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Binary neutron stars in circular orbits can be modeled as helically symmetric, i.e., stationary in a rotating
frame. This symmetry gives rise to a first integral of the Euler equation, often employed for constructing
equilibrium solutions via iteration. For eccentric orbits, however, the lack of helical symmetry has
prevented the use of this method, and the numerical relativity community has often resorted to constructing
initial data by superimposing boosted spherical stars without solving the Euler equation. The spuriously
excited neutron star oscillations seen in evolutions of such data arise because such configurations lack the
appropriate tidal deformations and are stationary in a linearly comoving—rather than rotating—frame. We
consider eccentric configurations at apoapsis that are instantaneously stationary in a rotating frame. We
extend the notion of helical symmetry to eccentric orbits, by approximating the elliptical orbit of each
companion as instantaneously circular, using the ellipse’s inscribed circle. The two inscribed helical
symmetry vectors give rise to approximate instantaneous first integrals of the Euler equation throughout
each companion. We use these integrals as the basis of a self-consistent iteration of the Einstein constraints
to construct conformal thin-sandwich initial data for eccentric binaries. We find that the spurious stellar
oscillations are reduced by at least an order of magnitude, compared with those found in evolutions of
superposed initial data. The tidally induced oscillations, however, are physical and qualitatively similar to
earlier evolutions. Finally, we show how to incorporate radial velocity due to radiation reaction in our
inscribed helical symmetry vectors, which would allow one to obtain truly noneccentric initial data when
our eccentricity parameter e is set to zero.
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I. INTRODUCTION

The coalescences of binary neutron stars are a prominent
source for ground-based gravitational wave detectors.
(See Table 1 in [1] for a review of population synthesis
predictions and [2] for more recent work.) In particular,
binary neutron stars are the only compact binary sources
relevant for ground-based detectors that have been
observed to date (via electromagnetic observations of
binary pulsars). Neutron star binary coalescences are also
interesting beyond gravitational wave astronomy as poten-
tial progenitors of short gamma-ray bursts and sources of
the r-process material that enriches the interstellar medium
with heavy elements [3].
All the known binary neutron stars are at least somewhat

eccentric (eccentricities between 0.085 and 0.681 for the
systems that will merge within a few hundred million years;
see Tables 2 and 3 in [4]), though these will be highly
circular when they merge, since gravitational radiation
reaction efficiently circularizes the orbit [5]; see Table 1

in [6]. However, there are possible (though likely rare)
scenarios in which neutron stars can merge with non-
negligible eccentricity, either because they are formed with
a high eccentricity and small periapsis distance by dynami-
cal interactions in dense stellar regions, such as globular
clusters [7–10] or have their eccentricity excited by, e.g.,
the Kozai mechanism in a hierarchical triple [11–14] ([15]
also treats the latter case, but only considers the case of
binary black holes). Gravitational waves from highly
eccentric compact binary systems exhibit a repeated burst
structure, which poses challenges for gravitational wave
astronomy, but also offers potential rewards, as has been
explored in a number of works: McWilliams, Pretorius, and
collaborators [16,17] discuss strategies for detection, while
Kyutoku and Seto [18] find improvements in the accuracy
of premerger sky localization and timing, compared to the
quasicircular case. Loutrel, Yunes, and Pretorius [19]
consider bursts from highly eccentric binaries as a regime
for testing general relativity, while Tsang [9] has consid-
ered the possibility of obtaining electromagnetic flares
from crust cracking during close encounters.
The first full numerical relativity evolutions of highly

eccentric binary neutron stars were carried out by Gold
et al. [20], with a further study by East and Pretorius [21].
These systems have also been simulated with Newtonian
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methods in [8,22]. In addition, there have been full
numerical relativity simulations of highly eccentric black
hole-neutron star (BHNS) binaries [23,24] and binary black
holes; see, e.g., [25,26]. However, all the evolutions of
highly eccentric binaries with neutron stars have used
inconsistent initial data, due to the difficulty of generalizing
the standard procedure for quasicircular orbits, where one
uses the binary’s approximate helical Killing vector to
solve the Euler equation via a first integral. In particular,
Gold et al. [20] used a superposition of boosted spherical
stars, which leads to relatively large constraint violations in
addition to not giving the appropriate matter configuration.
The Princeton group [21,23,24] solves the constraints to
obtain their initial data, as described in [27], but they do not
solve the Euler equation. It would obviously be desirable to
obtain consistent initial data for these configurations. In
particular, it is possible that the tidally induced oscillations
of the neutron star(s) found in these evolutions are affected
by the initial spurious oscillations of the neutron star from
imperfect initial data.
Here we present a method to construct binary neutron

star initial data with arbitrary eccentricity, by generalizing
the helical Killing vector to a pair of inscribed helical
symmetry vectors, appropriate for the more general sit-
uation of an eccentric orbit at apoapsis. We then provide a
first proof-of-principle numerical implementation of this
method for equal-mass binaries; our method is applicable to
arbitrary mass ratios or BHNS binaries as well. This self-
consistent method yields constraint-solved initial data (in
the Isenberg-Wilson-Mathews approximation [28,29], i.e.,
assuming spatial conformal flatness), where both the
geometry and matter are momentarily stationary in a
rotating frame. We also give an additional generalization
to include radial velocity, though we do not implement this
numerically in this paper. As a test of the method, we show
that it produces results with the expected physical proper-
ties both in the quasicircular limit, where we compare with
the results of data calculated with the standard method, as
well as for nonzero values of the eccentricity.
For simplicity, we have considered irrotational binaries

in the current numerical implementation and made the
approximation of a homogeneous velocity field. However,
it is possible (and relatively straightforward) to drop these
approximations and even add spin to the construction,
following [30,31]. In particular, the assumption of a
homogeneous velocity field is made merely for conven-
ience, so that we can use a Cartesian multigrid elliptic
solver without surface-fitted coordinates, but we demon-
strate that it is a reasonable approximation for sufficiently
separated binaries. The assumption of irrotational stars is
standard and is reasonable for a first study: While neutron
stars can spin quite quickly (at least up to 716 Hz [32]), the
spins in known binary neutron stars are much more modest,
at most 44 Hz for the more massive star in the double pulsar
(see, e.g., Table 2 in [4]), and all of these will decrease

further due to spin-down before the stars merge. Moreover,
the viscosity of neutron star matter is far too low for the
stars to experience any significant tidal spin-up, as estab-
lished by Kochanek [33] and Bildsten and Cutler [34].
Thus, it has been standard to consider irrotational flow in
modeling binary neutron stars (see, e.g., [1]), since the
system’s orbital frequency 10–20 orbits before merger is
≳100 Hz in the quasicircular case.
However, the extent to which the relatively small spins of

the members of observed binary neutron stars is a selection
effect remains unclear, particularly because the known
population is so small (only nine systems [4]).
Moreover, if one did form a binary with even a modestly
rapidly spinning neutron star, the spin-down before merger
might not be very significant: Fast-spinning neutron stars
are thought to have had their spin increased by accretion
(a process known as recycling), which also reduces their
external magnetic field, and thus reduces the stars’ spin-
down, as well (see, e.g., [35]). In particular, [30] finds that
the more massive star in the double pulsar is expected to
have spun down only to 37 Hz at merger, and [36] has
found that spins of about this magnitude can have a sizable
effect on the system’s dynamics.
The addition of spin may be particularly interesting for

eccentric systems, since one way of forming such binaries
is through dynamical assembly in dense stellar systems,
such as globular clusters, and globular clusters are a fertile
breeding ground for millisecond pulsars, including the
fastest pulsar known. For instance, all 23 known pulsars
in the rich globular cluster 47 Tucanae have spin frequen-
cies greater than 125 Hz, and all but three are above
200 Hz [37].
The paper is structured as follows: We first review the

necessary portions of perfect fluid hydrodynamics and the
3þ 1 split of the Einstein equations in Secs. II and III,
before describing the specific construction we use to obtain
an approximate first integral to the Euler equation in
Sec. IV. We then describe the numerical implementation
of the method in Sec. V and evaluate its performance in the
quasicircular case in Sec. VI before giving examples of
eccentric binaries in Sec. VII. We discuss and conclude in
Sec. VIII, and give some ancillary results for nonrelativistic
incompressible binaries in the Appendix.
We use the following notation throughout: We use Greek

letters α; β; γ; δ;… and μ; ν; κ; λ;… for abstract and con-
crete spacetime indices, respectively. We also use Latin
letters a; b; c;… and i; j; k;… for abstract and concrete
spatial indices, respectively. We raise and lower concrete
spatial indices with the flat conformal metric, while all
other indices are raised and lowered with the physical
metric; the summation convention is always in force. We
shall also use index-free notation when convenient, denot-
ing vectors (spatial or spacetime) using boldface. We
employ units with G ¼ c ¼ M⊙ ¼ 1 almost exclusively,
except that we show the appearances of G explicitly for
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clarity when making some Newtonian calculations in
Sec. IV C.

II. PERFECT FLUID MODEL

A. Thermodynamic quantities

We consider a spacetime ðM; gαβÞ, i.e., a manifold M
endowed with a Lorentzian metric gαβ. Furthermore, we
assume that this spacetime is globally hyperbolic, so it
possesses a Cauchy surface (and, indeed, can be foliated by
Cauchy surfaces). Part of this spacetime is occupied by a
perfect fluid, characterized by the energy-momentum tensor

Tαβ ¼ ðϵþ pÞuαuβ þ pgαβ; ð2:1Þ

where uα is the four-velocity, ϵ is the proper energy density,
and p the fluid pressure. Moreover, we assume that the fluid
is a simple fluid, i.e., that all the thermodynamic quantities
depend only on the entropy density σ and on the proper
baryon number density n. In particular, the relation

ϵ ¼ ϵðσ; nÞ ð2:2Þ

is called the equation of state (EOS) of the fluid. The
temperature T and the baryon chemical potential μ are then
defined by

T ≔
∂ϵ
∂σ

and μ ≔
∂ϵ
∂n

: ð2:3Þ

Then, the first law of thermodynamics can be written as

dϵ ¼ μdnþ Tdσ: ð2:4Þ

As a consequence, p is a function of ðσ; nÞ entirely
determined by (2.2):

p ¼ −ϵþ Tσ þ μn: ð2:5Þ
Let us introduce the specific enthalpy,

h ≔
ϵþ p
ρ

¼ μ

mb
þ Ts; ð2:6Þ

where mb ¼ 1.66 × 10−27 kg (the atomic mass unit, which
can be taken as the average nucleon mass) is the baryon rest
mass, ρ is the rest-mass density

ρ ≔ mbn; ð2:7Þ
and s is the specific entropy:

s ≔
σ

ρ
: ð2:8Þ

The second equality in (2.6) is an immediate consequence of
(2.5). From Eqs. (2.4)–(2.8), we obtain the thermodynamic
relations [38,39]

dϵ ¼ hdρþ ρTds; dp ¼ ρðdh − TdsÞ: ð2:9Þ

To describe the matter inside a neutron star, we have to
make a choice for the EOS in order to close the system. For
the present study, we restrict attention to polytropes.
Specifically, we assume that

p ¼ κρ1þ1=n; ð2:10Þ

where κ is the polytropic constant and n ¼ 1
Γ−1 is the

polytropic index (Γ is the adiabatic index). Then, one may
express ρ, p, and ϵ as functions of the specific enthalpy h

ρ ¼
�

h − 1

κð1þ nÞ
�
n
; ð2:11aÞ

p ¼ κ

�
h − 1

κð1þ nÞ
�
1þn

; ð2:11bÞ

ϵ ¼
�
1þ nðh − 1Þ

1þ n

��
h − 1

κð1þ nÞ
�
n
: ð2:11cÞ

For simplicity, we shall only consider the case n ¼ 1 (i.e.,
Γ ¼ 2) in the numerical examples of this paper, since this is
close to the effective polytropic index of realistic nuclear
physics equations of state [40]. Treatment of realistic
EOSs is straightforward using a piecewise polytropic
approximation [41].

