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We employ the recently proposed formalism of the “horizon wave function” to investigate the emergence
of a horizon in models of black holes as Bose-Einstein condensates of gravitons. We start from the
Klein-Gordon equation for a massless scalar (toy graviton) field coupled to a static matter current. The
(spherically symmetric) classical field reproduces the Newtonian potential generated by the matter source,
and the corresponding quantum state is given by a coherent superposition of scalar modes with continuous
occupation number. Assuming an attractive self-interaction that allows for bound states, one finds that
(approximately) only one mode is allowed, and the system can be confined in a region the size of the
Schwarzschild radius. This radius is then shown to correspond to a proper horizon, by means of the horizon
wave function of the quantum system, with an uncertainty in size naturally related to the expected typical
energy of Hawking modes. In particular, this uncertainty decreases for larger black hole mass (with a larger
number of light scalar quanta), in agreement with semiclassical expectations, a result which does not hold
for a single very massive particle. We finally speculate that a phase transition should occur during the
gravitational collapse of a star (ideally represented by a static matter current and Newtonian potential)
that leads to a black hole (again ideally represented by the condensate of toy gravitons), and suggest an
effective order parameter that could be used to investigate this transition.
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I. INTRODUCTION

Recent works by Dvali and Gomez have offered a new
perspective on the quantum aspects of black hole physics
[1], and are drawing more and more attention [2–9]. The
idea is very simple: a black hole can be modeled as a
Bose-Einstein condensate (BEC) of gravitons interacting
with one another. Such gravitons superpose in a single
small region of space, effectively giving rise to a gravita-
tional well, whose depth is proportional to the total number
of gravitons present. Since no other (matter) constituents
appear in the model, we could view it as a description of
“purely gravitational” black holes, or the approximation
of the final state of gravitational collapse in which the initial
matter contribution has become subdominant with respect
to the gravitons themselves (in agreement with the huge
gravitational entropy predicted by Bekenstein for astro-
physical black holes [10]). One point which remains
unclear in Ref. [1] is whether these systems in fact display
a horizon, or trapping surface, as one would expect in a
“standard” black hole space-time.
Before we delve into this point, let us briefly review the

main argument in Ref. [1]. Note that we shall mostly use
units with c ¼ 1, the Newton constantGN ¼ lp=mp (where

lp and mp are the Planck length and mass, respectively),
and ℏ ¼ lpmp. These units make it apparent that GN
converts mass into length, thus providing a natural link
between energy and size which we shall assume also holds
at the quantum level [11]. In the Newtonian approximation,
we can assume that a system ofN gravitons has total energy
M ¼ Nm, and that each graviton interacts with the others
via the potential

VN ≃ −
GNM
r

¼ −
lpNm

rmp
; ð1:1Þ

where the effective graviton mass m is related to the
characteristic quantum-mechanical size via the Compton/
de Broglie wavelength,

λm ≃ ℏ
m

¼ lp
mp

m
: ð1:2Þ

In fact, since gravitons can superpose, one expects them
to give rise to a ball of characteristic radius r≃ λm
for sufficiently large N. For the following argument, it is
then sufficient to assume that the potential (1.1) becomes
negligible for r≳ λm (for improved approximations, see
Refs. [5,9]), so that the potential energy of each graviton
interacting with the remaining N − 1 gravitons is given by

UmðrÞ≃mVNðλmÞ

¼ −N
αℏ
λm

Θðλm − rÞ; ð1:3Þ
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where

α ¼ l2
p

λ2m
¼ m2

m2
p

ð1:4Þ

is the effective gravitational coupling constant and Θ is the
Heaviside step function. One can now see that there exist
values of N such that the system is a black hole. This
happens when the kinetic energy EK ≃m of each graviton
is just below the amount needed to escape the potential
well, which yields the marginally bound condition

EK þ Um ≃ 0; ð1:5Þ

equivalent to the “maximal packing”

Nα ¼ 1: ð1:6Þ

From that point on, the “blob” of gravitons becomes a
self-confined object, whose effective boson mass and total
mass scale according to1

m≃ mpffiffiffiffi
N

p ; ð1:7Þ

M ≃ Nm≃ ffiffiffiffi
N

p
mp: ð1:8Þ

Boson excitations can further lead to quantum depletion
of the condensate out of the ground state. Such “leaking”
of gravitons can be interpreted (at least in a first-order
approximation) as the emission of Hawking radiation. This
kind of toy model is very intuitive and also gives an elegant
quantum-mechanical description of black holes in terms of
the graviton number N. However, as we already mentioned,
it leaves open the question of whether the causal structure
of space-time indeed contains a trapping surface.
We already noted that, in this model of “purely gravi-

tational” black holes, only gravitons are considered and
there is no trace of (nor, apparently, need of considering) the
matter that initially collapsed and formed the black hole.
However, it is clear that, unless the black hole originated
from a primordial quantum fluctuation of the vacuum in the
very early stages of the Universe, the only known mecha-
nism that could possibly lead to such a final state is the
gravitational collapse of a star or other astrophysical source.
The question then arises naturally of whether neglecting
the role of regular matter in the final state is a reliable
approximation. One could rather argue that matter always
matters, and the final state of gravitational collapse is not a
“pure” black hole like the one in Ref. [1] if it is a black hole

(in the strict general-relativistic sense) at all. This is the
question one would eventually like to answer, although it
appears we are still quite far from that.
In this work, we shall first review the picture and scaling

relations (1.7) and (1.8) as proposed in Ref. [1] starting
from the relativistic field equation for scalar gravitons, but
without assuming any specific form for the necessary
binding potential. We shall start from the classical solution
ϕc of the Klein-Gordon equation for a massless scalar field
coupled to a static and spherically symmetric matter source
J. Such a classical solution is reproduced, in the quantum
theory, by a coherent state obtained by superposing modes
belonging to a whole range of momenta k > 0. However, if
one assumes the source J is determined by the scalar field
itself inside a finite spatial volume,2 (namely, if J ∼ ϕc),
one finds that (roughly) only one mode k−1c ∼M is allowed.
According to the corpuscular model of Ref. [1], this means
the quantum coherent state, representing the Newtonian
potential of a star, must have collapsed into a macroscopic
quantum object made of a large number N of bosons in the
same mode kc. At this point, we shall finally be able to
tackle the main issue of investigating the presence of
trapping surfaces by means of the formalism of the horizon
wave function [11,16,17] for such quantum states in the
mode kc. Our conclusion will be that there is indeed a
horizon and that it is of the expected classical size, for large
N. We shall also consider a few generalizations of this state
—with diverse forms of “quantum hair”—that could
possibly be used to model the Hawking radiation or the
approach of collapsing matter towards the horizon. We
shall then see that the uncertainty in the horizon radius
always turns out to be naturally related to the existence of
leaking (or Hawking) modes [18], and is thus determined
by the Hawking temperature. For larger black holes, this
uncertainty in the horizon size clearly decreases, in agree-
ment with semiclassical expectations. It is then important
to highlight that a similar result does not hold if one
tries to describe a black hole as a single very massive
particle (that is, a system with N ¼ 1 and m ≫ mp), since
in the latter case this uncertainty remains of the order of the
horizon size itself, regardless of the value of the black hole
mass [16].
In Sec. II, we first review the classical solutions of the

