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A compact object moving on a quasicircular orbit about a Schwarzschild black hole gradually spirals
inward due to the dissipative action of its gravitational self-force. But in addition to driving the inspiral, the
self-force has a conservative piece. Within a second-order self-force formalism, I derive a second-order
generalization of Detweiler’s redshift variable, which provides a gauge-invariant measure of conservative
effects on quasicircular orbits. I sketch a frequency-domain numerical scheme for calculating this quantity.
Once this scheme has been implemented, its results may be used to determine high-order terms in post-
Newtonian theory and parameters in effective-one-body theory.
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I. INTRODUCTION

The gravitational self-force program was initiated with
the goal of modeling extreme-mass-ratio inspirals (EMRIs)
[1], astrophysical systems in which stellar-mass compact
objects spiral into far more massive black holes in galactic
nuclei. An EMRI evolves primarily due to dissipation: the
object emits gravitational waves that carry away energy
(or equivalently, the self-force does negative work), causing
the orbit to shrink until the object plunges into the black
hole. However, in the years since the program began, the
conservative effects of the self-force have also proven to
be a fecund area of study. These conservative effects must
be accounted for to obtain accurate long-term models of
inspirals [2–4], and their influence on long-term orbital
evolution has recently been calculated concretely for the
first time [5].
Besides its long-term effect on inspirals, the conservative

piece of the self-force also tells us about short-term effects
[6–11]. The most obvious example might be a correction to
the standard relativistic precession of an eccentric orbit. But
conservative effects arise even in the case of quasicircular
orbits (i.e., orbits that would be precisely circular in the
absence of dissipation). For example, the radial force alters
the frequency of an orbit at a given orbital radius.
Because quantities such as (coordinate) azimuthal angle

and radius—and the gravitational self-force itself—are
gauge dependent [12], effects such as precession and
frequency shifts at a given coordinate radius are as well.
Hence, a primary goal when calculating self-force effects is
to identify some gauge-invariant characterization of them.
For example, orbital precession can be written in an
invariant form in the circular limit [10]. A shift in frequency
is invariant if the radius is physically identifiable; for
example, one can consider the shift in frequency of the
innermost stable circular orbit (ISCO) [8,13–15]. For
quasicircular orbits away from a special orbital radius,
the principal invariant quantity of interest has been

Detweiler’s redshift variable, the inverse of the time
component of a certain normalized four-velocity, which
for later purposes I will denote by ~ut [7]. The construction
of this quantity is based on the fact that the orbit, which is
accelerated by the self-force when considered to move in
the background metric of the large black hole, is a geodesic
when considered to move in a certain effective metric, a
certain smooth piece of the full, physical metric of the
binary [16–18]. ~ut describes the ratio of proper time of an
inertial observer at infinity to proper time along the orbit as
measured in that effective metric. Its inverse, 1= ~ut, is the
redshift experienced in the effective metric by a photon
emitted to infinity in a direction perpendicular to the orbital
plane. It can also be heuristically interpreted as the orbital
energy as measured in a frame that co-rotates with the orbit.
Because these interpretations of ~ut refer to quantities in the
effective metric, rather than the binary’s physical metric,
their physical meaning is somewhat hazy. Nevertheless,
defined strictly as the ratio of two measures of time, the
quantity ~ut is invariant. Furthermore, it can be used to
find other physical effects, such as the ISCO shift in
Schwarzschild [14] and Kerr [15].
Invariant conservative quantities such as these are

important beyond their role in characterizing the physics
of extreme-mass-ratio binaries. They have been the point of
comparison between self-force calculations performed in
different gauges [19,20]. More notably, in efforts originally
led by Detweiler, Blanchet, and collaborators [7,21,22],
they have allowed for comparisons with entirely distinct
models such as full numerical relativity and post-
Newtonian (PN) theory [13,14,23–25]. Since self-force
calculations offer the only highly accurate model in the
domain of extreme mass ratios and highly relativistic fields,
they can also do better than compare: they set benchmarks
for numerical relativity, and they have been used to
determine high-order parameters [13,22,25–30] in PN
theory and the effective-one-body theory (EOB) introduced
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in Refs. [31,32]. Furthermore, study of these conservative
effects has provided strong evidence that the domain of
validity of the self-force formalism can be made much
larger than one would naively expect, pushing it toward
modeling binaries of comparable-mass objects [14,23,24].
Until recently, all of this work had been limited to linear

order in the binary’s mass ratio. Although some analyses
had been performed at second order [17,33–35], they did
not provide a practical means of concretely calculating
second-order effects. However, with the recent development
of complete second-order self-force formalisms [36–38],
there is now no substantial obstacle to performing such
concrete calculations. Proceeding to second order offers
several exciting prospects: highly accurate calculations of
effects on intermediate-mass-ratio and even comparable-
mass binaries; stronger benchmarks for numerical relativity;
and further improvements of the accuracy of PN and EOB
models. The purpose of this paper is to take the first step
toward realizing those goals. Restricting my attention to the
simplest case, that of quasicircular orbits in Schwarzschild, I
derive a gauge-invariant formula for a second-order gener-
alization of Detweiler’s redshift variable. I then outline how
that quantity can be calculated numerically in the frequency
domain.

A. Plan of this paper

Due to the nonlinear nature of the problem, defining and
extracting conservative dynamics from a dissipating system
at second order is more delicate than it was in the linearized
problem. At first order, the time-symmetric part of the
retarded solution was equal to the half-retarded-plus-half-
advanced solution, and the force in the half-retarded-plus-
half-advanced solution was equal to the conservative piece
of the force in the retarded solution. At second order,
neither of these statements is true.
To avoid attachment to any particular definition of the

conservative dynamics, I begin in Sec. II with a preview of
the main results, which hold for most, if not all, specifi-
cations of the conservative-dissipative split. Without mak-
ing a precise choice of that split, I sketch the derivation of a
general formula for the second-order ~ut.
Sections III and IV then describe a particular definition

of the conservative dynamics, eventually recovering the
result for ~ut. In Sec. III I offer a description in the self-
consistent self-force formalism [17,36,38–41], a picture of
the system in which the metric perturbation is a functional
of the self-accelerated orbit. After a review of the formal-
ism, I construct a precisely circular orbit that is a geodesic
of a certain time-symmetrized effective metric constructed
from the retarded field, and I derive a gauge-invariant
formula for the second-order ~ut on that orbit.
The self-consistent formalism is not ideal for numerical

calculations of conservative dynamics, for reasons described
below, and so in Sec. IV I transition to a Gralla-Wald
picture, in which the perturbed motion is described as a

small deviation from a reference orbit that is a geodesic of
the background spacetime [37,42]. Although this descrip-
tion of the motion is not ideal for describing dissipative
changes in the orbit, which grow large with time, it is ideal
for calculations of conservative dynamics, because in the
absence of dissipation, deviations from the reference orbit
remain small. Beginning from the self-consistent results of
Sec. III, I derive an expression for the second-order redshift
variable in the Gralla-Wald picture. Section V shows the
gauge invariance of the result.
In Sec. VI I briefly discuss alternative definitions of the

conservative dynamics. The formula for ~ut holds true with
these definitions, but some difficulties arise in interpreting
that formula and enforcing its gauge invariance.
I conclude in Sec. VII by describing a numerical scheme

for calculating ~ut in the frequency domain in the Gralla-
Wald picture. The scheme is an extension of one recently
devised by Warburton and Wardell for the scalar self-force
problem [43]. Its technical details will be provided in a
future paper [44].
Appendix A complements the body of the paper with a

treatment of quasicircular orbits in the Gralla-Wald picture,
relying less on the self-consistent picture.
I work in geometric units with G ¼ c ¼ 1, and I use the

metric signature −þþþ. All indices are raised and
lowered with a background metric gμν, both a semicolon
and ∇ denote the covariant derivative compatible with gμν,
and coordinate expressions always refer to Schwarzschild
coordinates ft; r; θ;ϕg on the background manifold.

II. PREVIEW

Consider a compact, slowly spinning, nearly spherical
object of mass m moving about a Schwarzschild black
hole of massM ≫ m. If we split the binary’s full metric gμν
into the Schwarzschild background gμν and a perturbation
hμν ≡ gμν − gμν, then in the background, the object of mass
m moves on a worldline zμ governed by the equation of
motion [36,40]

D2zμ

dτ2
¼ Fμ; ð1Þ

where Fμ is the self-force per unit mass, given by

Fμ ¼ −
1

2
Pμνðgνδ − hRν δÞð2hRδβ;γ − hRβγ;δÞuβuγ þOðϵ3Þ:

ð2Þ
Here τ and uμ ≡ dzμ

dτ are the proper time and four-velocity
along zμ as normalized in gμν, Pμν ≡ gμν þ uμuν projects
orthogonally to uμ, and ϵ≡ 1 is used to count powers of
the mass ratio m=M. The key quantity appearing in the
self-force is hRμν, called the regular field, a certain smooth
vacuum perturbation made up of pieces of hμν. The
particular regular field appearing here is discussed in
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Sec. III A and defined precisely in Refs. [36,38,41]. It
contains both first- and second-order contributions, and
I write it as hRμν ¼ ϵhR1μν þ ϵ2hR2μν . In lieu of its precise
definition, it can be thought of as a nonlinear generalization
of the familiar Detweiler-Whiting regular field [16], given
by Eq. (30) below.
The equation of motion can be cast in more compelling

form if instead we write it in an effective metric
~gμν ≡ gμν þ hRμν, which, by construction, is a C∞ solution
to the vacuum Einstein equations. After reparametrizing the
worldline with proper time ~τ measured in ~gμν, and con-
verting to the covariant derivative ~∇μ compatible with ~gμν,
one finds that the equation of motion (1) in gμν becomes the
geodesic equation in ~gμν:

~D2zμ

d~τ2
¼ Oðϵ3Þ; ð3Þ

in other words, the object is in freefall in the vacuum field
~gμν. Here

~D
d~τ ≡ ~uμ ~∇μ, with ~uμ ≡ dzμ

d~τ . Although the state-
ments in this and the preceding paragraph have been
derived only in gauges smoothly related to the Lorenz
gauge [36,40], Detweiler has heuristically argued that they
should be true in any sufficiently well-behaved gauge [35].
Now consider the case of interest in this paper: take zμ

to be a quasicircular orbit, precisely circular but for
dissipation. Suppose that in one way or another,
I artificially “turn off” the dissipative effect of the self-
force, and let ẑμ denote the resulting conservative, circular
orbit. The coordinate form of a ‘circular’ orbit can be

almost arbitrarily altered by a gauge transformation, under
which ẑμ → ẑμ − ϵξμ þOðϵ2Þ; the gauge freedom in the
formalism is discussed in Sec. V. To maintain some degree
of physical intuition, I restrict the discussion to ‘nice’
gauges, in which the conservative orbit can be para-
metrized in the manifestly circular form

ẑμðt; ϵÞ ¼ ft; r̂ðϵÞ; π=2;ΩðϵÞtg; ð4Þ
where I have placed the orbit on the equatorial plane and

introduced the orbital frequency Ω≡ dϕ̂
dt. This orbit must

satisfy an equation of motion with a purely radial, constant
force, call it F̂μ ¼ δμr F̂r, such that

D2ẑμ

dτ2
¼ F̂μ: ð5Þ

The relationship between zμ and ẑμ is shown schematically
in Fig. 1.
Following Detweiler [7,45], I use the orbital frequency to

define a helical vector

kα ¼ f1; 0; 0;Ωg: ð6Þ
As discussed in Sec. III B 1, the perturbed spacetime
inherits the orbit’s helical symmetry, and in a gauge
compatible with Eq. (4), kμ will be a Killing vector of
the perturbed spacetime. The four-velocity on ẑμ,

ûα ¼ ÛðϵÞf1; 0; 0;ΩðϵÞg ¼ Ûkα; ð7Þ
is parallel to it. The proportionality factor is Û ≡ dt

dτ ¼ ût,
the ratio of coordinate time to proper time (as measured in
gμν) on ẑμ. Of course, the four-velocity as normalized in the
effective metric ~gμν is likewise parallel to kμ,