B. Euler equation

The relativistic Euler equation follows from the con-
servation law of energy-momentum:

∇αTα
β ¼ 0; ð2:12Þ

where ∇α denotes the covariant derivative compatible with
the metric gαβ. Using Eqs. (2.4)–(2.9), the divergence of the
fluid energy-momentum tensor (2.1) can be decomposed as

∇αTα
β ¼ πβ∇αðρuαÞ þ ρ½uαðdπÞαβ − T∇βs�: ð2:13Þ

Here, πα ¼ huα denotes the canonical momentum 1-form
of a fluid element, while its exterior derivative ðdπÞαβ ¼∇απβ −∇βπα denotes the canonical vorticity 2-form.
Invoking the baryon number conservation law

∇αðρuαÞ ¼ 0; ð2:14Þ

Eqs. (2.12) and (2.13) yield the Euler equation,

uαðdπÞαβ ¼ T∇βs; ð2:15Þ

written here in the Carter-Lichnerowicz form [38,42–45].
This particular form is quite useful when the fluid con-
figuration possesses certain symmetries [46]. In the “dust”
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limit (h → 1, T → 0), Eq. (2.15) reduces to the equation
satisfied by a pressure-free perfect fluid, i.e., the geodesic
equation. Projecting the Euler equation along uβ yields

uβ∇βs ¼ 0; ð2:16Þ

implying that specific entropy is constant along flow lines.
If the fluid is barotropic, the thermodynamic quantities

depend only on the proper baryon number density n (or,
equivalently, rest mass density ρ). Particular examples are
cold (T ¼ 0) or homentropic (s ¼ const) fluids. This
assumption is appropriate for inspiralling neutron-star
binaries, as shock heating is absent and the fluid temper-
ature is much lower than the Fermi temperature [47]. In the
remainder of this paper, we shall restrict our attention to
barotropic flows, for which the Euler equation (2.15)
simplifies to

uαðdπÞαβ ¼ 0. ð2:17Þ
Barotropic fluid streamlines are geodesics of a Riemannian
manifold with metric h2gαβ [48]. Indeed, the fluid element
action

S ¼
Z

τ2

τ1

Lðx; uÞdτ ¼ −
Z

τ2

τ1

hðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gαβðxÞuαuβ

q
dτ

ð2:18Þ
can be minimized (most easily via covariant techniques
[45]) to obtain the Euler equation (2.17), with canonical
velocity given by uα ¼ dxα=dτ and canonical momentum
given by πα ¼ ∂L=∂uα ¼ huα.

C. Noether’s theorem and Bernoulli’s principle

If the ε family of infinitesimal coordinate transforma-
tions xα → xα þ εkα is a continuous symmetry of the fluid
element action (2.18), then Noether’s theorem implies that
the quantity

E ¼ −kαπα ð2:19Þ
is conserved along streamlines. Indeed, using the equation
of motion (2.17) and the constraint uαuα ¼ −1, one finds

uα∇αE ¼ −
1

2h
uαuβLkðh2gαβÞ ¼ 0; ð2:20Þ

where Lk denotes the Lie derivative with respect to the
vector k. In geometrical terms, this result follows from the
fact that kα is a Killing vector of the conformal metric
h2gαβ. The conservation of the quantity (2.19) is a gener-
alization of Bernoulli’s principle, which is recovered in the
Newtonian limit if the Killing vector generates time trans-
lations that leave the flow unchanged (i.e., if the flow is
stationary) [38]. Note, however, that a Killing symmetry
only guarantees a weak Bernoulli principle, in the sense

that the quantity (2.19) is conserved only along streamlines,
but could differ from one streamline to the next. In order to
obtain a strong Bernoulli principle, i.e., a quantity con-
served throughout the fluid, a second condition (such as
irrotationality or rigidity) is required. This issue will be
revisited in Sec. IV.

III. GRAVITATIONAL FIELD EQUATIONS

A. Extended conformal thin-sandwich formulation

We consider a spacetime M ¼ R × Σ which is foliated
by a family of spacelike surfaces Σt. Making the standard
3þ 1 decomposition in a chart ft; xig, the spacetime metric
takes the form

ds2 ¼ −α2dt2 þ γijðdxi þ βidtÞðdxj þ βjdtÞ; ð3:1Þ

where α is the lapse and βα is the shift vector. These are
related to the unit normal nα of the three-dimensional
spatial hypersurface Σt and the timelike vector tα via
tα ¼ αnα þ βα. The shift is purely spatial and satisfies
βαnα ¼ 0, while we define the spatial metric γabðtÞ by
restricting the projection tensor γαβ ¼ gαβ þ nαnβ to Σt.
In the extended conformal thin-sandwich (XCTS) for-

mulation [28,49–54] one decomposes the spatial metric
into a spatial conformal metric γ̄ab and a conformal factor ψ
defined by γab ¼ ψ4γ̄ab. One also decomposes the extrinsic
curvature of the foliation as

Kab ≔ −
1

2
Lnγab ¼ Aab þ

1

3
γabK; ð3:2Þ

where K ≔ Ka
a is the trace of the extrinsic curvature and

Aab ¼ −
ψ4

2α
½∂tγ̄ab − ðL̄βÞab� ð3:3Þ

is the rescaled traceless part of the extrinsic curvature. Here,
∂μ denotes a partial derivative with respect to the coordinate
xμ on M, while

ðL̄βÞab ¼ D̄aβb þ D̄bβa −
2

3
γ̄abD̄cβ

c ð3:4Þ

is the traceless part of Lβγ̄ab and D̄a is the covariant
derivative compatible with γ̄ab.
Decomposing Einstein’s equations Gαβ ¼ 8πTαβ (where

Gαβ is the Einstein tensor), following the XCTS formu-
lation, we take a set of five equations

ðGαβ − 8πTαβÞnαnβ ¼ 0; ð3:5aÞ

ðGαβ − 8πTαβÞγcαnβ ¼ 0; ð3:5bÞ

ðGαβ − 8πTαβÞ
�
γαβ þ 1

2
nαnβ

�
¼ 0; ð3:5cÞ
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and solve them for the five metric coefficients fψ ; α; βag on
the initial slice Σ0. The constraint equations (3.5a) and
(3.5b), along with (3.5c) can be written in the form of
elliptic equations with nonlinear source terms:

D̄2ψ ¼ ψ

8
R̄ −

ψ5

8

�
AabAab −

2

3
K2 þ 16πρH

�
; ð3:6aÞ

Δ̄Lβ
a ¼ ðL̄βÞabD̄b lnðαψ−6Þ þ 16παψ4Ja

− αψ−6D̄bðα−1ψ6∂tγ̄abÞ þ
4

3
αD̄aK; ð3:6bÞ

D̄2ðαψÞ ¼ αψ5

�
7

8
AabAab þ 5

12
K2 þ 2πðρH þ 2JÞ

�

− ψ5ð∂t − βbD̄bÞK þ 1

8
αψR̄; ð3:6cÞ

where D̄2 ≔ D̄aD̄a, R̄ is the Ricci scalar of the spatial
conformal metric (R̄ab is its Ricci tensor) and Δ̄Lβ

a ≔
D̄2βa þ 1

3
D̄aðD̄bβ

bÞ þ R̄a
bβ

b.
The matter source terms are ρH, Ji, and J, which

correspond to the energy density, the momentum flux,
and the trace of the stress tensor. They are defined as
projections of the stress-energy tensor Tαβ and thus can be
written as

ρH ¼ Tαβnαnβ; ð3:7aÞ

Jc ¼ −Tαβγ
cαnβ; ð3:7bÞ

J ¼ Tαβγ
αβ: ð3:7cÞ

Using the perfect fluid stress-energy tensor (2.1) and our
assumption of spatial conformal flatness, we obtain

ρH ¼ ρhðαut − 1Þ2 þ ϵ; ð3:8aÞ

Ji ¼ ρhαðutÞ2ψ4ðβi þ ui=utÞ; ð3:8bÞ

J ¼ ρh½ðαutÞ2 − 1� þ 3p: ð3:8cÞ

If one imposes maximal slicing

K ¼ 0; ð3:9aÞ

∂tK ¼ 0; ð3:9bÞ

and assumes spatial conformal flatness (Isenberg-Wilson-
Mathews [IWM] approximation [28,29])

γ̄ab ¼ fab; ð3:10aÞ

∂tγ̄ab ¼ 0; ð3:10bÞ

(where fab is the metric of flat space) and preserves these
conditions in time (at least for an infinitesimally small
time interval), then the XCTS equations (3.6) simplify
considerably. In Cartesian coordinates ðfij ¼ δijÞ, they
reduce to [54]

∂i∂iψ ¼ −
1

8
ψ5ðAijAij þ 16πρHÞ; ð3:11aÞ

∂j∂jβiþ
1

3
∂i∂jβj¼2ψ10Aij∂jðαψ−6Þþ16παψ4Ji; ð3:11bÞ

∂i∂iðαψÞ ¼ αψ5

�
7

8
AijAij þ 2πðρH þ 2JÞ

�
: ð3:11cÞ

Here we raise and lower indices with the flat conformal
metric, and will do so for all other concrete spatial indices.

Note that, in the literature (as reviewed in, e.g., [54]),
authors traditionally invoke a timelike Killing symmetry or
quasiequilibrium to justify the conditions (3.9b) and
(3.10b). Typically, the maximal slicing and spatial con-
formal flatness conditions (3.9a) and (3.10a) are imposed at
a later stage. However, swapping the order of assumptions
makes the Killing symmetry redundant. That is, if one
imposes the conditions (3.9a), (3.10a) from the beginning
and preserves these conditions in time, then Eqs. (3.9b),
(3.10b) follow without assuming Killing symmetry or
quasiequilibrium. A notion of stationarity will be intro-
duced in Sec. IV for the fluid sector, but it is not necessary
for the gravity sector of our system if the IWM approxi-
mation is employed.
Note that the IWM approximation, while technically

convenient, does not allow for purely outgoing gravita-
tional radiation, as would be present in an isolated binary in
nature. In particular, the metric of a nonspinning binary
system is known to no longer be spatially conformally flat
beyond the first post-Newtonian approximation; see, e.g.,
the discussion in [55,56] in the quasicircular case, and [57]
for some work including eccentricity. The assumption of
conformal flatness is thus thought to be responsible for at
least some of the initial spurious radiation observed at the
beginning of all numerical relativity simulations of com-
pact binaries. (One finds reductions in some components of
the initial spurious radiation when one drops the
assumption of conformal flatness in the binary black hole
case, e.g., [58–62].) The waveless approach [63,64]
involves a (constraint-solved) construction of binary neu-
tron star data that does not assume spatial conformal
flatness, with some unpublished evolutions [65], but in
general this aspect has not been studied nearly as well for
binary neutron stars as for binary black holes. Gravitational
waves can naturally be accommodated in the fully con-
strained formulation of general relativity [66–69].
Nevertheless, the overall physics of the simulation is not
significantly affected by this aspect of the initial data (see
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[70] in the binary black hole case), though the high-
frequency spurious radiation can decrease the accuracy
of the simulation [71,72].

