
Low-energy behavior of gluons and gravitons from gauge invariance

Zvi Bern,1 Scott Davies,1 Paolo Di Vecchia,2,3 and Josh Nohle1
1Department of Physics and Astronomy, UCLA, Los Angeles, California 90095-1547, USA

2The Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK 2100 Copenhagen, Denmark
3Nordita, KTH Royal Institute of Technology and Stockholm University,

Roslagstullsbacken 23, SE-10691 Stockholm, Sweden
(Received 22 July 2014; published 20 October 2014)

We show that at tree level, on-shell gauge invariance can be used to fully determine the first subleading
soft-gluon behavior and the first two subleading soft-graviton behaviors. Our proofs of the behaviors for
n-gluon and n-graviton tree amplitudes are valid in D dimensions and are similar to Low’s proof of
universality of the first subleading behavior of photons. In contrast to photons coupling to massive
particles, in four dimensions the soft behaviors of gluons and gravitons are corrected by loop effects.
We comment on how such corrections arise from this perspective. We also show that loop corrections
in graviton amplitudes arising from scalar loops appear only at the second soft subleading order. This case
is particularly transparent because it is not entangled with graviton infrared singularities. Our
result suggests that if we set aside the issue of infrared singularities, soft-graviton Ward identities of
extended Bondi, van der Burg, Metzner and Sachs symmetry are not anomalous through the first
subleading order.
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I. INTRODUCTION

Interest in the soft behavior of gravitons and gluons has
recently been renewed by a proposal from Strominger and
collaborators [1,2] showing that soft-graviton behavior
follows from Ward identities of extended Bondi, van der
Burg, Metzner and Sachs (BMS) symmetry [3,4]. This has
stimulated a variety of studies of the subleading soft behavior
of gravitons and gluons. In four spacetime dimensions,
Cachazo and Strominger [2] showed that tree-level graviton
amplitudes have a universal behavior through second sub-
leading order in the soft-graviton momentum. In Ref. [5] an
analogous description of tree-level soft behavior for gluons
at first subleading order was given. Interestingly, these
universal behaviors hold in D dimensions as well [6]. In
four dimensions, there is an interesting connection between
the subleading soft behavior in gauge theory and conformal
invariance [7,8]. There are also recent constructions of
twistor-related theories with the desired soft properties
[9]. Soft behavior in string theory and for higher-dimension
operators has also been discussed [8,10].
Soft theorems have a long history and were recognized in

the 1950s and 1960s to be an important consequence of
local on-shell gauge invariance [11–14]. (For a discussion
of the low-energy theorem for photons see Chapter 3 of
Ref. [15].) For photons, Low’s theorem [12] determines the
amplitudes with a soft photon from the corresponding
amplitudes without a photon, throughOðq0Þ, where q is the
soft-photon momentum. The theorem links the first sub-
leading soft behavior to the universal leading behavior via
gauge invariance.

The universal leading soft-graviton behavior was first
discussed by Weinberg [13]. The leading behavior is
uncorrected to all loop orders [16]. Using dispersion
relations, Gross and Jackiw analyzed the particular exam-
ple of Compton scattering of gravitons on massive scalar
particles [17]. They showed that, for fixed angle, the Born
contributions have no corrections up to, but not including,
fourth order in the soft momentum. Jackiw then applied
gauge-invariance arguments similar to those of Low to
reanalyze this case [18]. However, for our purposes this
case is too special because the degenerate kinematics of
2 → 2 scattering leads to extra suppression not only at tree
level, but at loop level as well. In particular, the soft limits
are finite at fixed angle. This may be contrasted with the
behavior for larger numbers of legs, where the amplitudes
at all loop orders diverge as a graviton becomes soft,
matching the tree behavior. Thus, the results of
Refs. [17,18] cannot be directly applied to our discussion
of n-point behavior. A more recent discussion of the
generic subleading behavior of soft gluons and gravitons
is given in Refs. [19,20].
Soft-gluon and graviton behaviors are, in general,

modified by loop effects [21,22]. This is not surprising
given that loop corrections arising from infrared singular-
ities occur in QCD, starting with the leading behavior
[23,24]. We note that Ref. [25] proposed that, by keeping
the dimensional-regularization parameter ϵ¼ð4−DÞ=2<0
finite as one takes the soft limit, loop corrections can be
avoided, as explicitly shown in five-point N ¼ 4 super–
Yang-Mills examples. However, this prescription is not
physically sensible because it does not get soft physics
correct and, in particular, ruins the cancellation of leading
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infrared divergences in QCD. One can instead view this as a
prescription on integrands prior to loop integration; in this
way, the five-point N ¼ 4 super–Yang-Mills results in
Ref. [25] were extended to all numbers of loops and legs for
planar amplitudes [8].
Extended BMS symmetry gives us a remarkable new

understanding for the behavior of soft gravitons in four
spacetime dimensions [1]. However, given that universal
soft behavior holds also in D dimensions as well as for
gluons, we expect that there is a more general explanation
not tied to four dimensions. In this paper, we show that, just
as for photons [12], on-shell gauge invariance can be used
to fully determine subleading behavior. We show that in
non-Abelian gauge theory, on-shell gauge invariance dic-
tates that at tree level the first subleading term is universal
and controlled by the amplitude with the soft gluon
removed. Similarly, in gravity the first two subleading
terms at tree level are universal. Our proof is valid in D
dimensions because it uses only on-shell gauge invariance
together with D-dimensional three-point vertices.
We shall also explain how loop corrections arise in this

context. In non-Abelian gauge theory and gravity, there are
“factorizing” loop corrections to the three-vertex control-
ling the soft behavior. However, in gravity, generically the
dimensionful nature of the coupling implies that there are
no loop corrections to the leading behavior [16], no
corrections beyond one loop to the first subleading behav-
ior, and no corrections beyond two loops to the second
subleading behavior [21].
As shown long ago, the factorizing contributions are

suppressed in gauge theory: They vanish at leading order in
the soft limit [23,24] but are nontrivial at the first
subleading order [21,22]. Similarly, in gravity we prove
that for the case of a scalar circulating in the loop, the loop
corrections to the soft-graviton behavior vanish not only for
the leading order but for the first subleading order as well.
This case is particularly transparent because there are no
infrared singularities [26] or contributions to the soft
operators arising from them. We expect that for all other
particles circulating in the loop, only contributions asso-
ciated with infrared singularities will appear at the first
subleading soft order. Indeed, this suppression has been
observed in the explicit examples of infrared-finite ampli-
tudes studied in Refs. [21,22]. These results suggest that,
up to issues associated with infrared singularites, the soft
Ward identities of BMS symmetry [1] are not anomalous.
We note that while there are loop corrections to the first
subleading soft-graviton behavior linked with infrared
singularities, they come from a well-understood source
and therefore should not be too disruptive when studying
the connection to BMS symmetry.
This paper is organized as follows. In Sec. II, we review

Low’s theorem for the case of a soft photon coupled to n-
scalars, showing how gauge invariance determines the first
subleading behavior. In Sec. III, we repeat the analysis for a

soft graviton. Next, in Sec. IV, we study the case of a soft
gluon where all external particles are gluons and discuss
spin contributions in some detail. The analysis for a soft
graviton is extended to the case where all external particles
are gravitons in Sec. V. In Sec. VI, we explain how
loop corrections to the soft operators arise from the
perspective of on-shell gauge invariance and show that
there are no corrections to the first subleading soft-graviton
behavior for scalars in the loop. We give our conclusions in
Sec. VII.

II. PHOTON SOFT LIMIT WITH
n-SCALAR PARTICLES

In this section, we review the classic theorem due to
Low [12] on the subleading soft behavior of photons,
for simplicity focusing on the case of a single photon
coupled to n-scalars. As explained by Low in 1958, gauge
invariance enforces the universality of the first subleading
behavior, allowing us to fully determine it in terms of the
amplitude without the soft photon. In subsequent sections,
we will apply a similar analysis to cases with gravitons and
gluons.
As illustrated in Fig. 1, the scattering amplitude of a

single photon and n-scalar particles arises from (a) contri-
butions with a pole in the soft momentum q and (b) con-
tributions with no pole:

Aμ
nðq;k1;…;knÞ

¼
Xn
i¼1

ei
kμi
ki ·q

Tnðk1;…;kiþq;…;knÞþNμ
nðq;k1;…;knÞ:

ð2:1Þ

For our purposes, it is convenient to not include the
polarization vectors until the end of the discussion.
The full amplitude is obtained by contracting Aμ

n with
the physical photon polarization εqμ. The first term in
Eq. (2.1) corresponds to the emission of the photon from
one of the scalar external lines as illustrated in Fig. 1(a) and
is divergent in the soft-photon limit, while the second term,
illustrated in Fig. 1(b), is finite in the soft-photon limit. The
electric charge of particle i is ei.