~uα ¼ ~UðϵÞkμ; ð8Þ
with a proportionality factor

~U≡ dt
d~τ

¼ ~ut: ð9Þ

This last quantity (rather than its inverse) is what I will call
Detweiler’s redshift variable, the ratio of coordinate time to
proper time as measured in ~gμν on ẑμ.
A formula for ~U can be found from the equation of

motion (5) and the normalization conditions ~gμν ~uμ ~uν ¼ −1
and gμνûμûν ¼ −1, together with Eqs. (7) and (8) for the
four-velocity. The few, simple steps involved in that
calculation are shown in Sec. III C. Their end result is
the following:

~U ¼ ð1 − 3M=r̂Þ−1=2
�
1þ 1

2
ðhRuu − F̂rr̂Þ

þ 1

8
½3ðhRuuÞ2 − 2r̂F̂rhRuu − r̂2ðF̂rÞ2� þOðϵ3Þ

�
; ð10Þ

FIG. 1 (color online). The inspiraling orbit zμ, conservatively
accelerated orbit ẑμ, and zeroth-order, background-geodesic orbit
zμ0 in the equatorial plane. Distances are displayed in units of M.
The accelerated orbits ẑμ and zμ are calculated from the first-order
Gralla-Wald approximation in Eqs. (A17)–(A18), using the
Lorenz-gauge self-force library from Ref. [5], a mass ratio of
M=m ¼ 3, a zeroth-order orbital radius r0 ¼ 10M, and an initial
angle ϕð0Þ ¼ 0. The zeroth-order orbit is chosen to have the same
orbital frequency as ẑμ.
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where hRuu ≡ hRμνûμûν, and I have used the fact that
hRuu ∼ F̂r ∼ ϵ.
Equation (10) yields ~U in the self-consistent picture. I

discuss this picture in Sec. III A, but for now I merely state
that in it, the field equations are coupled to the equation of
motion (1). The metric perturbation is generated by m’s
self-forced motion, and the self-force is constructed from
(the regular piece of) that same perturbation; the perturba-
tion is not sourced by geodesic motion on the background
spacetime, as it often is in leading-order approximations in
the self-force literature [46,47]. Therefore, the quantities
in Eq. (10) are both evaluated on the orbit ẑμ and are
constructed from fields sourced by that orbit. This self-
consistent approach is an ideal way of going about things
when including dissipation in the dynamics, because it
correctly accounts for long-term, dissipative changes in the
orbit [17]. But it is impractical in the present case, because
one must know the radial force (and therefore the regular
field) in order to find the accelerated circular orbit ẑμ, and at
the same time one must know ẑμ in order to find the regular
field (and therefore the radial force).
To simplify the problem, I transition from the self-

consistent picture to a Gralla-Wald one. In the Gralla-Wald
picture, the orbit is expanded in a Taylor series around a
zeroth-order geodesic of the background spacetime, zμ0.
That is, in the present case,

ẑμðt; ϵÞ ¼ zμ0ðtÞ þ ϵẑμ1ðtÞ þ ϵ2ẑμ2ðtÞ þOðϵ3Þ; ð11Þ
no hat is required over zμ0, because the zeroth-order term in
ẑμ can be chosen to be identical to that in the inspiraling
orbit zμ. If dissipation were accounted for, the corrections
ẑμn in this expansion would quickly grow large, and
the approximation would break down. But since only
conservative effects are accounted for here, these correc-
tions remain small, making the expansion of the orbit quite
convenient. It allows us to freely specify the zeroth-order
orbit and then proceed sequentially to the first-order field
sourced by zμ0, the correction to the motion ẑμ1 due to that
perturbation, and so on; I refer the reader to Sec. IVA for a
more detailed description.
After deciding to expand ẑμ arounda backgroundgeodesic,

we are still left with the freedom to decide which background
geodesic to expand around. This freedom persists even after
all the standard gauge freedom of perturbation theory is
exhausted; it would exist even if we were considering the
expansion of a perturbed orbit about a Keplerian one in fixed
coordinates in Newtonian physics, for example. For my
purposes here, the most convenient choice of reference
geodesic is another circular orbit of the sameorbital frequency
Ω as ẑμ. The zeroth-order worldline is then

zμ0 ¼
�
t; r0;

π

2
;Ωt

�
; ð12Þ

with the relationship between orbital frequency and radius
given by the familiar geodesic formula

Ω ¼
ffiffiffiffiffi
M
r30

s
: ð13Þ

Again, the relationship between this orbit and the perturbed
ones is displayed schematically in Fig. 1; because ẑμ and
zμ0 share the same frequency, they differ only by radial
corrections. The four-velocity on zμ0 is again parallel to the
helical Killing vector,

uμ0 ≡ dzμ0
dτ0

¼ U0kα; ð14Þ

where τ0 is the proper time (measured in gμν) on zμ0,
and U0 ≡ dt

dτ0
¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3M=r0

p
.

To utilize this expansion of the orbit, we must account
for the fact that the fields we began with in the self-
consistent picture depended both on the point xμ at which
they were evaluated and the source orbit ẑμ that produced
them. For example, we can write the terms in the regular
field as hRnμν ðx; ẑÞ. When evaluating them at a point on ẑμ,
they read hRnμν ðẑ; ẑÞ, and both the first and second argument
must be expanded. Section IVA describes that procedure,
and Secs. IV B and IV C provide the details of the
expansion of ~U. The end result is

~U ¼ U0

�
1þ 1

2
ϵhR1u0u0 þ ϵ2

�
1

2
hR2u0u0 þ

3

8
ðhR1u0u0Þ2

−
r20
6M

ðr0 − 3MÞðF̂1rÞ2
�
þOðϵ3Þ

�
; ð15Þ

where hRnu0u0 ≡ hRnμν u
μ
0u

ν
0. h

R1
μν is now the usual linearized

regular field produced by a point particle moving on zμ0,
rather than on ẑμ, and hR2μν now incorporates the effect of
translating the source worldline by an amount ẑμ1, in a
manner described in Sec. IVA. Regardless of the definition
of conservative dynamics, it follows from Eq. (1) that the
radial force (with index down) is given by F̂1r ¼ 1

2
hR1u0u0;r.

Equation (15) is the main result of this paper. It describes
the gauge-invariant ratio dt=d~τ along the circular orbit ẑμ,
but each quantity in the formula is calculated on the zeroth-
order worldline zμ0, not on ẑμ. In the following sections,
I will provide all the details of its derivation, and in Sec. V I
will explicitly show its invariance. Moreover, I will
describe different formulations of conservative dynamics
that lead to it, and its precise interpretation in each case.
Along the way, I will describe most of the tools necessary to
concretely calculate the quantities hR1u0u0 , h

R2
u0u0 , and F̂1r that

appear in the formula.
Before moving onto that discussion, I note that Eq. (15)

is not yet in a suitable form for comparison with
other models, such as PN theory. Although it is gauge
independent in the sense of perturbation theory, it still
depends on the Schwarzschild coordinate radius of zμ0. To
put it in a coordinate-independent form, I use Eq. (13) to
replace r0 with ðM=Ω2Þ1=3. The result is
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~U ¼ U0ðΩÞ þ ϵ ~U1ðΩÞ þ ϵ2 ~U2ðΩÞ þOðϵ3Þ; ð16Þ
where

U0ðΩÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 3ðMΩÞ2=3
p ; ð17Þ

~U1ðΩÞ ¼
1

2
U0ðΩÞhR1u0u0 ; ð18Þ

~U2ðΩÞ ¼ U0ðΩÞ
�
1

2
hR2u0u0 þ

3

8
ðhR1u0u0Þ2

−
1

6Ω2
ðF1rÞ2½1 − 3ðMΩÞ2=3�

�
: ð19Þ

U2ðΩÞ is the new term not previously calculated in a
self-force formalism. In PN theory, ~U is often written
in a different coordinate-independent way, as a function
of a variable x≡ ½ðM þmÞΩ�2=3. One can easily do
the same here by using the expansion MΩ ¼
x3=2½1 − ϵ m

M þ ϵ2ðmMÞ2 þOðϵ3Þ�, but for the sake of brev-
ity I omit the resulting (lengthier) expression for ~UðxÞ.

III. SELF-CONSISTENT PICTURE: AN
ACCELERATED WORLDLINE

A. Formalism

To place the above preview in proper context, and to lead
up to the definitions of conservative dynamics, I now
review the second-order self-force formalism. In general
terms, all self-force formalisms are designed to model the
perturbation produced by a small object without modeling
the details of the object’s internal structure. But each
formalism achieves this in a slightly different way. Here
I use the self-consistent approximation scheme presented in
Ref. [17] and further developed in Refs. [36,38,40]. I refer
the reader to the reviews [46,47] for a broader description
of self-forces in curved spacetimes and a pedagogical
introduction to many of the technical tools used in the field.
The metric perturbation in the self-consistent scheme is

written as an expansion

hμν ¼ ϵh1μν½z� þ ϵ2h2μν½z� þOðϵ3Þ; ð20Þ

where ϵ≡ 1 is used to count powers of m=M, and each
term in the expansion is a functional of the self-accelerated
worldline zμ, which represents, in a rough sense, the small
object’s center of mass.1 The Lorenz gauge condition
∇μh̄μν ¼ 0, where an overbar indicates trace-reversal, is

imposed on the total perturbation but not on any individual
term hnμν. Section V briefly describes the transformation to
other gauges. More detailed descriptions of the formalism’s
gauge freedom will be presented in Refs. [40,48].
To disregard unneeded information about the object’s

internal structure, one examines the general solution to the
Einstein equation in a small vacuum region outside the
object; there, the metric depends on the object’s compo-
sition only through bulk variables such as mass and spin.
The equation of motion governing zμ follows from impos-
ing an appropriate centeredness condition on the metric in
this region. For a sufficiently spherical and slowly spinning
object, the result through second order is Eq. (1). Since the
regular field inherits hμν’s functional dependence on the
worldline, I write it here as

hRμν ¼ ϵhR1μν ½z� þ ϵ2hR2μν ½z� þOðϵ3Þ: ð21Þ

Of course, one can always extract different smooth pieces
from any metric. The particular regular field I use here, the
one that appears in the equation of motion, is described in
Refs. [17,36,38,41]. It is defined such that its value (and
those of its derivatives) on zμ are equal to certain pieces of
hμν in the object’s exterior; this is how an analysis of the
field outside the object yields an equation of motion in
terms of variables on a worldline effectively inside the
object. Although the precise definition of the regular field is
somewhat technical, involving a decomposition of the
metric into harmonics around the object, one can think
of hRμν informally as the piece of hμν that does not depend on
local information about the object. As implied in the
preview, for the purposes of this paper, the first-order term,
hR1μν , in the Lorenz gauge can be taken to be the well-known
Detweiler-Whiting regular field [16]. A suitable definition
of hRμν in other gauges is given in Sec. V below.
The value of the regular field, since it is not determined

by local information, must be found by solving the
Einstein equation globally. In general, this means solving
the equation numerically, which can be achieved using a
puncture scheme, as has been done at first order [49–51].
First, the field hμν found outside the object is analytically
continued into its interior, and a singular field hSμν ≡ hμν −
hRμν is defined. This field diverges on zμ, behaving
(schematically) as

hS1μν ∼
m

jxα − zαj þOðjxα − zαj0Þ; ð22Þ

hS2μν ∼
m2

jxα − zαj2 þ
δmμν þmhR1μν
jxα − zαj þOðln jxα − zαjÞ; ð23Þ

where jxα − zαj represents a measure of spatial distance
from zμ. In the second term in Eq. (23), hR1μν is evaluated
on zμ; at higher orders in jxα − zαj, derivatives of hR1μν on
zμ appear. Also in that second term is the quantity

1If the object is a black hole, clearly there is no timelike
worldline in its interior that represents its “center of mass.”
Nevertheless, zμ can be interpreted that way even for black holes,
exotic objects containing worm holes, etc.; see Refs. [17,38,40]
for the precise definition of zμ.
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δmαβ ¼ mðgαβ þ 2uαuβÞuμuνhR1μν
þ 1