IV. STATIONARY FLUID APPROXIMATION

A. Circular orbits and helical symmetry

Binaries on circular orbits possess a helical Killing
vectorwhich generates time translations in a rotating frame:

kα ¼ tα þ Ωφα ¼ tα þΩðxyα − yxαÞ: ð4:1Þ

The vectors t ¼ ∂t, x ¼ ∂x, and y ¼ ∂y generate translations
in the t, x, and y directions, respectively, while φ ¼ ∂φ
generates rotations in the φ direction (i.e., about the z axis);
Ω is the orbital frequency. For circular orbits, the system
appears stationary in a frame corotating with the binary.
Hence, by virtue of Noether’s theorem (2.19) and (2.20),
the energy in a rotating frame,

E ¼ −kαπα ð4:2Þ

is conserved along streamlines. The conserved quantity E,
often called the injection energy [47], is analogous to the
Jacobi constant of motion of test particles around
Newtonian circular binaries [45]. For irrotational or coro-
tating binaries on circular orbits, this quantity is constant
throughout each star and is extremely useful for construct-
ing equilibriummodels numerically via self-consistent field
methods [73–78]. As mentioned earlier, this conservation
law is equivalent to (a relativistic generalization of) the
strong Bernoulli principle and follows quickly from the
Cartan identity [38,45] applied to any vector field kα that
Lie derives the flow:

Lkπα ¼ kβðdπÞβα þ∇αðkβπβÞ ¼ 0: ð4:3Þ

For flows where uα is parallel to kα (such as rigid rotation or
rigid translation), the first term in the above equation
vanishes by virtue of the Euler equation (2.17). In the
more relevant case where the flow is irrotational, i.e., the
canonical vorticity vanishes, we have

πα ¼ ∇αΨ⇔ðdπÞαβ ¼ ∇απβ −∇βπα ¼ 0; ð4:4Þ

for some velocity potential Ψ. The Euler equation (2.17) is
thus automatically satisfied and the first term in the identity
(4.3) again vanishes, implying that the injection energy
(4.2) is constant throughout the star:

∇αE ¼ 0: ð4:5Þ

For many binary neutron stars, the stars’ spin frequency is
much smaller than the orbital frequency for the last 10–20
orbits before merger, making irrotational flow a natural
approximation, as discussed in Sec. I.

B. Constant three-velocity approximation

For any barotropic flow, Kelvin’s circulation theorem
guarantees that a flow that is initially irrotational will
remain irrotational [47,79]. This result is exact for time-
dependent spacetimes without symmetries. Hence, in what
follows, we shall allow for eccentricity but we will retain
the assumption of irrotational flow. To construct irrota-
tional initial data, one typically substitutes Eq. (4.4) into the
continuity equation (2.14) and numerically solves the
resulting equation

∇α

�
ρ

h
∇αΨ

�
¼ 0 ð4:6Þ

for the velocity potential. This equation requires boundary
conditions on the star surface and thus surface-fitted
coordinates are typically used. For elliptic solvers based
on Cartesian multigrid methods, this is technically difficult.
Nevertheless, multigrid methods are widespread, as they

provide a simple way to test a new method and allow one to
solve on the grid used for evolution, avoiding the need to
interpolate as well as the need for surface-fitted coordinates
(which are required for spectral solvers, such as LORENE

[80] and SGRID [81]). In particular, there is a multigrid
method implemented in the BAM code [82,83] that we also
use for evolutions. For such multigrid implementations,
instead of solving for the velocity potential, it can be
convenient to approximate the fluid three-velocity mea-
sured by coordinate observers as homogeneous, i.e., con-
stant throughout the fluid. In particular, if the neutron stars
are initially at apoapsis, with the center of each star located
on the x axis, then we assert that each companion initially
moves rigidly along the y direction with an instantaneous
four-velocity field approximated by

uα ¼ utðtα þ vyyαÞ: ð4:7Þ
Here, the parameter vy ≔ uy=ut ¼ dy=dt denotes the
instantaneous three-velocity of a fluid element measured
by a coordinate observer, which we approximate as con-
stant throughout the star. Note that, in general, this
parameter has a different sign and magnitude for each
star. For irrotational incompressible flows, this quantity is
exactly constant throughout the star in the Newtonian limit
(cf. the discussion in the Appendix). For irrotational,
relativistic, compressible flows, this assumption is valid
in an approximate sense, as illustrated in Fig. 1. A direct
comparison with exact irrotational initial data (obtained by
solving for the velocity potential) shows that the parameter
vy is approximately constant to an accuracy of ∼1% when
the neutron stars are 67≃ 100 km apart (measured by the
coordinate separation of their centers; recall that we take
M⊙ ¼ 1). This accuracy degrades to ∼10% when the
separation decreases to 31.2≃ 47 km. The Lorentz factor
in the above equation is determined from the normalization
condition gαβuαuβ ¼ −1, which yields
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ut ¼ ½−gtt − 2gtyvy − gyyðvyÞ2�−1=2: ð4:8Þ
The Lorentz factor ut is not assumed to be constant.
We note that the constant three-velocity approximation

(4.7) is optional. It merely provides a way of easily
constructing initial data for approximately irrotational stars,
on circular or eccentric orbits, using multigrid elliptic
solvers. One can still opt to solve Eq. (4.6) for the exact
velocity potential with a solver that uses surface-fitted
coordinates, using a method outlined at the end of the next
subsection.

C. Eccentric orbits and instantaneous helical symmetry

Binaries on eccentric orbits are not stationary in a
rotating frame and thus lack helical symmetry. Hence,
no self-consistent method for constructing initial data
existed for eccentric binaries to date, and numerical
relativity groups have resorted to using a superposition
of boosted spherical stars as initial data, possibly solving
the constraints, but not solving the Euler equation. Use of
such initial data entails not one, but three distinct physical
approximations regarding the fluid configuration: (i) that
the stars are spherical and thus lack tidal deformation,
(ii) that the fluid is stationary in a linearly comoving frame,
and (iii) that the initial velocity field is homogeneous, i.e.,
constant throughout the fluid. The above approximations
are only valid at infinitely large separation and are violated
as the stars inspiral towards each other. In addition, the
metric construction as a linear superposition of boosted
spherical star data entails (iv) violations of the Einstein
constraint equations.
Thus, it remains an open question whether the f-mode

oscillations observed in simulations of highly eccentric

binary neutron stars [20,21] and black hole-neutron star
binaries [23,24] are spuriously excited due to inconsistent
initial data. In what follows, it will be demonstrated that the
above approximations are distinct and may in fact be
relaxed one by one. This allows one to examine whether
removing certain approximations removes spurious oscil-
lations in the early part of inspiral simulations. In particular,
it will be shown that dropping assumptions (i), (iv) and
retaining assumptions (ii), (iii), leads to oscillations of the
same magnitude as for boosted spherical stars. On the other
hand, the oscillations are nearly eliminated if assumption
(iii) is retained but assumption (ii) is dropped. That is,
stationarity in a linearly comoving frame is the main
source of error in boosted spherical star initial data. In
the circular limit, the data should be stationary in a rotating
frame. One can quantify the discrepancy between these two
symmetries by testing the former symmetry against exact
circular initial data stationary in a rotating frame; the
discrepancy (10%–20%) is comparable in magnitude to
the central density oscillations in simulations. Thus, for
eccentric binaries, the main difficulty is to define a suitable
notion of stationarity, i.e., to obtain a generalization of the
vector field (4.1) for which the energy (4.2) is approx-
imately constant.
We shall assume that the neutron stars are initially at

apoapsis, with the center (i.e., point of maximum density)
of the star of mass m1, m2 located respectively at position

x1 ¼ að1þ eÞ m2

m1 þm2

þ xcm; ð4:9aÞ

x2 ¼ −að1þ eÞ m1

m1 þm2

þ xcm ð4:9bÞ

on the x axis, where xcm denotes the initial position of
the center of mass (on the x axis). Here, a, b, and e ¼
ð1 − b2=a2Þ1=2 denote the semimajor axis, semiminor axis,
and eccentricity1 of the ellipse traced by the vector joining
the two star centers and the binary’s center of mass. We
have selected the apoapsis for our construction of initial
data because this represents a moment of time symmetry of
the radial motion, in the sense that the radial velocity
vanishes. In addition, maximizing the distance between
the two stars happens to maximize the accuracy of our
approximations.
We seek a vector field kα that approximately Lie derives

the flow. If such a vector exists, and the flow is irrotational,
then the Cartan identity (4.3) will give an injection energy
of the form (4.2) that is approximately constant throughout

FIG. 1 (color online). Comparing equilibrium data constructed
with the constant fluid velocity approximation (using the im-
plementation of our method in BAM) to data constructed by
solving for the exact velocity potential with SGRID. We show the
fluid velocity along the x axis for two different values of d, the
coordinate separation of the stars’ centers. One can see a
deviation of ∼10% for d ¼ 31.2, but this deviation decreases
to ∼1% for d ¼ 67. We have cut the data at the surface of the star,
denoted by the vertical thin dotted lines, since the velocity is only
well defined in the star’s interior.

1The parameter e estimated via this formula is only used as
input to monotonically control the eccentricity of the orbit
obtained upon evolving the initial data. Due to finite-size and
relativistic effects, the actual orbits deviate from closed ellipses
and the orbital eccentricity deviates from the Newtonian point
particle limit; cf. Secs. IV D and VII C.
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the fluid. In light of Eq. (4.7) and the fact that the difference
between a circular orbit and an eccentric orbit lies in the
magnitude of the y component of the initial 3-velocity at the
apoapsis, our ansatz consists of generalizing the helical
vector field (4.1) by adding a boost along the y direction.
This amounts to a change in the center of rotation of the
helical vector, and we shall use both viewpoints inter-
changeably in what follows. These considerations lead us
to introduce what we term an instantaneously inscribed
helical vector (or, more informally, a “helliptical” vector),

kα¼ tαþωφαþλyα¼ tαþω½ðx−xcÞyα−yxα�; ð4:10Þ

with a rotation frequency ω that now differs from the orbital
frequency. The displacement xc, or boost parameter
λ ¼ −ωxc, will be determined on physical grounds (with
λ and xc different for each star). The choice ω ¼ 0 and
λ ¼ vy would lead to kα ¼ tα þ vyyα, implying stationarity
in a linearly comoving frame. As mentioned earlier, con-
structing initial data with this assumption yields spurious
oscillations of similar magnitude to boosted spherical stars
and thus explains why assumption (ii) described abovemust
be dropped.2 Instead, for eccentric binaries, the parameterω
should be nonzero and λ (or xc) should vanish in the
circular limit.
The ω parameter can be determined by requiring that

Eq. (4.3) holds exactly for incompressible binaries on
Newtonian eccentric orbits (cf. the discussion in the
Appendix). This yields

vy1;2 ¼ ð1 − eÞωðx1;2 − xcmÞ: ð4:11Þ

The positions of the star centers, x1;2, are given by (4.9) and

ω ¼ ð1þ eÞ−1ð1 − e2Þ−1=2Ω̄; ð4:12Þ

where Ω̄ ¼ 2π=T is the mean motion and T is the orbital
period. The λ or xc parameter can then be determined by
requiring kα to be initially parallel to uα at the star center.
Substituting (4.9) into (4.10) and comparing to (4.7) yields

λ1;2 ¼ −ωxc1;2 ¼ −vy1;2
e

1 − e
− ωxcm; ð4:13Þ

with vy ¼ vy1;2 given by (4.11). As expected, for e ¼ 0 the
inscribed helical symmetry vectors (4.10) yield initial data
for circular orbits, while e ¼ 1 corresponds to zero tan-
gential velocity vy1;2 ¼ 0 for a fixed ω, giving a head-on
collision starting from rest. [Note that ω blows up as e↗1.
This can be seen in Eq. (4.11), which our method
reproduces in the Newtonian limit, as discussed below,
even though we do not use that equation to determine ω.
However, one can simply set ω ¼ 0 and vy1;2 ¼ 0 in our
method to obtain an exactly head-on collision.]
The parameters ω and λ in the inscribed helical sym-

metry vectors in Eq. (4.10) have been determined such that
we get the correct answer for irrotational incompressible
stars moving on ellipses (see the Appendix).
There is, however, a completely different way to obtain

this result. All we need are the following three reasonable
assumptions: (i) There exists a vector kα that approximately
Lie derives the flow. (ii) kα is along the motion of the star
center. (iii) Each star center moves along a segment of an
elliptic orbit at apoapsis.
Assumption (ii) is absolutely necessary, otherwise ka can

never be an approximate Killing vector. Assumption (iii)
specifies what orbit we want. It seems reasonable that at
least approximately we should have Newtonian and thus
elliptic orbits. Since we only need a small segment of an
orbit near apoapsis, we will approximate this segment by
the circle inscribed into the elliptical orbit there (see Fig. 2),
i.e., the circle that that has the same curvature radius Rc as
the ellipse at apoapsis. From elementary considerations it is
clear that Rc has to be Rc ¼ ð1 − e2ÞA for an ellipse with
semimajor axis A and eccentricity e. In Newtonian theory it
is well known that two particles of masses m1 and m2 that
orbit around each other, move on ellipses with semimajor
axes a1 ¼ d1

1þe and a2 ¼ d2
1þe, where d1 and d2 are the

x

y

a1

b1

rc1

x1

xc1xcm

FIG. 2 (color online). Illustration of the approximation of the
orbits by using circles inscribed into the orbital ellipse in a way
that their curvature is the same as the one of the ellipse. We
show the scaled semimajor axis a1 ¼ a m2

M , semiminor axis
b1 ¼ b m2

M , and the radius rc1 ¼ b21=a1 and center xc1 of the
inscribed circle as well as the center x1 of one star. The center of
mass is denoted by xcm.

