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Repulsive gravity has been investigated in several scenarios near compact objects by using different
intuitive approaches. Here, we propose an invariant method to characterize regions of repulsive gravity,
associated to black holes and naked singularities. Our method is based upon the behavior of the curvature
tensor eigenvalues, and leads to an invariant definition of a repulsion radius. The repulsion radius
determines a physical region, which can be interpreted as a repulsion sphere, where the effects due to
repulsive gravity naturally arise. Further, we show that the use of effective masses to characterize repulsion
regions can lead to coordinate-dependent results whereas, in our approach, repulsion emerges as a
consequence of the spacetime geometry in a completely invariant way. Our definition is tested in the
spacetime of an electrically charged Kerr naked singularity and in all its limiting cases. We show that a
positive mass can generate repulsive gravity if it is equipped with an electric charge or an angular
momentum. We obtain reasonable results for the spacetime regions contained inside the repulsion sphere
whose size and shape depend on the value of the mass, charge and angular momentum. Consequently, we
define repulsive gravity as a classical relativistic effect by using the geometry of spacetime only.
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I. INTRODUCTION

In Einstein’s general relativity, naked singularities have
been shown to exist under quite general assumptions as
exact solutions of the corresponding field equations [1].
Indeed, each one of the black hole solutions possesses a
naked singularity counterpart that appears as soon as the
black hole parameters violate the condition for the exist-
ence of an event horizon. Many other naked singularity
solutions are known for which no black hole counterpart
exists [2]. This means that naked singularities are well-
defined mathematical solutions of Einstein’s equations. The
interesting question is whether these mathematical solu-
tions describe physical configurations that could exist in
nature. The answer to this question is negative, if the
cosmic censorship conjecture [3] turns out to be true.
Indeed, according to this conjecture, a physically realistic
gravitational collapse, which evolves from a regular initial
state, can never lead to the formation of a naked singularity;
that is, all singularities resulting from a gravitational
collapse should always be enclosed within an event horizon
so that they cannot be observed from outside the horizon.
Many attempts have been made to prove the cosmic
censorship hypothesis with the same mathematical rigor
used to show the inevitability of singularities in general
relativity [4]. So far, no general proof has been formulated
and the investigation of several particular scenarios of
gravitational collapse corroborate the correctness of the
conjecture. Other studies [5], however, indicate that under

certain circumstances naked singularities can appear during
the evolution of a mass distribution into a gravitational
collapse. It has been shown that in an inhomogeneous
collapse, there exists a critical degree of inhomogeneity
below which black holes form. Naked singularities appear
if the degree of inhomogeneity is bigger than the critical
value [6]. The collapse speed and the shape of the
collapsing object are also factors playing an important role
in the determination of the final state. Naked singularities
form more frequently if the collapse occurs very rapidly
and the object is not exactly spherically symmetric. These
results indicate that the probability of existence of naked
singularities cannot be neglected a priori. In view of this
fact, one of the main goals of our work is to investigate the
physical effects around naked singularities, showing pos-
sible regions of repulsive gravity. The simplest case of
naked singularity is the Schwarzschild spacetime with
negative mass. The naked singularity is situated at the
origin of coordinates and the entire spacetime represents a
repulsive gravitational field. One can interpret this case as
represented by an effective mass which follows from the
corresponding Newtonian limit, and is always negative.
This interpretation can be generalized to other spacetimes,
leading however to certain difficulties as we will show in
Sec. II. Other definitions of effective mass show a com-
pletely different behavior [7]. One may also try to define
repulsive gravity in terms of invariants of the curvature
tensor [8], although several problems appear. In particular,
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the Schwarzschild naked singularity is characterized by the
same curvature invariants as the Schwarzschild black hole.
Analogously, the use of null cones to define repulsive
gravity is also not free of difficulties [9].
The main purpose of the present work is to propose and

test an approach based upon an invariant representation of the
curvature tensor and its eigenvalues. A preliminary study of
this idea was presented in [10]. The region where repulsive
gravity can become dominant is defined in an invariant
way by considering the behavior of the curvature tensor
eigenvalues. To this end, the extremal points of the eigen-
values are considered as indicating a change in the behavior
of gravity. We will show that this definition can be applied to
different types of naked singularities, and in all the analyzed
cases the obtained results are physically reasonable. In fact,
we will see that the repulsion region is always located at a
very short distance from the central gravity source.