3
mð2hR1αβ þ gαβgμνhR1μν Þ þ 4muðαhR1βÞμu

μ; ð24Þ

a tensor on zμ that can be interpreted as a gravitational
correction to the object’s monopole moment. Here I have
presented the local expansions of hSnμν only schematically,
but they can be found in explicit, covariant form in
Ref. [41]. From those local expansions, one can construct
punctures that capture the irregularity in the (analytically
continued) physical field hμν, and one can then replace the
field equations for hμν with field equations for the regular
part of hμν, thereby replacing the physical system with an
effective one.
This is done as follows: choose punctures hPnμν , which can

be any fields that locally approximate hSnμν near zμ, and
define residual fields hRn

μν ≡ hnμν − hPnμν ≈ hRnμν . If hPnμν is a
good enough local approximation to hSnμν , then we will have
hRn
μν jz ¼ hRnμν jz and hRn

μν;σjz ¼ hRnμν;σjz exactly, even though off
the worldline hRn

μν will only approximate hRnμν . Letting Γ be a
worldtube enclosing the object, we may solve for the
effective, residual fields inside Γ and for the physical fields
outside. The puncture scheme (in the Lorenz gauge) is then
encapsulated by the field equations2

Eμν½hR1� ¼ −Eμν½hP1�≡ S1effμν inside Γ; ð25aÞ

Eμν½h1� ¼ 0 outsideΓ; ð25bÞ

Eμν½hR2� ¼ 2δ2Rμν½h1; h1� − Eμν½hP2�
≡ S2effμν insideΓ; ð26aÞ

Eμν½h2� ¼ 2δ2Rμν½h1; h1� outsideΓ; ð26bÞ

where Eμν½h�≡□hμν þ 2Rμ
α
ν
βhαβ is the usual tensorial

wave operator, and

δ2Rαβ½h; h� ¼ −
1

2
hμνð2hμðα;βÞν − hαβ;μν − hμν;αβÞ

þ 1

4
hμν;αhμν;β þ

1

2
hμβ ;νðhμα;ν − hνα;μÞ

−
1

2
h̄μν;νð2hμðα;βÞ − hαβ;μÞ ð27Þ

is the quadratic term in the expansion of the Ricci tensor
Rμν½gþ h�. Both δ2Rαβ½h1; h1� and Eμν½hP2� diverge as

1=jxα − zαj4 near the worldline; this can be seen schemati-
cally from Eq. (23). But as a consequence of the puncture’s
construction, in Eq. (26a) the divergence of Eμν½hP2�
cancels that of δ2Rαβ½h1; h1� to leave a source S2effμν that
is sufficiently regular to obtain a well-defined solution.
Similarly, in Eq. (25a) Eμν½hP1� will contain terms that
diverge as 1=jxα − zαj3, which can be seen from Eq. (22),
but these terms cancel to leave an integrable source S1effμν .
The better the punctures hPnμν approximate hSnμν , the better
hRn
μν approximates hRnμν , and the closer the field equations

inside Γ get to the vacuum equations Eμν½hR1� ¼ 0

and Eμν½hR2� ¼ 2δ2Rμν½hR1; hR1�.
The field equations (25) and (26) on their own are

incomplete, because they require one to know the trajectory
of the puncture. The complete system is composed of
the field equations coupled to the equation of motion (1),
with hRnμν replaced by hRn

μν in Eq. (2); this dependence on the
puncture’s motion implicitly defines the functionals hnμν½z�
and hRnμν ½z�. By solving the coupled system, one self-
consistently determines the orbit and the fields.
To relate this discussion to typical treatments of the first-

order problem, I note that the field h1μν found outside the
object is identical to one sourced by a point mass moving
on zμ: its analytical continuation to zμ satisfies

Eμν½h̄1� ¼ −16π
Z
z
muμuν

δ4ðxα − zαÞffiffiffiffiffiffi−gp dτ ð28Þ

≡ −16πT1
μν½z�; ð29Þ

where g is the determinant of gμν. This means that at linear
order, the correct physical solution outside the object can be
obtained by modeling the object as a point mass. Proofs of
this statement can be found in Refs. [17,38,42,52]. From
this perspective, to obtain the regular field one could solve
Eq. (28) and then subtract the singular field from the result.
Alternatively, the regular field can be written as an explicit,
rather than implicit, functional of zμ using the Detweiler-
Whiting regular Green’s function [16]:

hR1μν ½z� ¼ 4m
Z
z
ḠR

μνα0β0 ðx; zðτÞÞuα
0
uβ

0
dτ; ð30Þ

where primed indices refer to tensors at x0μ ¼ zμðτÞ, and the
overbar again indicates trace-reversal.
At second order, the terms involving δmμν in hS2μν , call

them hδmμν , satisfy the analogous point-particle equation

Eμν½h̄δm� ¼ −4π
Z
z
δmμν

δ4ðxα − zαÞffiffiffiffiffiffi−gp dτ ð31Þ

≡ −16πT2
μν½z�: ð32Þ

However, the remainder of the field h2μν cannot be written as
the solution to a distributional equation in this manner, and

2These equations are generally written with distributional
stress-energies on their right-hand sides, which cancel distribu-
tional content inEμν½hPn�. Here I followGralla [37] in considering
the sources on the right-hand side to be defined only off zμ, which
suffices to uniquely determine the solutions both off and on zμ.
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no equivalent to Eq. (30) for the regular field hR2μν is yet
known. At all points off zμ, h2μν satisfies Eq. (26b), but it
does not satisfy a distributionally well-defined equation on
any domain including zμ. This is a consequence of the fact
that point-particle distributions cease to be useful models
beyond linearized theory. With such sources, the nonlinear
equations have no solution in any well-behaved space of
functions; see Ref. [53] for a recent discussion. Hence, the
problem must be tackled via an effective, regular field
equation such as (26).

B. Conservative dynamics

We are interested in the retarded solution to the coupled
system made up of Eqs. (1), (25), and (26). From this
solution, I wish to extract the conservative dynamics. I now
set about doing that.
In the coupled system, the retarded solution is repre-

sented by a triplet ðzμ; hRμν; hμνÞ. My goal is to construct a
certain “subsystem,” denoted by ðẑμ; ĥRμνÞ, that is purely
conservative. The pair ðẑμ; ĥRμνÞ will be such that ẑμ is
precisely circular, ĥRμν is time symmetric in an appropriate
sense, and ẑμ is a geodesic of the effective metric
~gμν ¼ gμν þ ĥRμν. This construction allows me to define a
redshift variable ~ut by normalizing the four-velocity in the
same metric in which the orbit is geodesic. Later, in
Sec. VI, I will describe a construction that uses hRμν instead
of ĥRμν.
I first consider the consequences of replacing the

quasicircular orbit zμ with a precisely circular orbit
ẑμ; this can be thought of heuristically as “turning off”
dissipation, although the ambiguity in that phrase will
become clear below. After working out the broad features
of the retarded field corresponding to a puncture moving on
ẑμ, I then extract a time-symmetrized effective metric from
the retarded field and specify ẑμ to be a geodesic of that
metric.

1. Retarded field with a circular source

There is considerable gauge freedom within the Lorenz
gauge, meaning the conservative orbit can take multiple
coordinate forms. I assume the particular gauge used is
‘nice’, in the sense that the circular orbit ẑμ can be
parametrized in the manifestly circular form (4). The
four-velocity ûμ is then given by ûμ ¼ Ûkμ, as previewed
in Eq. (7), with Û ≡ dt

dτ ¼ ût.
To study the retarded field corresponding to this orbit,3 I

leave the functionals hnμν½z� and hRnμν ½z� unchanged, simply
replacing zμ with ẑμ. That is, the fields satisfy the puncture

scheme composed of Eqs. (25) and (26), with the puncture
moving on ẑμ instead of zμ. The entire system then inherits
the orbit’s helical symmetry. In other words, the metric
perturbations satisfy the Killing equations

Lkh1μν½ẑ� ¼ 0; Lkh2μν½ẑ� ¼ 0; ð33Þ

and likewise for hRnμν and hSnμν . On ẑμ, these equations can be
written as

ûρhR1μν;ρ ¼ 0; ûρhR2μν;ρ ¼ 0: ð34Þ

These symmetries can be established concretely from
that of the orbit. The source of the first-order equation in the
form (28), evaluated in Schwarzschild coordinates, reads

T1
μν½ẑ� ¼

mûμûν
r̂2Û

δðr − r̂Þδðθ − π=2Þδðϕ −ΩtÞ; ð35Þ

which can be decomposed into ordinary scalar spherical
harmonics as

T1
μν½ẑ� ¼

mûμûν
r̂2Û

δðr − r̂Þ
X
lm

Y�
lmðπ=2;ΩtÞYlmðθAÞ; ð36Þ

where θA ¼ ðθ;ϕÞ. This source has a time dependence
e−imΩt, and from its form one can infer that the retarded
solution h1μν has an expansion

h1μνðt; r; θA; ẑÞ ¼
X
ilm

h1ilmðr; r̂Þe−imΩtYilm
μν ðr; θAÞ; ð37Þ

where h1ilm satisfies the outgoing wave condition h1ilm ∼
eikr

�

r at large r and the ingoing wave condition h1ilm ∼ e−ikr
�

at the horizon; here r� is the tortoise coordinate. As in
Sec. II, variables before a semicolon indicate the point at
which the field is evaluated, while those after it indicate
dependence on the source orbit. Yilm

μν are the tensor
spherical harmonics defined by Barack and Lousto [54],
but any choice of tensor spherical harmonics would do.
Each of the harmonics depends on ϕ only through an
exponential eimϕ, and to bring out the form of h1μν, I use that
fact to rewrite Eq. (37) as

h1μνðt; r; θA; ẑÞ ¼
X
ilm

H1ilmðr; r̂Þeimðϕ−ΩtÞPilm
μν ðθÞ; ð38Þ

with some appropriate functions H1ilm and Pilm
μν . In the

form (38), h1μν is manifestly helically symmetric. Naturally,
hS1μν and hR1μν each possess this symmetry, and so hR1μν ¼
const on the worldline ẑμ, where ϕ ¼ Ωt.
Similar considerations imply the helical symmetry of

h2μν½ẑ�. We need only establish the symmetry of T2
μν½ẑ� and

δ2Rμν. The decomposition of T2
μν½ẑ� is essentially identical

to that of T1
μν, so I focus on δ2Rμν½h1; h1�. By substituting

3For simplicity, I assume the retarded field in the Lorenz gauge
is unique, with no possibility of alteration by gauge modes. That
is, I assume the equation Eμν½hn� ¼ Snμν has a unique retarded
solution for each source Snμν, although I am unaware of a proof of
that proposition in Schwarzschild.
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the decomposition of h1μν from Eq. (37) into Eq. (27), we
can see that δ2Rμν½h1; h1� has the form of a sum over
helically symmetric terms of the form eiðm0þm00Þðϕ−ΩtÞ. In
fact, δ2Rμν½h1; h1� has a harmonic expansion

δ2Rμν½h1; h1� ¼
X
ilm

δ2Rilmðr; r̂Þe−imΩtYilm
μν ðr; θAÞ ð39Þ

with radial functions given by a coupling formula of
the form

δ2Rilm ¼
X
i0l0m0
i00l00m00

Di0l0m0i00l00m00
ilm ½h1i0l0m0 ; h1i00l00m00 �; ð40Þ

where Di0l0m0i00l00m00
ilm is a bilinear differential operator. The

explicit, lengthy expressions in this coupling formula will
be given in a future publication [44]. Based on the helical
symmetry of its source, h2μν can be expanded as

h2μνðt; r; θA; ẑÞ ¼
X
ilm

h2ilmðr; r̂Þe−imΩtYilm
μν ðr; θAÞ ð41Þ

and put in the manifestly helically symmetric form

h2μνðt; r; θA; ẑÞ ¼
X
ilm

H2ilmðr; r̂Þeimðϕ−ΩtÞPilm
μν ðθÞ; ð42Þ

and likewise for hS2μν and hR2μν .

2. Time-symmetrized effective metric

At this point I still have not specified the equation of
motion determining ẑμ; I have merely stated that the orbit is
circular. Because I have neglected all the dissipative forces
in Eq. (1), clearly ẑμ cannot satisfy the geodesic equation (3)
in the effective metric gμν þ hRμν½ẑ�, which will include
dissipative terms. I now construct an effective metric
~gμν½ẑ� ¼ gμν þ ĥRμν½ẑ� in which ẑμ can be made a geodesic.
If second-order effects are ignored, the conservative

piece of Eq. (2) is uniquely defined by constructing the
force from a half-retarded-plus-half-advanced metric per-
turbation, and the orbit is a geodesic of the effective metric
corresponding to that perturbation. Taking this as my
inspiration, I follow an analogous procedure to define ĥRμν.
Let h1μν½ẑ�≡ h1retμν ½ẑ� be the retarded solution to Eq. (28)

with source T1
μν½ẑ�, and let hadvμν ½ẑ� be the advanced solution.

