
baTc

caÞ ð21Þ

(κ2D is the D-dimensional gravitational constant). Indeed,
varying (21) with respect to the vielbein we get equations
which contain up to eaμ;νλ, ωa

bμ;ν, and imposing the
teleparallel condition these equations coincide with the
Einstein field equations as they arise varying (20) with
respect to the metric [20].
If the Weitzenböck connection (13) is adopted, then the

teleparallel action (21) becomes a functional only of the

vielbein, which is denoted for clarity as Sð1Þtel ½eaμ� and has
the same functional form as (21), but with tilde quantities.

Varying Sð1Þtel ½eaμ� with respect to the vielbein gives again
the Einstein field equations. That is why the constructed
theory in which one uses torsion to describe the gravita-
tional field, under the teleparallelism condition, was named
by Einstein as teleparallel equivalent of general relativity.1

Note that now ~T still remains diffeomorphism invariant,
while the Lorentz invariance has been lost since we have
chosen specific class of frames. The equations of motion,
being the Einstein equations, are still Lorentz covariant.
However, when T in the action is replaced by a general

1The normalization of the actions Sð1ÞTel, S
ð1Þ
tel has been defined

such that Sð1ÞTel ¼ Sð1Þtel ¼ SEH.
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function fðTÞ, the new equations of motion under Lorentz
rotations of the vielbein will not be covariant (although they
are form-invariant). This is not a deficit (it is a sort of
analogue of gauge fixing in gauge theories), and the theory,
although not Lorentz covariant, is meaningful. Not all
vielbeins will be solutions of the new equations, and those
which solve the equations will determine the metric
uniquely.
An interesting feature of the above analysis is that in (19)

the Lagrangian R̄ has been expressed in terms of torsion
through a splitting into the Lorentz and diffeomorphism
invariant term −T, containing at most first order derivatives
in the fields eaμ, ωa

bμ, plus a total divergence also Lorentz
and diffeomorphism invariant containing the second order
derivatives of eaμ. Note that the Riemann tensor R̄μ

νρσ ¼
Γμ

νσ;ρ − Γμ
νρ;σ þ Γτ

νσΓμ
τρ − Γτ

νρΓμ
τσ is a sum of the

first-order in eaμ terms Γτ
νσΓμ

τρ − Γτ
νρΓμ

τσ , plus the
second-order total divergence terms Γμ

νσ;ρ − Γμ
νρ;σ. A

similar splitting occurs for the Lagrangian density eR̄,
known as the “gamma-gamma” form [21], however in that
case, the first-order terms as well as the total divergence
terms are not diffeomorphism invariant. Hence, the tele-
parallel splitting provides an advantage since the diffeo-
morphism invariance is maintained in the separate terms.

B. Construction of TEGR in differential form language

Let us now repeat the presentation of the previous
subsection in differential form language. We will need
the completely antisymmetric symbol ϵa1…aD , which has
ϵ1…D ¼ 1, while the contravariant components ϵa1…aD ¼
ηa1b1…ηaDbDϵb1…bD have ϵ1…D ¼ −1. The dynamical var-
iables are the vielbein ea and the connection 1-forms ωa

b,
with ωab ¼ −ωba due to the vanishing nonmetricity. One
can express the commutation relations (1) in terms of the
dual vielbein as

dea ¼ −
1

2
Ca

bceb ∧ ec; ð22Þ

where ∧ denotes the wedge product.
One can now define the torsion 2-form as

Ta ¼ dea þ ωa
b ∧ eb ¼ 1

2
Ta

bceb ∧ ec; ð23Þ

and the curvature 2-form as

Ra
b ¼ dωa

b þ ωa
c ∧ ωc

b ¼
1

2
Ra

bcdec ∧ ed: ð24Þ

The curvature 2-form corresponding to Γa
b is denoted by

R̄a
b. The arbitrary connection ωa

b is then related to Γa
b

through the relation

Kab ¼ −Kba ¼ ωab − Γab ¼ Kabcec; ð25Þ

where Kab is the contorsion 1-form. Inversely, one
can straightforwardly find that Ta ¼ Ka

b ∧ eb. Finally,
note that under the Weitzenböck connection the previous
relation simplifies to