FIG. 1. Diagrams of the form (a) give universal leading soft
behavior. The subleading behavior comes from both diagram
types (a) and (b).
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On-shell gauge invariance implies

0 ¼ qμA
μ
nðq; k1;…; knÞ

¼
Xn
i¼1

eiTnðk1;…; ki þ q;…; knÞ þ qμN
μ
nðq; k1;…; knÞ;

ð2:2Þ

valid for any value of q. Expanding around q ¼ 0, we have

0 ¼
Xn
i¼1

ei

�
Tnðk1;…; ki;…; knÞ

þ qμ
∂

∂kiμ Tnðk1;…; ki;…; knÞ
�

þ qμN
μ
nðq ¼ 0; k1;…; knÞ þOðq2Þ: ð2:3Þ

At leading order, this equation is

Xn
i¼1

ei ¼ 0; ð2:4Þ

which is simply a statement of charge conservation [13]. At
the next order, we have

qμN
μ
nð0; k1;…; knÞ ¼ −

Xn
i¼1

eiqμ
∂

∂kiμ Tnðk1;…; knÞ: ð2:5Þ

This equation tells us that Nμ
nð0; k1;…; knÞ is entirely

determined up to potential pieces that are separately gauge
invariant. However, it is easy to see that the only expres-
sions local in q that vanish under the gauge-invariance
condition qμEμ ¼ 0 are of the form

Eμ ¼ ðB1 · qÞBμ
2 − ðB2 · qÞBμ

1; ð2:6Þ

where Bμ
1 and B

μ
2 are arbitrary vectors that are local in q and

constructed with the momenta of the scalar particles. The
explicit factor of the soft momentum q in each term means
that they are suppressed in the soft limit and do not
contribute to Nμ

nð0; k1;…; knÞ. We can therefore remove
the qμ from Eq. (2.5), leaving

Nμ
nð0; k1;…; knÞ ¼ −

Xn
i¼1

ei
∂

∂kiμ Tnðk1;…; knÞ; ð2:7Þ

thereby determining Nμ
nð0; k1;…; knÞ as a function of the

amplitude without the photon. Inserting this into Eq. (2.1)
yields

Aμ
nðq; k1;…; knÞ

¼
Xn
i¼1

ei
ki · q

½kμi − iqνJ
μν
i �Tnðk1;…; knÞ þOðqÞ; ð2:8Þ

where

Jμνi ≡ i

�
kμi

∂
∂kiν − kνi

∂
∂kiμ

�
ð2:9Þ

is the orbital angular-momentum operator and
Tnðk1;…; knÞ is the scattering amplitude involving n-scalar
particles. Equation (2.8) is Low’s theorem for the case of
one photon and n-scalars.
Low’s theorem is unchanged at loop level for the simple

reason that, even at loop level, all diagrams containing a
pole in the soft momentum are of the form shown in
Fig. 1(a), with loops appearing only in the blob and not
correcting the external vertex. If the scalars are massive, the
integrals will not have infrared discontinuities that could
lead to loop corrections of the type described in Ref. [21].
It is also interesting to see if there is any further infor-

mation at higher orders in the soft expansion. If we go one
order further in the expansion, we find the extra condition,

1

2

Xn
i¼1

eiqμqν
∂2

∂kiμ∂kiν Tnðk1;…; knÞ

þ qμqν
∂Nμ

n

∂qν ð0; k1;…; knÞ ¼ 0: ð2:10Þ

This implies

Xn
i¼1

ei
∂2

∂kiμ∂kiν Tnðk1;…; knÞ

þ
�∂Nμ

n

∂qν þ ∂Nν
n

∂qμ
�
ð0; k1;…; knÞ ¼ 0; ð2:11Þ

where the final set of arguments belongs to both terms in
the bracket. Gauge invariance determines only the sym-
metric part of the quantity ∂Nν

n∂qμ ð0; k1;…; knÞ. The antisym-

metric part is not fixed by gauge invariance; indeed, this
corresponds exactly to terms of the type in Eq. (2.6). Then,
up to this order, we have

Aμ
nðq; k1;…; knÞ

¼
Xn
i¼1

ei
ki · q

�
kμi − iqνJ

μν
i

�
1þ 1

2
qρ

∂
∂kiρ

��
Tnðk1;…; knÞ

þ 1

2
qν

�∂Nμ
n

∂qν −
∂Nν

n

∂qμ
�
ð0; k1;…; knÞ þOðq2Þ: ð2:12Þ

It is straightforward to see that one gets zero by saturating
the previous expression with qμ.
In order to write our universal expression in terms of the

amplitude, we contract Aμ
nðq; k1;…; knÞ with the photon

polarization εqμ. From Eq. (2.8), we have the soft-photon
limit of the single-photon, n-scalar amplitude:
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Anðq; k1;…; knÞ → ½Sð0Þ þ Sð1Þ�Tnðk1;…; knÞ þOðqÞ;
ð2:13Þ

where

Sð0Þ ≡Xn
i¼1

ei
ki · εq
ki · q

;

Sð1Þ ≡ −i
Xn
i¼1

ei
εqμqνJ

μν
i

ki · q
; ð2:14Þ

and Jμνi is given in Eq. (2.9).

III. GRAVITON SOFT LIMIT WITH
n-SCALAR PARTICLES

We now turn to the case of gravitons coupled to n-
scalars. We shall see that in the graviton case, gauge
invariance can be used to fully determine the first two
subleading orders in the soft-graviton momentum q.
Together with the subsequent sections, this shows that
the tree behavior through second subleading soft order
uncovered in Ref. [2] can be understood as a consequence
of on-shell gauge invariance.
In the case of a graviton scattering on n-scalar particles,

Eq. (2.1) becomes

Mμν
n ðq; k1;…; knÞ ¼

Xn
i¼1

kμi k
ν
i

ki · q
Tnðk1;…; ki þ q;…; knÞ

þ Nμν
n ðq; k1;…; knÞ; ð3:1Þ

where Nμν
n ðq; k1;…; knÞ is symmetric under the exchange

of μ and ν. For simplicity, we have set the gravitational
coupling constant to unity. Similar to the gauge-theory
case, we contract with the graviton polarization tensor εqμν
at the end. On-shell gauge invariance of the soft leg requires
that the amplitude be invariant under the shift in the
polarization tensor,

εqμν → εqμν þ qμεqνfðq; kiÞ; ð3:2Þ

where εqν satisfies εqν · q ¼ 0 and fðq; kiÞ is an arbitrary
function of the momenta. This implies that

0 ¼ qμM
μν
n ðq; k1;…; knÞ

¼
Xn
i¼1

kνi Tnðk1;…; ki þ q;…; knÞ þ qμN
μν
n ðq; k1;…; knÞ:

ð3:3Þ

Strictly speaking, Eq. (3.3) is true only after contracting the
ν index with either εqν or a conserved current. Since we
contract with polarizations at the end, we can use Eq. (3.3).
At leading order in q, we then have

Xn
i¼1

kμi ¼ 0; ð3:4Þ

which is satisfied due tomomentum conservation. (As noted
by Weinberg [13], had there been different couplings to
the different particles, it would have prevented this from
vanishing ingeneral; this shows that gravitonshaveuniversal
coupling.)
At first order in q, Eq. (3.3) implies

Xn
i¼1

kνi
∂

∂kiμ Tnðk1;…; knÞ þ Nμν
n ð0; k1;…; knÞ ¼ 0; ð3:5Þ

while at second order in q, it gives

Xn
i¼1

kνi
∂2

∂kiμ∂kiρ Tnðk1;…; knÞ

þ
�∂Nμν

n

∂qρ þ ∂Nρν
n

∂qμ
�
ð0; k1;…; knÞ ¼ 0: ð3:6Þ

As in the case of the photon, this is true up to gauge-
invariant contributions to Nμν

n . However, the requirement of
locality prevents us from writing any expression that is
local in q yet not sufficiently suppressed in q. In fact,
the most general local expression that obeys the gauge-
invariance condition qμEμν ¼ qνEμν ¼ 0 is of the form

