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We study flat space cosmologies in two dimensions by taking the flat space limit of the Achúcarro-Ortiz
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dilaton-dependent counterterm required for the consistency of the Euclidean partition function. Our results
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recent generalization to dilaton gravity with confining Uð1Þ charges in Grumiller et al. [Phys. Rev. D 90,
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I. INTRODUCTION

Einstein gravity in three dimensions is special due to the
absence of propagating physical degrees of freedom [1,2].
It was thus a great surprise when Bañados, Teitelboim and
Zanelli (BTZ) discovered that three-dimensional anti–
de Sitter (AdS3) spacetimes have black hole solutions
[3]. These BTZ black holes are locally AdS3 and are
perhaps best described as orbifolds of AdS3 [4]. In three-
dimensional (3D) flat space there are no black holes, but
there exist analogues of the BTZ black holes, which turn
out to be cosmological solutions and are called flat space
cosmologies (FSCs). These can be obtained in the flat
space limit of nonextremal rotating BTZ black holes, where
the outer event horizon of the black hole is pushed out to
infinity. The cosmological solution turns out to be the
remnant of the region between the two BTZ Killing
horizons. FSCs can also be viewed as appropriate orbifolds
of 3D flat space [5,6].
One of the very interesting features of the BTZ black

holes is that there exist Hawking-Page phase transitions [7],
which take thermal AdS3 to BTZ black holes. These
transitions also exist in higher dimensions and are not
purely 3D phenomena.
Recently a new type of phase transition was discovered:

3d flat space, if heated up sufficiently and stirred gently,
undergoes a phase transition to a FSC [8]. In spirit, this phase
transition is similar to the above mentioned Hawking–Page
phase transition. But there is an important difference: this is
probably the first example of a phase transition between a

time-independent and a time-dependent solution. The phase
transition thus provides a unique way of creating a time
evolving universe by heating ordinary flat space, albeit so far
only in three dimensions.
It is interesting to find out whether that phase transition

is a specific property of three dimensions or, like the
Hawking-Page transition, it persists in other dimensions. In
this paper we take a first modest step towards showing the
generality of the phase transition by proving that a similar
kind of phase transition exists in two dimensions.
To set the stage, we summarize now briefly some

relevant results in three dimensions. Flat space Einstein
gravity, Rμν ¼ 0, has a two-parameter family of FSCs [5,6],
whose line element in Euclidean signature

ds2¼ r2þ

�
1−

r20
r2

�
dτ2þ dr2

r2þ
�
1− r2

0

r2

�þr2
�
dφ−

rþr0
r2

dτ

�
2

ð1Þ

is subject to the identifications

ðτ;φÞ ∼ ðτ þ β;φþ βΩÞ ∼ ðτ;φþ 2πÞ ð2Þ

with inverse temperature β ¼ 2πr0=r2þ and angular
potential Ω ¼ rþ=r0. The inverse Wick rotation t ¼ iτ,
r̂þ ¼ −irþ, together with the coordinate transformation
r̂þt ¼ x, r0φ ¼ xþ y, ðr=r0Þ2 ¼ 1þ ðEtÞ2, where
E ¼ r̂þ=r0, yields the Minkowskian version of FSCs.

ds2 ¼ −dt2 þ ðEtÞ2
1þ ðEtÞ2 dx

2

þ ð1þ ðEtÞ2Þ
�
dyþ ðEtÞ2

1þ ðEtÞ2 dx
�

2

ð3Þ
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The line elements (3) comprise a two parameter family of
locally flat time-dependent exact solutions of the vacuum
Einstein equations [9,10]. For positive (negative) t they
describe expanding (contracting) universes from (towards)
a cosmological horizon at t ¼ 0. The parameter E corre-
sponds physically to the temperature associated with the
FSC [11]. Note that the Euclidean time τ (Minkowskian
time t) essentially corresponds to the spatial coordinate x
(radial coordinate r).
Our main idea is to Kaluza-Klein reduce the Euclidean

metric (1) and the associated Einstein–Hilbert action along
the φ-direction. For nonvanishing rþ and r0 there is a φ
twist in the τ identification [see the first identification (2)],
which amounts to the presence of a Uð1Þ-gauge field in the
Kaluza-Klein split. Moreover, the overall r2-factor in the
last term of the line element (1) means that there is a
nonconstant scalar field in the Kaluza-Klein split, namely
the dilaton. Thus, we should expect the Kaluza-Klein
reduction of the 3D Einstein–Hilbert action to yield a
specific two-dimensional (2D) Einstein-Maxwell-dilaton
theory. Indeed, we are going to show that this is precisely
what happens, but as we shall demonstrate there is a
number of subtleties, particularly in the presence of
(asymptotic) boundaries.
After establishing the existence of 2D FSCs by con-

structing the flat-space limit of the Achúcarro-Ortiz model
[12] we shall reach one of our main aims, namely to prove
the existence of a phase transition between hot flat space
(HFS) and 2D FSCs.
We then go on and generalize our results to a large

class of 2D Einstein-Maxwell-dilaton models, namely
models whose solutions have metrics that asymptotically
are dominated by the mass term. We shall introduce and
carefully discuss the notion of asymptotic mass domina-
tion. Finally, we intend to verify which features of the flat
space Achúcarro-Ortiz model remain intact and under
which conditions, for instance the existence of a phase
transition or the positivity of specific heat and electric
susceptibility.
This paper is organized as follows. In Sec. II we derive

the flat-space limit of the Achúcarro-Ortiz model, including
its boundary terms, and study its thermodynamics, includ-
ing phase transitions between HFS and FSC. In Sec. III we
introduce the notion of asymptotic mass domination and
generalize the results of the previous section to asymptoti-
cally mass-dominated 2D dilaton gravity with nonconfin-
ing Uð1Þ charge. In particular, we prove generically the
existence of a phase transition between HFS and (gener-
alized) FSC, subject to an inequality.
Before starting we mention some of our conventions,

which are compatible with the conventions of [13]. We
work in Euclidean signature unless mentioned otherwise;
when using Minkowskian notions such as the Killing
horizon, we always imply that the corresponding analyti-
cally continued entity has this property. Our sign

conventions for the Ricci tensor are fixed by Rμν ¼∂αΓα
μν þ � � �. To reduce clutter we fix the 2D Newton

constant as 8πG2 ¼ 1. For manifolds M with boundary
∂Mwe denote the trace of extrinsic curvature by K and the
determinant of the induced metric on the boundary by γ.