The paper is organized as follows. In Sec. II, we
investigate the behavior of the effective mass as a pos-
sibility to determine the regions of spacetime where
repulsive gravity can occur. In Sec. III, we introduce the
formalism to find the eigenvalues of the curvature tensor in
an invariant manner, and define a repulsion radius that
determines the region where repulsive gravity can become
dominant. In Sec. IV, we test our definition of repulsive
gravity in the case of naked singularities with black hole
counterparts. Finally, in Sec. V we discuss our results.

II. THE EFFECTIVE MASS

The most general black hole spacetime in Einstein-
Maxwell theory is described by the Kerr-Newman metric
that in Boyer-Lindquist coordinates can be written as [11]

ds2 ¼ r2 − 2Mrþ a2 þQ2

r2 þ a2cos2θ
ðdt − asin2θdφÞ2 − sin2θ

r2 þ a2cos2θ
½ðr2 þ a2Þdφ − adt�2

−
r2 þ a2cos2θ

r2 − 2Mrþ a2 þQ2
dr2 − ðr2 þ a2cos2θÞdθ2;

where M is the mass of the rotating central object, a ¼
J=M is the specific angular momentum, and Q represents
the total electric charge. The corresponding electromag-
netic vector potential

A ¼ −
Qr
Σ

½dt − asin2θdφ�; ð1Þ

indicates that the magnetic field is generated by the rotation
of the charge distribution.
The limiting cases of the Kerr-Newman metric are the

Kerr metric for Q ¼ 0, the Schwarzschild metric which is
recovered for a ¼ Q ¼ 0, the Reissner-Nordström space-
time for a ¼ 0, and the Minkowski metric of special
relativity for a ¼ Q ¼ M ¼ 0. The Kerr-Newman space-
time is asymptotically flat and free of curvature singular-
ities outside a region situated very close to the origin of
coordinates. Indeed, the central ring singularity is deter-
mined by the roots of the equation

r2 þ a2cos2θ ¼ 0; ð2Þ

and is covered from the outside spacetime by two horizons
situated at

r� ≡M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2 −Q2

p
; ð3Þ

which are real quantities only if the condition M2 ≥ Q2 þ
a2 is satisfied. In this case, rþ and r− represent the radius
of the outer and inner horizon, respectively, and the

Kerr-Newman solution is interpreted as describing the
exterior field of a rotating charged black hole. In the case
M2 < a2 þQ2, no horizons exist and the gravitational field
corresponds to that of a naked ring singularity.
The Newtonian potential Φ and the effective mass are

usually computed from the metric component gtt as

lim
r→∞

gtt ¼ 1 − 2Φ ¼ 1 −
2Meff

r
: ð4Þ

In the case of the Kerr-Newman spacetime, we obtain [12]

Meff ¼ M −
Q2

2r
−
a2Mcos2θ

r2
; ð5Þ

where we neglected all terms proportional to 1=r3 and
higher. Since the effective mass depends on the radius r, it
then follows that near the origin of coordinates the effective
mass can become negative. The effective mass can be
therefore interpreted as a source for generating possible
repulsive gravitational fields [13–15].
In the regions where the effective mass is positive, the

gravitational field becomes attractive so that the limit of the
repulsion region is determined by the zero of the effective
mass function, Meff ¼ 0, i.e.,

rNrep ¼
1

4M
ðQ2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q4 þ 16M2a2cos2θ

p
Þ: ð6Þ

In the limiting case of the Reissner-Nordström spacetime
(a ¼ 0), the repulsion region lies inside the sphere with
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radius Q2

2M. Interestingly, this radius is located inside the
classical radius of a charged particle with mass M and
charge Q, rclass ¼ Q2

M , which is usually interpreted as the
radius of a sphere inside which quantum effects become
important [16]. This fact makes difficult the physical
interpretation of the repulsion region as a classical (non-
quantum) effect. In the case of a Kerr spacetime ðQ ¼ 0Þ,
the repulsion region depends on the azimuthal angle,
reaching its maximum value on the axis and its minimum
value on the equatorial plane. Although the above defi-
nition of the repulsive gravity region is very simple and
intuitive, it is based on assuming the Newtonian potential.
Thus, the regions of repulsive gravity would depend on the
choice of coordinates, and cannot be defined in a coor-
dinate independent way.
Indeed, some time ago Ehlers [17,18] noticed that the

computation of the Newtonian potential leads to contra-
dictory results when different coordinate systems are used.
Ehlers introduced a general theory (Rahmentheorie) in
which Newtonian gravity and Einstein’s general relativity
are considered as particular theories and the Newtonian
limit is mathematically well defined. It can be shown that
using Ehlers’ Rahmentheorie, the Newtonian limit of the
Kerr-Newman metric does not depend on the specific
angular momentum [19]. In some sense, this result is
expected because in Newtonian gravity the rotation is
not a source of gravity. We conclude that the Newtonian
approximation is not suitable for investigating repulsive
gravity in an invariant manner.