Γab ¼ − ~Kab: ð26Þ

The action of general relativity is written in terms of the
connection Γa

b as

SEH ¼ 1

2κ2D

Z
M
L̄1; ð27Þ

where

L̄1 ¼
1

ðD − 2Þ! ϵa1…aDR̄
a1a2 ∧ ea3 ∧ … ∧ eaD ¼ R̄ � 1;

ð28Þ
with � denoting the Hodge dual operator. If we now
calculate the Lagrangian L1 corresponding to the arbitrary
connection ωa

b, it is related to L̄1 through

ðD − 2Þ!L1 ¼ ðD − 2Þ!L̄1

þ dðϵa1…aDK
a1a2 ∧ ea3 ∧ … ∧ eaDÞ

þ ϵa1…aDK
a1a2 ∧ dðea3 ∧ … ∧ eaDÞ

þ ϵa1…aDðΓa1
c ∧ Kca2 þKa1

c ∧ Γca2

þKa1
c ∧ Kca2Þ ∧ ea3 ∧ … ∧ eaD; ð29Þ

which after some cancellations provides the analogue of (9)

L1 ¼ L̄1 þ
1

ðD − 2Þ! ϵa1…aDK
a1

c ∧ Kca2 ∧ ea3 ∧ … ∧ eaD

þ 1

ðD − 2Þ! dðϵa1:::aDK
a1a2 ∧ ea3 ∧ … ∧ eaDÞ: ð30Þ

Finally, imposing the teleparallel conditionRab ¼ 0, we
get the analogue of (18)

L̄1 ¼ −T −
1

ðD − 2Þ! dðϵa1…aDK
a1a2 ∧ ea3 ∧ … ∧ eaDÞ;

ð31Þ

where

T ¼ 1

ðD − 2Þ! ϵa1…aDK
a1

c ∧ Kca2 ∧ ea3 ∧ … ∧ eaD

¼ Te1 ∧ … ∧ eD ð32Þ

is the TEGR volume form, and

T ¼ KabcKcba −Kca
aKcb

b ð33Þ
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the corresponding scalar. Ignoring the boundary term in
(31) we obtain again the teleparallel action (21) of Einstein
gravity

Sð1ÞTel ¼ −
1

2κ2D

Z
M
T ¼ −

1

2κ2D

Z
M
dDxeT: ð34Þ

In order to obtain the above results it is much more
powerful to introduce the covariant exterior differentialD of
the connection ωab acting on a set of p-forms Φa

b as
DΦa

b ¼ dΦa
b þ ωa

c ∧ Φc
b − ð−1ÞpΦa

c ∧ ωc
b. Similarly, the

differential D̄ is defined for the connection Γab. Then,
Rab¼R̄abþD̄KabþKa

c∧Kcb,Ta¼Dea,DTa¼Ra
b∧eb,

DRa
b ¼ 0, D2Φa

b ¼ Ra
c ∧ Φc

b − Φa
c ∧ Rc

b. Since it is
D̄ea ¼ 0, we get immediately Eq. (30). This is the method
that will be followed in the next section.

III. CONSTRUCTION OF TELEPARALLEL
EQUIVALENT OF GAUSS-BONNET TERM

In this section we will construct the teleparallel equiv-
alent of the Gauss-Bonnet gravity. We will follow the
procedure of the construction of TEGR described above,
based on the corresponding action. The central strategy of
the previous section was to express the curvature scalar R
corresponding to a general connection as the curvature
scalar R̄ corresponding to Levi-Civita connection, plus
terms arising from the torsion tensor. Then, by imposing the
teleparallelism condition Ra

bcd ¼ 0, we acquire that R̄ is
equal to a torsion scalar plus a total derivative, namely
relation (18). This torsion scalar provides the teleparallel
equivalent of general relativity, in a sense that if one uses it
as a Lagrangian, the same exactly equations with general
relativity are obtained.
In this section we follow the same steps to reexpress the

Gauss-Bonnet combination

G ¼ R2 − 4RμνRμν þ RμνκλRμνκλ: ð35Þ

However, for convenience we will use the form language
which leads to simple expressions compared to the coor-
dinate description. The action of Gauss-Bonnet gravity in
terms of the Levi-Civita connection is