II. PHASE TRANSITION OF FLAT SPACE
IN TWO DIMENSIONS

In this section we consider a specific model where the
existence of a phase transition is plausible on general
grounds. The main purpose is to show that this phase
transition indeed exists, and to collect a few technical and
conceptual insights on the way that we intend to generalize
in the next section.
In Sec. II Awe recall aspects of FSC in three dimensions

and their phase transition to flat space. In Sec. II B we
perform a Kaluza-Klein reduction to two dimensions of
bulk and boundary terms, thereby providing a well-defined
variational principle for the flat space Achúcarro-Ortiz
model. In Sec. II C we calculate the Euclidean partition
function and unravel the phase transition. In Sec. II D
we study thermodynamical properties of the flat space
Achúcarro-Ortiz model.

A. Flat space (cosmologies) and their
phase transition

We collect now further salient features of 3D FSCs (1).
A reader familiar with FSCs can skip to Sec. II B.
As mentioned in the introduction, FSC spacetimes

are the flat space analogues of nonextremal rotating
BTZ black holes [3]. Given the interpretation of the latter
as orbifolds of AdS [4], it is not surprising that FSCs have a
similar interpretation, namely as shifted-boost orbifolds
of R1;2 [5,6].
In fact, many properties of FSCs can be deduced as a

cosmological constant to zero limit from corresponding
BTZ results, though the limit is often subtle and not always
accessible, at least not straightforwardly. For example,
on the bulk side [14–17] the symmetries of asymptotically
AdS spacetimes are contracted to the Bondi–van der
Burg–Metzner–Sachs (BMS) algebra [18–20]. On the field
theory side, the conformal field theory symmetries are
contracted to Galilean conformal symmetries, previously
considered in the context of nonrelativistic limits of
conformal field theories [21], though in the present context
one should rather think of the contraction as an ultra-
relativistic limit.
Also other gauge/gravity aspects have flat space ana-

logues. For instance, the microstate counting of BTZ black
holes [22] has a corresponding flat space analogue [9,10]
that matches the Bekenstein-Hawking entropy of FSCs
with the asymptotic growth of states in the putative dual
Galilean conformal field theory.
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We state now some thermodynamical properties of
FSCs, starting with the definitions of mass M and angular
momentum J:

M ¼ r2þ
8G

J ¼ −
rþr0
4G

ð4Þ

These quantities emerge as zero-mode boundary charges
from a canonical analysis of flat space Einstein gravity with
flat space boundary conditions [23,24]. The free energy
F ¼ −M satisfies a first law,

dFðT;ΩÞ ¼ −SdT − JdΩ ð5Þ

with the Bekenstein-Hawking entropy,

S ¼ 2πr0
4G

: ð6Þ

The specific heat at constant angular potential is always
positive, C ¼ S ¼ π2T=ðGΩÞ2, and, just like entropy,
satisfies a version of the third law (specific heat and
entropy both vanish at zero temperature).
Expressed as function of its natural variables, the FSC

free energy reads

FðT;ΩÞ ¼ TΓ ¼ −
π2T2

2GΩ2
; ð7Þ

where Γ is the on-shell Einstein-Hilbert action evaluated
on the corresponding FSC solution. By contrast, the free
energy of HFS, ds2 ¼ dτ2 þ dr2 þ r2dφ2 with the identi-
fications (2), is always constant, FðT;ΩÞ ¼ −1=ð8GÞ.
Therefore, there is a phase transition at the critical
temperature [8]:

Tc ¼
Ω
2π

: ð8Þ

So in the high-temperature regime, T > Tc, the preferred
Euclidean saddle point is FSC, while in the low-temperature
regime, T < Tc, the preferred Euclidean saddle point
is HFS.

B. Kaluza-Klein reduction á la Achúcarro-Ortiz

In order to derive the free energy from the on-shell action
we have to make sure that the action has a well-defined
variational principle for a given set of boundary conditions,
in the sense that the first variation of the action vanishes
when evaluated on any classical solution compatible with
the boundary conditions. In [25] it was shown that the
action.

Γ ¼ −
1

16πG3

Z
M

d3x
ffiffiffi
g

p
R −

α

8πG3

Z
∂M

d2x
ffiffiffi
γ

p
K ð9Þ

with α ¼ 1=2 yields a well-defined variational principle for
flat space boundary conditions in three dimensions. Note
that the usual Gibbons–Hawking–York (GHY) boundary
term would require α ¼ 1, which is inconsistent with flat
space boundary conditions. The action (9) with α ¼ 1=2
was used to determine the FSC free energy (7).
Since the action (9) yields a well-defined variational

principle, one expects that by dimensional reduction to two
dimensions, a well-defined 2D action principle can be
obtained. This is shown explicitly in the following by
performing a Kaluza–Klein reduction analogue to the one
performed by Achúcarro and Ortiz [12].
We use the following conventions: 3D quantities are

discriminated from 2D quantities by a tilde, i.e., ~R denotes
the Ricci scalar of the 3D manifold, while R is the
Ricci scalar of the 2D manifold. Three-dimensional
(two-dimensional) spacetime indices are A;B;C;…
(a; b; c;…). In the Cartan formalism 3D (2D) flat indices
are denoted by I; J; K;… (i; j; k;…).
In terms of dreibeins the 3D and 2D metrics are written

as

~gAB ¼ ~eIA ~e
J
BδIJ gab ¼ eiae

j
bδij: ð10Þ

In order to be able to perform the Kaluza-Klein reduction,
we assume cylindrical symmetry; i.e., the theory does not
depend on the angular coordinate denoted by φ. Then, with
no loss of generality we require that all but one of the
dreibeins are orthogonal to the ∂φ direction. Thus, we set

~ei ¼ ei i ¼ 1; 2; ð11Þ
while the third dreibein, ~e3, has a φ component that we
determine below.
It is convenient to parametrize the 3D metric ~gAB (and

analogously its inverse ~gAB) in the following way:

~gAB ¼
�
gab þ X2AaAb X2Aa

X2Ab X2

�

~gAB ¼
�

gab −Aa

−Ab X−2 þ AcAc

�
:

ð12Þ

With the assumption (11), the remaining dreibein ~e3 is
therefore fixed to

~e3 ¼ XðAþ dφÞ; ð13Þ
where A ¼ Aadxa is the gauge field 1-form and the xa are
the remaining coordinates, denoted by τ, r.
Since both connection one-forms ~ωI

J and ωi
j associated

with the respective vielbeins are torsionless and metric
compatible ( ~ωIJ ¼ − ~ωJI), we exploit Cartan’s structure
equations,

d~eI þ ~ωI
J ^ ~eJ ¼ 0 ~RI

J ¼ d ~ωI
J þ ~ωI

K ^ ~ωK
J;

ð14Þ
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to relate the connections and the respective curvatures.
Thus, we arrive at

~R ¼ R −
1

4
X2FabFab − 2X−1∇2X ð15aÞ

~K ¼ K þ X−1na∂aX; ð15bÞ

where the unit normal vector na points in the ∂r direction
and Fab ¼ ∂aAb − ∂bAa. The metric and boundary metric
determinants are related by

ffiffiffi
~g

p
¼ X

ffiffiffi
g

p ffiffiffi
~γ

p
¼ X

ffiffiffi
γ

p
: ð16Þ

The relations (15), (16) allow us to Kaluza-Klein reduce
the action (9) to a 2D Einstein-Maxwell-dilaton action:

Γ ¼ −
1

2

Z
M

d2x
ffiffiffi
g

p �
XR −

1

4
X3FabFab

�

−
1

2

Z
∂M

dx
ffiffiffi
γ

p ðXK − na∂aXÞ: ð17Þ

Here we set 2πG2 ¼ G3 and used the convention 8πG2 ¼ 1
mentioned at the end of our Introduction. The action (17) is
our first key result. It is a specific Einstein-Maxwell-dilaton
model that we call the “flat space Achúcarro-Ortiz” model.
It is now a simple exercise to show that the variational

principle is well defined for the action (17) with Euclidean
flat space boundary conditions:

gab ¼
�
gττ ¼ M þ oð1Þ gτr ¼ oð1Þ

grr ¼ 1=M þ oð1Þ

�
ð18aÞ

Aa ¼
�
Aτ ¼ oð1Þ
Ar ¼ oð1Þ

�
ð18bÞ

X ¼ rþ oð1Þ: ð18cÞ

Note that the parameter M in (18a) is allowed to fluctuate;
the expression oð1Þ means that the corresponding quantity
tends to zero as the radial coordinate r tends to infinity. We
shall be more explicit about the variational principle in
Sec. III and merely state here the final result:

δΓjEOM ¼ 0: ð19Þ
The left-hand side, δΓ, contains any variation of the fields
that is compatible with the boundary conditions (18).
The subscript “EOM” denotes that after variation on-shell
relations have been used, which we discuss in the next
subsection.

C. Phase transition in two dimensions

The thermodynamics of spacetimes is studied most
conveniently in the saddle-point approximation to the

Euclidean path integral [26]. The Euclidean partition
function is given by

Z ∼
X

gcl;Acl;Xcl

expð−Γ½gcl; Acl; Xcl�Þ × ZGauss × Zho ð20Þ

with

ZGauss ¼
Z

DδgDδADδX exp

×

�
−
1

2
δ2Γ½gcl; Acl; Xcl; δg; δA; δX�

�
ð21Þ

and higher-order corrections contained in Zho. The sum
in (20) extends over all classical solutions gcl, Acl, Xcl
compatible with the boundary conditions that we impose in
order to evaluate the path integral. The choice of boundary
conditions simultaneously specifies the thermodynamic
ensemble and the appropriate thermodynamic potential Y
that depends on the quantities held fixed at the boundary
[27]. This potential to leading order is then given by

Y ¼ −T lnZ ≈ TΓ½ĝcl; Âcl; X̂cl�; ð22Þ

where ĝcl, Âcl, X̂cl denotes the most dominant Euclidean
saddle point. In the present work we neglect corrections
from Gaussian (or higher order) fluctuations as well as
instanton corrections from subdominant saddle points.1

As discussed e.g. in [13,25] the saddle-point approxi-
mation to the Euclidean path integral is well defined only
if the action has a well-defined variational principle.
Since we have achieved this in the previous subsection,
we proceed now with a discussion of on-shell relations.
The equations of motion (EOM) descending from the

action (17) are given by

∇a∂bX−gab∇2X¼−
1

2
X3

�
Fa

cFbc−
1

4
gabFcdFcd

�
ð23Þ

R ¼ 3

4
X2FabFab ð24Þ

0 ¼ ∇aðX3FabÞ: ð25Þ

Integrating the last equation leads to a conserved Uð1Þ
charge q,

Fab ¼
2q
X3

ϵab: ð26Þ

Solving the other two EOM yields, in diagonal gauge, the
line element,

1Leading corrections to the saddle-point approximation have
been calculated recently for the entropy of 3D FSCs in [28].
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ds2 ¼
�
M −

q2

r2

�
dτ2 þ dr2

M − q2

r2

ð27Þ

in axial gauge the Maxwell field

Aτ ¼
q
r2

þ const Ar ¼ 0 ð28Þ

and the dilaton field

X ¼ r: ð29Þ

Note that all solutions (27)–(29) respect the flat-space
boundary conditions (18). We call such solutions “2D flat
space cosmologies,” since they yield exactly the line
element (1) when inserted into the Kaluza-Klein ansatz
(12).2 Moreover, as we show in Appendix, the Penrose
diagram also coincides with appropriate 2D sections of the
Penrose diagram for 3D FSCs. The parameterM > 0 in the
line element (27) is a second constant of motion and
physically corresponds to the mass of the solution.
Our first task is to determine the horizon and to fix

the temperature, T ¼ β−1, which is done in the usual way
by demanding that there be no conical singularity, so that
the periodicity of Euclidean time, τ ∼ τ þ β, is fixed.
We obtain

T ¼ q2

2πX3
h

; ð30Þ

where Xh is the dilaton field evaluated at the horizon,

Xh ¼ rh ¼
jqjffiffiffiffiffi
M

p : ð31Þ

Our second task is to choose our thermodynamic
ensemble. We elect to keep fixed the temperature T
and the electric potential Φ. The rationale behind these
choices is that they correspond precisely to the same
choices in the related 3D discussion [8]. Physically,
fixing T and Φ at the boundary can be achieved by
coupling the system asymptotically to some heat bath at
constant temperature T and constant electric potential Φ
(with respect to some fiducial grounding). In the 3D
interpretation the constant electric potential corresponds
to a constant angular potential.
The electric potential between a cutoff surface r ¼ rc

and the horizon r ¼ rh is given by

ΦðrcÞ ¼ AτðrcÞ − AτðrhÞ: ð32Þ

In the limit of interest the cutoff surface tends to the
asymptotic boundary, rc → ∞, and the electric potential
simplifies to

Φ ¼ lim
rc→∞

ΦðrcÞ ¼ −
q
X2
h

: ð33Þ

Finally, inserting the on-shell results above into the
action (17) yields

YðT;ΦÞ ¼ −2π2
T2

Φ2
: ð34Þ

The result (34) coincides precisely with the 3D result for
free energy [8] (note that their G3 ¼ 1

4
here).