III. CURVATURE INVARIANTS
AND EIGENVALUES

In general relativity, it is necessary to use invariant
quantities, e.g. scalars, to describe physical phenomena
independently of the choice of coordinates or observers.
Since curvature is interpreted as a measure of the gravi-
tational interaction, it is reasonable to use the curvature
invariants to analyze the behavior of gravity. From the
components of the Riemann curvature tensor, one can build
in general 14 functionally independent scalars. In the case
of empty space, only four scalars are linearly independent
[20]. In the case of scalars that are quadratic in the
components of the curvature tensor, one can form the
following combinations [21]:

K1 ¼ RαβγδRαβγδ; ð7aÞ

K2 ¼ ½�R�αβγδRαβγδ; ð7bÞ

K3 ¼ ½�R��αβγδRαβγδ; ð7cÞ

where the asterisk represents dual conjugation. They are
known as the Kretschmann invariant, the Chern-Pontryagin
invariant, and the Euler invariant, respectively. Those invar-
iants have been employed also for describing the effects of

dark matter and dark energy in late time cosmology [22,23].
It has been argued that both the effects of dark matter and
dark energy may be described in terms of a single scheme,
by means of Eqs. (7). Indeed, for describing repulsive effects
due to the antigravitational behavior of dark energy, one may
include the Kretschmann invariants as a source for the whole
energy momentum tensor.
The behavior of the above invariants has been proposed

to determine the “repulsive domains” of gravity and
negative effective masses in curved spacetimes [8]; how-
ever, their quadratic structure does not allow us to consider
all possible cases of naked singularities. Indeed, for the
Schwarzschild spacetime one obtains K1 ¼ 48M2=r6

whereas K2 and K3 are proportional to K1. Since the
change M → −M does not affect the behavior of K1,
these invariants do not acknowledge the existence of a
Schwarzschild naked singularity. Rephrasing it differently,
a Schwarzschild black hole and a corresponding naked
singularity have the same quadratic invariants. Similar
difficulties appear in more general cases like the Kerr
and Kerr-Newman naked singularities. It is worth noticing
that the Ricci scalar, which is the only linear invariant in the
curvature tensor components, is not suitable for investigat-
ing the problem of repulsive gravity, because it vanishes
identically for all the above naked singularity solutions.
Hence, the need for addressing the problem of using first

order invariants to characterize repulsive effects becomes
essential in order to describe naked singularities. To this
end, here we propose an alternative approach in which the
eigenvalues of the curvature tensor play the most important
role. There are different ways to determine these eigen-
values [2]. Our strategy is to use local tetrads and differ-
ential forms. From the physical point of view, a local
orthonormal tetrad is the simplest and most natural choice
for an observer in order to perform local measurements of
time, space, and gravity. Moreover, once a local orthonor-
mal tetrad is chosen, all the quantities related to this frame
are invariant with respect to coordinate transformations.
The only freedom remaining in the choice of this local
frame is a Lorentz transformation. So, let us choose the
orthonormal tetrad as

ds2 ¼ gμνdxμdxν ¼ ηabϑ
a ⊗ ϑb; ð8Þ

with ηab ¼ diagðþ1;−1;−1;−1Þ, and ϑa ¼ eaμdxμ. The
first Cartan equation,

dϑa ¼ −ωa
b∧dϑb; ð9Þ

and the second Cartan equation,

Ωa
b ¼ dωa

b þ ωa
c∧ωc

b ¼
1

2
Ra

bcdϑ
c∧ϑd; ð10Þ

allow us to compute the components of the Riemann
curvature tensor in the local orthonormal frame. It is
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convenient to decompose the curvature tensor in terms of
its irreducible parts with respect to the Lorentz group which
are the Weyl tensor [20]