SGB ¼ 1

2κ2D

Z
M
L̄2; ð36Þ

where

L̄2 ¼
1

ðD − 4Þ! ϵa1…aDR̄
a1a2 ∧ R̄a3a4 ∧ ea5 ∧ … ∧ eaD

¼ Ḡ � 1: ð37Þ

The corresponding Lagrangian when R̄ab is replaced by
Rab, that is the one that corresponds to an arbitrary

connection ωa
b, is denoted by L2. The relation between

L2 and L̄2 is found to be

ðD − 4Þ!L2 ¼ ðD − 4Þ!L̄2 þ I1 þ 2I2 þ 2I3 þ 2I4 þ I5;

ð38Þ

where

I1¼ ϵa1…aDK
a1

c ∧Kca2 ∧Ka3
d ∧Kda4 ∧ ea5 ∧…∧ eaD;

I2¼ ϵa1…aDR̄
a1a2 ∧Ka3

c ∧Kca4 ∧ ea5 ∧…∧ eaD;

I3¼ ϵa1…aDD̄Ka1a2 ∧Ka3
c∧Kca4 ∧ ea5 ∧…∧ eaD;

I4¼ ϵa1…aDD̄Ka1a2 ∧ R̄a3a4 ∧ ea5 ∧…∧ eaD;

I5¼ ϵa1…aDD̄Ka1a2 ∧ D̄Ka3a4 ∧ ea5 ∧…∧ eaD: ð39Þ

I1 is an algebraic term quartic in torsion. Since D̄R̄ab ¼ 0

and D̄ea ¼ 0, I4 is an exact form

I4 ¼ dðϵa1…aDK
a1a2 ∧ R̄a3a4 ∧ ea5 ∧ … ∧ eaDÞ: ð40Þ

Similarly, since D̄2Kab ¼ R̄a
c ∧ Kcb þ R̄b

c ∧ Kac, we
have

I5¼ 2ϵa1…aDK
a1a2 ∧ R̄a3

c ∧Kca4 ∧ ea5 ∧…∧ eaD

þdðϵa1…aDK
a1a2 ∧ D̄Ka3a4 ∧ ea5 ∧…∧ eaDÞ: ð41Þ

Therefore,

ðD − 4Þ!L2 ¼ ðD − 4Þ!L̄2 þ I1 þ 2I3 þ 2I6 þ dB; ð42Þ

where

I6 ¼ ϵa1…aDR̄
a1a2 ∧ Ka3

c ∧ Kca4 ∧ ea5 ∧ … ∧ eaD

þ ϵa1…aDK
a1a2 ∧ R̄a3

c ∧ Kca4 ∧ ea5 ∧ … ∧ eaD;

B ¼ 2ϵa1…aDK
a1a2 ∧ R̄a3a4 ∧ ea5 ∧ … ∧ eaD

þ ϵa1…aDK
a1a2 ∧ D̄Ka3a4 ∧ ea5 ∧ … ∧ eaD: ð43Þ

Taking into account that R̄abþD̄Kab¼Rab−Ka
c∧Kcb,

Eq. (42) is written as

ðD − 4Þ!L2 ¼ ðD − 4Þ!L̄2 þ 2J0 − I1 þ 2J1 þ dB; ð44Þ

where

J0 ¼ ϵa1…aDR
a1a2 ∧ Ka3

c ∧ Kca4 ∧ ea5 ∧ … ∧ eaD;

J1 ¼ ϵa1…aDK
a1a2 ∧ R̄a3

c ∧ Kca4 ∧ ea5 ∧ … ∧ eaD:

To finish, from the identity D̄Ka
b ¼ DKa

b − 2Ka
c ∧ Kc

b

we get R̄a
b ¼ Ra

b þKa
c ∧ Kc

b −DKa
b and substituting

into J1 we obtain
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ðD − 4Þ!L2 ¼ ðD − 4Þ!L̄2 þ 2ðJ0 þ Ĵ0Þ − I1

þ 2J2 − 2J3 þ dB; ð45Þ

where

J2 ¼ ϵa1…aDK
a1a2 ∧Ka3

c ∧Kc
d ∧Kda4 ∧ ea5 ∧… ∧ eaD;

J3 ¼ ϵa1…aDK
a1a2 ∧DKa3

c ∧Kca4 ∧ ea5 ∧… ∧ eaD

¼ ϵa1…aDðKa1a2 ∧ dKa3
c ∧Kca4

þKa1a2 ∧ ωa3
c ∧Kc

d ∧Kda4

þKa1a2 ∧Ka3
c ∧ ωc

d ∧Kda4Þ ∧ ea5 ∧… ∧ eaD;