Eμν ¼ ððB1 · qÞBμ
2 − ðB2 · qÞBμ

1ÞððB3 · qÞBν
4 − ðB4 · qÞBν

3Þ;
ð3:7Þ

where the Bμ
i are local in q and constructed in terms of the

momenta of the scalar particles. In the amplitude, Eμν will
be contracted against the symmetric traceless graviton-
polarization tensor εqμν, so there is no need to include
potential terms proportional to qμ, qν, or ημν. Terms of the
form in Eq. (3.7) have two powers of q and therefore will
not contribute to the soft expansion at the orders in which
we are interested.
Using Eqs. (3.5) and (3.6) in Eq. (3.1), we write the

expression for a soft graviton as

Mμν
n ðq; k1…knÞ

¼
Xn
i¼1

kνi
ki · q

�
kμi − iqρJ

μρ
i

�
1þ 1

2
qσ

∂
∂kiσ

��
Tnðk1;…; knÞ

þ 1

2
qρ

�∂Nμν
n

∂qρ −
∂Nρν

n

∂qμ
�
ð0; k1;…; knÞ þOðq2Þ: ð3:8Þ

This is essentially the same as Eq. (2.12) for the photon
except that there is a second Lorentz index in the graviton
case. We will show that, unlike the case of the photon, the
antisymmetric quantity in the second line of the previous
equation can also be determined from the amplitude
Tnðk1;…; knÞ without the graviton.
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But, before we proceed further, let us check gauge
invariance. Saturating the previous expression with qμ,
we see that the first term is vanishing because of momen-
tum conservation, while all other terms are vanishing
because qμqρ is saturated with terms that are antisymmetric

in μ and ρ. If, instead, we saturate the amplitude with qν, the
first term is vanishing as before due to momentum con-
servation, while the first term depending on angular
momentum is vanishing because of angular-momentum
conservation. The remaining terms are

qνM
μν
n ðq; k1;…; knÞ ¼

1

2
qρqσ

�Xn
i¼1

�
kμi

∂
∂kiρ − kρi

∂
∂kiμ

� ∂
∂kiσ Tnðk1;…; knÞ þ

�∂Nμσ
n

∂qρ −
∂Nρσ

n

∂qμ
�
ð0; k1;…; knÞ

�
¼ 0; ð3:9Þ

where the vanishing follows from Eq. (3.6), remembering that Nμν
n is a symmetric matrix. Therefore the amplitude in

Eq. (3.8) is gauge invariant. Actually, Eq. (3.6) allows us to write the relation

− i
Xn
i¼1

Jμρi
∂

∂kiσ Tnðk1;…; knÞ ¼
�∂Nρσ

n

∂qμ −
∂Nμσ

n

∂qρ
�
ð0; k1;…; knÞ; ð3:10Þ

which fixes the antisymmetric part of the derivative of Nμν
n in terms of the amplitude Tnðk1;…; knÞ without the graviton.

Inserting this into Eq. (3.8), we can then rewrite the terms of OðqÞ as follows:

Mμν
n ðq; k1;…; knÞjOðqÞ ¼ −

i
2

Xn
i¼1

qρqσ
ki · q

�
kνi J

μρ
i

∂
∂kiσ − kσi J

μρ
i

∂
∂kiν

�
Tnðk1;…; knÞ

¼ −
i
2

Xn
i¼1

qρqσ
ki · q

�
Jμρi kνi

∂
∂kiσ − ðJμρi kiνÞ

∂
∂kiσ − Jμρi kσi

∂
∂kiν þ ðJμρi kσi Þ

∂
∂kiν

�
Tnðk1;…; knÞ

¼ 1

2

Xn
i¼1

1

ki · q

�
ððki · qÞðημνqσ − qμηνσÞ − kμi q

νqσÞ ∂
∂kσi − qρJ

μρ
i qσJνσi

�
Tnðk1;…; knÞ: ð3:11Þ

Finally, we wish to write our soft-limit expression in terms
of the amplitude, so we contract with the physical polari-
zation tensor of the soft graviton, εqμν. We see that the
physical-state conditions set to zero the terms in Eq. (3.11)
that are proportional to ημν, qμ, and qν. We are then left with
the following expression for the graviton soft limit of a
single-graviton, n-scalar amplitude:

Mnðq; k1;…; knÞ → ½Sð0Þ þ Sð1Þ þ Sð2Þ�Tnðk1;…; knÞ
þOðq2Þ; ð3:12Þ

where

Sð0Þ ≡Xn
i¼1

εμνk
μ
i k

ν
i

ki · q
;

Sð1Þ ≡ −i
Xn
i¼1

εμνk
μ
i qρJ

νρ
i

ki · q
;

Sð2Þ ≡ −
1

2

Xn
i¼1

εμνqρJ
μρ
i qσJνσi

ki · q
: ð3:13Þ

These soft factors follow from gauge invariance and agree
with those computed in Ref. [2].

We have also looked at higher-order terms and found that
gauge invariance does not fully determine them in terms of
derivatives acting on Tnðk1;…; knÞ.

IV. SOFT LIMIT OF n-GLUON AMPLITUDES

A. Behavior of gluon tree amplitudes

In this section, we generalize the procedure of Sec. II
to the case of n-gluon tree amplitudes prior to turning to
the case of n gravitons in the next section. As we shall
discuss in Sec. VI, the soft-gluon behavior has loop
corrections.
We consider a tree-level color-ordered amplitude (see

e.g. Ref. [27]) where gluon n becomes soft, and where we
define q≡ kn. As before, we find it convenient to contract
the expression with polarization vectors only at the end to
obtain the full amplitude. In the case of n gluons, we
have two pole terms: one where the soft gluon is attached
to leg 1 [see Fig. 2(a)] and the other where the soft gluon
is attached to leg n − 1 [see Fig. 2(b)]. In addition to the
contributions containing a pole in the soft momentum, we
have the usual term Nμ;μ1���μn−1

n ðq; k1;…; kn−1Þ that is
regular in the soft limit [see Fig. 2(c)]. Together, the
contributions in Fig. 2 give
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Aμ;μ1���μn−1
n ðq; k1;…; kn−1Þ

¼ δμ1ρ k
μ
1 þ ημμ1qρ − δμρqμ1ffiffiffi

2
p ðk1 · qÞ

Aρμ2���μn−1
n−1 ðk1 þ q; k2;…; kn−1Þ

−
δμn−1ρ kμn−1 þ ημn−1μqρ − δμρqμn−1ffiffiffi

2
p ðkn−1 · qÞ

× Aμ1���μn−2ρ
n−1 ðk1;…; kn−2; kn−1 þ qÞ

þ Nμ;μ1���μn−1
n ðq; k1;…; kn−1Þ: ð4:1Þ

We have dropped terms from the three-gluon vertex that
vanish when saturated with the external-gluon polariza-
tion vectors in addition to using the current-conservation
conditions,

ðk1 þ qÞρAρμ2���μn−1
n−1 ðk1 þ q; k2;…; kn−1Þ ¼ 0;

ðkn−1 þ qÞρAμ1���μn−2ρ
n−1 ðk1;…; kn−2; kn−1 þ qÞ ¼ 0; ð4:2Þ

which are valid once we contract with the polarization
vectors carrying the μj indices. By introducing the spin-
one angular-momentum operator,

ðΣμσ
i Þμiρ ≡ iðημμiηρσ − ημρημiσÞ; ð4:3Þ

we can write Eq. (4.1) as

Aμ;μ1���μn−1
n ðq; k1;…; kn−1Þ

¼ δμ1ρ k
μ
1 − iqσðΣμσ

1 Þμ1ρffiffiffi
2

p ðk1 · qÞ
Aρμ2���μn−1
n−1 ðk1 þ q; k2;…; kn−1Þ

−
δμn−1ρ kμn−1 − iqσðΣμσ

n−1Þμn−1ρffiffiffi
2

p ðkn−1 · qÞ
× Aμ1���μn−2ρ

n−1 ðk1;…; kn−2; kn−1 þ qÞ
þ Nμ;μ1���μn−1

n ðq; k1;…; kn−1Þ: ð4:4Þ

Notice that the spin-one terms independently vanish
when contracted with qμ.