Wabcd ¼ Rabcd þ 2η½aj½cRd�jb� þ
1

6
Rηa½dηc�b; ð11Þ

the trace-free Ricci tensor

Eabcd ¼ 2η½bj½cRd�ja� −
1

2
Rηa½dηc�b; ð12Þ

and the curvature scalar

Sabcd ¼ −
1

6
Rηa½dηc�b; ð13Þ

where the Ricci tensor is defined as Rab ¼ ηcdRcabd. It is
possible to represent the curvature tensor as a (6 × 6)
matrix by introducing the bivector indices A; B;… which
encode the information of two different tetrad indices, i.e.,
ab → A. We follow the convention proposed in [11] which
establishes the following correspondence between tetrad
and bivector indices:

01 → 1; 02 → 2; 03 → 3; 23 → 4;

31 → 5; 12 → 6: ð14Þ

This correspondence can be applied to all the irreducible
components of the Riemann tensor given in Eqs. (11)–(13)
so that the bivector representation can be expressed as

RAB ¼ WAB þ EAB þ SAB; ð15Þ

with

WAB ¼
�
M N

N −M
�
; EAB ¼

�
P Q

Q −P
�
;

SAB ¼ −
R
12

�
I3 0

0 −I3
�
: ð16Þ

Here M, N and P are ð3 × 3Þ real symmetric matrices,
whereas Q is antisymmetric. We see that all the indepen-
dent components of the Riemann tensor are contained in the
ð3 × 3ÞmatricesM, N, P,Q and the scalar R. This suggests
that we introduce a further representation of the curvature
tensor by using only ð3 × 3Þ matrices. Indeed, noting that
(16) represents the irreducible pieces of the curvature with
respect to the Lorentz group SOð3; 1Þ that is isomorphic to
the group SOð3; CÞ, it is possible to introduce a local
complex basis where the curvature is given as a ð3 × 3Þ
matrix. This is the so-called SOð3; CÞ representation of the
Riemann tensor whose irreducible pieces can be expressed
as [20,24]

R ¼ W þ Eþ S; ð17aÞ

W ¼ M þ iN; ð17bÞ

E ¼ Pþ iQ; ð17cÞ

S ¼ 1

12
RI3: ð17dÞ

Notice that the Einstein equations can be written as
algebraic equations in this representation. For instance,
in the case of vacuum spacetime we have that E ¼ 0 and
S ¼ 0 and the vanishing of the Ricci tensor in terms of the
components of the Riemann tensor corresponds to the
algebraic condition TrðWÞ ¼ 0. The matrixW has therefore
only ten independent components, the matrix E is
Hermitian with nine independent components and the
scalar piece R has only one component.
The eigenvalues of the curvature tensor correspond to the

eigenvalues of the matrix R. In general, they are complex
λn ¼ an þ ibn with n ¼ 1; 2; 3. It is with respect to these
curvature eigenvalues that the Petrov classification of
gravitational fields is carried out. As mentioned above,
in the case of a vacuum solution the curvature matrix is
traceless and hence the eigenvalues must satisfy the
condition λ1 þ λ2 þ λ3 ¼ 0. Moreover, the case λ1 ≠ λ2
is the most general type in Petrov’s classification and is
called type I. Vacuum solutions with λ1 ¼ λ2 correspond to
type D gravitational fields. All the naked singularities we
will study here belong to type I or D [2].
Since curvature eigenvalues characterize in an invariant

manner the gravitational field in Petrov’s classification, we
propose to use them to identify the repulsive behavior of
gravity. Our motivation is based upon the intuitive idea that
a change in the gravitational field must generate a change at
the level of the eigenvalues, since curvature is a measure of
the gravitational interaction. If repulsive gravity is inter-
preted as the “opposite” of attractive gravity, the curvature
eigenvalues should be able to reproduce this behavior. In
the case of compact gravitational sources, e.g. black holes
or naked singularities, the idea is to assume that the
eigenvalues vanish at spatial infinity as a consequence of
the asymptotic flatness condition. As we approach the
central source, the eigenvalues will increase in value until
they become infinity at the singularity. If gravity is every-
where attractive, one would expect that the eigenvalues
increase monotonically from zero at spatial infinity until
they reach their maximum value near the curvature singu-
larity. However, if gravity becomes repulsive in some
region, one would expect a different behavior for the
eigenvalues; in particular, if repulsive gravity becomes
dominant at a given point, one would expect at that point a
change in the sign of at least one eigenvalue. The point
where the eigenvalue vanishes would indicate that attractive
gravity becomes entirely compensated by the action of
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repulsive gravity. This implies that the eigenvalue must
have an extremal at some point before it changes its sign.
According to this intuitive analysis, we propose to define
the radius of repulsion rrep as the first extremal that appears
in a curvature eigenvalue as we approach the origin of
coordinates from infinity, i.e.,