Ĵ0 ¼ ϵa1…aDK
a1a2 ∧Ra3

c ∧Kca4 ∧ ea5 ∧… ∧ eaD:

In order to extract the teleparallel equivalent of GB
gravity we set Rab ¼ 0 in (45) obtaining

L̄2 ¼ T G −
1

ðD − 4Þ! dB; ð46Þ

where

T G ¼ 1

ðD − 4Þ! ϵa1…aDðKa1
c ∧ Kca2 ∧ Ka3

d ∧ Kda4

− 2Ka1a2 ∧ Ka3
c ∧ Kc

d ∧ Kda4

þ 2Ka1a2 ∧ DKa3
c ∧ Kca4Þ ∧ ea5 ∧ … ∧ eaD

¼ TGe1 ∧ … ∧ eD ð47Þ

is the TEGB volume form. The corresponding scalar is

TG ¼ ðKa1
eaKea2

bKa3
fcKfa4

d − 2Ka1a2
aKa3

ebKe
fcKfa4

d

þ 2Ka1a2
aKa3

ebKea4
fKf

cd

þ 2Ka1a2
aKa3

ebKea4
cjdÞδabcda1a2a3a4 : ð48Þ

Here, DKa
b ¼ dKa

b þ ωa
c ∧ Kc

b þ Ka
c ∧ ωc

b ¼
ðKa

bcjd þ 1
2
Ka

beTe
dcÞed ∧ ec, the covariant derivative

ofKa
bc with respect toωa

bc isKa
bcjd¼Ka

bc;dþωa
edKe

bc−
ωe

bdKa
ec−ωe

cdKa
be, the Ca

bc is given by Eq. (2), and the
generalized δ is the determinant of the Kronecker deltas.
The analogue of Eq. (18) is now

eðR̄2 − 4R̄μνR̄μν þ R̄μνκλR̄μνκλÞ ¼ eTG þ total diverg: ð49Þ

Obviously, T G is a Lorentz invariant made out of ea, ωa
b.

Since in D ¼ 4 dimensions the GB term L̄ðD¼4Þ
2 is a

topological invariant, so must be T ðD¼4Þ
G . Indeed, it is

T ðD¼4Þ
G ¼ dð32π2Π2 þ BÞ; ð50Þ

where

Π2 ¼ −
1

8π2
ϵabcdna

�
εR̄bc ∧ D̄nd þ 2

3
D̄nb ∧ D̄nc ∧ D̄nd

�

ð51Þ

is the second Chern form, na is a unit vector with

nana ¼ ε ¼ �1, and L̄ðD¼4Þ
2 ¼ 32π2dΠ2. Therefore, we

have constructed a new Lorentz invariant T G out of ea,
ωa

b, containing quartic powers of the torsion tensor, which
in 4 dimensions becomes a topological invariant.
Ignoring the boundary term B in (46) we obtain the

teleparallel action of Gauss-Bonnet gravity

Sð2ÞTel½ea;ωa
b� ¼

1

2κ2D

Z
M
T G ¼ 1

2κ2D

Z
M
dDxeTG: ð52Þ

The action Sð2ÞTel½eaμ;ωa
bμ� is diffeomorphism and Lorentz

invariant. Beyond eaμ; eaμ;ν;ωa
bμ, which exist in Sð1ÞTel in

(21) too, in Sð2ÞTel there appear also eaμ;νλ;ωa
bμ;ν, but in a

form such that the equations of motion do not contain
higher than second derivatives in eaμ, as expected from the
Gauss-Bonnet term.
Now, choosing the Weitzenböck connection ωa

bc ¼ 0,
the action (52) becomes

Sð2Þtel ¼
1

2ðD−4Þ!κ2D

Z
M
ϵa1…aDðKa1

c ∧Kca2 ∧Ka3
d ∧Kda4

−2Ka1a2 ∧Ka3
c ∧Kc

d ∧Kda4

−2Ka1a2 ∧Ka3
c ∧dKca4Þ∧ ea5 ∧…∧ eaD: ð53Þ

Note that the tildes denoting the quantities corresponding to
the Weitzenböck connection are omitted for simplicity. In
coordinate language it is