Klein-Gordon equation for a static source (which is
equivalent to the Poisson equation for Newtonian gravity)
and the coherent states that reproduce the classical
Newtonian potential. We next sketch how the self-sustained
state can generically arise in this context. The causal
structure of the latter configuration is then analyzed in

1There is a large amount of literature on self-gravitating bosons
in general relativity, which address the problem of gravitational
stability and black hole formation, and for which no analytical
solution is available, but where similar scaling relations can be
found (see, e.g., Refs. [12–14]).

2Let us remark that this self-sourcing condition appears as a
crucial aspect in the “classicalization” of gravity; see Refs. [3,15].
Of course, the existence of bound states localized inside a finite
volume requires an attractive self-interaction, of the kind one
expects for gravity [1], and an example of this was studied in
Ref. [7].
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Sec. III by means of the horizon wave function of the
system, obtained from the spectral decomposition of a few
different quantum states of N bosons distributed around the
ground state kc. One case in particular is discussed in which
the distribution is thermal, as is expected for Hawking
radiation. We conclude with several comments and spec-
ulations in Sec. IV.

II. MASSLESS SCALAR FIELD TOY MODEL

We start by reviewing well-known general features of
Newtonian gravity and of the corpuscular model of black
holes of Ref. [1] by means of a toy scalar field. This
introductory material will allow us to highlight some of the
main differences between a (Newtonian) star and a black
hole, and provide us with an approximate quantum state for
the subsequent analysis of the causal structure of space-
time in Sec. III.
Let us consider the Klein-Gordon equation for a real and

massless scalar field ϕ coupled to a scalar current J in
Minkowski space-time,

□ϕðxÞ ¼ qJðxÞ; ð2:1Þ

where □ ¼ ημν∂μ∂ν, the scalar field has the standard
canonical dimension of length−1, and the coupling q is
dimensionless for simplicity (appropriate dimensional fac-
tors will be introduced in the final expressions). We shall
also assume that the current is time-independent, ∂0J ¼ 0.
In momentum space, with kμ ¼ ðk0;kÞ, this implies that

k0 ~JðkμÞ ¼ 0; ð2:2Þ

which is solved by the distribution

~JðkμÞ ¼ 2πδðk0Þ ~JðkÞ; ð2:3Þ

where ~J�ðkÞ ¼ ~Jð−kÞ. For the spatial part, we further
assume exact spherical symmetry, so that our analysis is
restricted to functions fðxÞ ¼ fðrÞ, with r ¼ jxj. We can
then introduce functions in momentum space according to

~fðkÞ ¼ 4π

Z þ∞

0

drr2j0ðkrÞfðrÞ; ð2:4Þ

where

j0ðkrÞ ¼
sinðkrÞ
kr

ð2:5Þ

is a spherical Bessel function of the first kind and k ¼ jkj.

A. Classical solutions

Classical spherically symmetric solutions of Eq. (2.1)
can be formally written as

ϕcðrÞ ¼ q□−1JðrÞ; ð2:6Þ

and are given in momentum space by

~ϕcðkÞ ¼ −q
~JðkÞ
k2

: ð2:7Þ

For example, if the current has Gaussian support,

JðrÞ ¼ e−r
2=ð2σ2Þ

ð2πσ2Þ3=2 ; ð2:8Þ

so that

~JðkÞ ¼ e−k
2σ2=2; ð2:9Þ

the corresponding classical scalar solution is given by

ϕcðrÞ ¼ −
q
2π2

Z þ∞

0

dkj0ðkrÞe−k2σ2=2

¼ −
q
4πr

erf

�
rffiffiffi
2

p
σ

�
: ð2:10Þ

The above expression outside the source J, or for r ≫ σ,
reproduces the classical Newtonian potential (1.1), namely

VN ¼ 4π

q
GNMϕc ≃ −

GNM
r

; ð2:11Þ

where we introduced the suitably dimensioned factor.

B. Quantum coherent states

In the quantum theory, the classical configurations (2.6)
are replaced by coherent states. This can be easily seen
from the normal-ordered quantum Hamiltonian density in
momentum space,

Ĥ ¼ kâ0†k â
0
k þ ~Hg; ð2:12Þ

where ~Hg is the ground-state energy density,

~Hg ¼ −q2
j ~JðkÞj2
2k2

; ð2:13Þ

and we shifted the standard ladder operators according to

â0k ¼ âk þ q
~JðkÞffiffiffiffiffiffiffi
2k3

p : ð2:14Þ

The source-dependent ground state jgi is annihilated by the
shifted annihilation operator,

â0kjgi ¼ 0; ð2:15Þ
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and is a coherent state in terms of the standard field
vacuum,

âkjgi ¼ −q
~JðkÞffiffiffiffiffiffiffi
2k3

p jgi ¼ gðkÞjgi; ð2:16Þ

where g ¼ gðkÞ is thus an eigenvalue of the shifted
annihilation operator. This implies

jgi ¼ e−N=2 exp

�Z
k2dk
2π2

gðkÞâ†k
�
j0i; ð2:17Þ

where N denotes the expectation value of the number of
quanta in the coherent state,

N ¼
Z

k2dk
2π2

hgjâ†kâkjgi

¼
Z

k2dk
2π2

jgðkÞj2

¼ q2

ð2πÞ2
Z

dk
k
j ~JðkÞj2; ð2:18Þ

from which we can read off the occupation number

nk ¼
�
q
2π

�
2 j ~JðkÞj2

k
: ð2:19Þ

It is straightforward to verify that the expectation value of
the field in the state jgi coincides with its classical value,

hgjϕ̂kjgi ¼
1ffiffiffiffiffi
2k

p hgjðâk þ â†−kÞjgi

¼ 1ffiffiffiffiffi
2k

p hgjðâ0k þ â0†−kÞjgi − q
~JðkÞ
k2

¼ ~ϕcðkÞ; ð2:20Þ

and thus jgi is a realization of the Ehrenfest theorem.
It is interesting to recall that the state jgi and the number

N are not mathematically well defined in general:
Eq. (2.18) is UV divergent if the source has infinitely thin
support, and IR divergent if the source contains modes
of vanishing momenta (which would only be physically
consistent with an eternal source). The UV issue can be
cured, for example, by using a Gaussian distribution like
the one in Eq. (2.8), while the IR divergence can be
naturally eliminated if the scalar field is massive or the
system is enclosed within a finite volume (so that allowed
modes are also quantized). These details are however
of little importance for what follows and we shall therefore
not indulge in them here.