The harmonic modes of these two solutions are related in a
simple way. Referring to the form (37), I note that once
e−imΩtYilm

μν has been factored out of Eq. (28), the radial

functions hret=adv1ilm ðrÞ satisfy a linear differential equation
with real coefficients and a real source. The difference
between the two solutions is produced solely by a
complex conjugation of the boundary conditions: the
retarded solution satisfies the outgoing wave condition

h1ilm ∝ eikr
�
at infinity and the ingoing wave condition

h1ilm ∝ e−ikr
�
at the horizon, while the advanced solution

satisfies the complex conjugate of these conditions. It
follows that the modes of the two solutions are related by4

hadv1ilm ¼ hret�1ilm; ð43Þ

where the asterisk denotes complex conjugation. Therefore
the radial coefficients in the half-retarded-plus-half-
advanced solution, ĥ1μν½ẑ� ¼ 1

2
h1retμν ½ẑ� þ 1

2
h1advμν ½ẑ�, are given

by ĥ1ilm ¼ 1
2
ðh1ilm þ h�1ilmÞ. Here I am interested not in

this global field, but in an effective metric in a neighbour-
hood of the worldline. Hence, corresponding to the half-
retarded-plus-half-advanced field I introduce a regular field
ĥR1μν ¼ P

ilmĥ
R
1ilme−imΩtYilm

μν with radial coefficients

ĥR1ilm ≡ 1

2
ðhR1ilm þ hR�1ilmÞ: ð44Þ

Now I do the same for the regular field at second order.
I consider the retarded solution to Eq. (26), with
δ2Rμν½h1; h1� constructed from the first-order retarded field,
and with the second-order singular field that involves hR1μν in
Eq. (23), not ĥR1μν . From the regular field hR2μν in this solution,
I define a time-symmetrized regular field ĥR2μν with radial
coefficients

ĥR2ilm ≡ 1

2
ðhR2ilm þ hR�2ilmÞ: ð45Þ

This can be loosely thought of as the regular field
corresponding to the half-retarded-plus-half-advanced sol-
ution to Eq. (26), but for reasons I discuss in Sec. VI, it is
unlikely that such a solution would be globally well
behaved.
The time-symmetrized regular fields ĥRnμν together define

an effective metric ~gμν ¼ gμν þ ĥRμν, with

ĥRμν ≡ ϵĥR1μν ½ẑ� þ ϵ2ĥR2μν ½ẑ�: ð46Þ

This effective metric, unlike gμν þ hRμν½z�, does not satisfy
the vacuum Einstein equation through second order. It does
not even satisfy the vacuum equation in the sense that gμν þ
hRμν½ẑ� does (i.e., up to dissipation-driven changes in zμ).

One can infer this from the fact that hR1μν , not ĥ
R1
μν , is used in

the source for Eq. (26), meaning ĥR2μν will satisfy Eμν½ĥR2� ¼
2δ2Rμν½hR1; hR1� rather than Eμν½ĥR2� ¼ 2δ2Rμν½ĥR1; ĥR1�.
Nevertheless, ĥRμν meets our needs: it is a time-symmetric

piece of the retarded field hμν½ẑ�, and ẑμ can be made a
geodesic of the associated metric ~gμν. I will now verify the
latter fact by writing the geodesic equation in the form (1),

4This argument is due to Leor Barack.
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but with ẑμ and ĥRμν in place of zμ and hRμν, and checking that
a circular orbit is a consistent solution. For concreteness, I
rewrite the equation here as

D2ẑμ

dτ2
¼ F̂μ½ẑ�; ð47Þ

where F̂μ½ẑ� is given by Eq. (2) with the replacement
hRμν → ĥRμν. Explicitly evaluating the covariant derivatives
on the left-hand side leads to the algebraic equation

δμrΓr
uu ¼ F̂μ½ẑ�; ð48Þ

where Γα
uu ≡ Γα

μνðẑÞûμûν, and I have used the fact
that Γμ

uu ¼ δμrΓr
uu.

To evaluate F̂μ, I examine ĥRμν and its first derivatives
on ẑμ. Using the facts that

P
mhnillme

−imΩtYilm
μν must be

real and that Yilm�
μν ¼ ð−1ÞmYil−m

μν , we have h�nilm ¼
ð−1Þmhnil−m. A short calculation then shows that in terms
of real quantities,

ĥRnμν ¼
X
il

�X
m>0

2ReðHR
nilmÞ cos½mðϕ − ΩtÞ�Pilm

μν

þHR
nil0P

il0
μν

�
: ð49Þ

By comparing this with the expansion of hRnμν ½ẑ�, one can
easily verify that on ẑμ, where ϕ ¼ Ωt, the symmetrized
field is identical to the nonsymmetrized one:

ĥRnμν jẑ ¼ hRnμν jẑ ¼ const: ð50Þ

Furthermore, its radial derivative is also equal to that of
hRnμν ½ẑ�:

ĥRnμν;rjẑ ¼ hRnμν;rjẑ ¼ const: ð51Þ

However, unlike hRnμν , it has vanishing t and ϕ derivatives
on ẑμ:

ĥRnμν;tjẑ ¼ ĥRnμν;ϕjẑ ¼ 0: ð52Þ

Also, in a gauge (such as the Lorenz gauge) that respects
the system’s up-down symmetry we must have that

ĥRnμν;θjẑ ¼ hRnμν;θjẑ ¼ 0; ð53aÞ

ĥRnμθ jẑ ¼ hRnμθ jẑ ¼ 0 for μ ≠ θ; ð53bÞ

since the fields must be invariant under reflection across the
equatorial plane.
Now consider the force F̂μ. For the sake of comparison,

and to see precisely which parts of the force are excluded
by using the time-symmetrized field, I will first construct

Fμ½ẑ� from hRμν and only in the final stage make the
replacement hRμν → ĥRμν. After referring to Eq. (2) for Fμ

and Eq. (7) for ûμ, and utilizing the fact that ûρhRnμν;ρ ¼ 0, I
explicitly write the force Fμ½ẑμ� in Schwarzschild coordi-
nates as

Fμ ¼ −
1

2
P̂μνCν þ

1

2
P̂μνhRνρgρσCσ þOðϵ3Þ; ð54Þ

where Cν ¼ −hRuu;ν − 2Γr
uuhRrν and P̂μν ≡ gμνðẑÞ þ ûμûν.

This force has components

Ft ¼ −
1

2
f̂−1hRuu;t þ

1

2
P̂tβ½2Γr

uuhRrβ

− gγδhRβγðhRuu;δ þ 2Γr
uuhRrδÞ� þOðϵ3Þ; ð55Þ

Fr ¼ 1

2
f̂½hRuu;r þ 2Γr

uuhRrr

− gαβhRrαðhRuu;β þ 2Γr
uuhRrβÞ� þOðϵ3Þ; ð56Þ

where f̂ ≡ 1 − 2M=r̂ and hRuu ≡ hRμν½ẑ�ûμûν. The ϕ com-
ponent of Fμ can be found from the orthogonality relation
Fμûμ ¼ 0, which implies Fϕ ¼ − ût

ûϕ
Ft. One can check that

Fθ vanishes by virtue of Eq. (53).
These expressions can be simplified by appealing to the

equation of motion (48) (with Fμ in place of F̂μ). We see
that Γr

uu ¼ Fr ¼ 1
2
f̂hR1uu;r þOðϵ2Þ. Making that substitution

in Eqs. (55) and (56) leads to

Ft ¼ −
1

2
ϵf̂−1hR1uu;t −

1

2
ϵ2½f̂−1hR2uu;t − P̂tβðf̂−1hR1tβ hR1uu;t

− r̂−2hR1ϕβh
R1
uu;ϕÞ� þOðϵ3Þ; ð57Þ

Fr ¼ 1

2
f̂½ϵhR1uu;r þ ϵ2ðhR2uu;r þ f̂−1hR1tr hR1uu;t

− r̂−2hR1rϕh
R1
uu;ϕÞ� þOðϵ3Þ: ð58Þ

Clearly, there is no solution to Eq. (48) with this force; the
left-hand side contains only an r component, while the
right-hand side contains t and ϕ components. There cannot
be a circular orbit accelerated by (the regular part of) the
retarded field.
I now make the change to the time-symmetrized regular

field. Imposing Eq. (52) in Eqs. (57) and (58), we find

F̂t ¼ F̂ϕ ¼ F̂θ ¼ Oðϵ3Þ; ð59Þ

F̂r ¼ 1

2
f̂ðϵĥR1uu;r þ ϵ2ĥR2uu;rÞ þOðϵ3Þ: ð60Þ

With this force, the equation of motion (48) clearly does
have a solution for ẑμ, meaning that ẑμ is a geodesic of the
effective metric ~gμν ¼ gμν þ ĥRμν, as desired. I will explore
the solution momentarily, but first I comment on how my
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construction differs from simply neglecting dissipative
terms in the equation of motion. On a circular orbit, the
components of the force that dissipate energy and momen-
tum are Ft and Fϕ; keeping in mind that each component of
the force is constant along ẑμ, one can easily see that Ft and
Fϕ are the only components that change sign under a
reversal of the direction of time along the orbit (i.e., t → −t,
ϕ → −ϕ). The radial force Fr is conservative. So in this
sense, turning off dissipation consists of setting Ft ¼ Fϕ ¼
0 and keeping Fr, which allows a precisely circular orbit to
be a solution to the equation of motion. Comparing Eq. (60)
to Eq. (58), we see how this procedures differs from the one
I have followed: turning off the dissipative forces leaves
terms like hR1tr hR1uu;t in the radial force, time-symmetric terms
made up of products of time-antisymmetric ones; adopting
a geodesic in a time-symmetrized metric, on the other hand,
removes those terms. Noting Eq. (51), we see that this is the
only difference between the two procedures. In Sec. VI I
discuss the result for ~U that refers to the conservative
dynamics obtained by simply turning off Ft and Fϕ. For
now, I proceed with the geodesic in ĥRμν.

C. The redshift variable

With the conservative subsystem ðẑμ; ĥRμνÞ established, I
am in a position to fill in the details of Sec. II to obtain the
formula (10) for ~U≡ dt

d~τ.
In my present definition of the conservative dynamics,

the four-velocity ~uμ ¼ dẑμ
d~τ is normalized in the time-

symmetrized effective metric, and the normalization
condition reads ~gμν½ẑ� ~uμ ~uν ¼ −1. Using ~uμ ¼ dτ

d~τ û
μ and

gμνûμûν ¼ −1, one finds the ratio between intervals of τ
and ~τ on ẑμ to be

dτ
d~τ

¼ 1þ 1

2
ĥRuu þ

3

8
ðĥRuuÞ2 þOðϵ3Þ; ð61Þ

where I have utilized the fact that ĥRμν ∼ ϵ.
Next, from the normalization condition gμνûμûν ¼ −1

and Eq. (7), one finds

Û−2 ¼ f̂ − r̂2Ω2: ð62Þ

Last, solving the equation of motion (48) for the orbital
frequency yields

Ω ¼
ffiffiffiffiffi
M
r̂3

r �
1 −

F̂rr̂
2M

ðr̂ − 3MÞ

−
ðF̂rÞ2r̂2
8M2

ðr̂þMÞðr̂ − 3MÞ þOðϵ3Þ
�
; ð63Þ

where I have used Fr ∼ ϵ.
Combining Eqs. (61), (62), and (63), I obtain a formula

for ~U:

~U ¼ ð1 − 3M=r̂Þ−1=2
�
1þ 1

2
ðĥRuu − F̂rr̂Þ þ

1

8
½3ðĥRuuÞ2

− 2r̂F̂rĥ
R
uu − r̂2ðF̂rÞ2� þOðϵ3Þ

�
: ð64Þ

This is the redshift variable in the self-consistent picture
and in the definition of conservative dynamics in which the
orbit ẑμ is geodesic in the time-symmetrized metric
~gμν ¼ gμν þ ĥRμν½ẑ�. I note that since ĥRμν ¼ hRμν on ẑμ, the
hats may be dropped from the regular field in the above
formula, recovering Eq. (10). Furthermore, since ĥRμν;r ¼
hRμν;r on ẑμ, we have F̂r ¼ 1

2
ϵhR1uu;r þOðϵ2Þ, so we may

remove any explicit reference to the time symmetrization.
The only problem with doing so occurs when considering
the gauge transformation of ~U; I postpone that discussion
to Sec. V.