2In particular, this choice would mean that ð∂t þ vy∂yÞh
vanishes. For circular orbits, one can check this against the exact
enthalpy profile, which satisfies ð∂t þΩ∂φÞh ¼ 0. Using this
exact relation to eliminate the time derivative, the previous
expression becomes ð∂t þ vy1;2∂yÞh ¼ Ω½ðx1;2 − xÞ∂y þ y∂x�h
for star 1,2. This quantity does not vanish in the circular limit
except at the stellar center x ¼ x1;2, y ¼ 0. In addition, the force
equation [of the form (4.20)] one obtains from the injection
energy (4.2) that is constructed from kα ¼ tα þ vyyα violates true
force balance at the center of the star. The violation stems from
the absence of centrifugal forces, which leave gravitational
forces unbalanced. This results in density oscillations of order
10%–20% in simulations, as illustrated in Fig. 4.
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distances of the particles from the center of mass at
apoapsis. Thus the radii of the inscribed circles have to be

rc1;2 ¼ ð1 − eÞd1;2: ð4:14Þ

Obviously these two inscribed circles are not centered on
the center of mass, but on the points

xc1;2 ¼ x1;2∓rc1;2 ¼ xcm þ eðx1;2 − xcmÞ; ð4:15Þ

where we have used d1;2 ¼ jx1;2 − xcmj and assumed that
apoapis occurs on the x axis. (The upper and lower signs
correspond to the subscripts 1 and 2, respectively.)
Assumption (ii) then tells us that the approximate
Killing vector must have the form

kα1;2 ¼ tα þ ω1;2½ðx − xc1;2Þyα − yxα� ð4:16Þ

near each star. While the expressions for kα1 and kα2 in
Eq. (4.16) look different, we will show next that ω1 ¼ ω2,
so that far from the stars (where x ≫ xc1;2) there is only one
approximate Killing vector. From the definition of the
center of mass, we obtain m1d1 ¼ m2d2 and thus using
Eq. (4.14) we find

m1rc1 ¼ m2rc2 : ð4:17Þ

If we assume that the center of mass is at rest, momentum
conservation demands that m1ω1rc1 ¼ m2ω2rc2 . Together
with Eq. (4.17), this implies that

ω1 ¼ ω2 ≕ ω: ð4:18Þ

Finally, in order to satisfy assumption (ii), vy in Eq. (4.7)
must be chosen to be

vy1;2 ¼ �ωrc1;2 ¼ ð1 − eÞωðx1;2 − xcmÞ: ð4:19Þ

The value of ω is usually derived from a “force balance”
equation, which has the form of Eq. (4.5) applied at the
center of each star. In the Newtonian limit, this equation
reads

D̄iE ¼ 0; ð4:20Þ

where the injection energy in star 1 is given by

E ¼ 1

2
v2 þ Φþ h − ω½ðx − xc1Þvy − yvx� ð4:21Þ

and Φ is the Newtonian gravitational potential. Here D̄a
is the covariant derivative compatible with the Euclidian
3-metric fab in E3. (We have used the same notation for this
covariant derivative as for the covariant derivative com-
patible with the conformal 3-metric, since we took the
conformal 3-metric to be flat.) If the stars are far apart and

thus almost spherical, then the orbits are almost elliptical
and we can approximate the potential due to star 2 as that of
a point mass, given by Φ ¼ −Gm2=∥x − x2∥, and neglect
the gradient of star 1’s potential at its center. (We show
factors of G explicitly here and during the rest of this
discussion to make the distinction between the gravitational
and centripetal forces immediately apparent.) If we use this
expression in Eq. (4.20) at the star center x ¼ x1 where the
enthalpy is maximum, ∂xh ¼ 0, we find

G
m2

r2
− ωvy ¼ 0; ð4:22Þ

where r is the separation of the stars. Using vy ¼ vy1 from
Eq. (4.19) we find

G
m1m2

r2
¼ m1ω

2rc1 ; ð4:23Þ

which implies that ω is such that the centripetal force
needed to keep star 1 on the inscribed circular orbit is
provided by the gravitational force due to star 2.
Thus the ansatz (4.10) admits a beautifully simple

geometrical interpretation. The vector kα can be interpreted
as an instantaneously inscribed helical vector field, that
generates time translations in a frame rotating about a point
ðxc1;2 ; 0; 0Þ given by Eq. (4.15). When projected onto a
spatial slice Σt, the integral curves of this vector field are
circles inscribed into the elliptic trajectory at the apoapsis,
with their center at ðxc1;2 ; 0; 0Þ and a radius rc1;2 equal to the
radius of curvature of the ellipse at the apoapsis. Contrary
to the circular case, the integral curves of this vector field
do not coincide with the (eccentric) orbit of the star center
(though they are tangent to each other at t ¼ 0, which
suffices for constructing initial data), and the energy (4.2) is
not conserved by the flow. Instead, as one may see by
operating with kα∂α on (A16), this energy is constant
spatially [Eq. (4.20) is satisfied throughout the fluid] at the
initial time t ¼ 0 but not for t > 0. Because the spatial
derivatives of the injection energy E approximately vanish
initially, we infer that its time derivative also vanishes
instantaneously (i.e. ∂tE ¼ −ka1;2∂aE ¼ 0 at t ¼ 0).
Equation (2.20) is then satisfied and, in this sense, kα1;2
may be considered approximate Killing vectors for the
region of spacetime occupied by each star.
In principle, if one wishes to construct initial data at any

time (not necessarily at apoapsis), one could use a more
general ansatz, kα ¼ tα þ ω½ðx − xcÞyα − ðy − ycÞxα�, with
the parameters ω, xc, and yc determined by assuming that
the orbit is instantaneously circular, i.e., by constructing a
circle inscribed at the elliptic trajectory at the point of
interest. We have not tested this more general construction,
as nonvanishing radial derivatives and close separation are
expected to degrade accuracy. Instead, for reasons detailed
above, we opt to construct initial data at apoapsis and set
yc ¼ 0. Note that the stars will likely obtain a small initial
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radial velocity component when the data are evolved, from
the “kick” due to the initial spurious radiation. However, at
the relatively large separations we are considering, this
radial velocity component will be small, so the stars’ orbit
will still begin very close to periapsis, thus retaining all of
the favorable features which led us to choose that point.
With the ansatz (4.10), the first integral (4.2) to the

relativistic Euler equation (2.17) becomes

E ¼ −hfut þ ω½ðx − xcÞuy − yux�g; ð4:24Þ

where

uμ ¼ gμνuν ¼ utðgμt þ vygμyÞ ð4:25Þ
if the constant 3-velocity approximation (4.7) is used, or

uμ ¼ h−1∇μΨ ð4:26Þ

if one solves Eq. (4.6) for the exact velocity potential. In
this case, time derivatives are eliminated in favor of spatial
derivatives using the replacements ∂tΨ → −E − kaDaΨ,
∂tρ → −kaDaρ [with ka denoting the spatial part of the
vector field (4.10) and Da the covariant derivative com-
patible with the physical 3-metric γab], resulting in the
equation [47]

DaDaΨ ¼ ðβa þ kaÞDaΛ − ½DaΨ − Λðβa þ kaÞ�Da ln
αρ

h
;

ð4:27Þ
where Λ ≔ α−2½E þ ðβa þ kaÞDaΨ�. For fixed h and ρðhÞ,
this equation is elliptic [the principal part is γab þ lalb,
la ≔ α−1ðβa þ kaÞ, which is clearly positive definite, since
the 3-metric is positive definite]. It can be solved iteratively
for Ψ using a numerical Poisson solver, with the right-hand
side (including the additional terms one obtains if one does
not assume spatial conformal flatness) treated as a fixed
source in each iteration, as in [64]. The boundary condition

½DaΨ − Λðβa þ kaÞ�DaρjS ¼ 0 ð4:28Þ
is imposed on the surface of the star [47].
Taking the Newtonian limit of the energy (4.24) (cf. the

discussion in the Appendix) and applying Eq. (4.20) at the
center of one star [given by (4.9) and defined as the point of
maximum specific enthalpy, ∂xhjx¼x1;2 ¼ 0] yields a force
balance equation ∂xEjx¼x1;2 ¼ 0. It is reassuring and
straightforward to check that, for inverse square gravita-
tional forces, this equation amounts to Kepler’s third law
for eccentric binaries

Ω̄2 ¼ Gðm1 þm2Þ
a3

; ð4:29Þ

where a is the semimajor axis of the ellipse traced by the
vector joining the two star centers.

D. Radiation reaction and radial velocity

When the eccentricity parameter e is set to zero, the
ansatz (4.10) reduces to the helically symmetric ansatz
(4.1). However, because this expression neglects the radial
velocity due to radiation reaction, responsible for binary
inspiral, evolutions of helically symmetric data exhibit
residual eccentricity, e.g., the orbital separation acquires an
oscillatory contribution and does not decrease monotoni-
cally in time [84]. In light of the preceding discussion, a
way to incorporate radial velocity is to include a (constant
as measured by coordinate observers) three-velocity vx

along the radial (initially x) direction in uα and kα, thereby
replacing Eqs. (4.7) and (4.10) by the ansatz

uα ¼ utðtα þ vxxα þ vyyαÞ ð4:30Þ

and

kα ¼ tα þ ωðx − xcÞyα − ðωy − vxÞxα: ð4:31Þ

The relation between ωxc and vy is again given by
Eq. (4.11), which guarantees that the condition uα ¼ utkα is
satisfied at the center x ¼ x1;2 of each star.
The radial velocity parameter vx can be determined,

for example, by post-Newtonian or effective-one-body
theory, with or without tidal (finite-size) corrections for
the given equation of state. This has been sufficient to
significantly decrease the eccentricity in simulations in the
past (for example, the simulations performed in [85] used a
Lorentz boost of the initial data based on point-particle
post-Newtonian values for the radial velocity and led to
significantly lower eccentricity than the simulations in [86]
that did not incorporate radial velocity). Alternatively, if
one wishes to obtain truly quasicircular data, then one may
set e ¼ 0 and an initial value for vx in the above equations,
evolve the resulting data for a period of time adequate to
determine the orbital eccentricity, adjust vx to reduce the
eccentricity, and iterate this process until the resulting
eccentricity is sufficiently small, similarly to what has been
done for binary black hole simulations [87–91].3
As stated earlier, the approximation (4.30) is meant to be

used when elliptic solvers without surface-fitted coordi-
nates are employed. If surface-fitted solvers are available,
one may instead solve the elliptic equation (4.27) for the
velocity potential, with kα given by (4.31). In either case,
the approximate first integral to the Euler equation is given
by (4.2), and provides the basis for a self-consistent
iteration that will be outlined below.
If the stars are represented by compact monopole sources

that inspiral towards their center of mass with a time-
dependent radial velocity, then one can straightforwardly

3While the present manuscript was near completion, we were
informed that recently this procedure was also implemented in
[84] for binary neutron star simulations.
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show that the vector (4.31) Lie derives the Newtonian
gravitational field in a zone near each monopole. In this
sense, the vector field is approximately Killing near each
compact star. Note that this is not true globally and that the
vector field is different for each star; this does not limit our
formulation since kα is merely used for the hydrodynamics
inside each star and not for the gravitational field equations.