The on-shell gauge invariance of Eq. (4.4) requires

0 ¼ qμA
μ;μ1���μn−1
n ðq; k1;…; kn−1Þ

¼ 1ffiffiffi
2

p Aμ1μ2���μn−1
n−1 ðk1 þ q; k2;…; kn−1Þ

−
1ffiffiffi
2

p Aμ1���μn−2μn−1
n−1 ðk1;…; kn−2; kn−1 þ qÞ

þ qμN
μ;μ1���μn−1
n ðq; k1;…; kn−1Þ: ð4:5Þ

For q ¼ 0, this is automatically satisfied. At the next order
in q, we obtain

−
1ffiffiffi
2

p
� ∂
∂k1μ −

∂
∂kn−1μ

�
Aμ1���μn−1
n−1 ðk1; k2…kn−1Þ

¼ Nμ;μ1���μn−1
n ð0; k1;…; kn−1Þ: ð4:6Þ

Similar to the photon case, we ignore local gauge-invariant
terms in Nμ;μ1���μn−1

n because they are necessarily of a higher
order in q. Thus, Nμ;μ1���μn−1

n ð0; k1;…; kn−1Þ is determined in
terms of an expression without the soft gluon. With this, the
total expression in Eq. (4.4) becomes

Aμ;μ1���μn−1
n ðq;k1…kn−1Þ

¼
�

kμ1ffiffiffi
2

p ðk1 ·qÞ
−

kμn−1ffiffiffi
2

p ðkn−1 ·qÞ

�
Aμ1���μn−1
n−1 ðk1;…;kn−1Þ

− i
qσðJμσ1 Þμ1ρffiffiffi
2

p ðk1 ·qÞ
Aρμ2���μn−1
n−1 ðk1;…;kn−1Þ

þ i
qσðJμσn−1Þμn−1ρffiffiffi
2

p ðkn−1 ·qÞ
Aμ1���μn−2ρ
n−1 ðk1;…;kn−1ÞþOðqÞ; ð4:7Þ

where

ðJμσi Þμiρ ≡ Lμσ
i ημiρ þ ðΣμσ

i Þμiρ; ð4:8Þ
the spin-one angular-momentum operator is given in
Eq. (4.3), and the orbital angular-momentum operator is

Lμσ
i ≡ i

�
kμi

∂
∂kiσ − kσi

∂
∂kiμ

�
: ð4:9Þ

Both angular-momentum operators satisfy the same com-
mutation relations,

FIG. 2. Diagrams (a) and (b) give leading universal soft-gluon behavior. The first subleading behavior of the amplitude contained in
the nonpole diagram (c) can be determined via on-shell gauge invariance.
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½Lμν
i ; Lρσ

i � ¼ iðηνρLμσ
i þ ημρLσν

i þ ημσLνρ
i þ ηνσLρμ

i Þ;
½Σμν

i ;Σρσ
i � ¼ iðηνρΣμσ

i þ ημρΣσν
i þ ημσΣνρ

i þ ηνσΣρμ
i Þ;

ð4:10Þ

where the suppressed indices on Σμν
i should be treated as

matrix indices.
In order to write the final result in terms of full

amplitudes, we contract with external polarization vectors.
On the right-hand side of Eq. (4.7), we must pass
polarization vectors ε1μ1 and εn−1μn−1 through the
spin-one angular-momentum operator such that they
will contract with the ρ index of, respectively,
Aρμ2���μn−1
n−1 ðk1;…; kn−1Þ and Aμ1���μn−2ρ

n−1 ðk1;…; kn−1Þ. It is
convenient write the spin angular-momentum operator as

εiμiðΣμσ
i ÞμiρAρ ¼ i

�
εμi

∂
∂εiσ − εσi

∂
∂εiμ

�
εiρAρ: ð4:11Þ

We may therefore write

Anðq;k1;…;kn−1Þ→ ½Sð0Þn þSð1Þn �An−1ðk1;…;kn−1ÞþOðqÞ;
ð4:12Þ

where

Sð0Þn ≡ k1 · εnffiffiffi
2

p ðk1 · qÞ
−

kn−1 · εnffiffiffi
2

p ðkn−1 · qÞ
;

Sð1Þn ≡ −iεnμqσ

�
Jμσ1ffiffiffi

2
p ðk1 · qÞ

−
Jμσn−1ffiffiffi

2
p ðkn−1 · qÞ

�
: ð4:13Þ

Here

Jμσi ≡ Lμσ
i þ Σμσ

i ; ð4:14Þ
where

Σμσ
i ≡ i

�
εμi

∂
∂εiσ − εσi

∂
∂εiμ

�
: ð4:15Þ

In using Eq. (4.12), one must interpret Lμσ
i as not acting on

explicit polarization vectors, i.e., Lμσ
i εi ¼ 0. If one instead

interprets polarization vectors as functions of momenta (see
e.g. Sec. VI of Ref. [28]) and returns a nonzero value for
Lμσ
i εi, then one should not include the spin term (4.15). To

be concrete, we define the action of the total angular-
momentum operator on momenta and polarizations by

Jμσi kρi ¼ iðησρkμi − ημρkσi Þ;
Jμσi ερi ¼ iðησρεμi − ημρεσi Þ: ð4:16Þ

We comment more on the action of the operator on
polarization vectors in Sec. IV B.
In conclusion, the first two leading terms in the soft-

gluon expansion of an n-gluon amplitude are given directly

in terms of the amplitude without the soft gluon. This
derivation is valid in D dimensions. We have explicitly
checked the soft-gluon formula (4.12) using explicit four-,
five- and six-gluon tree amplitudes of gauge theory in terms
of formal polarization vectors.

B. Connection to spinor helicity

To connect with the spinor-helicity formalism used in
e.g. Refs. [2,21,22], we show that, up to a gauge trans-
formation, the action of the above subleading soft operators
on polarization vectors expressed in terms of spinor helicity
is identical to the ones defined as differential operators
acting on spinors. In the spinor-helicity formalism, polari-
zation vectors are expressed directly in terms of spinors
depending on the momenta:

εþρ
i ðki; krÞ ¼

hrjγρji�ffiffiffi
2

p hrii ; ε−ρi ðki; krÞ ¼ −
hijγρjr�ffiffiffi
2

p ½ri� ;

ð4:17Þ

where ki is the momentum of gluon i and kr is a null
reference momentum. Henceforth, we will leave the ki
argument implicit and only display the reference momen-
tum. The spinors are standard Weyl spinors. We follow the
conventions of Ref. [27] aside from our use of angle and
square brackets instead of the � angle-bracket convention.
In our convention, we have

hij ¼ hi−j; ½ij ¼ hiþj; jii ¼ jiþi; ji� ¼ ji−i:
ð4:18Þ

In terms of spinors, the subleading soft factor for a tree-
level gauge-theory amplitude is [5]

Sð1Þλn ¼ 1

hðn − 1Þni
~λ _αn

∂
∂ ~λ _αn−1

−
1

h1ni
~λ _αn

∂
∂ ~λ _α1

; ð4:19Þ

where λαi ≡ jiþiα and ~λ _αi ≡ ji−i _α. We consider the explicit
action of Sð1Þλn in Eq. (4.19) and Sð1Þn in Eq. (4.13) on
ε�ρ
1 ðkr1Þ to show equivalence after contraction with the
polarization-stripped amplitude. The action on ε�ρ

n−1ðkrn−1Þ
follows similarly. We act with Eq. (4.19) on the polarization
vectors in Eq. (4.17), with i → 1 and kr → kr1—in turn:

Sð1Þλn εþρ
1 ðkr1Þ ¼ −

1

h1ni
hr1jγρjn�ffiffiffi
2

p hr11i
¼ −

hr1ni
hr11ih1ni

εþρ
n ðkr1Þ;