IV. GRALLA-WALD PICTURE: AN EXPANDED
WORLDLINE

The reason for transitioning to a Gralla-Wald picture
should now be clear: If one tried to calculate the value of ~U
numerically by solving Eqs. (25) and (26) with the motion
of the puncture determined by Eq. (47), to avoid numerical
error driving the orbit away from circularity, one would
have to constrain the orbit a priori to be circular. But to do
so one would have to know the correct initial conditions for
the position and velocity of that orbit. In other words, one
would need the relationship between r̂ and Ω in Eq. (4),
which [from Eq. (63)] would require knowing the correct
radial force in advance. A Gralla-Wald scheme circumvents
this challenge.

A. Formalism

In the Gralla-Wald picture, the accelerated worldline is
expanded in a power series around some reference geodesic
of gμν. One could begin with an expansion of the inspiraling
worldline and then extract the conservative dynamics, and
in fact I present that approach in Appendix A. But here I
begin instead with the conservative orbit ẑμ. Following
Sec. II, I expand it as

ẑμðt; ϵÞ ¼ zμ0ðtÞ þ ϵẑμ1ðtÞ þ ϵ2ẑμ2ðtÞ þOðϵ3Þ; ð65Þ
where the zeroth-order worldline is

zμ0 ¼
�
t; r0;

π

2
;Ω0t

�
; ð66Þ

a circular, background geodesic with frequency

Ω0 ¼
ffiffiffiffiffi
M
r30

s
ð67Þ

and four-velocity
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u0 ≡ dzμ0
dτ0

¼ U0f1; 0; 0;Ω0g: ð68Þ

From Eq. (62), we have

U−2
0 ¼ f0 − r20Ω2

0 ¼ 1 −
3M
r0

; ð69Þ

where f0 ≡ 1 − 2M=r0.
In Sec. II, I chose zμ0 to be the circular geodesic with

frequency Ω0 ¼ Ω. I will eventually make that same choice
here, but for the moment, to keep the discussion general, I
leave the frequency Ω0 arbitrary. The corrections to zμ0 are
then, generically, ẑμn ≡ f0; r̂n; 0;Ωntg≡ 1

n!
dnẑμ
dϵn jϵ¼0. To

interpret these quantities more formally, note that ẑμðt; ϵÞ
parametrizes a two-dimensional surface that is bounded on
one side by ẑμðt; 0Þ ¼ zμ0ðtÞ. ẑμ1 is the directional derivative∂ẑμ
∂ϵ ðt; ϵ ¼ 0Þ along a curve of increasing ϵ and fixed t in this
surface; therefore, it is a vector field on zμ0, transforming in
the ordinary way as a vector there. ẑμ2, on the other hand, is a
second derivative along this curve, rather than a first;
therefore, it is simply a collection of four scalar fields on zμ0,
rather than a vector field.
When the worldline is expanded in this way, the fields

hnμν½ẑ� must also be expanded (along with hRnμν ½ẑ�, ĥnμν½ẑ�,
etc.). Writing

hμν ¼ ϵh1μν½z0 þ ϵẑ1 þ � � �� þ ϵ2h2μν½z0 þ ϵẑ1 þ � � �� ð70Þ

and then expanding the functional dependence yields a field
of the form

hμν ¼ ϵh1μν½z0� þ ϵ2ðh2μν½z0� þ δh1μν½z0; ẑ1�Þ þOðϵ3Þ: ð71Þ

The term δh1μν comes from functional differentiation of h1μν.
I incorporate that term into a new second-order field,

h2ðGWÞ
μν , to arrive at

hμν ¼ ϵh1μν½z0� þ ϵ2h2ðGWÞ
μν ½z0; ẑ1� þOðϵ3Þ: ð72Þ

The first term is the same functional as in the self-consistent
picture, but now evaluated as a functional of zμ0; this
approximation is often made in the self-force literature

at first order. The second term, h2ðGWÞ
μν ½z0; ẑ1�, is a different

functional than in the self-consistent case, due to its
inclusion of δh1μν. Its form will be made clear by analyzing
its singular and regular pieces.
First consider the singular field. Substituting the expan-

sion (11) into the schematic expressions (22) and (23), one
finds that near the object, the singular field in the Gralla-
Wald picture takes the form

hSμν ¼ ϵhS1μν ½z0� þ ϵ2hS2ðGWÞ
μν ½z0; ẑ1� þOðϵ3Þ; ð73Þ

with

hS1μν ½z0� ∼
m

jxα − zα0j
þOðjxα − zα0j0Þ; ð74Þ

hS2ðGWÞ
μν ½z0; ẑ1� ∼

m2 þmẑμ1⊥
jxα − zα0j2

þ δmμν þmhR1μν
jxα − zα0j

þOðln jxα − zα0jÞ: ð75Þ

Here jxα − zμ0j represents spatial distance from zμ0, and
ẑα1⊥ ≡ ðgαβ þ uα0u0βÞẑβ1 is the piece of ẑα1 orthogonal to the
zeroth-order worldline. The singular field now diverges on
zμ0 rather than ẑμ; the correction to the motion, instead of
shifting the location of the divergence, now appears
explicitly as a term in the field. As in the self-consistent
case, the local expansions (74) and (75) can be found in
explicit, covariant form in Ref. [41].
In the 1=jxα − zα0j term in hS2μν , the regular field hR1μν is

both evaluated at zμ0 and a functional of zμ0; the functional
hR1μν ½ẑ� is approximated by hR1μν ½zμ0�. The expansion of the
worldline also alters the tensor δmμν, which now reads

δmαβ ¼
1

3
mð2hR1αβ þ gαβgμνhR1μν Þ

þmðgαβ þ 2u0αu0βÞuμ0uν0hR1μν

þ 4mu0ðα

�
hR1βÞμu

μ
0 þ 2

Dẑ⊥
1βÞ

dτ0

�
; ð76Þ

where hR1μν is again both evaluated on zμ0 and a functional
of zμ0.
Expanding the singular field in this way leaves intact

most of the puncture scheme described in Sec. III A, but for
two important modifications:

(i) the punctures hPnμν move on zμ0, not on ẑμ,
(ii) the second-order puncture includes terms propor-

tional to ẑμ1.
The first of these two changes renders a calculation of
the conservative dynamics far simpler than in the self-
consistent picture. Rather than having to somehow pre-
determine the relationship between orbital frequency and
radius of the perturbed orbit, one can now choose a
background geodesic zμ0 however one likes, and the
puncture moves on that geodesic at both first and second
order. The puncture scheme, rather than consisting of a
system of coupled equations, becomes a sequence of
equations: After specifying the background geodesic,
one can calculate the first-order fields h1μν½z0� and hR1μν ½z0�
by solving the new version of Eq. (25),

Eμν½hR1� ¼ −Eμν½hP1�≡ S1effμν insideΓ; ð77aÞ

Eμν½h1� ¼ 0 outsideΓ; ð77bÞ
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with the puncture now moving on zμ0, or by solving the new
version of Eq. (78),

Eμν½h̄1� ¼ −16π
Z
z0

mu0μu0ν
δ4ðxα − zα0Þffiffiffiffiffiffi−gp dτ0: ð78Þ

Next, one can use the linear-in-ϵ term in the equation of
motion (1) [or Eq. (48)] to find the correction ẑμ1. After that,
one can solve the second-order field equation,

Eμν½hR2� ¼ 2δ2Rμν½h1; h1� − Eμν½hP2�
≡ S2effμν insideΓ; ð79aÞ

Eμν½h2� ¼ 2δ2Rμν½h1; h1� outsideΓ; ð79bÞ

with the puncture still moving on zμ0. Finally, one can use
the quadratic-in-ϵ term in the equation of motion to find the
correction ẑμ2. In the above, I have omitted the label “(GW)”
on h2μν for compactness.
From this puncture scheme, and the form of the puncture,

we see that the first-order regular field is now what you
would obtain by taking the first-order puncture in the self-
consistent picture and setting it moving on zμ0. The second-
order regular field here is what you would obtain by taking
the second-order puncture in the self-consistent picture and
setting it moving on zμ0, plus the regular field generated
from the new terms proportional to ẑμ1 in the puncture.
It is illuminating to consider these expansions from the

perspective of the first-order, point-mass stress-energy
tensor (29). Expanding T1

μν½ẑ� about zμ0 leads to two terms
involving ẑμ1. First, the expansion of the Dirac δ function
produces a δ0 source, leading to the term ∼ẑμ1=jxα − zα0j2 in
Eq. (75). Second, the expansion of uμ about uμ0 in T1

μν½ẑ�
produces a δ source proportional to Dzμ

1

dτ0
, leading to the new

term in δmμν=jxα − zα0j shown in Eq. (76). The fact that only
ẑμ1⊥ contributes to the singular field, rather than the entirety
of ẑμ1, can be seen from a careful analysis of the change of
integration variable from τ to τ0 in T1

μν [40].
Similarly, to better understand how the regular field is

altered by the expansion of ẑμ, one can refer to the explicit
functional (30). Substituting the expansion into the right-
hand side of that equation leads to hR1μν ½ẑ� ¼ hR1μν ½z0�þ
ϵδhR1μν ½z0; ẑ1� þOðϵ2Þ, where

δhR1μν ¼ 4m
Z
z0

�
ḠR

μνα0β0;γ0u
α0
0 u

β0
0 ẑ

γ0
1⊥

þ 2ḠR
μνα0β0

Dẑα
0

1⊥
dτ

uβ
0

0

�
dτ0: ð80Þ

The primed indices refer to the tangent space at
x0μ ¼ zμ0ðτ0Þ, and again, accounting for the change of

integration variable explains the fact that only the
perpendicular piece of ẑα1 appears [40]. Given this expan-
sion, we ascertain that the first- and second-order regular
fields in the Gralla-Wald picture have the form

hR1ðGWÞ
μν ≡ hR1μν ½z0�; ð81Þ

hR2ðGWÞ
μν ≡ hR2μν ½z0� þ δhR1μν ½z0; ẑ1�; ð82Þ

with δhR1μν as given above.
So that I can say more about the problem at hand, allow

me to return to the choice of zμ0 made in Sec. II, where
Ω ¼ Ω0 and the correction to the position in Eq. (11) is
purely radial. If that choice is made, the expansion of the
worldline can be written as

ẑμ ¼ zμ0 þ ϵr̂μ1 þ ϵ2r̂μ2 þOðϵ3Þ; ð83Þ

where r̂μn ≡ δμr r̂n. The zeroth-order four-velocity is then
proportional to the same Killing vector as is uα,

uα0 ¼ U0kα; ð84Þ

and the perturbations retain their helical symmetry,

Lkh
RnðGWÞ
μν ¼ 0; ð85Þ

and the same for the retarded and singular fields. This can
be gleaned from Eq. (38), for example, by observing that
only the dependence on r̂ is expanded, leaving the t and ϕ
dependence unaltered. On the zeroth-order worldline the
helical symmetry reduces to

uρ0h
RnðGWÞ
μν;ρ ¼ 0: ð86Þ

In deriving the expansion of ~U below, I will be interested
in the regular field (and its derivatives) evaluated on the
worldline—for example, as it appears in the equation of
motion (2). This means I will require an expansion of the
regular field on ẑμ in the self-consistent picture about the
regular field on zμ0 in the Gralla-Wald picture. To make that
expansion more transparent, I switch notation from hRnμν ½ẑ�
to hRnμν ðx; ẑÞ, where xμ is the point at which the field is
evaluated. Expanding hRnμν ðẑ; ẑÞ around ðz0; z0Þ, using
Eq. (83), leads to

hRnμν ðẑ; ẑÞ ¼ hRnμν ðz0; z0Þ þ ϵ½r̂1hRnμν;rðz0; z0Þ
þ δhRnμν ðz0; z0; r̂1Þ� þOðϵ2Þ: ð87Þ

The first term in the square brackets accounts for the shift in
the field point from zμ0ðtÞ to ẑμðtÞ, while the second term
accounts for the shift in the source orbit from zμ0 to ẑμ.
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Equation (87) implies that the total regular field on the
accelerated worldline can be expanded as

hRμνðẑ; ẑÞ ¼ ϵhR1ðGWÞ
μν ðz0Þ þ ϵ2½hR1ðGWÞ

μν;r ðz0Þr̂1 þ hR2ðGWÞ
μν ðz0Þ�

þOðϵ2Þ; ð88Þ

where I have suppressed the functional dependences on
the right-hand side. Finally, substituting these results into
the force (60) leads to an expansion F̂r ¼ ϵFr

1 þ ϵ2Fr
2,

where

F̂r
1 ¼

1

2
f0ĥ

R1ðGWÞ
u0u0;r ; ð89Þ

F̂r
2 ¼

1

2
f0ĥ

R2ðGWÞ
u0u0;r þMr̂1

r20
ĥR1ðGWÞ
u0u0;r þ 1

2
f0ĥ

R1ðGWÞ
u0u0;rr r̂1: ð90Þ

Here I have introduced ĥRnðGWÞ
u0u0 ≡ hRnðGWÞ

μν uμ0u
ν
0 and

hRnðGWÞ
u0u0;ρ ≡ hRnðGWÞ

μν;ρ uμ0u
ν
0.