C. Stars and self-sustained scalar states

The system we have considered so far could represent a
“star,” that is, a classical lump of ordinary matter with
density

ρ ¼ MJ; ð2:21Þ

where M is the total (proper) energy of the star. The
Newtonian potential energy for this star is of course given
by UM ¼ MVN, so that ϕc is accordingly determined by
Eq. (2.11) and the quantum state of ϕ̂ by Eq. (2.20). Note
that, for a very large mass M, the scalar gravitons in the
coherent state jgi are mostly found with an energy around
m ∼ UM=N and their total number is N ∼M2, in agreement
with Eq. (1.8) [1]. It is interesting to note that this scaling
relation for the total mass of the self-gravitating system
holds both for a star and in the black hole regime, whereas
Eq. (1.7) for the graviton’s energy holds only in the black
hole regime (since the total Newtonian potential energy
UM ≃ Nm ≪ M for a regular star).
Let us instead assume that there exists a regime in

which the matter contribution is negligible, and the
source J on the rhs of Eq. (2.1) is thus provided by
the gravitons themselves [1], (at least) inside a finite
spatial volume V. As we mentioned in the Introduction,
this confinement is a crucial feature for the “classicaliza-
tion” of gravity [15], and necessarily requires an attrac-
tive self-interaction for the scalar field to admit bound
states. Of course, one expects this to happen for full-
fledged gravity and, in the semiclassical regime, to lead to
a curved space-time metric (inside the volume V). The
self-interaction, at least in this regime, could then be
effectively described by a modified d’Alembertian in
Eq. (2.1). Since the details of the (otherwise necessary)
confining mechanism are not relevant for our analysis, we
can just assume that the momentum modes in Eq. (2.5)
are replaced by those in the appropriate curved space-
time and that Eq. (2.7) in momentum space still holds. In
other words, we just require that the energy density (2.21)
sourcing the evolution of each scalar is equal to minus
the average total potential energy NUm=V,

3 where
V ¼ 4πR3=3 is the spatial volume where this source
has support. This is just the same as the marginally
bound condition (1.5) used in Ref. [1] with NEK ∼ J, and
it implies that

J ≃ −
3NGNm
qR3

ϕc ð2:22Þ

inside the volume V, where m is again the energy of each
scalar graviton and N is their total number. Upon

3The total potential energy of each graviton is proportional to
ðN − 1ÞUm, but since we are interested in the large-N case, we
approximate N − 1≃ N.
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inserting this condition into Eq. (2.7), we straightfor-
wardly obtain

3NGNm
R3k2

¼ 3RH

2R3k2
≃ 1; ð2:23Þ

where

RH ¼ 2GNM ð2:24Þ

is the classical Schwarzschild radius associated with the
total mass M ¼ Nm. This suggests that, unlike the
Newtonian potential generated by an ordinary matter
source, a self-sustained system should contain only the
modes with momentum numbers k ¼ kc such that

Rkc ≃
ffiffiffiffiffiffi
RH

R

r
; ð2:25Þ

where we dropped a numerical coefficient of order one
given the qualitative nature of our analysis. Ideally, this
means that, if the scalar gravitons represent the main
gravitating source, the quantum state of the system must
be given in terms of just one mode ϕkc . A coherent state of
the form in Eq. (2.17) cannot thus be built, and the
relation (2.18) between N and the source momenta does
not apply here. Instead, for N ≫ 1, all scalars will be in
the same state jkci.
For an ordinary star, the typical size R ≫ RH and

kc ≪ R−1. The corresponding de Broglie wavelength
λc ≃ k−1c ≫ R, which would conflict with our assumption
that the field is identified as a gravitating source only within
a region of size R. However, if we consider the “black hole
limit” in which R ∼ RH, and recalling that m ¼ ℏk, we
immediately obtain (again, dropping a numerical coeffi-
cient of order one)

1≃GNMkc ¼ N
m2

m2
p
; ð2:26Þ

which leads to the two scaling relations (1.7) and (1.8),
namely m ¼ ℏkc ≃mp=

ffiffiffiffi
N

p
and a consistent de Broglie

wavelength λm ≃ λc ≃ RH. An ideal system of self-
sustained scalars should then be in the quantum state
jkci4 with a spatial size that suggests that the system is a
black hole [1]. In order to substantiate this last part of the
sentence, one should however show that there is a horizon,
or at least a trapping surface, in the given space-time.
The standard procedure to show the existence of trapping

surfaces requires knowing explicitly the metric that solves
the semiclassical Einstein field equations with the pre-
scribed source, the latter being represented by the expect-
ation value of the appropriate stress-energy tensor. One

therefore also needs the explicit form of the momentum
modes that we implicitly assumed lead to Eq. (2.7).
However, the problem of self-gravitating scalar fields in
general relativity has been known for decades [12] and
analytical solutions have yet to be found [13,14]. Moreover,
it is not a priori guaranteed that such a semiclassical
approach remains valid for the type of quantum sources
we are dealing with, since the quantum fluctuations of the
source could be large enough to spoil the possibility of
employing a curved background geometry to describe
the region where the source is located.5 In fact, one expects
that this standard approach in general holds at large
distances from the source, and yields the proper (post-)
Newtonian approximation [1] in a region far from where
trapping surfaces are likely to be located. This is precisely
the reason a formalism for describing the gravitational
radius of any quantum system was introduced in
Refs. [11,16,17], as we shall review shortly.
Before we do so, let us remark that the above argument

leading to Eq. (2.26) does not require that the scalar field ϕ
vanish (or be negligible) outside the region of radiusRH. This
would in fact imply that there is no outer Newtonian
potential, which is in contrast with the idea of a gravitational
source. All we need in order to recover the classical outer
Newtonian potential VN ∼ ϕ is to relax the condition (2.22)
for r≳ RH (where J ≃ 0), and properly match the (expect-
ation) value of ϕ̂ with the Newtonian ϕc from Eq. (2.11) at
r≳ RH. In this matching procedure, at least for r ≫ RH
and N ≫ 1, one then expects to recover the classical
description, for which the only relevant information is the
total massM of the black hole. This can already be seen from
the classical analysis of the outer (r ≫ σ ∼ RH) Newtonian
scalar potential in Sec. II A and its quantum counterpart
in Sec. II B, as well as in the alternative description of
gravitational scattering. It has in fact been known for a long
time that geodesic motion in the post-Newtonian expansion
of the Schwarzschild metric can be reproduced by tree-level
Feynman diagrams with graviton exchanges between
a test probe and a (classical) large source [19]6 In this
calculation, again for r ≫ RH, the source is just described
by its total mass M, and quantum effects should then be
suppressed by factors of 1=N [1].