V. NUMERICAL METHOD

A. Elliptic solver

To construct binary neutron star initial data (i.e., expres-
sions for the five elliptic quantities ψ , α, and βi and the
matter density profile, in our constant 3-velocity approxi-
mation), we solve the five elliptic equations (3.11) together
with the first integral of the Euler equation (4.24), where
the latter has to be fulfilled throughout the stars. We solve
these equations by iteration using a self-consistent field
method. In each step we approximate derivatives by
standard second-order finite differencing operators in a
full approximation storage (FAS) multigrid scheme with
nested boxes on a Cartesian grid. We employ a red-black
Gauß-Seidel method [92] for our relaxation scheme. This
method should lead to second-order convergence, since it
uses second-order finite differencing. However, if desired,
the computation could be extended to up to eighth-order
finite differencing using the OLLIPTIC code [93], and
therefore yield higher convergence orders. Another way
to increase the accuracy and obtain spectral convergence
would be to implement the method in SGRID.
The iteration process is highly sensitive to the initial

guess and cannot be started with an arbitrary set of values.
Solutions to Einstein’s equations for isolated nonrotating
neutron stars are well known and will serve as an initial
guess for our iteration. We proceed as in [20]. We first
construct two single relativistic nonrotating spherical stars
(solutions to the Tolman-Oppenheimer-Volkoff [TOV]
equations [94,95]) with the same baryonic mass or central
density (depending on what we fix during the iteration) as
that desired for the stars in the initial data. We then boost
these stars with a Lorentz transformation in the �y
direction to give the appropriate orbital motion and super-
pose the resulting 4-metrics by

gðsupÞμν ¼ gð1Þμν þ gð2Þμν − ημν; ð5:1Þ

where gðAÞμν denotes the metric of star A ∈ f1; 2g (including
the boost) and ημν is the Minkowski metric. We extract
initial values for the elliptic quantities from the superposed
4-metric and also initialize the matter enthalpy profile using
the TOV solution. Since the spatial metric is not con-
formally flat, due to the boost, we simply take ψ4 to be the
xx component of the 3-metric. Note that one can usually
take the boost to be zero without affecting the convergence
if the stars are widely separated (as in all the eccentric runs

we show in Sec. VII). However, a nonzero boost is
necessary to obtain convergence when the stars are close
(as in the d ¼ 31.2 run shown in Fig. 1); here we set the
boost parameter by hand to reproduce the expected fluid
velocity.
The grid is simple Cartesian, and hence not compactified

in any spatial direction. We choose large grid setups and
thus distant outer boundaries, which are located far away
from the stars at a distance of ∼3000, while a typical stellar
radius is ∼10. We set Dirichlet boundary conditions for the
elliptic variables (ψ , α, and βi) at our outer boundary by
using values from the superposed TOV metric there, which
we find produces better results (e.g., better agreement with
SGRID at the boundary in the quasicircular case) than just
using the values these variables would have at infinity (i.e.,
α ¼ ψ ¼ 1 and βi ¼ 0).

B. Iteration scheme

In each iteration step we have to compute four constants
from the integrated Euler equation (4.24) and its derivative
with respect to x, which—evaluated at the star’s center—
yields the force-balance equation

0 ¼ f∂xut þ ω½ðx − xcÞ∂xuy þ uy − y∂xux�gjx¼x1;2
: ð5:2Þ

The constants of interest are the orbital frequency ω, the
center of mass xcm, and the injection energy of each star
E1;2, which is given as the constant of integration. We are
free to make arbitrary choices for the central density and the
separation of the stars in advance and fix them throughout
the iteration. Note that it is also possible to fix the total rest
mass instead of the central density, which we do when
computing sequences. We evaluate both the first integral to
the Euler equation (4.24) and the force balance equa-
tion (5.2) at the centers of the two stars, which are located at
fixed positions x1;2. For unequal mass stars, we have to use
a root finder inside our overall iterative scheme to obtain
these constants, but for equal mass stars this system is
degenerate and xcm can simply be set to zero, allowing us to
use algebraic solutions without an additional call to a root
finder (though we still solve by iteration overall).
Using (4.25), the first integral can be written as

E1;2 ¼ −hutf−α2 þ ψ4½βiβi þ v1;2βy − ωyβx

þ ωðx − eðx1;2 − xcmÞ − xcmÞðβy þ v1;2Þ�g ð5:3Þ

and the force-balance equation can be rewritten in the same
way. The latter can be solved for ω algebraically if we set
h0ðx1Þ ¼ 0, which ensures that the maximum density stays
at the center of the star. (While the force-balance equation
contains ut, which depends on ω, we solve it with ut fixed,
and then update ut later in the iteration.) The frequency ω
can now be substituted into (4.24), along with value of the
enthalpy h obtained from the fixed central density, to obtain
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the injection energy E. Using these values for ω and E, we
are able to compute the enthalpy density profile by solving
(5.3) for h. We then use the equation of state to obtain the
mass density ρðhÞ. We finally update ut using (4.8) [and
(4.25) to lower the index] and the new values of the
constants and solve the force-balance equation for ω again
with the new ut, iterating over these steps until the change
inω falls below numerical accuracy, which usually happens
after a few iterations.
Having gathered all the necessary constants, we can

compute the source terms using (3.8) and then use the
multigrid scheme to solve the elliptic equations. In this
step, we employ softening, i.e., instead of taking the full
value of the updated variable, we use a weighted average of
the old and new variables. Specifically, all elliptic variables
X are set using X ¼ 0.25Xnew þ 0.75Xold, similar to the
softening used in [31]. We then return to the computation of
the constants, which are no longer valid, since the elliptic
variables have now changed. This process is iteratively
repeated until the change in the elliptic variables falls below
a prescribed threshold.

VI. QUASICIRCULAR ORBITS

Here we give examples of quasicircular initial data
constructed with our method, and verify the code’s results
against those obtained using SGRID. We summarize the
properties of the initial data sets we consider in this section
and the following one in Table I, which also gives the labels
we use for the different sets.
We compare the e ¼ 0 limit of our data with helical

Killing vector initial data constructed using the spectral
code SGRID [81], which solves for the velocity potential
using surface-fitted coordinates and also compactifies the
grid to include spatial infinity. For the purposes of our
comparison, we use nA ¼ nB ¼ 24, nϕ ¼ 8, nc ¼ 16 points
in SGRID (see [81] for details about SGRID’s grid structure),
which is sufficiently accurate, due to the code’s spectral
convergence.

We perform evolutions of the data using the BAM code,
which is a finite difference adaptive mesh refinement
code for evolving the Einstein equations [82], and includes
a high resolution shock-capturing module to solve the
equations of relativistic hydrodynamics [83]. Specifically,
we use the same evolution setup as in [96], with the
following differences: We use second-order spatial finite
differencing for the geometry, consistent with the order of
the multigrid algorithm, and fourth-order Runge-Kutta
integration in time, along with fourth-order Kreiss-Oliger
dissipation (with a factor of 0.5), as appropriate for second-
order spatial finite differencing. For the evolution of the
fluid quantities, we use the (formally) fifth-order weighted-
essentially-nonoscillatory (WENOZ) scheme found to
improve accuracy in [97]. Finally, in the gauge conditions,
the coefficient of the contracted Christoffel symbol in the
1þ log shift [in Eq. (15) in [83]] has been set to 1 instead of
the value of 3=4 used in [83,96,97]. (This is a minor change
that was made for convenience in [98] and is not expected
to affect anything significantly.)
First, wewant to test convergence of the initial data solver

using the ecc0 data set. Therefore, we consider three
different resolutions, with a finest grid spacing of
0.09375, which is within the range of desired resolutions
for production runs. We kept the outer boundaries fixed at a
distance of∼500with five levels of mesh refinement (where
each level doubles the resolution), which is sufficient for our
purposes. One can use more refinement levels for highly
accurate data intended for evolution and gravitational-
wave extraction. Figure 3 shows the expected second-order
convergence in a one-dimensional comparison of the
momentum constraint. Here we plot the largest of the
components, which is the y component, since the stars
are initially moving in the �y direction. The convergence
behavior for the other components or the Hamiltonian
constraint is similar. At the surface of the stars we can
see some deviation from perfect convergence, including
spikes in the constraint violations at the surface itself (shown
in Sec. VII A in the eccentric case), which are cut off here to

TABLE I. Parameters for the initial data sets considered in this paper. Here m1;2 denotes the baryonic mass of one of the stars (recall
that we are only considering the equal-mass case in this paper), d denotes the initial coordinate separation of the stars’ centers, e is the
eccentricity parameter set in the initial data, and λ denotes the boost parameter used in the inscribed helical symmetry vectors.
Additionally, κ is the scale parameter in the polytropic EOS, ðΔxÞmin denotes the finest grid spacing, and “points” denotes the number of
points used in each direction on each of lmax refinement levels (as well as the fundamental grid level l ¼ 0, giving lmax þ 1 levels total);
the levels with l ≥ lmv are moving. (We do not give lmv for the sequence data sets seq0–seq0.9, which we do not evolve.) We name the
sets using their eccentricity, with markers for the cases with a different choice of the boost parameter (“v”), data used for a sequence
(“seq”), and an additional high-resolution case (“high”).

Name m1;2 d e λ κ ðΔxÞmin points lmax lmv

ecc0 1.620 31.3 0 −ωxc 123.65 0.09375, 0.1875, 0.375 194, 98, 50 5 1
ecc0v 1.620 31.3 0 vy 123.65 0.1875 98 5 1
seqe 1.625 ½30.64;…; 51.44� 0, 0.2, 0.5, 0.9 −ωxc 123.65 0.156 146 8 � � �
ecce 1.504 80.0 0.45, 0.5, 0.6, 0.73,

0.8, 0.915, 0.96
−ωxc 100 0.25 130 6 3

ecc0.915high 1.504 80.0 0.915 −ωxc 100 0.125 258 6 3
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show the central behavior in detail. These features are
undesirable, but they are not easy to remove in an imple-
mentation without surface-fitted coordinates. The conver-
gence in the eccentric case is further detailed in Sec. VII A,
which includes a discussion of the spikes and a comparison
of the convergence of the Hamiltonian and momentum
constraints.
As mentioned earlier, using initial data inconsistent with

the hydrodynamic properties of the system can lead to
spurious oscillations of the neutron stars, which would
contaminate the gravitational wave signal. As shown in
Fig. 4, the oscillations obtained in the evolution of the
SGRID data (which solves for the velocity potential in
addition to solving the constraints) are negligible compared
to those obtained when evolving superimposed spherical
TOV stars, which exceed ∼20%. The latter configurations
are generated by choosing a boost parameter that results in
an overall velocity that is similar to the known values for
the (approximately) quasicircular orbit from SGRID and
subsequently evaluating the orbits and tuning the boost
parameter to iteratively lower the orbital eccentricity (via
bisection). Note that it is possible to reduce the spurious
oscillations even for simple superimposed TOV data by
changing the stars’ shapes, as found by Tsatsin and
Marronetti [99], who adjusted the coordinates, matter
density, and velocity in an ad hoc but tunable way. This
allowed them to reduce the oscillations by an order of
magnitude, even without explicitly solving the hydrody-
namic and constraint equations.
On the other hand, solving the hydrodynamic and

constraint equations, but assuming stationarity in a linearly

comoving frame, does not significantly reduce the spurious
oscillations. As a noteworthy caveat, one should keep in
mind that the configurations that assume stationarity in a
linearly comoving frame do not converge easily; one must
use significant softening (overrelaxation) and carefully
adjust the order in which the equations are iterated.
Although the errors become smaller and the solution seems
to converge after a few iterations, the error seems to saturate
and the solution tends to diverge after a large number of
iterations if the error tolerance is small. Since in this case,
as discussed in Sec. IV C, true force balance is lacking (a
major source of instability, cf. footnote 2), we did not
pursue this approach further.
By employing assumptions consistent with the hydro-

dynamic properties of the system, i.e., assuming stationar-
ity in a rotating frame at apoapsis (discussed in Sec. IV C),
the density oscillations exhibited in simulations were
reduced by an order of magnitude, i.e., to ∼2%–3%, as
shown in Fig. 4. It will be shown in Sec. VII A that the
remaining density oscillations can be further reduced (at
approximately second order in our grid spacing) by
increasing the resolution. Unlike the method in [99], our
approach does not require any fine-tuning, satisfies the
constraint equations, and leads to smaller density oscil-
lations than the ad hoc method in [99].