For the sake of notational simplicity, from this point
forward I will omit the (GW) label, and hRnμν will always

represent hRnðGWÞ
μν .

B. Corrections to the orbital radius

In order to obtain my final expansion of ~U, I must first
solve the equations of motion for the corrections ẑμn to the
motion; otherwise I will be left with an unhelpful expres-
sion in terms of r̂1, for example. In this section I do just
that, finding ẑμn by substituting the expansion (11) into the
equation of motion (48). To illustrate the freedom in the
Gralla-Wald picture, I momentarily delay the choice
Ω ¼ Ω0.
For convenience, I restate the equation of motion here:

Γr
μνðr̂Þuμuν ¼ ϵF̂r

1 þ ϵ2F̂r
2 þOðϵ3Þ: ð91Þ

F̂r
1 and F̂r

2 are given in Eqs. (89) and (90), but those
concrete expressions will not be needed for the present
analysis.
The zeroth-order term in Eq. (91) reads Γα

μνðr0Þkμkν ¼ 0,
the solution of which is the familiar formula (67).
The first-order term in Eq. (91) reads

Γr
μν;rðr0Þuμ0uν0r̂1 þ 2Ω0Ω1U2

0Γr
ϕϕðr0Þ ¼ F̂r

1: ð92Þ

Even if F̂r
1 ≡ 0, this equation has a nontrivial solution

relating r̂1 to Ω1. That solution corresponds to a small shift
to another circular geodesic of slightly different radius,
unrelated to the self-force or any physical perturbation. I
eliminate it by setting Ω1 ¼ 0. This same freedom resides
at every order, and I eliminate it by making the promised
choice,

Ω ¼ Ω0: ð93Þ

Rather than choosing Ω ¼ Ω0, one could use the free-
dom in the expansion to make the alternative choice
r̂ðϵÞ ¼ r0, or some choice of relation Ω ¼ Ωðr̂Þ. In those
cases, one would have nonzero shifts Ωn in the orbital
frequency, such that Ω ≠ Ω0. The different choices corre-
spond to different families of orbits—and to different
families of spacetimes (parametrized by ϵ). In the case
that Ω ¼ Ω0, each member of the family contains a
compact object orbiting at a physical frequency Ω. In
the case that Ω ≠ Ω0, different members of the family have
physically different frequencies. There are two reasons for
choosing Ω ¼ Ω0 in the present analysis: it means that the
coordinate-dependent (though gauge-independent, as dis-
cussed in Sec. V) radius r0 can be written in terms of the
physical frequency as r0 ¼ ðMΩ−2Þ1=3; it also means that
the corrections ẑμn>0 are purely radial and constant in time.
With a generic choice of relation Ω ¼ Ωðr̂Þ, r0 would be
nontrivially related to ðMΩ−2Þ1=3. More problematically,
the first-order correction to the motion, ẑμ1, would include
ϕ1ðtÞ ¼ Ω1t. Terms growing linearly in time would then
appear in the metric, corresponding to expanding ΩðϵÞ in,
e.g., Eq. (38), and the equation of motion would become
time dependent, substantially complicating the analysis.
However, for some purposes, one would require a family of
spacetimes of differing frequency. For example, if one
wished to define the self-force-induced shift in frequency of
the ISCO, one would consider a family in which the object
is at the ISCO at each ϵ. In such cases, one would have to
use a slightly different formalism to bypass the inconven-
ient growth in time.
I now return to Eq. (92) from my digression. Using

Eqs. (67) and (69), I find the first-order shift in the orbital
radius due to the self-force to be

r̂1 ¼ −
r30
3M

ðr0 − 3MÞ
ðr0 − 2MÞ F̂

r
1: ð94Þ

It follows from this and Eq. (62) that

Û ¼ U0 þOðϵ2Þ; ð95Þ

and so

ûμ ¼ uμ0 þOðϵ2Þ: ð96Þ

The second-order shift is similarly found from the
second-order term in Eq. (91). That equation reads

Γr
μν;rðr0Þuμ0uν0r̂2 þ

1

2
U2

0Γr
tt;rrðr0Þr̂21 ¼ F̂r

2; ð97Þ

and its solution is

r̂2 ¼ −
r30
3M

ðr0 − 3MÞ
ðr0 − 2MÞ F̂

r
2 þ

r̂21
r0

r0 − 4M
r0 − 2M

: ð98Þ
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One can check the consistency of these results for r̂1 and r̂2
by substituting them into Eq. (63), which returns Ω ¼ Ω0

through second order, as required.

C. The redshift variable

I now turn to the expansion of ~U. Substituting the
expansions (83), (88), (96), and

F̂r ¼ f̂−1F̂r ¼ ϵf−10 F̂r
1 þ ϵ2f−10

�
F̂r
2 −

2M
f0r20

r̂1F̂
r
1

�
þOðϵ3Þ

ð99Þ

into Eq. (64), one finds

~U ¼ U0

�
1þ 1

2
ϵĥR1u0u0 þ ϵ2

�
1

2
ðĥR2u0u0 þ ĥR1u0u0;rr̂1Þ

þ 3

8
ðĥR1u0u0Þ2 þ

r20
6M

ðr0 − 3MÞðF̂1rÞ2
�
þOðϵ3Þ

�
:

ð100Þ

To simplify this expression, I eliminate ĥR1u0u0;r and r̂1 by
making use of Eqs. (89) and (94), leading to

~U ¼ U0

�
1þ 1

2
ϵĥR1u0u0 þ ϵ2

�
1

2
ĥR2u0u0 þ

3

8
ðĥR1u0u0Þ2

−
r20
6M

ðr0 − 3MÞðF̂1rÞ2
�
þOðϵ3Þ

�
; ð101Þ

where, recall, F̂1r ¼ 1
2
ĥR1u0u0;r.

As noted in Sec. III C, ĥRnμν can be replaced with hRnμν in
Eq. (102), including within F̂1r, thereby recovering the
previewed equation (15). With the present construction of
the conservative dynamics, that formula can be taken to
describe the ratio dt=d~τ along the circular orbit ẑμ

that is a geodesic of the time-symmetrized effective metric
~gμν ¼ gμν þ ĥRμν.

V. GAUGE TRANSFORMATIONS

Only one step remains: to show that ~U is gauge invariant.
Thus far I have restricted my attention to the Lorenz gauge.
I now describe the effects of a transformation to another
gauge. Before specializing to the conservative system
comprising ẑμ and ĥμν, I give a general description of
transformations at second order. I use standard results from,
e.g., Ref. [55].

A. Transformation laws

In the self-consistent formalism, the starting point is the
transformation of the worldline itself. Under a smooth
gauge transformation generated by ϵξμ1 and ϵ2ξμ2, the
coordinates zμ on the worldline transform according to

zμ→ z0μ¼ zμ−ϵξμ1ðzÞ−ϵ2
�
ξμ2ðzÞ−

1

2
ξν1ðzÞ∂νξ

μ
1ðzÞ

�
þOðϵ3Þ:

ð102Þ

When the worldline is expanded in a Taylor series, the
terms in its expansion transform according to

zμ0 → zμ0; ð103Þ

zμ1 → z0μ1 ¼ zμ1 − ξμ1ðz0Þ; ð104Þ

zμ2 → z0μ2 ¼ zμ2 − ξμ2ðz0Þ þ
1

2
ξν1ðz0Þ∂νξ

μ
1ðz0Þ

− zν1∂νξ
μ
1ðz0Þ; ð105Þ

The laws for zμn follow from Eq. (102) by expanding both
sides of the equality about the zeroth-order worldline zμ0 and
equating coefficients of powers of ϵ. They can also be
found from a more detailed differential-geometric analysis.
We can see that a gauge transformation acts quite

differently in the two pictures. In the self-consistent picture,
a gauge transformation shifts the curve on which the
singular field diverges. In the Gralla-Wald picture, on
the other hand, the curve zμ0 on which the singular field
diverges is trivially invariant in the usual sense of any
zeroth-order quantity in perturbation theory. Instead, the
gauge transformation alters the fields zμ1; z

μ
2;…, that

live on zμ0.
In either picture, under the same smooth gauge trans-

formation, hnμν transforms as hnμν → h0nμν ¼ hnμν þ Δhnμν,
where5

Δh1μν ¼ Lξ1gμν; ð106aÞ

Δh2μν ¼ Lξ2gμν þ Lξ1h
1
μν þ

1

2
L2
ξ1
gμν: ð106bÞ

Obviously this transformation is valid only off the world-
line, where the fields are smooth. Now we must apportion
Δhnμν between the singular and regular fields, which takes
some thought. My guiding principle is this: I wish to define
the regular field h0Rμν in the new gauge such that the equation
of motion (1) remains valid, with zμ replaced by z0μ and hRμν
by h0Rμν. In its geodesic form (3), the equation of motion is
manifestly invariant under a general smooth coordinate
transformation. Therefore, when ~gμν is split into the back-
ground gμν and the perturbation hRμν, the equation in the
form (1) must be invariant when zμ transforms as (102)
and hRμν transforms as any smooth perturbation would.
Accordingly, I define the regular field in the new gauge as
h0Rnμν ¼ hRnμν þ ΔhRnμν , where

5Reference [48] discusses the subtleties that arise when
applying this formula in a self-consistent scheme.
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ΔhR1μν ¼ Lξ1gμν; ð107aÞ

ΔhR2μν ¼ Lξ2gμν þ Lξ1h
R1
μν þ 1

2
L2
ξ1
gμν: ð107bÞ

With these definitions, the effective metric ~gμν ¼ gμν þ hRμν
transforms just as any other smooth metric, and it retains its
properties in the new gauge: it is a C∞ solution to the
vacuum Einstein equation, and the orbit is geodesic in it.
The transformation law for hRnμν leaves the singular field to
transform as hSnμν → h0Snμν ¼ hSnμν þ ΔhSnμν , where

ΔhS1μν ¼ 0; ð108aÞ
ΔhS2μν ¼ Lξ1h

S1
μν : ð108bÞ

Since only certain combinations of hRμν and its derivatives
appear in the equation of motion, it might be possible to put
more of Δhnμν into ΔhSnμν without spoiling the invariance of
Eq. (1). However, the above definitions are the most
natural.
Since the equation of motion is invariant, one can see that

much of the analysis in the preceding sections remains
valid in any gauge that is smoothly related to Lorenz. In
fact, the entirety of the analysis remains valid so long as we
restrict ourselves to a class of gauges that preserve the
system’s helical symmetry, by which I mean that the orbit
retains a manifestly circular, equatorial form, as in Eq. (4),
and that the helical Killing vector retains the form (6). These
conditions can be guaranteed by restricting ξμn to satisfy

0 ¼ Lξnk
μ ¼ −kν∂νξ

μ
n; ð109Þ

and ξθn ¼ 0. On the worldline, Eq. (109) reduces to dξμn
dτ ¼ 0

(or dξμn
dτ0

¼ 0, in the Gralla-Wald picture); the gauge vector

must be constant on the worldline. The condition ξθn ¼ 0
keeps the worldline in the equatorial plane of the back-
ground and preserves the metric perturbation’s symmetry
about that plane.
Within this class of gauges, ẑμ transforms according to

Eq. (102); the transformation of ẑμ corresponds to a
constant shift in the orbit’s radius and a shift of its initial
azimuthal angle. A natural transformation law for ĥRμν can
be found by again demanding that the equation of motion
takes the same form in the new gauge. ẑμ satisfies the
geodesic equation in the effective metric ~gμν ¼ gμν þ ĥRμν,
so by the same argument as above, I let ĥRμν transform
according to Eq. (107), with ĥRnμν replacing hRnμν on both the
left- and right-hand sides.