III. HORIZON OF SELF-SUSTAINED STATES

In the above review, there is no explicit evidence of a
nontrivial causal structure. As we already mentioned, in
order to show that a system of N ≫ 1 scalar gravitons is a
black hole in the usual sense, we must be able to identify a
radius r ∼ RH as the actual horizon. In order to do so, we

4For more details about the identification of this state as a
BEC, see, for example, Ref. [7].

5Let us remark that, without a curved background geometry,
the very definition of a trapping surface becomes conceptually
challenging [11].

6For a similarly nongeometric derivation of the action of
Einstein gravity, see Ref. [20].
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employ the horizon wave function introduced in Ref. [11]
(see Refs. [16,17] for more details).
This formalism can be applied to the quantum-

mechanical state ψS of any system localized in space
and at rest in the chosen reference frame. Having defined
suitable Hamiltonian eigenmodes, ĤjψEi ¼ EjψEi, where
H can be specified depending on the model we wish to
consider, the state ψS can be decomposed as

jψSi ¼
X
E

CðEÞjψEi: ð3:1Þ

If we further assume that the system is spherically
symmetric, we can invert the expression of the
Schwarzschild radius,

rH ¼ 2GNE; ð3:2Þ

in order to obtain E as a function of rH. We then define the
horizon wave function as

ψHðrHÞ ∝ CðmprH=2lpÞ; ð3:3Þ

whose normalization is finally fixed in the inner product

hψH∣ϕHi ¼ 4π

Z
∞

0

ψ�
HðrHÞϕHðrHÞr2HdrH: ð3:4Þ

We interpret ψH simply as the wave function yielding the
probability PHðrHÞ ¼ 4πr2HjψHðrHÞj2 that we would detect
a gravitational radius r ¼ rH associated with the given
quantum state ψS. Such a radius generalizes the classical
concept of the Schwarzschild radius of a spherically
symmetric distribution of matter and is necessarily “fuzzy,”
like the position and energy of the particle itself [11,16].
The probability density that the system lies inside its own
gravitational radius r ¼ rH will next be given by the
conditional expression

P<ðr < rHÞ ¼ PSðr < rHÞPHðrHÞ; ð3:5Þ

where PSðr < rHÞ ¼ 4π
R rH
0 jψSðrÞj2r2dr is the probability

that the system is inside a sphere of radius r ¼ rH. Finally,
the probability that the system described by the wave
function ψS is a black hole will be obtained by integrating
(3.5) over all possible values of the radius,

PBH ¼
Z

∞

0

P<ðr < rHÞdrH: ð3:6Þ

When PBH ≃ 1, the system is very likely to be found inside
its own gravitational radius, which therefore turns into a
trapping surface (or, loosely speaking, a horizon), and can
be (at least temporarily) viewed as a black hole. The above
general formulation can be easily applied to a particle
described by a spherically symmetric Gaussian wave

function, for which one obtains a vanishing probability
that the particle is a black hole when its mass is much
smaller than mp (and the uncertainty in the position
λm ≫ lp) [11,16]. However, the uncertainty in the horizon
size for a single particle with trans-Planckian mass
M ≫ mp turns out to be

ΔrH ∼ hr̂Hi ∼ RH; ð3:7Þ
which clearly shows that this system cannot represent a
large, semiclassical black hole.
The main difference with respect to a single very massive

particle [11,16] is that our system is now composed of a
very large number N of particles of very small effective
mass m ≪ mp (and thus very large de Broglie wavelength,
λm ≫ lp). According to Ref. [16], they cannot individually
form (light) black holes; however, the generalization of the
formalism to a system of N such components will enable us
to show that the total energy E ¼ M is indeed sufficient to
create a proper horizon.

A. Hairless black hole

Let us first consider the highly idealized case in which
Eq. (2.25) admits precisely one mode, defined by

kc ¼
π

RH
¼ π

2
ffiffiffiffi
N

p
lp

; ð3:8Þ

so that ϕkcðRHÞ≃ j0ðkcRHÞ ¼ 0 and the scalar field van-
ishes outside of r ¼ RH,

ψSðriÞ ¼ hri∣kci ¼
�
N cj0ðkcriÞ for r < RH;

0 for r > RH;
ð3:9Þ

where N c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π=2R3

H

p
is a normalization factor such that

4πN 2
c

Z
RH

0

jj0ðkcrÞj2r2dr ¼ 1: ð3:10Þ

The above approximate mode is plotted in Fig. 1, where
it is also compared with a Gaussian distribution of the
kind considered in Ref. [5], which appears qualitatively
very similar.
We have already commented in the previous section that

a scalar field which vanishes everywhere outside r ¼ RH
is actually inconsistent with the presence of an outer
Newtonian potential, but let us put this fact aside momen-
tarily. The wave function of the system of N such modes is
the (totally symmetrized) product of N ∼M2 equal modes
[see the order γ0 term in Eq. (A2), with jmi ¼ jkci],

ψSðr1;…; rNÞ ¼
N N

c

N!

XN
fσig

YN
i¼1

j0ðkcriÞ; ð3:11Þ

where the sum is over all the permutations fσig of the N
excitations. This is obviously an energy eigenstate,
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ĤψS ¼ NℏkcψS ¼ MψS; ð3:12Þ

where Ĥ ¼ P
iĤi ¼

P
iℏk̂i is the total Hamiltonian for N

free massless scalars in momentum space. The only non-
vanishing coefficient in the spectral decomposition is then
given byCðEÞ ¼ 1, for E ¼ Nℏkc ¼ M, corresponding to a
probability density for finding the horizon size between rH
and rH þ drH,

dPHðrHÞ ¼ 4πr2HjψHðrHÞj2drH
¼ δðrH − RHÞdrH: ð3:13Þ

This result, along with the fact that all N excitations in the
mode kc are confined within the radius RH ≃ λc,

PSðri < RHÞ ¼ 4πN 2
c

Z
RH

0

jj0ðkcrÞj2r2dr ¼ 1; ð3:14Þ

immediately leads to the conclusion that the system is
indeed a black hole,

PBH ≃ 4πN 2
c

Z
∞

0

drHδðrH − RHÞ
Z

rH

0

jj0ðkcrÞj2r2dr

¼ PSðr < RHÞ ¼ 1: ð3:15Þ

In the above “ideal” approximation (3.9), the horizon
would exactly be located at its classical radius,

hr̂Hi≡ hψHjr̂HjψHi ¼ RH; ð3:16Þ

with absolutely negligible uncertainty, ΔrH ≃ 0, where

Δr2H ≡ hψHjðr̂2H − R2
HÞjψHi: ð3:17Þ

A zero uncertainty in hr̂Hi is not a sound result, which
likely parallels the description of a macroscopic black
hole as a pure quantum-mechanical state built out of the
single-particle wave functions in Eq. (3.9). Moreover, we
recall again that a nonvanishing scalar field at r > RH is
also necessary in order to reproduce the expected outer
Newtonian potential.