We can now unravel the existence of a phase transition
between HFS,

ds2HFS ¼ dτ2 þ dr2 Aτ ¼ Ar ¼ 0 X ¼ r ð35Þ

and 2D FSC (27)–(29). Evaluating free energy (34) for the
former yields

YHFSðT;ΦÞ ¼ −
1

2
: ð36Þ

While the right-hand side does not depend on temperature
or electric potential, we stress that any values of T and Φ
are consistent for HFS. Temperature is fixed again by
setting the periodicity appropriately, τ∼τþβ, with β¼T−1,
and the electric potential can be set to any constant value.
Comparing the free energies (34) and (36) of the two

admissible saddle points, we find that they are equal at the
critical temperature

Tc ¼
Φ
2π

: ð37Þ

For a given electric potential Φ we then have the following
situation. If the temperature is smaller (bigger) than the
critical one, T < Tc (T > Tc), the dominant saddle point
is HFS (FSC). Therefore, we reach a similar conclusion
as in three dimensions: flat space undergoes a phase
transition if it is put at some electric potential and gets
heated up sufficiently.

D. Thermodynamics of flat space Achúcarro-Ortiz

Starting from the free energy (34) all thermodynamical
variables of interest can be derived. We start with entropy:

S ¼ −
∂Y
∂T

����
Φ
¼ 2πXh: ð38Þ

Thus, the entropy is essentially the dilaton evaluated at the
horizon, as expected from previous results [13,29–31] and
from comparison with Wald’s entropy [32,33].

2Note that we could explicitly identify angular momentum
with charge J ¼ q and angular potential with electric potential
Ω ¼ Φ, but we choose to stick to the intrinsically 2D quantities q,
Φ. For a comparison of 2D and 3D quantities, see Table I below.
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The conjugate variable to the electric potential should be
the charge q. Consistently with this expectation we find

q ¼ −
∂Y
∂Φ

����
T
; ð39Þ

which explicitly evaluates to q ¼ −4π2T2=Φ3. In the 3D
picture the charge q corresponds to the angular momentum
of the FSC solution.
As it must be, the first law of thermodynamics holds:

dY ¼ −SdT − qdΦ: ð40Þ

While this is merely a consistency check, we stress at this
point that none of the results above could have been
obtained without the last boundary term in the action
(17), which contributes essentially to the free energy Y.
(By contrast, the first boundary term is irrelevant and can be
dropped.)
The specific heat at constant electric potential turns out

to be positive:

CΦ ¼ T
∂S
∂T

����
Φ
¼ S ¼ 4π2

T
Φ2

: ð41Þ

The last equality shows that entropy and specific heat are
compatible with the third law, in the sense that both vanish
as T tends to zero. In fact, specific heat tends to zero
linearly, exactly like a free Fermi gas at low temperature.
Also this result was found already in the 3D discussion [8].

The electric susceptibility is positive as well, which
shows that 2D FSCs have the same property as standard
electric materials:

χ ¼ ∂q
∂Φ

����
T
¼ 3

4π
S2 ¼ 12π2

T2

Φ4
: ð42Þ

Moreover, again we get compatibility with the third law.
To conclude this section, we have succeeded in

providing an intrinsic 2D formulation of FSCs and their
thermodynamics. We have found that the phase transition
discovered in three dimensions persists also in two dimen-
sions, i.e., for a specific Einstein-Maxwell-dilaton model.
To facilitate the comparison between 2D and 3D results we
collect a dictionary in Table I.
It is now interesting to ask whether there are also other

2D Einstein-Maxwell-dilaton models exhibiting the fea-
tures we found above. We address this question in the next
section, where it will be answered in the affirmative.

III. ASYMPTOTICALLY MASS-DOMINATED
DILATON GRAVITY

In this section we generalize the results of the previous
section to a specific class of 2D dilaton gravity models,
namely those models whose asymptotic behavior is
dominated by the mass term in the line element.
Interestingly, it is precisely this class of models that so
far had been neglected in discussions of 2D dilaton gravity
thermodynamics.

TABLE I. Dictionary between 2D and 3D.

2D 3D

Einstein metric gab constant φ slice
Maxwell gauge field Aa φ twist in τ identification
Dilaton dilaton field X radial coordinate r
Action Eq. (17) Eq. (9) with α ¼ 1

2
Boundary term normal derivative of dilaton 1=2 GHY
Boundary conditions Eqs. (18) see [23,24]
EOM Eqs. (23)–(25) RAB ¼ 0
Solutions Eqs. (27)–(29) Eq. (1)
1st constant of motion M (2D mass, M > 0) r2þ (twice 3D mass)
2nd constant of motion charge q angular momentum J ¼ −rþr0
1st conjugate quantity temperature T ¼ q2

2πX3
h

temperature T ¼ r2þ
2πr0

2nd conjugate quantity electric potential Φ angular potential Ω
Solutions with horizon 2D FSC 3D FSC
Solutions without horizon HFS with electric potential HFS with angular potential
Phase transition between 2D FSC and HFS between 3D FSC and HFS
Critical temperature Tc ¼ Φ

2π Tc ¼ Ω
2π

Free energy (FSC) YðT;ΦÞ ¼ −2π2 T2

Φ2 FðT;ΩÞ ¼ −2π2 T2

Ω2

Entropy (FSC) S ¼ 2πXh ¼ 2π jqjffiffiffiffi
M

p S ¼ A ¼ 2πjr0j (note: G3 ¼ 1
4
)

First law (FSC) dY ¼ −SdT − qdΦ dF ¼ −SdT − JdΩ
Specific heat (FSC) CΦ ¼ S ¼ 4π2 T

Φ2 CΩ ¼ S ¼ 4π2 T
Ω2
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In Sec. III A we define the notion of asymptotic mass
domination and show that this case is not covered by results
in the literature. In Sec. III B we provide the boundary
terms required for a well-defined variational principle. In
Sec. III C we calculate the Euclidean partition function and
show the persistence of the phase transition, given some
assumptions that we spell out. In Sec. III D we conclude
with a discussion of thermodynamical properties.