B. Invariance of the redshift variable

All the rules of transformation are now established, and
so I turn to the actual quantities appearing in Eq. (102).
First, we have

ΔĥR1u0u0 ¼ ΔhR1u0u0 ¼ 2
d
dτ0

ðξ1μuμ0Þ ¼ 0; ð110Þ

where I have now restricted ξμn to satisfy Eq. (109). Next,

ΔĥR2u0u0 ¼ ĥR1u0u0;ρξ
ρ
1 þ

3M
r20

ðξr1Þ2
r0 − 3M

; ð111Þ

where I have again used Eq. (109). I simplify the result for
ΔĥR2u0u0 by noting that on zμ0 we have ĥR1u0u0;r ¼ 2F̂1r and
ĥR1μν;t ¼ 0 ¼ ĥR1μν;ϕ, which leads to

ΔĥR2u0u0 ¼ 2F̂1rξ
r
1 þ

3M
r20

ðξr1Þ2
r0 − 3M

: ð112Þ

This result does not hold for the nonsymmetrized ΔhR2u0u0 ,
because hR1u0u0;t ≠ 0 ≠ hR1u0u0;ϕ.

Using F̂1r ¼ 1
2
ĥR1u0u0;r and the transformation law for ĥR1μν ,

and again appealing to Eq. (109), I next find that F̂1r
transforms as

F̂1r → F̂1r þ
3M
r20

ξr1
r0 − 3M

: ð113Þ

Putting together the results (110), (112), and (113) in the
formula (102) for ~U, I determine, as desired, that ~U is
gauge-invariant:

~U → ~U: ð114Þ
Before proceeding to the next section, I note the gauge

dependence of another quantity,

ût ¼ Û ¼ U0

�
1þ ϵ2

r20
6M

ðr0 − 3MÞðF̂1rÞ2 þOðϵ3Þ
�
;

ð115Þ
which describes dt=dτ along ẑμ. This expansion can be
obtained from Eqs. (62), (94), and (98). The resulting
expression is clearly gauge dependent, but only at second
order. At first order, both ût and ~ut are invariant; in the form
(115), the first-order invariance of ût is trivial (and vacuous),
though it can also be seen to follow from the more mean-
ingful fact that ûα → ûα − dξα

1

dτ ¼ ûα for a gauge vector
satisfying Eq. (109). At second order, this is no longer
the case, and we now see more strikingly the importance of
normalizing in the effective metric, rather than the back-
ground metric, to obtain a gauge-invariant redshift.

C. Transformation to an asymptotically flat gauge

Although I have presented the formalism as if all
calculations are to be performed in the Lorenz gauge, in
practice that gauge must be slightly tweaked. It is known
that the first-order metric perturbation h1μν½ẑ� in the Lorenz
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gauge is not asymptotically flat, with the monopole piece of
its tt component approaching the constant −2α as r → ∞;
see, e.g., the discussion in Ref. [19]. In the notation of this
paper, the constant factor is α ¼ m=½r̂ðr̂ − 3MÞ�1=2. To cure
this ill behavior, one must perform a gauge transformation
generated by

ξμ1 ¼ −αtδμt ; ð116Þ

which alters h1μν (as well as hR1μν ) by an amount

Δh1μν ¼ 2ð1 − 2M=rÞαδtμδtν: ð117Þ

Any vector that smoothly goes to ξμ1 → −αtδμt at large r
would, of course, make the metric asymptotically flat, but
the coefficient in front of t must be constant in order to
preserve the metric’s helical symmetry.
Even though this transformation leaves the perturba-

tion’s helical symmetry intact, it lies outside the class of
gauge vectors that satisfy Eq. (109), and ~U is not invariant
under it. To see how ~U is altered, we can apply Eq. (102) to
the circular orbit as parametrized in Eq. (4). The result is
ẑμ → ẑ0μ, where

ẑ0μ ¼
��

1þ ϵαþ1

2
ϵ2α2þOðϵ3Þ

�
t; r̂ðϵÞ;π=2;Ωt

�
: ð118Þ

After reparametrizing to make the worldline parameter
match the new coordinate time, the orbit returns to its prior
form,

ẑ0μðt0; ϵÞ ¼ ft0; r̂ðϵÞ; π=2;Ω0t0g; ð119Þ

but with an altered frequency

Ω0 ¼ Ω
�
1 − ϵαþ 1

2
ϵ2α2 þOðϵ3Þ

�
: ð120Þ

This modification of the frequency will clearly affect ~U, as
can be inferred from the relation ~UðΩÞ given in Eq. (16).
Because of this, one cannot directly compare Lorenz-

gauge results for ~U to PN results. One must instead use an
asymptotically flat gauge, which ensures that the time t and
frequency Ω have the same invariant meaning in both
models: the time and frequency as measured by an inertial
observer at infinity. Any asymptotically flat, helically
symmetric gauge would do. All the calculations leading
to Eq. (102) in the preceding sections could have been
performed in any helically symmetric gauge. The only
change to the derivation is that the field equations them-
selves would have been modified from their form
(25)–(26), with a different differential operator on the
left-hand side and a different puncture on the right. If
the gauge is sufficiently nice, those changes would not alter
the forms (37) and (41) of the metric perturbation, and the

time-symmetrized effective metric could still be defined in
the same way as it was in the Lorenz gauge.
To best use the puncture already derived in the Lorenz

gauge, the simplest way to construct an asymptotically flat,
helically symmetric metric through second order is to
use the gauge vector (116) to minimally modify the field
equations and puncture from their Lorenz-gauge form.
Analogously, a second-order gauge vector will be needed to
make the second-order field asymptotically flat. These
modifications go beyond the scope of this paper, but they
will be provided in a future publication [44].

VI. ALTERNATIVE DEFINITIONS OF
CONSERVATIVE DYNAMICS

Thus far I have used a very particular definition of the
conservative dynamics, based on the motion being geodesic
in a time-symmetrized effective metric. I now consider two
alternative definitions.

A. Turning off dissipative terms in the force

In Sec. III B 2 I discussed two different procedures that
would lead to a circular orbit ẑμ: (i) constructing a time-
symmetrized effective metric ~gμν ¼ gμν þ ĥRμν and making
ẑμ a geodesic of that metric; and (ii) using an effective
metric ~gμν ¼ gμν þ hRμν constructed from the retarded, non-
symmetrized metric, and simply neglecting the dissipative,
Ft and Fϕ, components of the resulting self-force. In a
given gauge and for a given orbital frequency, the orbits in
methods (i) and (ii) will have different radii.
Now suppose I had adopted option (ii) as my definition

of the conservative dynamics, using the radial force (58)
rather than (60), and normalizing ~uμ with respect to ~gμν ¼
gμν þ hRμν rather than gμν þ ĥRμν. The derivation of the
formula (15) for ~U in Sec. II, and the details provided
in Secs. III C, IV B, and IV C would have carried through
virtually unchanged, since they did not rely on any
particular definition of the radial force. The single change
would have been the replacement of ĥRμν with hRμν in the
normalization of ~uμ. As discussed in Sec. IV C, the value of
the formula (15) is identical whether ĥRμν or hRμν is used
therein. Hence, the two definitions of the conservative
dynamics yield exactly the same value of ~U, even though
the quantity ~U ¼ ~ut in the two definitions refers to the four-
velocity on slightly different circular orbits.
Only one difficulty arises in this second definition. As

mentioned below Eq. (112), if hRμν is used in the formula for
~U, then ~U, as given by Eq. (15), is not gauge invariant; its
invariance is broken by the fact that hR1u0u0;t ≠ 0 ≠ hR1u0u0;ϕ.

Oddly, no matter the choice of gauge, the value of ~U is
unchanged by making the replacement ĥRμν → hRμν—and yet
the formula is invariant under gauge transformations only if
the symmetrized field is used. This conundrum is resolved
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as follows: The formula (15) for ~U utilizes an expansion of
ẑμ in which the corrections ẑμ1 to zμ0 are purely radial, but if
the gauge vector ξμ1 has t or ϕ components, then
ẑt or ϕ1 → ẑt or ϕ1 − ξt or ϕ1 . Therefore, Eq. (15), with no time
symmetrization of the effective metric, is naturally valid
only in a class of gauges related by gauge vectors that
reduce to ξμn ¼ δμrξrn on zμ0. Within that class of trans-
formations, hR1u0u0;tξ

t
1 and hR1u0u0;ϕξ

ϕ
1 do not appear in the

transformation of ~U. One could instead write a more
general formula for ~U that allows ẑμ1 to include arbitrary
(constant) shifts t̂1 and ϕ̂1 in the time and phase of the orbit.
That formula would be invariant in the broader class of
gauges related by transformations satisfying Eq. (109), and
its numerical value would, of course, be independent of t̂1
and ϕ̂1. But the necessary involvement of those arbitrary
constants would be somewhat unnatural. The definition of
conservative dynamics based on a geodesic in a time-
symmetrized metric bypasses these issues.

B. Standing-wave approximation

Another way of defining conservative dynamics would
be to construct a truly conservative physical system, rather
than trying to extract the conservative portion of a dis-
sipative system. This could be done by setting up standing
waves, balancing the outgoing radiation with incoming
radiation. Mathematically, this would correspond to adopt-
ing the half-retarded-plus-half-advanced first-order solu-
tion, using that solution within the second-order Ricci
tensor in the second-order field equation (26), and once
again adopting a half-retarded-plus-half-advanced solution.
With this construction, the effective metric would auto-
matically be time symmetric and the force purely radial.
Hence, Eq. (15) would again apply, but the second-order
regular field would differ from that used in the other
definitions of conservative dynamics.
There are two reasons for not following this route: First,

it would not be useful for comparing with PN theory, where
conservative dynamics are always extracted from retarded
solutions. Second, it would introduce additional numerical
challenges, because the standing waves at infinity would
lead to an infrared divergence in the second-order field.
This divergence can be estimated by analyzing the behavior
of the solution and the Green’s function at large r. The first-
order half-retarded-plus-half-advanced solution contains
terms like eikr=r and terms like e−ikr=r (with k ≥ 0),
meaning the source δ2Rμν in the second-order field equa-
tion will contain terms like eiðk1þk2Þr=r2, among others. If
we write the second-order modes h2ilm as an integral
over a Green’s function and examine the contribution to
the integral from a region of large r, then we can
approximate the half-retarded-plus-half-advanced Green’s
function with that for the Helmholtz equation in flat

space, Gkðx;x0Þ¼ eikj~x−~x0 jþe−ikj~x−~x0 j
2j~x−~x0j . Further specializing to

r0 ≫ r ≫ M, we may write Gkðx; x0Þ ∼ eikr
0

r0 . The con-
tribution to the second-order solution from terms
like e−iðk1þk2Þr=r2 in the source will then be

∼
R
Gkðr; r0Þ eiðk1þk2Þr0

r02 r02dr0 ∼
R

eiðk1þk2−kÞr0

r0 dr0. This diverges
as ∼ ln r0 when k ¼ k1 þ k2.

6

The ill behavior at large r might be overcome, perhaps
using methods devised to describe purely conservative
systems in the fully nonlinear problem [45,56–65].
However, since the standing-wave construction is unlikely
to agree with PN results, it is of limited relevance.