B. Black hole with quantum hair

It is reasonable that a more realistic macroscopic black
hole of the kind we consider here (with N ≫ 1) is not just
an energy eigenstate with k ¼ kc but contains more modes.
In particular, we expect that the mode with k ¼ kc forms a
discrete spectrum (which is tantamount to assuming kc is
the minimum allowed momentum, in agreement with the
idea of a BEC of gravitons), and must be treated separately.
Modes with k > kc would instead be able to “leak out”
(roughly representing the Hawking flux, as we shall see)
and form a continuous spectrum, which will turn out to be
responsible for the fuzziness in the horizon’s location.
For the sake of employing a calculable function, let us

assume here that the continuous distribution in momentum
space of each of the N scalar states is given by half a
Gaussian peaked around kc (see Fig. 2 for a few modes
above kc),

jψ ðiÞ
S i ¼ N γ

�
jkci þ γ

Z
∞

kc

ffiffiffi
2

p
dkiffiffiffiffiffiffiffiffiffiffiffiffi

Δi
ffiffiffi
π

pp e
−ℏ2ðki−kcÞ2

2Δ2
i jkii

�
; ð3:18Þ

where i ¼ 1;…; N, the ket jki denotes the eigenmode of
eigenvalue k, and

N γ ¼ ð1þ γ2Þ−1=2 ð3:19Þ

is a global normalization factor. The parameter γ is a real
and dimensionless coefficient that weighs the relative prob-
ability of finding the particle in the continuous part of the
spectrum with respect to the same particle being in the
discrete ground stateϕkc , andwe shall see later on that it plays
amajor role in our analysis. In particular, one should note that
we are here assuming that γ does not depend on N. We shall
also assume that thewidthΔi¼m≃M=N≃mp=

ffiffiffiffi
N

p
, which

follows from the typicalmode spatial sizek−1c ∼
ffiffiffiffi
N

p
lp and is

the same for all particles.7 Sincem ¼ ℏkc andEi ¼ ℏki, one
can also write

RH

r

FIG. 1. Scalar field mode of momentum number kc: the ideal approximation in Eq. (3.9) (thick solid line) is compared to the exact
j0ðkcrÞ (dashed line). The thin solid line represents a Gaussian distribution of the kind considered in Ref. [5].

7This assumption will help to simplify the calculations,
although it would be perhaps more realistic to assume a different
width for each mode ki.
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jψ ðiÞ
S i ¼ N γ

�
jmi þ γ

Z
∞

m

ffiffiffi
2

p
dEiffiffiffiffiffiffiffiffiffiffiffi
m

ffiffiffi
π

pp e−
ðEi−mÞ2

2m2 jEii
�
: ð3:20Þ

The total wave function will be given by the symmetrized
product of N such states [see Eq. (A1)], and one can then
identify two regimes, depending on the value of γ (see
Appendix A for all the details).
For γ ≪ 1, to leading order in γ, one finds that the

spectral coefficient for E ≥ M is given by the contribution
of the discrete quantum state (corresponding to all of the N
particles in the mode kc) plus the contribution with just one
particle in the continuum [see Eq. (A3) and the first term on
the rhs of Eq. (A5)],

CðE ≥ MÞ≃N γ

�
δE;M þ γ

�
2

m
ffiffiffi
π

p
�

1=2
e−

ðE−MÞ2
2m2

�
; ð3:21Þ

where δA;B is a Kronecker delta for the discrete part of the
spectrum, and the width m ∼mp=

ffiffiffiffi
N

p
is precisely the

typical energy of Hawking quanta emitted by a black hole
of mass M ≃ ffiffiffiffi

N
p

mp. It is then easy to compute the
expectation value of the energy to next-to-leading order
for large N and small γ,

hEi≃N 2
γ

�
M þ

Z
∞

M
EC2ðEÞdE

�

≃ ffiffiffiffi
N

p
mp

�
1þ γ2=

ffiffiffi
π

p
1þ γ2

1

N

�

≃ ffiffiffiffi
N

p
mp

�
1þ γ2ffiffiffi

π
p

N

�
; ð3:22Þ

and its uncertainty

ΔE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hE2i − hEi2

q
≃ γmpffiffiffiffiffiffiffi

2N
p : ð3:23Þ

Putting the above two expressions together, we obtain the
ratio

ΔE
hEi≃

γffiffiffi
2

p
N
; ð3:24Þ

where we have just kept the leading order in the large-N
expansion and neglected terms of higher order in γ. From
the expression for the Schwarzschild radius (3.2), or
rH ¼ 2lpE=mp, we then immediately obtain hr̂Hi≃ RH,
with RH given in Eq. (2.24), and

ΔrH
hr̂Hi

∼
1

N
; ð3:25Þ

which vanishes rather fast for large N. This case could
hence describe a macroscopic BEC black hole with (very)
little quantum hair, in agreement with Ref. [1], thus
overcoming the problem of the excessive large fluctuations
(3.7) associated with a single massive particle.
Since this “hair” is indeed expected to be the

Hawking radiation field, we shall make the connection
with thermal Hawking radiation more explicit in Sec. III D
and obtain essentially the same estimate for the horizon
uncertainty.

C. Quantum hair with no black hole

For γ ≳ 1 and N ≫ 1, one finds that the distribution in
energy is dominated by all of the N particles in the
continuum [see the last term on the rhs of Eq. (A5)], so
that the ground state ϕkc is actually depleted (or was never
occupied).