ð4:20Þ

and
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Sð1Þλn ε−ρ1 ðkr1Þ ¼ −
1

h1ni
�
−
h1jγρjr1�ffiffiffi

2
p

��
−

½r1n�
½r11�2

�

¼ ½r1n�
½r11�h1ni

ε−ρ1 ðkr1Þ

¼ ½r1n�
½r11�h1ni

�
ε−ρ1 ðknÞ þ

ffiffiffi
2

p ½r1n�
½r11�½n1�

kρ1

�

¼ ½r1n�
½r11�½1n�

�
εþρ
n ðk1Þ −

ffiffiffi
2

p ½r1n�
½r11�h1ni

kρ1

�
; ð4:21Þ

where we used

ε−ρi ðkrÞ ¼ ε−ρi ðk~rÞ þ
ffiffiffi
2

p ½r~r�
½ri�½~ri� k

ρ
i ; ð4:22Þ

in the second-to-last line. The last line of Eq. (4.21) follows
from

εþρ
j ðkiÞ ¼

½ij�
hiji ε

−ρ
i ðkjÞ: ð4:23Þ

We can write Eq. (4.21) more simply as

Sð1Þλn ε−ρ1 ðkr1Þ ≅
½r1n�

½r11�½1n�
εþρ
n ðk1Þ; ð4:24Þ

where the symbol ≅ denotes equivalence up to a term
proportional to kρ1. Such terms will vanish when contracted
with the polarization-stripped (n − 1)-point amplitude, so
we are free to drop them. Similar spinor-helicity algebra

reveals that the action of Sð1Þn from Eq. (4.13) on ε�ρ
1 ðkr1Þ

yields

Sð1Þn εþρ
1 ðkr1Þ ¼ −iεþnμðkrnÞknσ

Σμσ
1ffiffiffi

2
p ðk1 · knÞ

εþρ
1 ðkr1Þ

¼ −
hr1ni

hr11ih1ni
εþρ
n ðkr1Þ; ð4:25Þ

and

Sð1Þn ε−ρ1 ðkr1Þ ¼
½r1n�

½r11�½1n�
εþρ
n ðk1Þ: ð4:26Þ

We can summarize the action of the operators as

Sð1Þλn ε�ρ
1 ðkr1Þ

≅ Sð1Þn ε�ρ
1 ðkr1Þ

¼ −
�
ε�1 ðkr1Þ · pnffiffiffi
2

p ðp1 · pnÞ

��
εþρ
n ðkr1Þ; for þ;

εþρ
n ðk1Þ; for − :

ð4:27Þ

We see that, up to terms proportional to kρ1, the action of

Sð1Þλn and Sð1Þn on the polarization vectors yield completely
equivalent expressions as expected.

V. SOFT LIMIT OF n-GRAVITON AMPLITUDES

In this section, we generalize what has been done for the
case of n gluons to the case of n gravitons. As before, we
write the amplitude as a sum of two pieces: the first
contains terms where the soft graviton is attached to one of
the other n − 1 external gravitons, giving a contribution
divergent as 1=q for q → 0, while in the second the soft
graviton attaches to one of the internal graviton lines and is
of Oðq0Þ in the same limit. Leaving the expression
uncontracted with polarization tensors for now, we write

Mμν;μ1ν1���μn−1νn−1
n ðq; k1;…; kn−1Þ

¼
Xn−1
i¼1

1

ki · q
½kμi ημiα − iqρðΣμρ

i Þμiα�½kνi ηνiβ − iqσðΣμσ
i Þνiβ�

×Mμ1ν1���
n−1 αβ

���μn−1νn−1ðk1;…; ki þ q;…; kn−1Þ
þ Nμν;μ1ν1���μn−1νn−1

n ðq; k1;…; kn−1Þ; ð5:1Þ

where

ðΣμρ
i Þμiα ≡ iðημμiηαρ − ημαημiρÞ: ð5:2Þ

The simple form of the three-vertex used in Eq. (5.1) can be
obtained from the standard one using current conservation
and the tracelessness properties of external polarization
tensors and Mn−1, as well as assigning terms to Nn where
the i=ki · q propagator cancels. We note that it is important
to keep the lowered indices of Mn−1 in their appropriate
slots. On-shell gauge invariance implies

0 ¼ qμM
μν;μ1ν1���μn−1νn−1
n ðq; k1;…; kn−1Þ

¼
Xn−1
i¼1

½kνi ηνiβ − iqρðΣνρ
i Þνiβ�

×Mμ1ν1���μi
n−1 β

���μn−1νn−1ðk1;…; ki þ q;…; kn−1Þ
þ qμN

μν;μ1ν1���μn−1νn−1
n ðq; k1;…; kn−1Þ; ð5:3Þ

provided that, as usual, we contract all free indices of Mn
with polarization tensors at the end. This includes con-
tracting the ν index with a polarization vector ενn satisfying
εn · q ¼ 0. Expanding the previous expression for small q,
we find that the leading term vanishes because of momen-
tum conservation, while the next-to-leading term gives two
conditions by taking the symmetric and antisymmetric
parts:

1

2

Xn−1
i¼1

ημiαηνiβ
�
kμi

∂
∂kiν þ kνi

∂
∂kiμ

�

×Mμ1ν1���
n−1 αβ

���μn−1νn−1ðk1;…; ki;…; kn−1Þ
¼ −Nμν;μ1ν1���μn−1νn−1

n ð0; k1;…; kn−1Þ; ð5:4Þ
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and

Xn−1
i¼1

½Lνρ
i ηνiβ þ 2ðΣνρ

i Þνiβ�

×Mμ1ν1���μi
n−1 β

���μn−1νn−1ðk1;…; ki;…; kn−1Þ ¼ 0: ð5:5Þ

As in the earlier cases, we can ignore potential terms that
are local in q and vanish when dotted into qμ since they will
not contribute to the desired order. The first condition
determines Nμν;μ1ν1���μn−1νn−1

n ð0; k1;…; kn−1Þ in terms of the
amplitude without the soft graviton, while the second one
reflects conservation of total angular momentum. The
factor of 2 in front of the spin term in Eq. (5.5) reflects
the fact that the graviton has spin 2.

Finally, the terms of order q2 in Eq. (5.3) imply the
following condition:

Xn−1
i¼1

qρ

�
kνi η

νiβ
∂2

∂kiρ∂kiμ−2iðΣνρ
i Þνiβ ∂

∂kiμ
�

×Mμ1ν1���μi
n−1 β

���μn−1νn−1ðk1;…;ki;…;kn−1Þ

¼−qρ

�∂Nμν;μ1ν1���μn−1νn−1
n

∂qρ þ∂Nρν;μ1ν1���μn−1νn−1
n

∂qμ
�
ð0;k1;…;kn−1Þ:

ð5:6Þ

Using the previous results, for a soft graviton of momentum
q, we have

Mμν;μ1ν1���μn−1νn−1
n ðq; k1;…; kn−1Þ ¼

Xn−1
i¼1

1

ki · q

�
kμi k

ν
i η

μiαηνiβ −
i
2
qρ

�
kμi η

μiα½Lνρ
i ηνiβ þ 2ðΣνρ

i Þνiβ� þ kνi η
νiβ½Lμρ

i ημiα þ 2ðΣμρ
i Þμiα�

�

−
i
2
qρqσ

�
kνi η

μiαηνiβLμρ
i

∂
∂kiσ − 2iðΣμρ

i ÞμiαðΣνσ
i Þνiβ − 2kσi η

νiβðΣνρ
i Þνiβ ∂

∂kiμ
þ 2½ημiαkμi ðΣνρ

i Þνiβ þ ηνiβkνi ðΣμρ
i Þμiα� ∂

∂kiσ
��

Mμ1ν1���
n−1 αβ

���μn−1νn−1ðk1;…; ki;…; kn−1Þ

þ 1

2
qρ

�∂Nμν;μ1ν1���μn−1νn−1
n

∂qρ −
∂Nρν;μ1ν1���μn−1νn−1

n

∂qμ
�
ð0; k1;…; kn−1Þ þOðq2Þ: ð5:7Þ

As in the case of gluon scattering, it may seem that we
cannot determine the order q contributions in terms of
Mn−1 because the antisymmetric part of the matrix Nn is
still present in Eq. (5.7). However, it turns out that there is

additional information from on-shell gauge invariance.
When we saturate it with qμ, we get of course zero because
this is the way that Eq. (5.7) is constructed. When we
saturate it with qν, however, we obtain the extra condition:

0 ¼ qνM
μν;μ1ν1���μn−1νn−1
n ðq; k1;…; kn−1Þ

¼ qρqσ

�Xn−1
i¼1

½Lμρ
i ημiα þ 2ðΣμρ

i Þμiα� ∂
∂kiσ M

μ1ν1���
n−1 α

νi���μn−1νn−1ðk1;…; ki;…; kn−1Þ

þ i

�∂Nμσ;μ1ν1���μn−1νn−1
n

∂qρ −
∂Nρσ;μ1ν1���μn−1νn−1

n

∂qμ
�
ð0; k1;…; kn−1Þ

�
; ð5:8Þ

which implies

Xn−1
i¼1

qρ½Lμρ
i ημiα þ 2ðΣμρ

i Þμiα� ∂
∂kiσ M

μ1ν1���
n−1 α

νi���μn−1νn−1ðk1;…; ki;…; kn−1Þ

¼ −iqρ

�∂Nμσ;μ1ν1���μn−1νn−1
n

∂qρ −
∂Nρσ;μ1ν1���μn−1νn−1

n

∂qμ
�
ð0; k1;…; kn−1Þ: ð5:9Þ

We can now use it in Eq. (5.7) to obtain our final expression giving the soft limit entirely in terms of the (n − 1)-point
amplitude:
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Mμν;μ1ν1���μn−1νn−1
n ðq; k1;…; kn−1Þ

¼
Xn−1
i¼1

1

ki · q

�
kμi k

ν
i η

μiαηνiβ −
i
2
qρ

�
kμi η

μiα½Lνρ
i ηνiβ þ 2ðΣνρ

i Þνiβ� þ kνi η
νiβ½Lμρ

i ημiα þ 2ðΣμρ
i Þμiα�

�

−
1

2
qρqσ

�
½Lμρ

i ημiα þ 2ðΣμρ
i Þμiα�½Lνσ

i ηνiβ þ 2ðΣνσ
i Þνiβ� − 2ðΣμρ

i ÞμiαðΣνσ
i Þνiβ

��

×Mμ1ν1���
n−1 αβ

���μn−1νn−1ðk1;…; ki;…; kn−1Þ þOðq2Þ: ð5:10Þ

In order to write our expression in terms of amplitudes,
we saturate with graviton polarization tensors using
εμν → εμεν where εμ are spin-one polarization vectors.
As we did for the case with gluons, we must pass the
polarization vectors through the spin-one operators. We
are then left with

Mnðq;k1;…;kn−1Þ¼ ½Sð0Þn þSð1Þn þSð2Þn �Mn−1ðk1;…;kn−1Þ
þOðq2Þ; ð5:11Þ

where

Sð0Þn ≡Xn−1
i¼1

εμνk
μ
i k

ν
i

ki · q
;

Sð1Þn ≡ −i
Xn−1
i¼1

εμνk
μ
i qρJ

νρ
i

ki · q
;

Sð2Þn ≡ −
1

2

Xn−1
i¼1

εμνqρJ
μρ
i qσJνσi

ki · q
: ð5:12Þ

Here

Jμσi ≡ Lμσ
i þ Σμσ

i ; ð5:13Þ

with

Lμσ
i ≡ i

�
kμi

∂
∂kiσ − kσi

∂
∂kiμ

�
;

Σμσ
i ≡ i

�
εμi

∂
∂εiσ − εσi

∂
∂εiμ

�
: ð5:14Þ

Since the graviton polarization tensor is quadratic in spin-
one polarization vectors εμi , the differential operator in
Eq. (5.14) picks up factors of 2 as required for Eq. (5.11)
to be compatible with Eq. (5.10).
In conclusion, in the case of a soft graviton, on-shell

gauge invariance completely determines the first two
subleading contributions. Using the Kawai-Lewellen-Tye
relations [29] we have generated graviton amplitudes with
formal polarization tensors up to six points. Using these we
analytically confirmed Eq. (5.11) through five points and
numerically through six points.

VI. COMMENTS ON LOOP CORRECTIONS

In gauge and gravity theories in four dimensions, the
operators describing the soft behavior have nontrivial loop
corrections [21,22]. Indeed, in QCD, loop corrections
linked to infrared singularities are present already at leading
order in the soft limit [23,24]. One may wonder how loop
corrections to the soft operators arise from the perspective
of the constraints imposed by on-shell gauge invariance. In
this section we explain this. We first describe the case of
gauge theory before turning to gravity.
As explained in Ref. [23], we can separate the contri-

butions into two distinct sources. The first source of
potential corrections is the factorizing one that arises from
loop corrections of the form displayed in Fig. 3 [21–23].
The second source of contributions is the “nonfactorizing”
infrared-divergent one that can come from discontinuities
in the amplitudes associated with infrared divergences
[30]. (Alternatively, these nonfactorizing contributions can
be pushed into factorizing contributions that have light-
cone denominators coming from a careful application of
unitarity [24].)
Herewewill focus on the factorizing pieces at one loop. In

gauge theory, we will explain why they do not enter in the
leading soft behavior [23,24]. In gravity, for the case of
scalars in the loops, which is an especially clean case since
there are no infrared singularities even for massless scalars,
we show that there are no loop corrections at the leading and
first subleading orders of the soft-graviton expansion. This
suppression was noticed earlier in explicit examples of soft
limits of one-loop infrared-finite gravity amplitudes [21,22].

A. Gauge theory

As a warm-up for the gravity case, we first discuss the
well-understood gauge-theory case. The explicit forms of

FIG. 3. The potential factorizing contributions to the one-loop
corrections to the soft operators. Leg n is the soft leg which
carries momentum q.
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the factorizing one-loop corrections to the soft behavior
have been described in some detail in Refs. [23,24] for
QCD at leading order in the soft (and collinear) limits.
For the case of external gluons, the potential factorizing

contributions to one-loop modifications of the soft behavior
are shown in Fig. 3. We can expand these corrections into
triangle and bubble diagrams as shown in Fig. 4. As derived
in Ref. [23], these diagrams evaluate to

Dμ;fact ¼ iffiffiffi
2

p 1

3

1

ð4πÞ2
�
1 −

nf
Nc

þ ns
Nc

�
ðq − kaÞμ

×

�
ðεn · εaÞ −

ðq · εaÞðka · εnÞ
ðka · qÞ

�
; ð6:1Þ

where nf is the number of fundamental representation
fermions, ns the number of fundamental representation
complex scalars (using the normalization conventions of
Ref. [23]), andNc is the number of colors. As usual we take
the soft momentum of leg n to be q. After integration this
result is both ultraviolet and infrared finite, so we have
taken ϵ ¼ 0 in the final integrated result. The all orders in ϵ
form of Eq. (6.1) is given in Refs. [23,24].
The result (6.1) has a few surprising features that explain

how it evades the link between the leading and first
subleading soft contributions via gauge invariance. The
first feature is that the correction to the three-vertex is
nonlocal because of the pole in q · ka that arises from the
loop integration. Indeed, after we include the intermediate
propagator−i=ðka þ qÞ2, there is a double pole1 in q · ka. A
second curious feature is that the leading contribution is
gauge invariant by itself; it vanishes when εμn is replaced by
qμ ≡ kμn for any value of the intermediate off-shell momen-
tum. The nonlocal nature of the result is what allows us to
write such a gauge-invariant term with the correct dimen-
sions. A third feature is that, in fact, there is no contribution
from Eq. (6.1) to the leading one-loop correction to the soft
function, as noted in Refs. [23,24]. To see this, we sew
Eq. (6.1) onto the rest of the amplitude across the
factorization channel:

Dfact
μ

−i
2q · ka

J μ; ð6:2Þ

as illustrated in Fig. 3. We observe that J μ is a conserved
current:

ðqþ kaÞμJ μ ¼ 0; ð6:3Þ

assuming that all of the remaining legs are contracted with
on-shell polarizations. This immediately implies

Dfact
μ

−i
2q · ka

J μ ¼ Oðq0Þ; ð6:4Þ

because Dfact
μ is proportional to ðq − kaÞμ which is equiv-

alent to 2qμ when dotted into a conserved current. This
reproduces the fact that there is no leading, Oð1=qÞ,
factorizing contribution to the one-loop soft func-
tion [23,24].
Unfortunately, theOðq0Þ terms in Eq. (6.4) are not under

control via gauge invariance. Once we allow for an extra
1=ðq · kaÞ nonlocality arising from the loop integration, we
lose control over the subleading piece. This cannot happen
at tree level because there is no source of a second factor
of 1=ðq · kaÞ. The Oðq0Þ contribution from Eq. (6.4) is not
constrained from gauge invariance. These types of
contributions have already been described in some detail
at one loop on a case-by-case basis in Refs. [31,32].
Unfortunately, no universal factorization formula is known
for these types of corrections, although case by case their
forms appear to be relatively simple.
Interestingly, these contributions resemble an anomaly

that seemingly vanishes if we take the loop integrand
strictly in four dimensions. This arises from the integration
where a 1=ϵ ultraviolet pole cancels a factor of ϵ from
numerator algebra, leaving terms of Oð1Þ. This is remi-
niscent of the way the chiral anomaly arises from triangle
diagrams in dimensional regularization. Indeed, for the
single-minus-helicity case discussed in Refs. [21,22], not
only does this contribution vanish but the entire amplitude
would vanish if we were not careful to keep in the integrand
in D ¼ 4 − 2ϵ instead of four dimensions. It is interesting
that these types of contributions do not appear in super-
symmetric theories.
Besides the loop contributions described above, there is a

second type of loop correction to the soft operators (4.13)
arising from nonsmoothness in the amplitude due to

FIG. 4. The diagrams contributing to the factorizing contribution to the one-loop soft function.