VII. SUMMARY AND OUTLINE OF
NUMERICAL SCHEME

The main result of this paper is Eq. (15), which is an
extension of Detweiler’s redshift invariant ~ut ≡ ~U to
second order. This formula describes the ratio between
intervals of Schwarzschild coordinate time and proper time
on a precisely circular orbit ẑμ that is accelerated only by a
conservative piece of the self-force; the proper time is
measured in a certain effective metric in which ẑμ is a
geodesic. However, the formula is written in terms of
quantities evaluated not on ẑμ, but on a nearby circular orbit
zμ0, of the same orbital frequency, that is a geodesic of the
background metric.
This result utilizes the Gralla-Wald picture of perturbed

motion, in which the perturbed orbit ẑμ is described as a
deviation from a background geodesic zμ0. Before arriving
at that picture, my analysis began in a self-consistent
picture, in which the orbit sourcing the metric perturba-
tions is self-consistently accelerated by those perturba-
tions. In that picture, I derived a formula for ~U, given by
Eq. (64), in which all quantities were evaluated on the
accelerated orbit. At the beginning of Sec. IVA, I
described why a self-consistent numerical scheme to
calculate this quantity ~U is not ideal: it requires one to
know the orbit ẑμ in advance; in other words, one must
determine the correct initial data for a circular orbit
through second order in perturbation theory. This chal-
lenge does not arise when one works in the Gralla-Wald
picture, because the background geodesic may be freely
prescribed, making the Gralla-Wald picture ideal for a
concrete numerical calculation of ~U. Indeed, over the
course of my analysis, I have described most of the key
ingredients for such a calculation. Putting those ingre-
dients together, we arrive at the following scheme:
(1) Choose a circular geodesic of the background metric.

This amounts to choosing an orbital radius r0.

6This is also the reason why the time-symmetrized effective
metric in Sec. III B 2 should be considered a local construction
rather than the regular piece of a half-retarded-plus-half-advanced
global solution: the retarded integral of a product of advanced
solutions generically diverges. So the globally symmetrized field
would likely be ill behaved.
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(2) Assume decompositions

hnμν ¼
X
ilm

hnilme−imΩtYilm
μν ; ð121Þ

hRn
μν ¼

X
ilm

hRnilme
−imΩtYilm

μν ð122Þ

of the retarded and residual fields, with the fre-
quency given by Eq. (13).

(3) Solve the separated version of the first-order field
equation (77) [or (78)] to obtain (i) the radial
functions h1ilmðrÞ at all points r ≠ r0, and (ii) the
regular field hR1μν and its derivatives hR1μν;ρ on zμ0.
Transform these results to the asymptotically flat
gauge using the gauge vector ξμ1, given in Eq. (116).

(4) With the (transformed) numerical values of hR1μν and
hR1μν;r, calculate (i) the first-order radial force, using
Eq. (89), (ii) the first-order conservative shift in
orbital radius, r̂1, using Eq. (94), and (iii) the tensor
δmμν, using Eq. (76).

(5) Construct and evaluate the radial functions Seff2ilmðrÞ
in the source S2effμν ¼ P

ilmS
eff
2ilme

−imΩtYilm
μν for the

second-order field equation. This involves
(a) rewriting Eq. (79) to account for the transfor-

mation generated by ξμ1,
(b) using the coupling formula (40) to calculate the

radial functions in the decomposition of
δ2Rμν½h1; h1� from the radial functions h1ilmðrÞ,

(c) constructing a puncture of the form hP2μν ¼P
ilmh

P
2ilme

−imΩtYilm
μν , which can be done by

decomposing the expansion of the singular field
given schematically by Eq. (75) and explicitly by
Eq. (144) in Ref. [41]; as input, this puncture
uses the numerical values of r̂1, δmμν, and hR1μν on
zμ0 (and potentially the derivatives of hR1μν , de-
pending howmany orders in jxα − zμ0j are used in
the puncture). The puncture, which was found in
the Lorenz gauge, must be tweaked to account
for the transformation generated by ξμ1.

(6) Solve for the radial functions h2ilm and hR2ilm in the
separated version of the second-order field equation.

(7) Find a gauge vector ξμ2 that brings h2μν to an
asymptotically flat (still helically symmetric) form,
and apply the resulting transformation to hR2μν . The
only necessary output from the result is hR2u0u0 .

(8) Combine hR1u0u0 , Fr
1, and hR2u0u0 in Eq. (102) to

calculate the redshift variable ~U.
The technical details of this scheme, particularly those
involved in steps 5 and 6, will be presented in a future
paper [44].
A comparison of the numerically calculated ~U to its

value in PN theory will be the first test of the second-
order self-force formalism. Assuming that test is passed,

second-order results can begin to inform high-order PN
theory and EOB. And although I have focused on a means
of calculating ~U and nothing else, the general formalism I
have presented, and the same type of numerical scheme,
can be used to calculate any other conservative effects that
may occur on circular orbits. Most significantly, it should
be straightforward to generalize the techniques of Ref. [15]
to derive a formula for the second-order shift in the
frequency of the ISCO.
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APPENDIX: GRALLA-WALD PICTURE
INCLUDING DISSIPATION

In Sec. IV C, I derived the gauge-invariant quantity ~U in
the Gralla-Wald picture by starting with the self-consistent
equation of motion for the circular orbit ẑμ. In this section I
show how the Gralla-Wald picture looks when dissipation
is accounted for. Rather than expanding ẑμ, I expand the
physical, inspiraling orbit zμ, and from the result I construct
ẑμ as a certain piece of the perturbative expansion. An
expansion of ~U follows naturally.
I begin by rewriting the equation of motion (1) in terms

of derivatives with respect to t rather than τ. The result is

d2zμ

dt2
þU−1 dU

dt
dzμ

dt
þ Γμ

αβðzðtÞÞ
dzα

dt
dzβ

dt
¼ U−2Fμ; ðA1Þ

where

U ≡ dt
dτ

: ðA2Þ

I next expand zμðt; ϵÞ as

zμðt; ϵÞ ¼ zμ0ðtÞ þ ϵzμ1ðtÞ þ ϵ2zμ2ðtÞ þOðϵ3Þ; ðA3Þ

where zμ0ðtÞ ¼ ft; r0; π=2;Ω0tg and the perturbations are
given by
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zμ1ðtÞ ¼ f0; r1ðtÞ; 0;ϕ1ðtÞg ðA4Þ

and the analogue for zμ2. By substituting this expansion into
the normalization condition gμνðzÞuμuν ¼ −1, one obtains

U−2 ¼ U−2
0 − 2ϵΩ0r20 _ϕ1 þ ϵ2

�
−
3Mr21
r30

− 4Ω0r0r1 _ϕ1

− f−10 ð_r1Þ2 − r20½ð _ϕ1Þ2 þ 2Ω0
_ϕ2�

�
þOðϵ3Þ; ðA5Þ

where an overdot denotes a derivative with respect to t.
Now inserting (A3) into Eq. (A1) yields

2M
r20f0

_r1 þ
M

Ω0ðr0 − 3MÞ ϕ̈1 ¼ Ft
1ð1 − 3M=r0Þ; ðA6Þ

̈r1 −
3M
r30

f0r1 − 2r0f0Ω0
_ϕ1 ¼ Fr

1ð1 − 3M=r0Þ: ðA7Þ

Fμ
1 is given by the first-order terms in Eqs. (55) and (56),

with hRμν½ẑ� replaced by hR1μν ½z0�; note that this force is
constant along zμ0. Although a symbolic mathematics
package such as Mathematica will readily provide the
general solution to the system (A6)–(A7), solving it
manually will be instructive. I first integrate Eq. (A6) once
to find

_ϕ1ðtÞ ¼ _ϕ1ð0Þ þ tFt
1

r0
M

Ω0ð1 − 3M=r0Þ2

−
2Ω0

r0f0
ð1 − 3M=r0Þ½r1ðtÞ − r1ð0Þ�: ðA8Þ

Equation (A7) then becomes a formula for a forced
harmonic oscillator,

̈r1 þΩ2
0ð1 − 6M=r0Þr1 ¼ Aþ Bt; ðA9Þ

where the driving terms are

A≡
�
Fr
1 þ

4M
r30

r1ð0Þ
�
ð1 − 3M=r0Þ þ 2r0f0Ω0

_ϕ1ð0Þ

ðA10Þ

B≡ 2

r0
f0ð1 − 3M=r0Þ2Ft

1: ðA11Þ

The general solution to Eq. (A9) can be found by the
method of variation of parameters, which yields

r1ðtÞ ¼ C1 cosωtþ C2 sinωtþ
A
ω2

ð1 − cosωtÞ

þ B
ω2

�
t −

1

ω
sinωt

�
; ðA12Þ

with an oscillation frequency given by

ω≡Ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 6M=r0

p
: ðA13Þ

The oscillatory terms that do not depend on the self-force
correspond to a small shift away from a circular geodesic
toward an eccentric one, in which the radius oscillates
with time. Notice that for r0 < 6M, the frequency of the
oscillations became imaginary, and oscillations became
exponential growth. This corresponds to the fact that r0 ¼
6M is the innermost stable circular orbit; at smaller radii,
the zeroth-order geodesic is unstable, and there is no
“nearby” eccentric geodesic to perturb toward.
I wish to describe a situation in which the orbit is circular

if the self-force vanishes. Hence, I wish to remove
the perturbations toward an eccentric geodesic. This is
accomplished by choosing C1 ¼ A=ω2 and C2 ¼ B=ω3,
leading to

r1ðtÞ ¼
A
ω2

þ B
ω2

t: ðA14Þ

This choice constrains the choice of initial conditions.
From r1ð0Þ ¼ A=ω2, I find

r1ð0Þ ¼ −
1 − 6M=r0
3f0ω2

½Fr
1ð1 − 3M=r0Þ þ 2r0f0Ω0

_ϕ1ð0Þ�:

ðA15Þ
We are still left with the freedom to choose either r1ð0Þ or
_ϕ1ð0Þ. I choose _ϕ1ð0Þ ¼ 0, such that

r1ð0Þ ¼ −
r20ðr0 − 3MÞ

3Mf0
Fr
1: ðA16Þ

This is equal to the first-order term r̂1 in the expansion of
ẑμ, as we saw previously in Eq. (94).
Equation (A8) can now be straightforwardly integrated

to find ϕ1ðtÞ. My final results for the first-order corrections
to the inspiraling worldline are

r1ðtÞ ¼ −
r20ðr0 − 3MÞ

3Mf0
Fr
1 þ

2r0f0ðr0 − 3MÞ2
Mðr0 − 6MÞ Ft

1t ðA17Þ

ϕ1ðtÞ ¼ −
3f0ðr0 − 3MÞ2
2Mðr0 − 6MÞ Ω0Ft

1t
2: ðA18Þ

One can clearly see from these results why the Gralla-
Wald picture is ill suited to treating dissipation: the
corrections r1 and ϕ1, which are assumed to be small,
grow large with time. At higher orders, the corrections will
grow even more rapidly. But we can nevertheless extract
the conservative dynamics. The first-order term in
the conservatively accelerated worldline ẑμ ¼ zμ0ðtÞ þ
ϵẑμ1 þ � � � is found simply by turning off Ft

1 and F
ϕ
1 , leaving
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only the constant correction r1ðtÞ ¼ r1ð0Þ ¼ r̂1. Figure 1
displays the three orbits zμ ¼ zμ0 þ ϵzμ1, ẑ

μ ¼ zμ0ðtÞ þ ϵẑμ1,
and zμ0.
This same procedure could be carried to second order,

but including all dissipative effects would require some
knowledge of the time dependence of the second-order
force. We can, however, find the second-order term in ẑμ by
solving the second-order term in Eq. (A1) with Ft

n and Fϕ
n

set to zero everywhere. Doing so recovers Eq. (98) for the
second-order conservative correction to the radius and zero
for all other second-order terms in ẑμ. (I gloss over the
question of whether the radial force is that corresponding to
a time-symmetrized effective metric or not, as per the
discussion in Sec. VI.) Equation (115) for ~U can then be
found by calculating dt

d~τ directly from the perturbative
expansion ẑμðt; ϵÞ ¼ zμ0ðtÞ þ δμrðϵr̂1 þ ϵ2r̂2Þ.
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