Sð2Þtel ¼ 1

2κ2D

Z
M
dDxeðKa1

eaKea2
bKa3

fcKfa4
d

− 2Ka1a2
aKa3

ebKe
fcKfa4

d

þ 2Ka1a2
aKa3

ebKea4
fKf

cd

þ 2Ka1a2
aKa3

ebKea4
c;dÞδabcda1a2a3a4 ; ð54Þ

where now

TG ¼ ðKa1
eaKea2

bKa3
fcKfa4

d − 2Ka1a2
aKa3

ebKe
fcKfa4

d

þ 2Ka1a2
aKa3

ebKea4
fKf

cd

þ 2Ka1a2
aKa3

ebKea4
c;dÞδabcda1a2a3a4 : ð55Þ

The action Sð2Þtel is a functional of e
a
μ, namely Sð2Þtel ½eaμ�, and

although TG in (55) contains eaμ;νλ, the arising equations of
motion contain only eaμ;νλ and not higher derivatives, as
expected. The quantity TG in (55) is a diffeomorphism
invariant containing quartic scalars of the torsion (or
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contorsion) tensor. However, Lorentz invariance is lost since
preferred autoparallel orthonormal frames have be chosen.
As in Einstein gravity, this is not a deficit, it is a sort of
analogue of gauge fixing in gauge theories. In four
dimensions, as the general TG of Eq. (48) is a topological
invariant, here TG of Eq. (55) is also a topological invariant
constructed out of torsion. This is due to the fact that TG
differs from the Gauss-Bonnet term, which is topological in
four dimensions, only by a total derivative. Note that the

normalization of the actions Sð2ÞTel, S
ð2Þ
tel has been defined such

that Sð2ÞTel ¼ Sð2Þtel ¼ SGB. In case of Einstein-Gauss-Bonnet

theory the total action is SEGB¼SEHþαSGB¼Sð1Þtel þαSð2Þtel ,
with α the relevant coupling.

IV. FðT;TGÞ GRAVITY AND EQUATIONS
OF MOTION

In the previous section, we constructed a new quartic-
torsion invariant TG, arising from the teleparallel equivalent
of Gauss-Bonnet gravity. Therefore, in analogue with the
FðTÞ gravitational modifications, we can formulate new
modified gravity theories in arbitrary dimensions by con-
sidering general functions FðTGÞ in the action. Obviously,
since TG is quartic in torsion, FðTGÞ cannot arise from any
FðTÞ. Supplementing the proposed class of modifications
with the usual FðTÞ term, the total modified gravitational
action takes the form

S ¼ 1

2κ2D

Z
dDxeFðT; TGÞ; ð56Þ

which is clearly different from FðR;GÞ gravity [7,8,22] (for
other constructions of actions including torsion see
[23,24]). Obviously, the usual Einstein-Gauss-Bonnet
theory arises in the special case FðT; TGÞ ¼ −T þ αTG
(with α the Gauss-Bonnet coupling), while TEGR (that is
GR) is obtained for FðT; TGÞ ¼ −T.
In the following, we will extract the equations of motion

of FðT; TGÞ gravity by varying the action (56). Variation
with respect to the vielbein gives

2κ2DδeS ¼
Z

dDxðeFTδeT þ eFTG
δeTG þ FδeÞ; ð57Þ

where FT ¼ ∂F=∂T, FTG
¼ ∂F=∂TG. Since the variation

of δeTG is very complicated, we find it more convenient to
make the variations δeT G and δeT using forms. In
particular, we have

2κ2DδeS ¼
Z

ðFTδeT þ FTG
δeT GÞ

þ
Z

dDxðF − TFT − TGFTG
Þδe: ð58Þ

Let ivφ denote the inner derivative of a p-form φ ¼
1
p!φa1…ape

a1 ∧ … ∧ eap with respect to the vector field

v ¼ vaea, i.e., for any p − 1 vector fields v1;…; vp−1, it
holds ðivφÞðv1;…; vp−1Þ ¼ φðv; v1;…; vp−1Þ. We are
interested in combining this definition with variations.
An immediate property is

ieaδe
b þ iδeae

b ¼ 0; ð59Þ

which arises from the equations δea ¼ ebμδeaμeb,
δea ¼ ebμδeaμeb, ieaδe

b¼eaμδebμ, and iδeae
b ¼ ebμδeaμ.