A. Asymptotic mass domination and
absence of confinement

Einstein-Maxwell-dilaton gravity in two dimensions is
defined by the bulk action (see [34] for a review on 2d
dilaton gravity and [35,36] for some early papers on
Einstein-Maxwell-dilaton gravity)

Ibulk ¼ −
1

2

Z
M

d2x
ffiffiffi
g

p ðXR −UðXÞð∂XÞ2 − 2VðXÞÞ

þ
Z
M

d2x
ffiffiffi
g

p
fðXÞFabFab: ð43Þ

The kinetic potential UðXÞ, the dilaton self-interaction
potential VðXÞ, and the strength of the coupling function
fðXÞ of the Maxwell field define the model.
The action (43) yields the EOM:

Eab ¼ ∇a∂bX − gab∇2X þ UðXÞð∂aXÞð∂bXÞ

−
1

2
gabUðXÞð∇XÞ2

− gabVðXÞ þ 4fðXÞ
�
Fa

cFbc −
1

4
gabFcdFcd

�
¼ 0

ð44aÞ
EX ¼ Rþ 2UðXÞ∇2X þ U0ðXÞð∂XÞ2

− 2V 0ðXÞ − 2f0ðXÞFabFab ¼ 0 ð44bÞ

Eb ¼ ∇aðfðXÞFabÞ ¼ 0: ð44cÞ

Generic solutions of the EOM are parametrized by two
constants of motion, massM andUð1Þ charge q, and can be
written in the form

ds2 ¼ ξðrÞdτ2 þ dr2

ξðrÞ ∂rXðrÞ ¼ e−QðXÞ ð45aÞ

Fab ¼
q

4fðXÞ εab: ð45bÞ

The “Killing norm” ξ as a function of the dilaton field is
given by

ξðXÞ ¼ eQðXÞ
�
M þ wðXÞ þ q2

4
hðXÞ

�
; ð45cÞ

where the functions QðXÞ, wðXÞ and hðXÞ are defined as

QðXÞ ≔ Q0 þ
Z

dXUðXÞ ð45dÞ

wðXÞ ≔ w0 − 2

Z
dXVðXÞeQðXÞ ð45eÞ

hðXÞ ≔
Z

dX
1

fðXÞ e
QðXÞ: ð45fÞ

By an appropriate choice of w0 the constant of motion M
can be restricted to a convenient range. The constantQ0 can
be made to vanish by a redefinition of the coordinates.
The solutions (45) exhibit a Killing vector field ∂τ with

norm ξðXÞ (which justifies the name “Killing norm”).
The constant X hypersurfaces on which the Killing norm
vanishes, ξðXÞ ¼ 0, represent Killing horizons in the
Minkowski analogue of the theory. We denote the value
of the dilaton field at the outermost Killing horizon by Xh.
It is determined as the largest (real and positive) solution Xh
of the equation

M þ wðXhÞ þ
q2

4
hðXhÞ ¼ 0: ð46Þ

To determine the gauge field again we choose the axial
gauge:

Aτ ¼ −
q
4
ðhðXÞ − hðXhÞÞ þ AτðXhÞ Ar ¼ 0 ð47Þ

The remaining gauge freedom is in the constant AτðXhÞ,
which determines the gauge potential on the horizon. The
proper electric potential between some conducting cavity
wall at X ¼ Xc and the horizon X ¼ Xh is given by

ΦðXcÞ ¼ AτðXcÞ − AτðXhÞ: ð48Þ
The Hawking temperature of the 2D spacetime is obtained

from the standard Euclidean field theory argument: In order
to avoid conical singularities at the horizon, the Euclidean
time is assumed to be periodic τ ∼ τ þ β, with

T ¼ β−1 ¼ ∂rξ

4π

����
rh

¼ w0ðXhÞ þ q2

4
h0ðXhÞ

4π
: ð49Þ

Different classes of models can be characterized by
the asymptotic behavior of the functions wðXÞ and hðXÞ in
the limit X → ∞.3 The possibilities studied so far in the
literature are enumerated below.

3Two comments are in order. First, there is also a condition on
the function UðXÞ in all cases, namely limX→∞UðXÞ > − 2

X. This
inequality ensures that the asymptotic region is reached as
X → ∞. However, if one demands in addition that the asymptotic
region X → ∞ corresponds to the coordinate r → ∞, one needs
the stronger condition limX→∞UðXÞ ≥ − 1

X. This is what we
assume in the following. Second, below we list limiting cases
that tend to∞ or 0 but not cases where the quantities tend to finite
values. This is so, because the case of finite limits is equivalent
to the case of vanishing limits, upon suitable redefinitions of
constants of motion.
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(1) Asymptotic dilaton domination. This case is defined
by the properties

lim
X→∞

wðXÞ ¼ þ∞ lim
X→∞

hðXÞ ¼ 0: ð50Þ

We choose the characterization “asymptotic dilaton
domination” because the dilaton-dependent term
wðXÞ dominates asymptotically over the mass term
M in the Killing norm (45c). Thermodynamics for
this case was studied extensively in [13].

(2) Asymptotic dilaton domination (with confining Uð1Þ
charge). This case is defined by the properties:

lim
X→∞

wðXÞ ¼ þ∞ lim
X→∞

jhðXÞj ¼ ∞: ð51Þ

The most dominant term in the Killing norm (45c) is
either of the dilaton-dependent terms (confinement
requires additionally jfðXÞVðXÞj < ∞, in which
case the hðXÞ term is the most dominant term in
the Killing norm). Thermodynamics for the confin-
ing case was studied recently in [37], where it was
also explained why the attribute “confining” is
justified. The nonconfining case works analog to
the first case above.