1While this might seem to violate basic factorization properties
of field theories, in fact it does not, because for real momenta the
double pole is reduced to a single pole. See Ref. [31] for a
detailed discussion of this phenomenon.
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infrared singularities [30]. In QED the integrals are smooth
because the electron mass acts as an infrared cutoff, but in
QCD or gravity there is no such physical cutoff on gluons
or gravitons. It is therefore much more difficult to con-
sistently introduce a mass regulator without breaking gauge
symmetry or altering the number of propagating degrees of
freedom. As is standard practice, it is far simpler to use
dimensional regularization. As discussed in some detail in
Refs. [21,23,30], as gluons become soft or collinear, the
matrix elements develop discontinuities that are absorbed
into modifications of the loop splitting or soft operators.
Alternatively, by using light-cone gauge or carefully
applying unitarity, one introduces light-cone denominators
containing a reference momentum, and one can push all
contributions into factorizing diagrams [24,33]. Either way,
the conclusion is the same: There are nontrivial contribu-
tions not accounted for in the naive tree-level soft limit.

B. Gravity

We now show that the situation in gravity is similar.
Here, the dimensionful coupling ensures that there are no
loop corrections at leading order [16], only one-loop
corrections at the first subleading order, and only up to
two-loop corrections at second subleading order [21]. Thus,
we need only analyze one loop to show that the factorizing
contributions do not modify the soft operator at first
subleading order.
We focus on the case of a scalar in the loop. This case is

particularly transparent because there are no infrared
singularities associated with scalars circulating in a loop
[26]. This allows us to study the soft behavior without
being entangled with the issue of infrared divergences. We
can determine the behavior through the first subleading soft
order simply by computing the diagrams in Fig. 5.
We have carried out the analogous computation to the

one performed in Ref. [23] for gluons, but for gravity with a
real scalar in the loop. The result of this computation is

Dμν;fact;s ¼ −
i

ð4πÞ2
�
κ

2

�
3 1

30q · ka

× ððεn · εaÞðq · kaÞ − ðq · εaÞðka · εnÞÞ2
× kμakνa þOðq2Þ; ð6:5Þ

where we have kept all terms involving no more than one
overall power of the soft momentum q≡ kn. Such terms

naively appear to contribute at the first subleading order in
the correction to the amplitude. However, as in the gauge-
theory case, the diagrams Dμν;fact;s contract into a current
J μν which results in a suppression of an extra factor of the
soft momentum q. In the gravity case we find

ðka þ qÞμJ μν ¼ fðki; εiÞðka þ qÞν; ð6:6Þ

where f is some function of the momenta and polarizations
of both the hard and soft legs. With kμakνa contracting with
J μν, we then have

kμakνaJ μν ¼ ðka þ qÞμðka þ qÞνJ μν þOðqÞ
¼ fðki; εiÞðka þ qÞ2 þOðqÞ
¼ 2fðki; εiÞq · ka þOðqÞ
¼ OðqÞ: ð6:7Þ

Therefore, as far as the correction to the amplitude is
concerned, we can effectively view Dμν;fact;s as being of
order q2. We then finally have

Dμν;fact;s i
2q · ka

J μν ¼ OðqÞ: ð6:8Þ

After including the 1=q from the intermediate propagator,
we find the potential correction to the soft operator is of
OðqÞ and therefore does not modify the first subleading
soft behavior. Unfortunately, for the second subleading
soft behavior we lose control, in much the same way that
we did for the first subleading behavior of gauge theory.
Indeed, nontrivial contributions are found in explicit
examples [21,22].
As in the QCD case (6.1), we expect the cases with other

particles circulating in the loop to be similar and that
factorizing contributions not linked to infrared singularities
should appear starting only at the second subleading order
in the soft expansion. In addition, the explicit gravity
examples studied in Refs. [21,22] are exactly in line with
this expectation. We leave a discussion of cases with
infrared singularities to future work.

VII. CONCLUSIONS

In this paper, we extended Low’s proof of the univer-
sality of subleading behavior of photons to non-Abelian
gauge theory and to gravity. In particular, we showed that in

FIG. 5. The diagrams with potential factorizing contributions to the one-loop soft operator in gravity with a scalar in the loop.
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gauge theory, on-shell gauge invariance can be used to fully
determine the first subleading soft-gluon behavior at tree
level. In gravity, the first two subleading terms in the soft
expansion found in Ref. [2] can also be fully determined
from on-shell gauge invariance. Our discussion is similar to
the ones given by Low [12] for photons and by Jackiw [18]
for gravitons coupled to a scalar at four points. We focused
mainly on n-gluon and n-graviton amplitudes but also
discussed simpler cases with scalars.
A motivation for studying soft-graviton theorems is

to understand their relation to the extended BMS symmetry.
It will, of course, be very important to understand
how BMS symmetry relates to the proof of soft properties
in n-graviton amplitudes given here.
Unlike the case of photons, for gluons there are loop

corrections to the soft operators starting at leading order. In
gauge theory, leading-order corrections are linked to infra-
red singularities, while subleading-order corrections can
also arise from contributions not linked to infrared singu-
larities. Gravity also has loop corrections but not at leading
order. In this paper, we proved that for the case of a scalar
circulating in the loop, there is no modification to the soft
behavior of graviton amplitudes until the second sublead-
ing order. We expect this to hold in general for contribu-
tions not linked to infrared singularities. On the other hand,

graviton loop contributions that are infrared divergent give
corrections to the soft operators starting at the first sub-
leading order [21], using the standard definition of dimen-
sional regularization. Since infrared singularities are well
understood, we do not expect this to be too disruptive for
studying the consequences of extended BMS symmetry at
loop level. We will describe loop level in more detail
elsewhere.
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Note Added.—While this manuscript was being finalized, a
paper appeared constraining soft behavior using Poincaré
and gauge invariance, as well as from a condition arising
from the distributional nature of scattering amplitudes [34].
In this way, the authors determine the form of the
subleading soft differential operators up to a numerical
constant for every leg.

[1] A. Strominger, J. High Energy Phys. 07 (2014) 152; T. He,
V. Lysov, P. Mitra, and A. Strominger, arXiv:1401.7026;
D. Kapec, V. Lysov, S. Pasterski, and A. Strominger, J. High
Energy Phys. 08 (2014) 058.

[2] F. Cachazo and A. Strominger, arXiv:1404.4091.
[3] H. Bondi, M. G. J. van der Burg, and A.W. K. Metzner,

Proc. R. Soc. A 269, 21 (1962); R. K. Sachs, Proc. R. Soc. A
270, 103 (1962).

[4] G. Barnich and C. Troessaert, Phys. Rev. Lett. 105, 111103
(2010); J. High Energy Phys. 12 (2011) 105; 11
(2013) 003.

[5] E. Casali, J. High Energy Phys. 08 (2014) 077.
[6] B. U.W. Schwab and A. Volovich, Phys. Rev. Lett. 113,

101601 (2014); N. Afkhami-Jeddi, arXiv:1405.3533.
[7] A. J. Larkoski, arXiv:1405.2346.
[8] M. Bianchi, S. He, Y.-t. Huang, and C. Wen,

arXiv:1406.5155.
[9] T. Adamo, E. Casali, and D. Skinner, arXiv:1405.5122;

Y. Geyer, A. E. Lipstein, and L. Mason, arXiv:1406.1462.
[10] B. U.W. Schwab, J. High Energy Phys. 08 (2014) 062.
[11] F. E. Low, Phys. Rev. 96, 1428 (1954); M. Gell-Mann and

M. L. Goldberger, Phys. Rev. 96, 1433 (1954); S. Saito,
Phys. Rev. 184, 1894 (1969).

[12] F. E. Low, Phys. Rev. 110, 974 (1958).
[13] S. Weinberg, Phys. Rev. 135, B1049 (1964); 140, B516

(1965).