Using the definition (23) of the torsion, Eq. (59),
the linearity of ivφ in both v;φ, and the relations
ivdþ div ¼ £v, ivðφ∧ψÞ¼ivφ∧ψþð−1Þpφ∧ivψ , we
can find

δeðieaTbÞ¼ £eaδe
bþ£δeae

bþ ieaω
b
c ∧ δecþ iδeaω

b
c ∧ ec;

ð60Þ

where £ denotes the Lie derivative.
The use of the Lie derivative proves very convenient for

the variation procedure. In particular, we use the identity
vðαðwÞÞ ¼ ð£vαÞðwÞ þ αð£vwÞ, where α is 1-form and v; w
are vector fields, once for v ¼ δea, w ¼ ec, α ¼ eb to find
ð£δeaebÞðecÞ ¼ ebð£ecδeaÞ, and once for v ¼ ec, w ¼ δea,
α ¼ eb to find ebð£ecδeaÞ ¼ ecðebðδeaÞÞ − ð£ecebÞðδeaÞ .
Therefore, we obtain

£δeae
b ¼ £ecðebðδeaÞÞec þ Cb

cdedðδeaÞec: ð61Þ

Thus, the quantity appearing in (60) becomes

δeðieaTbÞ ¼ £eaδe
b þ £ecðebðδeaÞÞec þ Cb

cdedðδeaÞec
þ ωb

caδec þ ωb
cdedðδeaÞec: ð62Þ

Additionally, we also need to evaluate the quantity
δeðieaiebTcÞ. Using the definition (23) of the torsion,
Eq. (59), the linearity of ivφ in both v;φ, equations ivf ¼
0 (f 0-form), ivðφ ∧ ψÞ ¼ ivφ ∧ ψ þ ð−1Þpφ ∧ ivψ , and
the relations ivdþ div ¼ £v, £viw − iw£v ¼ i½v;w� to trans-
fer the operators d; £ on the left, we can find

δeðieaiebTcÞ ¼ i½ea;eb�δe
c þ i½ea;δeb�e

c − i½eb;δea�e
c

þ ðiebωc
dÞðieaδedÞ − ðieaωc

dÞðiebδedÞ
þ 2ωc½ad�edðδebÞ − 2ωc½bd�edðδeaÞ; ð63Þ

where the (anti)symmetrization symbol contains the
factor 1=2. Applying the identity vðαðwÞÞ ¼ ð£vαÞðwÞ þ
αð£vwÞ for v ¼ ea, w ¼ δeb, α ¼ ec, and since
i½ea;δeb�e

c ¼ ecð£eaδebÞ, we find

i½ea;δeb�e
c ¼ £eaðecðδebÞÞ þ Cc

adedðδebÞ: ð64Þ

Finally, using (59), we acquire
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δeðieaiebTcÞ¼ £eaðecðδebÞÞ−£ebðecðδeaÞÞ
þCc

adedðδebÞ−Cc
bdedðδeaÞ−Cd

abecðδedÞ
þωc

adedðδebÞ−ωc
bdedðδeaÞ: ð65Þ

Now, the contorsion 1-form can be written as

2Kab ¼ ieaTb − iebTa − ðieaiebTcÞec; ð66Þ

therefore we obtain

2δeKab ¼ δeieaTb − δeiebTa − δeðiea iebTcÞec − Tcbaδec:

ð67Þ

Using (62) and (65) we get

2δeKab ¼ £eaδeb − £ebδea þ £ecðiebδeaÞec − £ecðieaδebÞec
þ £eaðiebδecÞec − £ebðieaδecÞec −Cd

abðiedδecÞec
þ 2CðacÞdðiebδedÞec − 2CðbcÞdðieaδedÞec
þ Tcabδec þ 2ωc½ab�δec; ð68Þ

where ea ¼ ηabeb are 1-forms and ebðδeaÞ ¼ −ieaδeb.
Varying T ; T G from (32) and (47), and due to the fact