(3) Asymptotic confinement domination. This case is
defined by the properties:

lim
X→∞

wðXÞ ¼ 0 lim
X→∞

jhðXÞj ¼ ∞: ð52Þ

The most dominant term in the Killing norm (45c)
is the one proportional to hðXÞ, which comes from
the confiningUð1Þ charge. Thermodynamics for this
case was also studied recently in [37].

a. Definition of asymptotic mass domination. We say
that a model exhibits the property of asymptotic mass-
domination if the associated functions wðXÞ and hðXÞ both
tend to zero asymptotically:

lim
X→∞

wðXÞ ¼ 0 lim
X→∞

hðXÞ ¼ 0 ð53Þ

In this case the most dominant term in the Killing norm (45c)
at large values of X is the mass termM. From the definition
(52) it is evident that asymptotic mass-domination implies
that the Uð1Þ charge cannot be confining. For the Penrose
diagram of asymptotically mass-dominated geometries we
refer to Appendix.
A consequence of asymptotic mass domination is that

curvature

R ¼ −e−Q
�
w00 þ q2

4
h00 þ U

�
w0 þ q2

4
h0
�

þ U0
�
M þ wþ q2

4
h

��
ð54Þ

tends to zero asymptotically. This is so, because the pre-
factor e−Q cannot grow as strong as (or stronger than)
X2 due to the inequality U > −2=X. This implies that the
combination e−QU0M tends to zero at large X, and all other
terms are even smaller due to asymptotic mass domination.
Therefore, asymptotic mass domination leads to spacetimes
that are asymptotically flat (though not necessarily with the
same asymptotic behavior as in Sec. II). We call generic
solutions of this type “generalized flat space cosmologies”
(generalized FSCs).
Checking the comprehensive list of well-studied 2D

dilaton gravity models in Table 1 of [38], with the (rather
formal) exception of spherical reduction from less than
three dimensions none of these models is asymptotically
mass dominated. Thus, asymptotic mass domination appears
to be a rare property. Looking back at the flat space
Achúcarro-Ortiz model (17) we obtain the potentials

UðXÞ ¼ VðXÞ ¼ QðXÞ ¼ wðXÞ ¼ 0

fðXÞ ¼ 1

8
X3 hðXÞ ¼ −

4

X2
: ð55Þ

The flat space Achúcarro-Ortiz model is compatible with
the limits (53), and thus provides the first example of
Einstein-Maxwell-dilaton models with asymptotic mass
domination.

B. Variational principle

We consider now a large class of Einstein-Maxwell-
dilaton models with asymptotic mass domination, by
assuming

UðXÞ ¼ −
a
X
þ oðX−1Þ; a ≤ 1

VðXÞ ¼ oð1Þ 1

fðXÞ ¼ oð1Þ: ð56Þ

Additionally we assume that all functions are asymptoti-
cally a monomial in X, in order to avoid subtleties with
essential asymptotic singularities.
In order to set Dirichlet boundary conditions on the

metric a term analogous to the GHY term has to be added to
the bulk action (43):

IGHY ¼ −
Z
∂M

dx
ffiffiffi
γ

p
XK: ð57Þ

However, here we allow for a more general action and
do not restrict ourselves to Dirichlet boundary conditions.
The GHY term is therefore added to the action Ibulk with an
arbitrary coefficient α. We are going to show that this action

I ¼ Ibulk þ αIGHY ð58Þ
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does not yield a well-defined variational principle in the above sense for any value of α.
The first variation of the action (58) reads

δI ¼ −
1

2

Z
M

d2x
ffiffiffi
g

p
Eab
g δgab −

1

2

Z
M

d2x
ffiffiffi
g

p
EXδX þ

Z
M

d2x
ffiffiffi
g

p
Ea
AδAa

þ 1

2

Z
∂M

dx
ffiffiffi
γ

p ððð1 − αÞXKð2γab − gabÞ þ 2ð1 − αÞnaγbc∂cX − γabnc∂cXÞδgab

þ ð1 − αÞγabXnc∂cδgabÞ þ
Z
∂M

dx
ffiffiffi
γ

p ðUna∂aX − αKÞδX − 4

Z
∂M

dx
ffiffiffi
γ

p
naFabδAb: ð59Þ

The boundary conditions

gab¼
�
gττ¼eQM½1þoð1Þ� gτr¼oð1Þ

grr¼e−Q 1
M ½1þoð1Þ�

�
ð60aÞ

Aa ¼
�
Aτ ¼ oð1Þ
Ar ¼ oð1Þ

�
ð60bÞ

a < 1∶ X ¼ ½ð1 − aÞr� 1
1−a½1þ oð1Þ�

a ¼ 1∶ X ¼ er½1þ oð1Þ� ð60cÞ

follow from the conditions (56) and the EOM (44).
They are generalizations of the Euclidean flat space
boundary conditions (18). For simplicity we choose the
gauge grrgττ ¼ 1, although this condition can be weakened.
Moreover, we use again axial gauge Ar ¼ 0. If we now set
α ¼ 1 then only the last term in the second line of (59) gives
a finite contribution to the first variation of the action.
For any other value of α there are even more nonvanishing
terms, which do not cancel each other. The variational
principle is therefore not well defined for any value of α,
though α ¼ 1 almost works, in the sense that there is only
one offending term remaining.
This remaining term can be canceled by adding to the

action a suitable boundary counterterm. Inspired by the last
boundary term in the flat space Achúcarro-Ortiz action (17)
we propose the boundary counterterm:

Ict ¼
1

2

Z
∂M

dx
ffiffiffi
γ

p
na∂aX: ð61Þ

Varying this term indeed precisely cancels the finite
contribution in the variation of the action (59) for α ¼ 1
or when U falls off faster than 1=X.
Thus, the full action,

Γ ¼ Ibulk þ αIGHY þ Ict α ¼ 1; ð62Þ

has a well-defined variational principle, δΓ ¼ 0, for the
generalized flat space boundary conditions (60). To avoid
confusion we note that the value of α is irrelevant for
models with UðXÞ ¼ oð1=XÞ, including the special case

UðXÞ ¼ 0. This is why in the flat space Achúcarro-Ortiz
model the value of α was irrelevant (in fact, we chose it as
α ¼ 1

2
, as this was the value we obtained from Kaluza-Klein

reduction, but effectively this term is zero there).