VII. ECCENTRIC ORBITS

A. Convergence

In this section, we perform evolutions of initial data sets
constructed using the pair of inscribed helical symmetry

FIG. 3 (color online). The y component of the momentum
constraint (Dy) for the ecc0 setup. We plot Dy along the x axis
(which passes through the centers of both stars) for three grid
spacings of Δx ¼ 0.1875, 2Δx, and Δx=2 in the finest box. The
constraint violations were computed with second-order finite
differencing, which represents the accuracy of the multigrid
algorithm, so we scale the two finer resolutions as appropriate
for second-order convergence. Note that the feature on the right
side of the plot is due to inaccuracies at the surface of the star,
leading to the spikes that we can also see in the eccentric case (see
Sec. VII A) but do not show here to focus on the convergence in
the strong-field interior of the star.

FIG. 4 (color online). Comparison of the oscillations of the star,
measured using the maximum density at each time step, ρmax,
normalized by the maximum density at t ¼ 0, ρmax;0. We show
evolutions of SGRID data (solid black line) and the corresponding
data set constructed with our method assuming stationarity in a
rotating frame (ecc0, blue dashed line). One can clearly see the
improvement over the strongly oscillating curves of superim-
posed boosted spherical stars (red dot-dashed line) and data
computed using stationarity in a linearly comoving frame (ecc0v,
green dotted line). Note that the latter data set was only evolved
for a short time, since we were only interested in the spurious
oscillations.
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vectors (4.10) for nonzero eccentricity. We first consider
initial data for the ecc0.915(high) cases (whose parameters
are given in Table I). The grid setup is a realistic one that
could be used for production-quality evolutions, with six
levels of mesh refinement (beyond the coarsest grid level)
and an outer boundary at ∼103. We consider two reso-
lutions: The lower resolution has 1303 points in each
refinement level and a finest resolution of 0.25 (with 64
points across the star). The higher resolution has 2583

points in each refinement level and a finest resolution of
0.125 (with 128 points across the star). It took 0.6 and 0.9
hours to generate initial data for these two configurations
on the JUROPA cluster, running on 96 and 256 processors,
respectively. This nicely illustrates the benefit of the
simplicity of the implementation, as the ratio of time for
evolution to initial data computation is satisfyingly large:
Even for this very short run, the total wall clock time to
merger (at ∼800 simulation time) was ∼25 and ∼50 times
longer than the time it took to solve for the initial data for
the low- and high-resolution runs, respectively. For longer
evolutions this ratio is even larger [e.g., the total wall clock
time to merger for the (low-resolution) ecc0.45 case is ∼6
times longer than the ecc0.915 case, while the initial data
solve took about the same time for both eccentricities].
In Fig. 5, we show convergence of the Hamiltonian and

momentum constraints in the finest box (surrounding
one star) along the axis passing through both stars’ centers.

(We chose this data set with a relatively large value of e ¼
0.915 as a representative for all other eccentricities. The
Hamiltonian and momentum constraint for other values of
e are almost the same as for the case at hand.) The
convergence is clearly of second order, as expected, apart
from some spikes at the surface of the star, which are also to
be expected, since the density of the n ¼ 1 polytropic stars
we consider has a cusp at the surface (i.e., it is not
differentiable there). Moreover, we have chosen to compute
the constraints here using sixth-order finite differencing,
the order we use in the evolutions (since the use of higher-
order finite differencing improves their accuracy, e.g.,
reducing the constraint violations during the evolution),
and one would expect the use of higher-order finite
differencing to amplify any such features.
This increase of the finite difference order changes the

shape of the constraint violations (cf. Fig. 3 and the bottom
panel of Fig. 5—there is not much difference due to the
value of the eccentricity), in addition to changing their
magnitude (increasing the maximum magnitude at the
center of the star for the Hamiltonian constraint, but
decreasing it for the momentum constraint). This difference
in shape is likely to be expected, since the remainders from
second-order finite differencing are relatively large here.
The use of higher-order finite differencing also creates
spikes in the Hamiltonian constraint at the star’s surface—
there are only some slight wiggles present at the surface
when the Hamiltonian constraint is computed using
second-order finite differencing. However, increasing the
order of finite differencing decreases the size of the spikes
at the surface of the star in the momentum constraint.
We also show the improvement of the spurious density

oscillations with increased resolution in Fig. 6. We evolved

FIG. 5 (color online). The initial constraint violations for the
ecc0.915 data in the finest box (surrounding one star) along the x
axis, which passes through both stars’ centers. We show the
Hamiltonian constraint (H) and the y component of the momen-
tum constraint (Dy) for two resolutions, with grid spacings of
0.25 and 0.125 in the finest box and demonstrate second-order
convergence of the constraints computed with sixth-order finite
differencing stencils, the same order used in the evolution of this
data set we show later. (Recall that the initial data code is only
second order accurate.)

FIG. 6 (color online). The initial oscillations of a star in a binary
with e ¼ 0.915, illustrated by considering the maximum density
at each time step, normalized by the initial maximum density. We
show this for two resolutions with finest grid spacings of 0.25 and
0.125, respectively (i.e., ecc0.915 and ecc0.915high) to demon-
strate how the density oscillations decrease with increasing
resolution at approximately second order. The notation ρ0.125 ×
22 denotes that the oscillations (not the total maximum density)
are multiplied by 22, as discussed in the text.

NICLAS MOLDENHAUER et al. PHYSICAL REVIEW D 90, 084043 (2014)

084043-14



the ecc0.915(high) initial data described above (now using
sixth-order spatial finite differencing, as discussed further
in Sec. VII C) and monitored the maximum density. We see
a clear improvement in the oscillations when doubling the
resolution and the convergence can be estimated by
multiplying the oscillations by the appropriate scaling
factor, i.e., considering 4Δρmax þ ρmax;0, where Δρmax ¼
ρmax − ρmax;0 for second-order convergence with a factor of
2 difference in the grid spacing. Apart from some smaller
superimposed features, which can be seen, e.g., around t ¼
50 or t ¼ 180, this scaling shows that the oscillations
decrease with increasing resolution with almost second-
order convergence. Of course, we do not expect the
oscillations to completely converge away in the continuum
limit, since we have still assumed spatial conformal flatness
and have neglected the radial component of the velocity
from radiation reaction. However, we might expect that in
the continuum limit these oscillations would be at the same
small level seen for the SGRID quasicircular data in Fig. 4, in
which case it makes sense to compute the convergence
order assuming that the oscillations are zero in the
continuum limit. Indeed, this expectation is borne out by
the results shown in the figure and preliminary results from
our implementation of the method in SGRID.

B. Eccentric sequences

As a check of our results, we compute constant-rest-mass
sequences for equal mass stars of a fixed baryonic mass
mb ¼ 1.625 for varying eccentricity e (the seq0–seq0.9
data sets in Table I); an isolated star with that baryonic
mass has a gravitational mass of Mi ¼ 1.5149. Given
these quantities, we can compute the binding energy
Eb ¼ MADM −M, where M ¼ 2Mi and MADM denotes
the Arnowitt-Deser-Misner (ADM) mass, an asymptotic
quantity that gives a measure of the total mass of the
spacetime. The ADM mass is defined via an integral at
spatial infinity (see, e.g., [100]), and thus is generally
obtained by extrapolation in numerical codes that do not
use compactified coordinates to include spatial infinity on
the grid (see, e.g., [82]). In our current situation, we found
that the resolution of the outer grids was insufficient to
allow us to obtain accurate results from extrapolation. We
thus chose to obtain the ADM mass from a single
sufficiently large extraction radius (though not too large,
to avoid errors due to low resolution).
Here we can use a simplified formula for the ADM mass

applicable to our spatially conformally flat case, given in
Eq. (16) of [100], which gives significantly better results
with no extrapolation than the standard expression (given
in, e.g., Eq. (7) of [100]). Specifically, in empirical tests
with SGRID data, we found that changing the extraction
radius from r ¼ 150 to r ¼ 500 leads to a ∼4% deviation in
MADM when using the standard expression, while this
deviation is less than 0.01% when using the expression that
takes advantage of conformal flatness. This is to be

expected, since (as discussed around Eq. (16) in [100])
the simplified expression can be evaluated at any radius in a
region where the conformal factor satisfies the Laplace
equation, and the conformal factor in our data satisfies the
Laplace equation to a good approximation in the region in
question [see Eq. (3.11a)], since the matter source is zero
there, and the AijAij term will be small (it falls off
asymptotically as the shift squared, and the shift goes to
zero at infinity). The standard measure for the ADM
angular momentum is sufficiently accurate for finite radii,
so that we do not use extrapolation here, as well (the
deviation caused by the change of extraction radius
considered above is around 0.05%).
For quasicircular data, equilibrium sequences are com-

monly supplied by plotting the dependence of the binding
energy Eb and ADM angular momentum JADM on the
orbital frequency Ω. In the eccentric case, we will use the
mean motion Ω̄, rather than the frequency ω which appears
within the two inscribed helical symmetry vectors (4.10).
The reason is that it is Ω̄, not ω, that satisfies Kepler’s third
law (4.29) in the Newtonian limit. Specifically, increasing
either ω or Ω̄ corresponds to decreasing the binary’s initial
coordinate separation, but only Ω̄ decreases with increasing
eccentricity e, as expected from the Newtonian limit, while
ω ∝ 1=

ffiffiffiffiffiffiffiffiffiffiffi
1 − e

p
in the Newtonian limit. The top panel of

Fig. 7 gives a plot of ω, as it is the quantity used in the code,
which illustrates this increase with increasing e.
Figure 7 shows these sequences and compares them to

those expected from Newtonian theory. Considering the
quasicircular limit e ¼ 0, we can see a qualitative agree-
ment of the results. We also find the expected improvement
in this agreement when we compare with the third-order
post-Newtonian (PN) curve (errors of ∼1%), based on
calculations done by Mora and Will [101]. Considering the
approximations we made for the velocity potential and the
effect of finite size boxes on obtaining the ADM mass
accurately, we do not expect better agreement.4 (See, e.g.,
Fig. 3 in [64] for comparison of a quasicircular sequence
with 3PN predictions using a code with surface-fitted
coordinates that solves for the velocity potential.) One
sees that the angular momentum decreases as the eccen-
tricity increases in the middle panel of Fig. 7. This behavior
is predicted by the Newtonian limit, as is the independence
of the binding energy Eb on the eccentricity seen (approx-
imately) in the bottom panel of that figure. Specifically, the
Newtonian expressions in terms of Ω̄ are