that ieaδe
a ¼ −eaμδeaμ ¼ δe

e , the variation (58) of the
action becomes

2κ2DδeS¼
Z

ð2δeKab∧Habþha∧δeaÞ

þ
Z

ðF−TFT−TGFTG
ÞðieaδeaÞe1∧…∧eD; ð69Þ

where

Hab ¼ FT

ðD − 2Þ! ϵ
a
a1…aD−1K

ba1ea2…eaD−1 þ FTG

ðD − 4Þ! ð2ϵ
a
a1…aD−1K

ba1Ka2
cKca3ea4…eaD−1

þ ϵa1…aDK
aa1Kba2Ka3a4ea5…eaD − ϵaba1…aD−2K

a1
cKc

dKda2ea3…eaD−2 þ ϵaba1…aD−2DKa1
cKca2ea3…eaD−2

þ ϵaa1…aD−1DKba1Ka2a3ea4…eaD−1Þ − 1

ðD − 4Þ! ϵ
a
a1…aD−1DðFTG

Kba1Ka2a3ea4…eaD−1Þ ð70Þ

and

ha ¼
FT

ðD − 3Þ! ϵa1…aD−1aK
a1

cKca2ea3…eaD−1

þ FTG

ðD − 5Þ! ϵa1:::aD−1aðKa1
cKca2Ka3

dKda4

− 2Ka1a2Ka3
cKc

dKda4

þ 2Ka1a2DKa3
cKca4Þea5…eaD−1 : ð71Þ

The quantities Hab; ha are D − 1 forms and the ∧ symbols
between Kab and ea are omitted for safety of space.
Moreover, boundary terms have been omitted too. The
above relations hold for D > 4, while for D ¼ 4 all terms
exist too, apart from the term containing ðD − 5Þ! in ha,
which is absent.
Now, we plague expression (68) in the variation (69),

and after use of the identity £ea ¼ ieadþ diea and the
obvious equations iebð£ecðec∧H½ab�Þ∧δeaÞ¼0, iebð£eaðec∧
H½ab�Þ∧δecÞ¼0, iedðCd

abec∧Hab∧δecÞ¼0, iebðCðacÞdec∧
Hab∧δedÞ¼0, we obtain (omitting the boundary terms)

2κ2DδeS ¼
Z

δea½2£ebH½ab� − 2ieb£ecðecH½ab� þ eaH½cb�Þ

− Cd
cbiedðeaHcbÞ þ 4CðdcÞaiebðecH½db�Þ

þ ðTa
bc þ 2ωa½bc�ÞHbc

− ð−1ÞDha þ ðF − TFT − TGFTG
Þϑa�; ð72Þ

where ϑa ¼ ieaðe1 ∧ … ∧ eDÞ. Thus, setting δeS ¼ 0 we
get the equations of motion for FðT; TGÞ gravity

2£ebH
½ab�−2ieb£ecðecH½ab� þeaH½cb�Þ−Cd

cbiedðeaHcbÞ
þ4CðdcÞaiebðecH½db�ÞþðTa

bcþ2ωa½bc�ÞHbc− ð−1ÞDha
þðF−TFT −TGFTG

Þϑa ¼ 0: ð73Þ

The set ϑa forms a basis in the subspace of D − 1 forms,
therefore Hab; ha can be expressed in components as

Hab ¼ Habcϑc; ha ¼ habϑb: ð74Þ

Hence, the equations of motion (73) for FðT; TGÞ gravity is
written in components as

2ðH½ac�bþH½ba�c−H½cb�aÞ;cþ2ðH½ac�bþH½ba�c−H½cb�aÞCd
dc

þð2H½ac�dþHdcaÞCb
cdþ4H½db�cCðdcÞa

þðTa
cdþ2ωa½cd�ÞHcdb

−ð−1ÞDhabþðF−TFT−TGFTG
Þηab¼0: ð75Þ

Focusing to the most interesting case of four dimensions
we can rewrite the expressions for Hab and ha as

GEORGIOS KOFINAS AND EMMANUEL N. SARIDAKIS PHYSICAL REVIEW D 90, 084044 (2014)

084044-8



Hab ¼ FT

2
ϵacdfKbcedef − ϵacdfDðFTG

KbcKdfÞ þ FTG
ð2ϵacdfKbcKd

qKqf þ ϵcdfqKacKbdKfq

− ϵabcdKc
fKf

qKqd þ ϵabcdDKc
fKfd þ ϵacdfDKb

cKdfÞ ð76Þ

and

ha ¼ −FTϵabcdKb
fKfced: ð77Þ

Since ea ∧ eb ∧ ec ¼ ϵabcdϑd, ea ∧ eb ¼ − 1
2
ϵabcdϑcd, where ϑab ¼ iebϑa, the above expressions become