C. General phase transitions in two dimensions

Again there are two Euclidean saddle points that
contribute for any given values of temperature T and
electric potential Φ. The contribution from HFS (35) is
the same as before and leads again to the free energy (36).
The free energy of generalized FSCs, (45) with (53),

reads

YðT;ΦÞ ¼ −
1

2
M − 2πTXh − qΦ ð63Þ

where Φ is again defined as

Φ ¼ q
4
hh: ð64Þ

Here and in what follows subscripts h imply that the
corresponding quantity is evaluated at the horizon, e.g.
hh ¼ hðXhÞ. Expressing the free energy Y in terms of
quantities evaluated at the horizon yields

Y ¼ 1

2
ðwh − Xhw0

hÞ −
q2

8
ðhh þ Xhh0hÞ: ð65Þ

The quantities wh and hh are related to mass M by the
horizon condition (46), and their derivatives to temperature
T by (49).
If the free energy (63) crosses the line YðT;ΦÞ ¼ − 1

2
for

a 1-parameter family of combinations of temperature and
electric potential, then there will be a phase transition along
this critical line, precisely of the same nature as in Sec. II.
We argue now that such phase transitions must always

exist, provided our assumptions hold, the functions are
sufficiently smooth and obey suitable conditions that we
derive below. Suppose we find some solution whose free
energy is smaller (larger) than − 1

2
. Then generically by

smoothness there must be an open region in the parameter
space spanned byM and q where the free energy is smaller
(larger) than − 1

2
. Moreover, almost any solution must
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belong to either of these two “basins”, Y < − 1
2
or Y > − 1

2
.

In addition, by continuity there must be a co-dimension 1
surface in the parameter space where Y ¼ − 1

2
, which

separates the two basins, provided both are nonempty.
This co-dimension 1 surface is the critical surface where
the phase transition takes place between HFS and some
generalized FSC solution.
In order for the argument above to work, however, we

still have to prove that both basins are nonempty. Indeed, a
simple way to avoid a phase transition would be to find a
model which has Y ≥ 0 in the whole parameter space, so
that HFS would always be the dominant saddle point.
We restrict ourselves first to the special case w ¼ 0. In

that case the free energy (65) simplifies to

Y ¼ −
q2

8
ðhh þ Xhh0hÞ: ð66Þ

There are now two possibilities. If Y ≥ 0 for all possible
values of ðM; qÞ then there can never be a phase transition.
If Y < 0 for some values of ðM; qÞ there could be a phase
transition, so a necessary condition that the function hmust
fulfill is

hh þ Xhh0h > 0: ð67Þ

Note that the second term must be positive so that Hawking
temperature (49) is positive, while the first term is usually
negative due to asymptotic mass domination, and in
particular it must be negative if mass is required to be
positive. Thus, the inequality does not hold automatically.
Assuming that the inequality (67) holds [at least for some
choices of ðM; qÞ], the key observation is now that for any
solution ðM; qÞ of the horizon condition

M ¼ −
q2

4
hh ð68Þ

we can find another solution by rescaling ðM; qÞ →
ðλ2M; λqÞ, which results in Y → λ2Y. Since Y < 0 we
have therefore necessarily an open set of solutions in either
of the two basins, Y < − 1

2
and Y > − 1

2
, which concludes

our argument.
If w ≠ 0 the discussion is a bit more involved, though it

is very simple to verify the existence of a phase transition
on a case-by-case basis. Here we argue that the existence
of nonvanishing w typically helps to promote the free
energy Y to negative values, in which case arguments
similar to the one in the previous paragraph can be used.
Namely, consider the limit of very small charges, so that all
terms with hh and h0h can be neglected. In that case free
energy (65) simplifies to

Y ¼ 1

2
ðwh − Xhw0

hÞ þOðq2Þ: ð69Þ

Positivity of the Hawking temperature (49) again requires
the second term to be positive, but asymptotic mass
domination now also implies usually4 that the first term
is negative. But then Y is always negative, so the case Y ≥ 0
cannot arise in the small-charge limit. For finite charges q
the terms in (69) can provide the existence of a phase-
transition even if the inequality (67) is violated.
Thus, we have shown that the phase transition between

HFS and generalized FSCs occurs fairly generically. For
the simple class of models with w ¼ 0 it always occurs,
provided the inequality (67) holds. This is true in particular
for any monomial function h ¼ −a2=Xn−1 with a ∈ R
and n > 2.

D. Thermodynamics of asymptotically
mass-dominated dilaton gravity

1. General remarks on the ensemble YðT;ΦÞ
In the previous subsection we showed that the phase

transition between HFS and generalized FSCs persists,
given some conditions on the functions w and h. Here we
address other thermodynamical aspects.
From the free energy (63) it is straightforward to derive

again all thermodynamical quantities of interest. Entropy
(38) and charge (39) yield the same results as before, and
also the first law (40) still holds, as it must. The only
quantities that change are specific heat and electric sus-
ceptibility. As we shall see they are not necessarily positive.

2. Specific heat at constant electric potential

Introducing the abbreviation

~w ¼ wþ q2

4
h; ð70Þ

we obtain

CΦ ¼ 2π
~w0
h

~w00
h −

q2

2

ðh0hÞ2
hh

: ð71Þ

Since the numerator must be positive in order to have
positive temperature (49), the requirement of positive
specific heat leads to the inequality,

~w00
h >

q2

2

ðh0hÞ2
hh

: ð72Þ

In the special case w ¼ 0 it simplifies to the inequality,

4For monotonic functions w this is certainly true. Even for
nonmonotonic functions it still must be true if we demand
positivity of the mass M.
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h00h > 2
ðh0hÞ2
hh

: ð73Þ

A simple example of an asymptotically mass-dominated
model that fails to obey the inequalities (72) and (73) is
given by

UðXÞ ¼ VðXÞ ¼ QðXÞ ¼ wðXÞ ¼ 0

fðXÞ ¼ 1

2
X3=2 hðXÞ ¼ −

4ffiffiffiffi
X

p : ð74Þ

While this model is not motivated by some particular
physical question, it shows that positivity of specific heat
is not automatic, but has to be checked on a case-by-
case basis.