4While there are now 4PN results available for the energy and
angular momentum in the quasicircular case [102], which are
given explicitly in Appendix A of [84], we had initially intended
to carry out the comparison with PN results in the eccentric case,
as well, for which the 3PN computations in Mora and Will [101]
seemed the obvious choice. Moreover, given the effects of our
constant three-velocity approximation and finite boxes, compar-
isons with higher-order PN would not necessarily be too
illuminating.
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Eb

M
¼ −

η

2
ðMΩ̄Þ2=3; ð7:1aÞ

J
M2

¼ ηð1 − e2Þ1=2ðMΩ̄Þ−1=3; ð7:1bÞ

where η ≔ m1m2=M2 denotes the symmetric mass ratio,
with M the total mass, so η ¼ 1=4 in the equal-mass case

we are considering. These expressions come from sub-
stituting Ωa ¼ ½ð1 − eÞ=ð1þ eÞ3�1=2Ω̄ into Eqs. (2.2) in
Mora and Will [101]. The expression for the angular
velocity at aphelion, Ωa, in terms of Ω̄ comes from the
standard Newtonian expressions above Eqs. (2.2) in Mora
and Will, noting that Ω̄2 ¼ M=a3, where a is the binary’s
semimajor axis, by Kepler’s third law.
It would be obvious to compare these results to the PN

calculations from Mora and Will, too. However, the PN
results obtained in that manner are not well behaved for
head-on collisions. Since we approach such configurations
for increasing eccentricities, while Mora and Will approach
an unbound parabolic orbit (with a nonzero angular
momentum), the comparison is not appropriate. While
one could also consider the alternative quasi-Keplerian
parametrization of eccentric orbits reviewed in Sec. 10 of
[102], which remains well behaved even for vanishing
angular momentum through 1PN, it is not clear how to
relate the quantities used to describe the orbit in this
parametrization to our Ω̄ variable using only data at
apoapsis. Moreover, as noted by Sperhake et al. [103],
the zero angular momentum limit is special even in the
Newtonian limit, since all three types of orbits (elliptic,
parabolic, and hyperbolic) degenerate to head-on collisions
when the angular momentum vanishes, so it is perhaps not
surprising that post-Newtonian results behave strangely
there. (Sperhake et al. also give additional caveats about
comparing eccentric post-Newtonian results with numeri-
cal relativity simulations.)

C. Trajectories and waveforms

To verify that the initial data obtained with our method
actually show the desired features for nonzero eccen-
tricities, it is useful to consider the star’s trajectories. We
define the trajectory of a star to be the coordinate position
of the local minimum of the lapse at each time step. In
Fig. 8 we show that the eccentricity parameter e has the
expected dramatic influence on the orbits of the stars (as
measured by their trajectories). We choose a series of initial
data sets with fixed central enthalpy h ¼ 0.255, for which
the gravitational mass of an isolated star is 1.399, and fix
the initial coordinate separation of the stars at d ¼ 80, but
vary the eccentricity parameter. For the evolutions we again
use the BAM code with the same settings given in Sec. VI,
except that we now use sixth-order spatial finite differenc-
ing to increase accuracy, as was done for binary black hole
evolutions in Husa et al. [104]. Here we use eighth-order
dissipation (with the same factor of 0.5 used in the lower
finite differencing order simulations), as is appropriate for
sixth-order spatial finite differencing instead of Husa et al.’s
choice of fourth-order dissipation (made for reasons
of speed).
Since increasing e yields a smaller tangential velocity of

the star at apoapsis, the orbits become less circular, as the
stars fall faster towards each other. In general, the number

FIG. 7 (color online). Sequences for equal-mass binary neutron
stars with varying eccentricity e (data sets seq0–seq0.9 in Table I).
These sequences are computed with fixed baryonic masses,
yielding isolated stars with gravitational masses of
Mi ¼ 1.5149; we define M ¼ 2Mi. From top to bottom the
quantities shown are the rotation ω as a function of the coordinate
separation d of the two stars’ centers, and the ADM angular
momentum JADM and binding energy Eb ¼ MADM −M as
functions of the normalized mean motion MΩ̄. The angular
momentum has been normalized byM2, while the binding energy
is normalized by M. In addition, in the lower two plots, the
expected Newtonian behavior is plotted in dashed lines (black
line instead of color scheme for the bottom plot, since the
Newtonian prediction is independent of e) and the post-
Newtonian (3PN) results in dotted lines for e ¼ 0.
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of orbits the stars perform before merger will decrease for
eccentric orbits, since the configuration approaches a head-
on collision as one increases e. However, it is possible to
find interesting configurations where the stars undergo one
or more encounters before merger, as found in [20]. We
illustrate this with an evolution with two encounters before
merger (the ecc0.45 case) in Fig. 8, showing the gravita-
tional waves for this case in Fig. 9. For the present
illustration, we have chosen to present the waves extracted
at a finite radius, though we have checked that extrapola-
tion to infinity (using radii from 300 to 900) only produces
significant differences in the high-frequency part of the
merger signal, where the grid spacing at the outermost
extraction radii is likely too large to accurately transport
waves with these high frequencies.
While it would seemingly be desirable to compare one or

more of the trajectories shown in Fig. 8 with a trajectory for
the same case computed with superposed data (cf. the
trajectories shown in Fig. 1 of Gold et al. [20]), we do not
do so, since the comparison might actually be more
confusing than illuminating. In particular, these are coor-
dinate trajectories, and thus are a gauge-dependent quantity,
and while the gauge conditions for both evolutions are the
same, the initial gauge is not, since we initialize the lapse
and shift in both cases using the values given by the initial
data. Indeed, the initial portions of the trajectories for the
two cases look rather different, so while the qualitative
zoom-whirl features in the evolution are the same as those
found for the superposed data, the initial portion of the
trajectory for a run which has the same qualitative behavior
of the trajectories and waveform looks much more eccentric
with the superposed data than with the new data. (The Gold
et al. [20] results also show more eccentric tracks for
situations for which the trajectory and waveform have the

same qualitative behavior, but here the primary difference is
likely that the initial coordinate separation of the stars is
almost twice as large as the one we consider here, while the
masses are the same.)
The gravitational waveform shown in Fig. 9 reveals the

same key features found in Gold et al. [20], specifically the
high frequency signals between the bursts from premerger
encounters: We have also checked that the frequency of
these oscillations agrees with the f-mode frequency of an
isolated nonrotating star with the same baryonic mass and
equation of state, as found by Gold et al. [We estimated this
frequency using the fits given in [105] and the values of
1.399 and 9.586 for the isolated star’s gravitational mass
and areal radius; note that Eq. (6) in [105] contains a
typographical error, which is corrected in Eq. (14)
of [106].]
Since our method is only exact in the limit of Newtonian

point particles, the eccentricity eevol of the orbit obtained
when evolving the initial data is not expected to be the
eccentricity parameter eID used in the construction of the
data (i.e., the parameter we have been referring to as e so
far). Therefore it would be useful to have a way to
determine the eccentricity obtained in the evolution and
relate this to the input eccentricity, allowing one to obtain a
specific eccentricity, if desired. First, we will consider the
different methods available to determine eevol. While there
is no known definition of eccentricity in the comparable
mass case in full general relativity, we can give a quanti-
tative measure of the eccentricity of a given evolution by
fitting an ellipse to a short section of the trajectory near the
beginning of the orbit, as soon after the initial relaxation
has completed as possible. We expect that the trajectory
will be most approximately elliptical there, since radiation
reaction and other strong-gravity effects will not have had

FIG. 8 (color online). The trajectories of one star for different
values of the eccentricity parameter e. The evolutions are based
on the initial data sets ecc0.45, ecc0.5, ecc0.73, and ecc0.915 (see
Table I) which are identical, except for the value of the
eccentricity parameter e. While larger values of e lead to a rapid
merger, for smaller values of the eccentricity (such as e ¼ 0.45),
one can obtain one or more encounters before merger, as found by
Gold et al. [20].

FIG. 9 (color online). The gravitational waveform (in the form
of the l ¼ m ¼ 2mode of the Newman-Penrose scalarΨ4) for the
ecc0.45 case (see Table I). We extracted the waveform at a
distance r ¼ 500 from the binary’s center of mass, and shift the
time axis by r ¼ 500 to account (approximately) for the waves’
travel time. The two small bursts (at t − r≃ 900 and 2100)
correspond to close encounters before merger; the tidally induced
f-mode oscillations of the stars are visible between the bursts.
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much time to affect the orbit. Besides fitting the track to an
ellipse directly, it is also possible to measure the position
angle of the trajectory and the proper distance between the
stars and then fit an ellipse to the coordinates of the “proper
distance trajectory” one obtains in this manner. This
alternative method gives some indication of the extent to
which the determination is contaminated by gauge effects
(though the proper distance is not gauge invariant, since it is
not computed along a geodesic). There are various other
methods for eccentricity estimation in the literature (see the
references cited in [90], and also [84] for more recent
work), but most of them are only applicable to small
eccentricities and also often require several orbits, so we do
not consider them here.
Note that while the Newtonian definition of eccentricity

we use, e ¼ ð1 − b2=a2Þ1=2, seemingly requires knowing
both the semimajor and semiminor axes of the orbit, a and
b, this is not actually the case. The method of performing a
fit to a segment of the orbit that we use here does not
require us to define either of the quantities for the orbit as a
whole—for which they would likely be undefined, or at
least difficult to define, due to orbital precession—but only
to obtain them for the ellipse that is the best fit to the
segment of the orbit we consider, where they are given
directly by the fit. Obviously, the resulting eccentricity
estimate should merely be taken as a reasonable way of
measuring the eccentricity which gives a qualitative feel for
how eccentric the orbit is, rather than anything fundamen-
tal. In particular, since this estimate uses the trajectories,
which are gauge dependent, one might obtain very different
results for this estimate if one evolved the same data using a
code which used substantially different gauge conditions,
e.g., the Princeton group’s code, which uses generalized
harmonic coordinates, and has been used to study highly
eccentric systems [21,23,24].
We give the relation between the eccentricity in the

evolution we measure using these methods (eevol) and the
eccentricity parameter input to the code (eID) in Fig. 10.
From experimentation with the interval over which we fit
the ellipse, we can estimate the error introduced by using
different intervals for the fit (varying both the location and
size of the interval). Specifically, we vary the interval length
between 200 and 3000 points, which corresponds to
coordinate displacements from ∼0.8 to ∼9 or an evolution
timespan of ∼30 to ∼200, and see that the deviations are
∼1%, or even smaller if one just considers medium sized
intervals that do not cover the very first points. If we
compare the eccentricities computed using the coordinate
and proper distances, we find results that agree within 3%
for eccentricities larger than 0.4. This agreement is suffi-
cient for the purpose of constructing eccentric orbits, since
it merely serves as a rough estimate of the expected
eccentricity obtained in the evolution of the data. Note
also that we have computed Fig. 10 for the same choice of
stellar masses as in Fig. 8 (i.e., using the ecc0.45–ecc0.96

data sets in Table I), but the results one obtains for different
stellar masses are very similar. In particular, a reduction of
∼10% in the mass only resulted in a change of ∼0.5% in
eevol, independent of the method used to compute it.
Additionally, note that the method we have used to

determine the eccentricity is only applicable for e≳ 0.5.
For small e, one obtains inaccurate results due to radiation
reaction. In particular one sees both a larger deviation of the
eccentricity measured with the coordinate and proper
distances for small e, as well as a noticeable offset (of
∼0.3) for quasicircular data (though this offset is smaller
than the value of ∼0.5 that would be predicted by linearly
extrapolating the curve in Fig. 10 back to e ¼ 0). Such a
large offset is not seen when one uses any of the (previously
mentioned) eccentricity determination methods that are
specialized to small eccentricities.
Altogether, Fig. 10 shows that the eccentricities we

obtain in evolutions behave as expected (i.e., increase
monotonically as eID increases).