[14] T. H. Burnett and N.M. Kroll, Phys. Rev. Lett. 20,
86 (1968); J. S. Bell and R. Van Royen, Nuovo Cimento
A 60, 62 (1969); V. Del Duca, Nucl. Phys. B345, 369
(1990).

[15] V. de Alfaro, S. Fubini, G. Furlan, and C. Rossetti, Currents
in Hadron Physics (North-Holland, Amsterdam, 1974); see
Chapter 3.

[16] Z. Bern, L. J. Dixon, M. Perelstein, and J. S. Rozowsky,
Nucl. Phys. B546, 423 (1999).

[17] D. J. Gross and R. Jackiw, Phys. Rev. 166, 1287 (1968).
[18] R. Jackiw, Phys. Rev. 168, 1623 (1968).
[19] E. Laenen, G. Stavenga, and C. D. White, J. High Energy

Phys. 03 (2009) 54; E. Laenen, L. Magnea, G. Stavenga,
and C. D. White, J. High Energy Phys. 01 (2011) 141.

[20] C. D. White, J. High Energy Phys. 05 (2011) 060.
[21] Z. Bern, S. Davies, and J. Nohle, arXiv:1405.1015.
[22] S. He, Y.-t. Huang, and C. Wen, arXiv:1405.1410.
[23] Z. Bern, V. Del Duca, and C. R. Schmidt, Phys. Lett. B 445,

168 (1998); Z. Bern, V. Del Duca, W. B. Kilgore, and C. R.
Schmidt, Phys. Rev. D 60, 116001 (1999).

[24] D. A. Kosower and P. Uwer, Nucl. Phys. B563, 477 (1999);
D. A. Kosower, Phys. Rev. Lett. 91, 061602 (2003).

[25] F. Cachazo and E. Y. Yuan, arXiv:1405.3413.
[26] S. G. Naculich and H. J. Schnitzer, J. High Energy Phys. 05

(2011) 087; R. Akhoury, R. Saotome, and G. Sterman, Phys.
Rev. D 84, 104040 (2011).

LOW-ENERGY BEHAVIOR OF GLUONS AND GRAVITONS … PHYSICAL REVIEW D 90, 084035 (2014)

084035-13

http://dx.doi.org/10.1007/JHEP07(2014)152
http://arXiv.org/abs/1401.7026
http://dx.doi.org/10.1007/JHEP08(2014)058
http://dx.doi.org/10.1007/JHEP08(2014)058
http://arXiv.org/abs/1404.4091
http://dx.doi.org/10.1098/rspa.1962.0161
http://dx.doi.org/10.1098/rspa.1962.0206
http://dx.doi.org/10.1098/rspa.1962.0206
http://dx.doi.org/10.1103/PhysRevLett.105.111103
http://dx.doi.org/10.1103/PhysRevLett.105.111103
http://dx.doi.org/10.1007/JHEP12(2011)105
http://dx.doi.org/10.1007/JHEP11(2013)003
http://dx.doi.org/10.1007/JHEP11(2013)003
http://dx.doi.org/10.1007/JHEP08(2014)077
http://dx.doi.org/10.1103/PhysRevLett.113.101601
http://dx.doi.org/10.1103/PhysRevLett.113.101601
http://arXiv.org/abs/1405.3533
http://arXiv.org/abs/1405.2346
http://arXiv.org/abs/1406.5155
http://arXiv.org/abs/1405.5122
http://arXiv.org/abs/1406.1462
http://dx.doi.org/10.1007/JHEP08(2014)062
http://dx.doi.org/10.1103/PhysRev.96.1428
http://dx.doi.org/10.1103/PhysRev.96.1433
http://dx.doi.org/10.1103/PhysRev.184.1894
http://dx.doi.org/10.1103/PhysRev.110.974
http://dx.doi.org/10.1103/PhysRev.135.B1049
http://dx.doi.org/10.1103/PhysRev.140.B516
http://dx.doi.org/10.1103/PhysRev.140.B516
http://dx.doi.org/10.1103/PhysRevLett.20.86
http://dx.doi.org/10.1103/PhysRevLett.20.86
http://dx.doi.org/10.1007/BF02823297
http://dx.doi.org/10.1007/BF02823297
http://dx.doi.org/10.1016/0550-3213(90)90392-Q
http://dx.doi.org/10.1016/0550-3213(90)90392-Q
http://dx.doi.org/10.1016/S0550-3213(99)00029-2
http://dx.doi.org/10.1103/PhysRev.166.1287
http://dx.doi.org/10.1103/PhysRev.168.1623
http://dx.doi.org/10.1088/1126-6708/2009/03/054
http://dx.doi.org/10.1088/1126-6708/2009/03/054
http://dx.doi.org/10.1007/JHEP01(2011)141
http://dx.doi.org/10.1007/JHEP05(2011)060
http://arXiv.org/abs/1405.1015
http://arXiv.org/abs/1405.1410
http://dx.doi.org/10.1016/S0370-2693(98)01495-6
http://dx.doi.org/10.1016/S0370-2693(98)01495-6
http://dx.doi.org/10.1103/PhysRevD.60.116001
http://dx.doi.org/10.1016/S0550-3213(99)00583-0
http://dx.doi.org/10.1103/PhysRevLett.91.061602
http://arXiv.org/abs/1405.3413
http://dx.doi.org/10.1007/JHEP05(2011)087
http://dx.doi.org/10.1007/JHEP05(2011)087
http://dx.doi.org/10.1103/PhysRevD.84.104040
http://dx.doi.org/10.1103/PhysRevD.84.104040


[27] L. J. Dixon, In Boulder 1995, QCD and Beyond, edited
by D. E. Soper (World Scientific, Singapore, 1995), p. 758.

[28] S. Weinberg, The Quantum Theory of Fields, Foundations
(Cambridge University Press, Cambridge, 1995), Vol. 1.

[29] H. Kawai, D. C. Lewellen, and S. H. H. Tye, Nucl. Phys.
B269, 1 (1986).

[30] Z. Bern and G. Chalmers, Nucl. Phys. B447, 465 (1995).
[31] Z. Bern, L. J. Dixon, and D. A. Kosower, Phys. Rev. D 71,

105013 (2005); 72, 125003 (2005); 73, 065013 (2006).

[32] D. Vaman and Y.-P. Yao, arXiv:0805.2645; S. D. Alston,
D. C. Dunbar, and W. B. Perkins, Phys. Rev. D 86, 085022
(2012).

[33] J. C. Collins and G. F. Sterman, Nucl. Phys. B185, 172
(1981); J. C. Collins, D. E. Soper, and G. F. Sterman, Nucl.
Phys. B308, 833 (1988).

[34] J. Broedel, M. de Leeuw, J. Plefka, and M. Rosso,
arXiv:1406.6574.

BERN et al. PHYSICAL REVIEW D 90, 084035 (2014)

084035-14

http://dx.doi.org/10.1016/0550-3213(86)90362-7
http://dx.doi.org/10.1016/0550-3213(86)90362-7
http://dx.doi.org/10.1016/0550-3213(95)00226-I
http://dx.doi.org/10.1103/PhysRevD.71.105013
http://dx.doi.org/10.1103/PhysRevD.71.105013
http://dx.doi.org/10.1103/PhysRevD.72.125003
http://dx.doi.org/10.1103/PhysRevD.73.065013
http://arXiv.org/abs/0805.2645
http://dx.doi.org/10.1103/PhysRevD.86.085022
http://dx.doi.org/10.1103/PhysRevD.86.085022
http://dx.doi.org/10.1016/0550-3213(81)90370-9
http://dx.doi.org/10.1016/0550-3213(81)90370-9
http://dx.doi.org/10.1016/0550-3213(88)90130-7
http://dx.doi.org/10.1016/0550-3213(88)90130-7
http://arXiv.org/abs/1406.6574