−4 −2 2 4

r

RH

0.01

0.02

0.03

FIG. 2. Modes of momentum number k ¼ kc (thick solid line), k ¼ ð5=4Þkc (dashed line), k ¼ ð3=2Þkc (dotted line), k ¼ ð7=4Þkc
(dash-dotted line), and k ¼ 2kc (thin solid line). The relative weight is determined according to Eq. (3.18).
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Since the coefficient γN (as well as any other overall factors) can be omitted in this case, one finds

CðE ≥ MÞ≃
Z

∞

m
dE1 � � �

Z
∞

m
dEN exp

�
−
XN
i¼1

ðEi −mÞ2
2m2

�
δ

�
E −

XN
i¼1

Ei

�
; ð3:26Þ

along with CðE < MÞ≃ 0. Note that the mass M ¼ Nm
should still be viewed as the minimum energy of the system
corresponding to the “ideal” black hole with all of the N
particles in the ground state jkci. For N ¼ M=m ≫ 1, this
spectral function is estimated analytically in Appendix B,
and is given by8

CðE ≥ MÞ≃
ffiffiffiffiffiffiffiffiffi
2

πm3

r
ðE −MÞe−ðE−MÞ2

4m2 ; ð3:27Þ

which is peaked slightly above E≃M ¼ Nm, with a widthffiffiffi
2

p
Δi ∼m, so that the (normalized) expectation value

hEi≃
Z

∞

M
EC2ðEÞdE ¼ M þ 2

ffiffiffi
2

π

r
m ð3:28Þ

is in agreement with the fact that we are now considering
a system built out of continuous modes whose energy
must be (slightly) larger than m. For N ≫ 1, however,
hEi ¼ M½1þOðN−1Þ�, and the energy quickly approaches
the minimum value M, as is confirmed by the uncertainty

ΔE≃
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3π − 8

π

r
m; ð3:29Þ

or ΔE ∼ N−1=2.
The corresponding horizon wave function is again

obtained by simply recalling that rH ¼ 2lpE=mp, and is
approximately given by

ψHðrH ≥ 2
ffiffiffiffi
N

p
lpÞ≃ ðrH − 2

ffiffiffiffi
N

p
lpÞe

−ðrH−2
ffiffi
N

p
lpÞ2

16l2p=N ð3:30Þ

and ψHðrH < 2
ffiffiffiffi
N

p
lpÞ≃ 0. The probability density of

finding the horizon with a radius between rH and rH þ
drH is plotted in Fig. 3 for a few values of N. It is clear
that for N ∼ 1, the uncertainty in the horizon location
would be large, but it decreases very fast for increasing N.
Accordingly, the (unnormalized) expectation value is

hr̂Hi≃ 2
ffiffiffiffi
N

p
lp

�
1þ

ffiffiffi
2

π

r
2

N

�
¼ RH½1þOðN−1Þ�; ð3:31Þ

which approaches the horizon radius of the ideal black
hole, RH ¼ 2

ffiffiffiffi
N

p
lp, for large N. In agreement with

previous comments about the distribution in energy, the
position of the horizon has an uncertainty roughly propor-
tional to the energy m ¼ mp=

ffiffiffiffi
N

p
, that is,

ΔrH
hr̂Hi

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hr̂2H − hr̂Hi2i

p
hr̂Hi

≃ 1

N
; ð3:32Þ

which vanishes as fast as in the previous case for large N,
which is expected in a proper semiclassical regime [1].
The numerical analysis of Eq. (3.26) displayed in

Appendix C shows that the actual peak of the spectral
function C ¼ CðEÞ is at slightly larger values of E (and the
width is narrower) than the ones given by the analytical
approximation (3.27) when N ≫ 1. However, the uncer-
tainties ΔrH obtained so far are very likely just lower
bounds. As we show in Appendix A, the spectral coef-
ficient C ¼ CðE > MÞ contains N contributions, displayed
in Eq. (A5), of which we have just tried to include one
(at a time). In particular, for γ ≃ 1, one could argue that all
of the N terms in Eq. (A5) are relevant and their sum might
yield a larger uncertainty. If each of these terms contributes
an uncertainty ΔrH=hr̂Hi ∼ N−1 (like the terms already
estimated) they could possibly add up to ΔrH ∼ hr̂Hi.9 This
would signal that the causal structure of the system is far
from being classical.
Let us stress again that cases with γ≪1 cannot be used to

model a BEC black hole, since then most or all of the
scalars are in some excited mode with k > kc. However, it
is not unreasonable to conjecture that these states play a
role either at the threshold of black hole formation (before
the gravitons condense into the ground state jkci) or near
the end of black hole evaporation (when the black hole is
the hottest). We shall further comment about this in the
concluding section.

D. Black hole with thermal hair

We have seen in Sec. III B that, for γ ≪ 1, the dominant
contribution to the spectral decomposition of the quantum
state ofN scalars is given by the configuration with just one
boson in the continuum of excited states and the remaining
N − 1 particles in the ground state. In that section, we
employed a rather ad hoc Gaussian distribution for the
continuous part of the spectrum, but we then found that the

8See also Appendix C, where we compare Eq. (3.27) with a
numerical estimate using a standard Monte Carlo method.

9We note in passing that this is the uncertainty one would
obtain for a single quantum-mechanical particle of mass m ≫ mp
[11,16]. A numerical estimate of all of the N terms in Eq. (A5) is
in progress.
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spectral function has a typical width of the order of the
Hawking temperature,

TH ¼ m2
p

4πM
≃ mpffiffiffiffi

N
p ; ð3:33Þ

or TH ≃m.
Let us therefore see what happens if we replace the

Gaussian distribution in Eq. (3.18) with a thermal spectrum
at the temperature TH, which is predicted according to the
Hawking effect, that is,

jψ ðiÞ
S i≃N γ

�
jmi þ γ

eT
−1
H

m
2ffiffiffiffiffiffi

TH
p

Z
∞

m
dEie−T

−1
H Ei jEii

�
; ð3:34Þ

where the arbitrary coefficient γ again weighs the relative
probability of having a scalar quantum in the continuous
spectrum with respect to it being in the ground state. In the
same approximation γ ≪ 1 that was used in Sec. III B, the
dominant correction to the ideal black hole is again given
by the configuration with just one boson in the continuum,
for which

CðE > MÞ≃ γ

�
e
m

�
1=2

Z
∞

m
dE1e−

E1
m δðE −M þm − E1Þ

≃ γ

�
e
m

�
1=2

e−
E−ðM−mÞ

m ; ð3:35Þ

where we used TH ≃m. Adding the contribution from the
ground state, we obtain that the (normalized) nonvanishing
spectral coefficients are given by

CðE ≥ MÞ≃ ~N γ

�
δE;M þ γ

�
e
m

�
1=2

e−
E−ðM−mÞ

m

�
; ð3:36Þ

where the new normalization factor is given by

~N γ ¼
�
1þ γ2

2e

�−1=2
: ð3:37Þ

It is now easy to compute the expectation value of the
total energy, for large N and to leading order in γ,

hEi≃ ffiffiffiffi
N

p
mp

�
1þ γ2

4eN

�
; ð3:38Þ

and its uncertainty

ΔE≃ γmp

2
ffiffiffiffiffiffi
eN

p : ð3:39Þ

For N ≫ 1, the above expressions lead to

ΔE
hEi ∼

γ

2
ffiffiffi
e

p
N
: ð3:40Þ

Up to an irrelevant numerical factor, this is the same
behavior we found in the previous two cases, and one
therefore expects the uncertainty in the horizon size to be

ΔrH
hr̂Hi

∼
1

N
; ð3:41Þ

which, for largeN, is the same decreasing behaviorwe found
previously in Sec. III B for a Gaussian distribution [1].
This result was expected, since the thermal distribution

in Eq. (3.34) gives the excited boson a probability of having
an energy Ei > m that is comparable to that of the Gaussian
distribution in Eq. (3.20), which was specifically defined
with the same width Δi ¼ m ¼ TH. Correspondingly, the
uncertainty ΔrH ∼ N−1=2 is approximately the same.