VIII. SUMMARY AND OUTLOOK

There are certain scenarios in which binary neutron stars
can merge without having shed all of their eccentricity, e.g.,
due to dynamical capture, and simulations in general
relativity are the only way to model such mergers accu-
rately (necessary to study, e.g., their gravitational waves,
ejecta, and merger remnants). In this paper we have given
the first method capable of providing consistent initial data
for such systems (i.e., initial data that solves both the
constraint equations of general relativity and the Euler
equation). Our method proceeds by generalizing the

FIG. 10 (color online). The relation of the eccentricity param-
eter eID input into the code (i.e., e in previous plots) and the
“output” eccentricity of the evolutions eevol measured using two
different fits to the initial portion of the trajectory, computed for
the ecc0.45–ecc0.96 data sets in Table I. The fit to an ellipse using
the coordinate distance dcoord gives quite similar results to the fit
using the proper distance dprop and the trajectory’s position angle.
The black dot-dashed line shows the “ideal” relation eID ¼ eevol.
The dcoord and dprop curves agree well enough that one can use
them to obtain an estimate of the eccentricity of the system being
evolved.
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approximate helical Killing vector that is used to solve the
Euler equation via its first integral in the quasicircular case
to a pair of inscribed helical symmetry vectors (one for each
star), which allows us to provide initial data for binary
neutron stars with arbitrary eccentricity. We find that the
initial spurious oscillations found in evolutions of incon-
sistent data are reduced by an order of magnitude or more
(with higher resolution) using our consistent data, which
assumes stationarity in a rotating frame, while the spurious
oscillations remain if one assumes stationarity in a linearly
comoving frame. We also find that the oscillations induced
by the tidal deformation at each close encounter are indeed
physical and not qualitatively altered compared to those
observed in earlier evolutions of initial data that did not
solve the Euler equation [20,21].
Considering the foundations of the method, we give two

motivations for the inscribed helical symmetry vectors we
introduce. In one derivation, we add a boost to the standard
approximate helical Killing vector used for quasicircular
initial data to adjust the binary’s velocity at apoapsis,
allowing one to control the binary’s eccentricity. In the
other, more geometrical derivation, we show how the same
vector arises from approximating an elliptical orbit at
apoapsis using an inscribed circle. We also show that
the fact that there are two different inscribed helical
symmetry vectors (one for each star) does not spoil the
derivation of the extended conformal thin-sandwich equa-
tions, by showing that one can obtain these equations
without assuming Killing symmetry by imposing spatial
conformal flatness and maximal slicing from the outset.
Additionally, we give a further extension of the method that
allows one to add radial velocity to the stars, so that (at least
in principle) one can obtain consistent binary neutron star
initial data with arbitrary initial tangential and radial
velocities.
For our first implementation of the method we intro-

duced, we chose to use a second-order Cartesian multigrid
solver (i.e., without surface-fitted coordinates), for sim-
plicity and comparative speed. Without surface-fitted coor-
dinates, one cannot easily solve for the velocity potential,
so we have taken the 3-velocity to be constant, which we
show is a good approximation if the stars are not too close.
However, this is not a requirement of the method, and one
can easily solve the equation for the velocity potential, as
well, if one is using a code that employs surface-fitted
coordinates (e.g., SGRID [81]).
There are many potential extensions of the method, as

discussed in the paper, and we are already in the process of
implementing and testing a number of them. A first and
straightforward step will be to construct binaries with
unequal mass stars. In addition, we are currently extending
the SGRID code to use our inscribed helical symmetry
vectors, in order to take advantage of SGRID’s spectral
accuracy and surface-fitted coordinates, which would allow
us to solve for the velocity potential easily. The SGRID

implementation will also naturally allow us to use more
realistic EOSs, modeled as piecewise polytropes, which
SGRID has recently been extended to handle. Furthermore,
this implementation should make it possible to add arbi-
trary spin to the stars, which might be especially pertinent
for eccentric systems, as discussed in Sec. I.
We have also implemented the generalized vector that

includes radial velocity and now need to investigate the
properties of the data we obtain from it. In particular, since
the generalized vector allows one to modify both the radial
and tangential velocity components of the stars, it should
allow us to obtain low-eccentricity initial data, similar to
the work done for black hole-neutron star binaries in [77]
and very recently for binary neutron stars in [84], or the
various well-established methods for eccentricity reduction
for binary black holes [87–91]. Low-eccentricity binary
neutron star initial data are particularly important from a
gravitational wave data analysis point of view: The residual
eccentricity in current simulations is large enough to bias
determination of the tidal deformation [86], which would
provide a valuable constraint on the poorly known equation
of state of cold, dense nuclear matter.
It may also be interesting to consider PN corrections to

the Newtonian expressions for the orbital motion used in
deriving the inscribed helical symmetry vectors in order to
obtain sequences that yield better agreement with PN
predictions. This would also facilitate comparisons with
analytic techniques, such as PN or EOB formulations with
tidal corrections and eccentricity. We note, however, that
neglecting PN corrections to the orbital motion in our
construction mostly affects the relation between the value
of the eccentricity parameter e used in the code and the
eccentricity obtained in the simulation, and not the accu-
racy of the initial data or simulation: One can always iterate
over e to obtain any desired eccentricity in the simulation.
Even without the possible extensions of the method, one

may already make certain useful investigations with the
current initial data. In particular, in the near future, we
intend to revisit and extend the studies of Gold et al. [20]
and East and Pretorius [21] (e.g., concerning properties of
the merger remnant and ejecta) in order to determine
qualitative and quantitative changes upon using improved
initial data, before going on to study more general scenarios
(considering eccentricity reduction, adding spin, etc.). The
ability to construct self-consistent initial data for eccentric
binary neutron stars opens the door to studying many
interesting physical situations, in both the high- and low-
eccentricity regimes, without significant limitations in
accuracy.
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APPENDIX: INJECTION ENERGY AND
VELOCITY POTENTIAL FOR

NONRELATIVISTIC INCOMPRESSIBLE
BINARIES

The nonrelativistic Euler equation for barotropic flows
can be written in the Crocco form [38]

∂tva þ vbðD̄bva − D̄avbÞ ¼ −D̄aH; ðA1Þ
where H ¼ 1

2
v2 þ hN þ Φ is the Hamiltonian of a fluid

element with specific enthalpy hN, va ¼ dxa=dt is its
velocity, Φ is the gravitational potential, and D̄a is the
covariant derivative compatible with the Euclidian 3-metric
fab in E3. (As before, we have used the same notation for
this covariant derivative as for the covariant derivative
compatible with the conformal 3-metric, since we took the
conformal 3-metric to be flat.) If the flow is irrotational,
va ¼ D̄aΨ, then Eq. (A1) has a first integral

∂tΨ ¼ −H: ðA2Þ
For incompressible flows, the specific enthalpy is given by
hN ¼ R

dp=ρ ¼ p=ρ, where p is the pressure, and the mass
density ρ is constant. Then, the continuity equation

∂tρþ D̄aðρvaÞ ¼ 0 ðA3Þ
simplifies to a Laplace equation for the velocity potential,

D̄aD̄aΨ ¼ 0: ðA4Þ
In what follows, we construct analytic solutions to
Eqs. (A2) and (A4) for binaries on circular and eccentric
orbits.

1. Circular orbits

For irrotational incompressible binaries on circular
orbits, all fluid elements move on circles with different
centers, but with the same radius R, and with the same
speed v ¼ ΩR. Then, Eqs. (A2) and (A4) have the exact
solution

Ψðt; rÞ ¼ −Etþ vðtÞ · r ¼ −Et −ΩRðx sinΩt − y cosΩtÞ
ðA5Þ

where E is the injection energy (which is constant in both
space and time) [47],

vðtÞ ¼ _R ¼ −ΩRðsinΩt x̂ − cosΩt ŷÞ ¼ ∇Ψ ðA6Þ

is the fluid velocity and

RðtÞ ¼ R cosΩt x̂þ R sinΩt ŷ ðA7Þ

is the position of the star’s center relative to the center of
mass (assumed here to coincide with the origin). Here we
use ∇ for the index-free version of D̄a. It is straightforward
to check that

ð∂t þ Ω∂φÞΨ ¼ ½∂t þ Ωðx∂y − y∂xÞ�Ψ ¼ −E: ðA8Þ

This equation can be interpreted as Eq. (A2) transformed to
a rotating frame. Alternatively, it may interpreted as a first
integral of the equation

ð∂t þ ΩLφÞva ¼ 0; ðA9Þ

which follows from helical symmetry, i.e., stationarity in a
rotating frame. The conserved injection energy follows
from Eqs. (A2) and (A8) and reads

E ¼ H − Ωðxvy − yvxÞ: ðA10Þ

Taking the gradient of this equation and evaluating at the
center of the star ðR; 0; 0Þ at t ¼ 0 gives a force balance
equation

∂xEjx¼R ¼ ∂xΦjx¼R −Ω2R ¼ 0; ðA11Þ

which yields Kepler’s third law for inverse square forces.

2. Eccentric orbits

We wish to generalize this derivation to eccentric
binaries. In this case, the position of the stellar center
relative to the center of mass (assumed again to coincide
with the origin) is given by

RðtÞ ¼ ½a cos ζðtÞ þ ae�x̂þ b sin ζðtÞŷ; ðA12Þ

where ζðtÞ is the eccentric anomaly, related to the mean
anomaly Ω̄t via the Kepler equation

Ω̄t ¼ ζðtÞ þ e sin ζðtÞ: ðA13Þ

Here, a, b, e, and Ω̄ are the semimajor axis, semiminor axis,
eccentricity, and mean motion of the orbit of one star,
respectively. For simplicity, we have chosen to study an
effectively one-body problem by assuming an extreme
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mass ratio, so the other, massive star (and thus the center
of mass) is at the origin, which is chosen to be the left
focus of the ellipse. It is straightforward to relax the
extreme mass ratio assumption and recover the two-body
equations, but we defer this until the end of this section. We
have also assumed that the values ζ ¼ 0 and ζ ¼ π
correspond to apoapsis and periapsis, respectively. The
Kepler equation (A13) has a series solution

ζðtÞ ¼ Ω̄t
eþ 1

þ ðΩ̄tÞ3e
6ðeþ 1Þ4 þOðt5Þ: ðA14Þ

The fluid velocity is homogeneous and given by

vðtÞ ¼ _R¼ −_ζðtÞ½a sinζðtÞx̂− b cosζðtÞŷ� ¼∇Ψ ðA15Þ
and the velocity potential is given by

Ψðt; rÞ ¼ −Etþ vðtÞ · r
¼ −Et − _ζðtÞ½ax sin ζðtÞ − by cos ζðtÞ�: ðA16Þ

If we operate on the above expression with ∂t þ ki∂i ¼
∂t þ ω∂φ þ λ∂y, where ki is the spatial part of our inscribed
helical symmetry vector (4.10), and demand that the
resulting expression be constant throughout the star at
t ¼ 0, i.e., ∇E ¼ 0, we obtain

v ¼ ð1 − e2Þωa ðA17Þ

with ω given by Eq. (4.12). If, in addition, we demand that
ki ¼ vyi at the star center x ¼ að1þ eÞ at t ¼ 0, we obtain
Eq. (4.13). It is straightforward to check that the force
balance equation

∂xEjx¼að1þeÞ ¼ 0 ðA18Þ

applied to the star center for inverse square forces yields
Kepler’s third law for eccentric binaries. To recover the
two-body equations, it suffices to rescale the ellipse by a
factor depending on the mass of each companion, as
indicated by Eq. (4.9). Then, Eq. (A17) is replaced by
Eqs. (4.11), while e, ω, and Ω̄ remain unchanged.
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