Habc ¼ FTðηacKbd
d −KbcaÞ þ FTG

�
ϵcprtð2ϵadkfKbk

pKd
qr þ ϵqdkfKak

pKbd
r þ ϵabkfKk

dpKd
qrÞKqf

t

þ ϵcprtϵabkdKfd
p

�
Kk

fr;t −
1

2
Kk

fqCq
tr þ ωk

qtKq
fr þ ωq

frKk
qt

�

þ ϵcprtϵakdfKdf
p

�
Kb

kr;t −
1

2
Kb

kqCq
tr þ ωb

qtKq
kr þ ωq

krKb
qt

��

þ FTG
ϵcprtϵakdf

�
1

FTG

ðFTG
Kbk

pKdf
rÞ;t þ Cq

ptKbk½qKdf
r� þ ðωb

qpKqk
r þ ωk

qpKbq
rÞKdf

t

þ ðωd
qpKqf

t þ ωf
qpKdq

tÞKbk
r

�
ð78Þ

hab ¼ FTϵ
a
kcdϵ

bpqdKk
fpKfc

q: ð79Þ

Choosing additionally the Weitzenböck connection ωa
bc ¼ 0, for D ¼ 4 we finally obtain

2ðH½ac�b þH½ba�c −H½cb�aÞ;c þ 2ðH½ac�b þH½ba�c −H½cb�aÞCd
dc þ ð2H½ac�d þHdcaÞCb

cd þ 4H½db�cCðdcÞa þ Ta
cdHcdb − hab

þ ðF − TFT − TGFTG
Þηab ¼ 0; ð80Þ

where

Habc ¼ FTðηacKbd
d −KbcaÞ þ FTG

�
ϵcprtð2ϵadkfKbkpKd

qr þ ϵqdkfKak
pKbd

r þ ϵabkfKk
dpKd

qrÞKqf
t

þ ϵcprtϵabkdKfd
p

�
Kf

fr;t −
1

2
Kk

fqCq
tr

�
þ ϵcprtϵakdfKdf

p

�
Kb

kr;t −
1

2
Kb

kqCq
tr

��

þ ϵcprtϵakdf½ðFTG
Kbk

pKdf
rÞ;t þ FTG

Cq
ptKbk½qKdf

r�

�
ð81Þ

and

hab ¼ FTϵ
a
kcdϵ

bpqdKk
fpKfc

q: ð82Þ

Equations (80) are the equations of motion for FðT; TGÞ
gravity in four dimensions, for a general vielbein (or
equivalently for a general metric) choice. For specific cases,
such as the homogeneous and isotropic Friedmann-
Robertson-Walker and the spherically symmetric geom-
etries, the above equations are significantly simplified.
Thus, one can straightforwardly investigate the application
ofFðT; TGÞ gravity in a cosmological framework. Since this
study lies beyond the scope of the present work, it is left for a
separate project [25].

V. CONCLUSIONS

Inspired by the teleparallel formulation of general rela-
tivity, whose Lagrangian is the torsion invariant T, we have
constructed the teleparallel equivalent of Gauss-Bonnet
gravity in arbitrary dimensions. Implementing the telepar-
allel condition, but without imposing the Weitzenböck
connection, we have extracted the torsion invariant TG,
equivalent (up to boundary terms) to the Gauss-Bonnet term
G. TG is made out of the vielbein ea and the connectionωa

b,
it contains quartic powers of the torsion tensor, and it is
diffeomorphism and Lorentz invariant. In four dimensions
it reduces to a topological invariant, as expected. Imposing
the Weitzenböck connection, a simpler form for TG arises
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containing only the vielbein. This allows us to define a new
class of modified gravity theories based onFðT; TGÞ, which
is not spanned by the class of FðTÞ theories. Moreover, it is
also distinct from theFðR;GÞ class. Hence,FðT; TGÞ theory
is a novel class of modified gravity. Finally, varying the
action with respect to the vielbein, we extracted the
equations of motion for a general vielbein (metric) choice.
Since FðT; TGÞ gravity is a new modified gravitational
theory, it would be interesting to study its cosmological

applications, and this is performed in a separate publica-
tion [25].
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