IV. CONCLUDING SPECULATIONS

In this work, we have considered a corpuscular model
of black holes of the form conjectured in Ref. [1], and
investigated its causal structure by means of a formalism for
quantum systems we had previously developed in
Refs. [11,16,17]. We thus found the presence of a horizon
whose size is in agreement with the classical picture of a
Schwarzschild black hole for large N (when the energy of
each scalar is much smaller than mp, but the total energy is
well above mp). We also found that the uncertainty in the
horizon’s size is typically of the order of the energy of the
expected Hawking quanta (albeit, for a suitably chosen
variety of states), the latter being proportional to 1=

ffiffiffiffi
N

p
, as

was claimed in Ref. [1]. This result is in striking contrast
with Eq. (3.7) for a single particle of mass m ≫ mp, for
which a proper semiclassical behavior cannot be recovered,
and thus further supports the conjecture that black holes
must be composite objects made of very light constituents.
Based on the above picture, one may be unsure

about what is going on during the gravitational collapse
of a star. In this respect, the case considered in Sec. II B
represents a simplistic model of a Newtonian lump of
ordinary matter: the source J ∼ ρ represents the star,
with hgjϕ̂jgi≃ ϕc ∼ VN, which reproduces the outer
Newtonian potential it generates. In this situation, the
energy contribution of the gravitons themselves is

4 6 8 10 12

r
RH

0.5

1.0

1.5

FIG. 3. Probability density of finding the horizon with radius rH
for N ¼ 1 (RH ¼ 2lp; thin solid line), N ¼ 4 (RH ¼ 4lp; dotted
line), N ¼ 9 (RH ¼ 6lp; dashed line), N ¼ 16 (RH ¼ 8lp; solid
line), and N ¼ 25 (RH ¼ 10lp; thick solid line). The curves
clearly become narrower as N becomes larger.
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negligible. The cases analyzed in Sec. III are then just the
opposite; since the contribution of any matter source is
neglected therein, the quantum state is self-sustained,
roughly confined inside a region whose size is given by
its Schwarzschild radius, and (almost) monochromatic (see
Sec. II C). This state also satisfies the scaling relations (1.7)
and (1.8), which were known to hold for a self-gravitating
body near the threshold of black hole formation well before
Ref. [1] (see, for example, Refs. [12,14]). In our treatment,
all time dependence is frozen, and no connection between
the two configurations can be made explicitly. However,
one may view these two regimes as approximate descrip-
tions of the beginning and (a possible) end states of the
collapse of a proper star, as we briefly suggested in
Sec. II C.
If the above picture is to make sense, a phase transition

for the graviton state should occur around the time when
matter and gravitons have comparable weight, much like
what happens in a conductor on the verge of supercon-
ductivity. The analysis of this transition might be crucial in
order to determine whether the star indeed ever reaches the
state of a BEC black hole (according to Refs. [1,7], a black
hole is precisely the state at the quantum phase transition),
or rather just approaches it asymptotically or (for whatever
reason) avoids it. A starting point for tackling this issue in a
toy model could be the Klein-Gordon equation with both
matter and “graviton” currents,

□ϕðxÞ ¼ qMJMðxÞ þ qGJGðxÞ; ð4:1Þ

where JM is the general matter current employed in
Sec. II B and JG is the graviton current given in
Eq. (2.22). For the configuration corresponding to a star,
one could treat the latter as a perturbation by formally
expanding for small qG. We can expect that this approxi-
mation will lead to a correction for the Newtonian potential
at short distances from the star, since the graviton current
(2.22) is formally equivalent to a mass term for the
“graviton” ϕ. In the opposite regime, ordinary matter
becomes a small correction, and one could instead expand
for small qM. Outside the black hole, such a correction
should then increase the fuzziness of the horizon. Of
course, if a phase transition happens, it might be when
neither of the sources are negligible, so that perturbative
arguments would fail to capture its main features. In any
case, an order parameter should be identified.
In fact, close to the phase transition, and before the black

hole forms, one might speculate that the case discussed in
Sec. III C with γ ≳ 1 (in which all of the bosons are in a
slightly excited state above the BEC energy) hints at the
physical processes that could occur there. We recall that the
parameter γ is essentially the relative probability of finding
each one of the N bosons in an excited state with k > kc
rather than in the ground state with k ¼ kc. Since the case
γ ≪ 1 of Sec. III B or—perhaps more accurately—the

largely equivalent Hawking case of Sec. III D should
represent the quantum state of a formed black hole, one
might conjecture that it is the parameter γ (or a function
thereof) that can be viewed as an effective order parameter
for the transition from star to black hole. In a truly
dynamical context, γ should furthermore acquire a time
dependence, thus decreasing from values of order one or
larger to much smaller figures along the collapse. It hence
appears to be worth investigating the possible dependence
of γ on the physical variables usually employed to define
the state of matter along the collapse, in order to identify a
physical order parameter, although this task will likely be
much more difficult.
Let us conclude by stressing the fact that we have worked

in the Newtonian approximation for the special-relativistic
scalar equation, which basically means that we have relied
on solutions of the Poisson equation in order to describe
the quantum states of gravity. However, an appropriate
description of black holes would naturally call for general
relativity. In this respect, the only general-relativistic aspect
we have included is the condition for the existence of
trapping surfaces, which follows from the Einstein equa-
tions for spherically symmetric systems and lies at the
foundations of the classical hoop conjecture, as well as that
of our horizon wave function (and the generalized uncer-
tainty principle that follows from it [16]). It is important
to remark that similarly “fuzzy” descriptions of a black
hole’s horizon were recently derived from the quantization
of spherically symmetric space-time metrics, which do not
require any knowledge of the quantum state of the source
(see Refs. [21] and [22] and references therein). Other
investigations of simple collapsing systems, such as thin
shells [23] or thick shells [24], also seem to point towards
similar scenarios. We emphasize that our approach is much
more general in that it allows one to uniquely relate the
causal structure of space-time—encoded by the horizon
wave function ψH—to the presence of any material source
in the state ψS. It is cleat that in order to study the time
evolution of the system a “feedback” from ψH into ψS must
be introduced. These deeply conceptual issues are left for
future investigations.
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APPENDIX A: N-BOSON SPECTRUM