3. Alternative ensemble FðT;qÞ
The Helmholtz free energy FðT; qÞ,

FðT; qÞ ¼ −
1

2
M − 2πTXh; ð75Þ

is obtained by a Legendre transformation of the free energy
YðT;ΦÞ from (63). One can derive the Helmholtz free
energy directly from an on-shell action by adding to (62)
another boundary term:

IFA ¼ 4

Z
∂M

dx
ffiffiffi
γ

p
naAbFab ð76Þ

However, then we would need to impose Neumann
boundary conditions instead of Dirichlet boundary con-
ditions on the gauge field Aa. The reason why we wanted to
impose Dirichlet boundary conditions on the gauge field in
the flat-space Achúcarro-Ortiz model was motivated by our
Kaluza-Klein reduction, but we can now give an intrinsic
2d argument why the ensemble YðT;ΦÞ is preferred over
the ensemble FðT; qÞ.
Namely, consider specific heat at constant charge Cq:

Cq ¼ T
∂S
∂T

����
q
¼ 2π

~w0
h

~w00
h

ð77Þ

This is the same result as previously obtained in [13]. In
order to have positive temperature we require again ~w0

h > 0.
However, if both functions w and h are monomial in X and
vanish in the asymptotic limit, then we have ~w00

h < 0. Thus,
the specific heat at constant charge is negative and the
respective ensemble is not well defined, as the Gaussian
fluctuations (21) destabilize system. This is the intrinsic
2D reason why we do not use the free energy (75) as
thermodynamic potential.

4. Electric susceptibility

Electric susceptibility can be expressed in terms of
specific heats as

χ ¼ ∂q
∂Φ

����
T
¼ 4CΦ

hhCq
: ð78Þ

As discussed before both hh and Cq are usually negative for
asymptotically mass-dominated models, so that the sign of
electric susceptibility equals the sign of specific heat at
constant electric potential.

5. Simple family of examples

We provide now a simple explicit family of models:

UðXÞ ¼ VðXÞ ¼ QðXÞ ¼ wðXÞ ¼ 0

fðXÞ ¼ Xn

4ðn − 1Þ hðXÞ ¼ −
4

Xn−1 ð79Þ

In order to achieve asymptotic mass domination we demand
n > 1. The flat space Achúcarro–Ortiz model (55) is
recovered for n ¼ 3.
We are thus led to the following set of solutions:

ξðXÞ ¼ M −
q2

Xn−1 XðrÞ ¼ r Fab ¼
qðn − 1Þ

Xn εab:

ð80Þ
The corresponding Penrose diagram is discussed in
Appendix. Temperature and electric potential of these
generalized 2D FSCs are given by

T ¼ n − 1

4π
q2X−n

h Φ ¼ −qX1−n
h ; ð81Þ

where Xh in terms of the conserved quantities M and q is
given by

Xh ¼
�
q2

M

� 1
n−1
: ð82Þ

It is useful to express the two parameters M, q in terms
of T and Φ:

M ¼ 4π

n − 1
T

�
4π

n − 1

T
Φ2

� 1
n−2

q ¼ −
4π

n − 1

T
Φ

�
4π

n − 1

T
Φ2

� 1
n−2 ð83Þ

The thermodynamic potential YðT;ΦÞ is given by

YðT;ΦÞ ¼ −
�
n
2
− 1

�
M

¼ −
�
n
2
− 1

�
4π

n − 1
T

�
4π

n − 1

T
Φ2

� 1
n−2
: ð84Þ
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Entropy, charge and first law follow again the general
discussion in Sec. III D 1.
The special case n ¼ 2 leads to vanishing free energy,

Y ¼ 0, and provides the simplest example for an asymp-
totically mass-dominated model without phase transition.
For n > 2 the inequality (67) holds and the phase transition
between HFS and generalized FSCs occurs at the critical
temperature

Tn−1
c ¼ n − 1

4π
Φ2

�
n − 1

n − 2

1

4π

�
n−2

: ð85Þ

The specific heat at constant electric potential is given by

CΦ ¼ S
n − 2

: ð86Þ

Thus, specific heat is positive only for n > 2. This is
compatible with the inequality (73). Similarly, electric
susceptibility is positive for n > 2:

χ ¼ n
n − 2

�
S
2π

�
n−1

ð87Þ

Thus, for the simple family of models (79) the inequality
(67) that guarantees the existence of the phase transition
simultaneously guarantees the positivity of specific heat
and electric susceptibility.
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APPENDIX: PENROSE DIAGRAM

In this appendix we discuss global properties of solutions
for 2D dilaton gravity models with asymptotic mass
domination. We follow the general construction by
Klösch and Strobl [39] and assume Minkowski signature
in the whole appendix.
For simplicity we assume that the functions w and h are

chosen such that there is only one Killing horizon, though
the whole discussion in the main text also would work for
multiple Killing horizons (the outermost Killing horizon
would then play the role of the Killing horizon used in the
main text).
For simplicity we further assume that w ¼ 0, though

again this assumption can be relaxed without yielding
anything novel. Moreover, without any essential loss we
further assume that h is a monomial in X (if it is a
generalized polynomial in X−α we just take the

asymptotically most dominant monomial contribution,
which is sufficient for discussing the asymptotic boundary
of the Penrose diagram):

hðXÞ ¼ −
4

Xn−1 n > 1: ðA1Þ

Assuming in addition

U ¼ −
a
X
; ðA2Þ

we can exploit the existing discussion of the so-called ab
family [40] reviewed in Sec. 3.3 of [34] (see in particular
their Fig. 3.12, which contains the “phase space” of all
possible Penrose diagrams). The parameter a is the same in
both discussions and the parameters b and n are related
by n ¼ −b.
With our assumptions of asymptotic mass domination and

existence of a well-defined variational principle we have to
satisfy the inequalities a ≤ 1, b < −1. From Fig. 3.12 in
[34] we then see that we always have the same Penrose
diagram, namely that of the Schwarzschild black hole.
However, there is one catch: the constructions in [34,40]

assumed that the dilaton field depends on a spacelike
(“radial”) coordinate. But in our case the dilaton field
depends on a timelike coordinate, by assumption. As a
consequence, the Penrose diagram has to be rotated by π=2.
In conclusion, for 2D (generalized) FSCs we end up with

the Penrose diagram depicted in Fig. 1 above, where we
used standard nomenclature (H� denotes Killing horizons,
J � denotes lightlike asymptotic boundaries, i� denotes
timelike asymptotic future and past, the wiggly lines are
singularities in the causal structure; region I corresponds to
an expanding FSC, region II to a contracting one; various
t ¼ const slices are depicted by curved lines in regions I
and II). Our Penrose diagram coincides with the one in
Fig. 2 by Cornalba and Costa [5].

FIG. 1. Penrose diagram of 2d FSCs.
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