Starting from the single-particle wave functions (3.20),
the total wave function of a system of N bosons will be
given by the totally symmetrized product
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where (here and in the following equations)
P

N
fσig always denotes the sum over all of the N! permutations fσig of the N

terms inside the square brackets, and we omit (irrelevant) overall normalization factors of N γ for the sake of simplicity.
Note that we can group equal powers of γ in the above expression and obtain
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where the power of γ clearly equals the number of bosons in a continuous (“excited”) mode with k > kc. This form will help
in obtaining the spectral decomposition.
In fact, one of course finds CðE < MÞ ¼ 0, and

CðMÞ≃ hMj 1
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since the energy E can equalM ¼ Nm only when all of the N bosons are in the ground state of lowest momentum number
kc ¼ m=ℏ. For E > M, the term of order γ0 instead does not contribute and one obtains
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which can be further simplified to

CðE > MÞ≃ γ
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For fixed m (or N) and γ ≪ 1, one can just keep the first
term in Eq. (A5) (this contribution is analyzed in detail in
Sec. III B). Conversely, for γ ≳ 1, it is the last term that
dominates, which is estimated analytically in Appendix B
and leads to the results presented in Sec. III C. For a
numerical calculation of this spectral coefficient (3.26), see
also Appendix C.
We end this appendix with a word of caution. For γ ≃ 1,

all terms could equally contribute, and their (cumbersome)
evaluation is left for future investigations. However, we can
already note here that, upon considering m≃mp=

ffiffiffiffi
N

p
, one

can identify the alternative expansion parameter ~γ ¼ γ4N in

front of each contribution in Eq. (A5). The first term, of
order ~γ1=4, would hence seem to dominate for ~γ ≪ 1, or
γ ≪ N−1=4, which implies a very tight bound on γ for
macroscopic black holes. And the last term in Eq. (A5)
should likewise dominate for γ ≳ N−1=4. This remark
makes it clear that the interplay between the small-γ
expansion and the large-N expansion is not trivial, and
the validity of the final results can safely be assessed only
by checking a posteriori that higher-order terms (in each
expansion) are smaller than lower-order terms. Indeed, this
condition holds true for the cases studied in the main text,
provided one expands in γ first and then takesN to be large.

APPENDIX B: ANALYTICAL SPECTRUM FOR γ ≳ 1

We start by noting that the spectral coefficient in Eq. (3.26) can be written as

CðE≥MÞ∼
Z

∞

m
dE1 � � �

Z
∞

m
dEN exp

�
−
XN
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�

≡
Z

∞

m
dE1 � � �

Z
∞
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dEN−1e

−F2ðE;fEigÞ
2m2 : ðB1Þ

In order to proceed, we find it convenient to write the argument of the exponential as

−2m2F2ðE; fEigÞ≡
XN−1
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where Ei ¼ Ei −m, so that

CðE ≥ MÞ ∼ e−
ðE−MÞ2
2m2

Z
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We then note that the above integral contains the Gaussian measure,

Z
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0

dE1 � � �
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∞

0

dEN−1 exp
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E2
i

2m2

�
∼
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EN−2dE exp
�
−

E2

2m2

�
; ðB4Þ

where E2 ¼ P
N−1
i¼1 E2

i , which is significantly different from zero only for E ≲m. We can therefore approximate
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XN−1

i¼1

Ei ≃ E; ðB5Þ

from which we obtain

IðE;M;mÞ∼
Z

∞

0

EN−2dE exp
�
−
E2

m2
þðE−MÞ

m
E
m

�

¼ e
ðE−MÞ2
4m2

Z
∞

0

EN−2dE exp
�
−
½2E − ðE−MÞ�2

4m2

�
:

ðB6Þ

This integral can be exactly evaluated in terms of hyper-
geometric functions, but we can just further approximate it
here as

IðE;M;mÞ ∼mðE −MÞPðN−3ÞðE;MÞeðE−MÞ2
4m2

∼ ðE −MÞeðE−MÞ2
4m2 ; ðB7Þ

where PðN−3Þ is a polynomial of degree N − 3. For
N ¼ M=m ≫ 1, we finally obtain

CðE ≥ MÞ ∼ ðE −MÞe−ðE−MÞ2
4m2 ; ðB8Þ

which is the expression in Eq. (3.27).

APPENDIX C: NUMERICAL
SPECTRUM FOR γ ≳ 1

In this appendix we estimate the spectral coefficient in
Eq. (B3) [which exactly equals the one in Eq. (3.26)] for
various values of N. For this purpose, we have imple-
mented a standard Monte Carlo method in a MATHEMATICA

notebook, in which the coefficient is also numerically
normalized, so thatZ

∞

M
C2ðEÞdE ¼ 1: ðC1Þ

The dependence of the spectral coefficient on the total energy
E is then compared with the analytical approximation (3.27).
Figure 4 shows this comparison for N ¼ 10 and N ¼ 50.

For the former value, the analytical approximation over-
estimates both the location of the peak and (slightly) the
width of the curve (thus underestimating the height of the
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FIG. 4. Monte Carlo estimate of the spectral coefficient in Eq. (B3) (dots) compared to its analytical approximation (3.27) (solid line),
both normalized according to Eq. (C1), for N ¼ 10 (left panel) and N ¼ 50 (right panel).
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both normalized according to Eq. (C1), for N ¼ 100 (left panel) and N ¼ 200 (right panel).
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peak). For N ¼ 50, the location of the peak is instead very
well identified by Eq. (3.27), but the actual width remains
narrower than its analytical approximation (resulting in a
large discrepancy in the peak values).
Figure 5 shows the comparison forN ¼ 100 andN ¼ 200.

From these plots, it is clear that the analytical approximation
progressively underestimates the value of the energy at
which the spectral coefficients peak, and at the same time
overestimates more and more the width of the curve (by
about a factor of 3 in these two plots), and consequently
underestimates the height of the curve at peak values.

All of these trends are further confirmed in Fig. 6,
which shows the comparison for N ¼ 300 and N ¼ 500.
The peaks of the numerical estimate and the analytical
approximation continue to move further apart, whereas
the numerical width becomes narrower than the analytical
width for increasing N.
The overall conclusion is that the analytical appro-

ximation (3.27) is fairly good at estimating the energy at
the peak of the spectral coefficients, but it significantly
overestimates (underestimates) the width (peak value)
for N ≳ 100.
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