∂λ
∂r

����
r¼rrep

¼ 0; ð18Þ

where λ is any curvature eigenvalue and r is a radial
coordinate. In other words, the repulsion radius is the radial
distance from the origin to the position of the farthest
extremal. This radius determines the region where it should
be possible to detect the effects of repulsive gravity, for
instance, by using test particles.
We will see in the following sections that the above

purely intuitive motivation, which is the basis of our
definition of repulsion radius, leads to physically reason-
able results in several examples.

IV. NAKED SINGULARITIES WITH BLACK HOLE
COUNTERPARTS

To study the structure of the curvature tensor of the Kerr-
Newman naked singularities represented by the line
element (1), it is convenient to introduce the orthonormal
tetrad

ϑ0 ¼
�
r2 − 2Mrþ a2 þQ2

r2 þ a2cos2θ

�
1=2

ðdt − asin2θdφÞ;

ϑ1 ¼ sin θ

ðr2 þ a2cos2θÞ1=2 ½ðr
2 þ a2Þdφ − adt�;

ϑ2 ¼ ðr2 þ a2cos2θÞ1=2dθ;

ϑ3 ¼
�

r2 þ a2cos2θ
r2 − 2Mrþ a2 þQ2

�
1=2

dr: ð19aÞ

Thus, using the Cartan equations and the matrix
formalism presented in the previous section, it is straight-
forward to show that the ð3 × 3Þ curvature matrix can be
written as

R ¼
0
@ l 0 0

0 l 0

0 0 −2lþ k

1
A; ð20Þ

with

l ¼ −
�
M −

Q2ðrþ ia cos θÞ
r2 þ a2cos2θ2

��
r − ia cos θ
r2 þ a2cos2θ

�
3

; ð21Þ

k ¼ −
Q2

ðr2 þ a2cos2θÞ2 : ð22Þ

Notice that in this invariant representation of the curvature
all the important properties of the spacetime can easily be
seen: It is asymptotically flat because limr→∞l ¼
0 ¼ limr→∞k; it is flat in the limit M ¼ Q ¼ a ¼ 0; the
only singular surface is defined by the equation
r2 þ a2 cos2 θ ¼ 0; and the curvature does not suffer any
particular change on the horizon.
Consider the simplest case of the Schwarzschild space-

time. The SOð3; CÞ curvature matrix reduces to

RSchw ¼ −
M
r3

diagð1; 1;−2Þ; ð23Þ

and so the eigenvalues are

λ3 ¼
2M
r3

; λ1 ¼ λ2 ¼ −
M
r3

¼ −
1

2
λ3: ð24Þ

All these eigenvalues as well as the corresponding first
derivatives are monotonically increasing, do not change
their sign, and diverge at the central singularity situated at
r ¼ 0. This means that the field is always attractive if we
assume a positive mass. The only way to change the sign of
these eigenvalues is to change the sign of the mass,
M → −M, leading to the vanishing of the black hole
horizon. This implies that the spacetime with negative
mass represents a naked singularity whose gravitational
field is always repulsive. This is in accordance with our
standard interpretation of the Schwarzschild spacetime.
Consider now the Reissner-Nordström case. The curva-

ture matrix can be represented as

RRN ¼ −
1

r3

�
M −

Q2

r

�
diagð1; 1;−2Þ

þQ2

r4
diagð0; 0;−1Þ; ð25Þ

and the eigenvalues are

λ1 ¼ λ2 ¼ −
M
r3

þQ2

r4
;

λ3 ¼
2M
r3

−
3Q2

r4
¼ −2λ1 −

Q2

r4
:

ð26Þ

The behavior of these eigenvalues is depicted in Fig. 1.
Computing their first derivatives, it is easy to see that λ1 and
λ3 have extremals at 4Q2

3M and at 2Q2

M respectively. Thus,
according to our definition of repulsion radius (18), we take
the greatest value

rRNrep ¼ 2Q2

M
; ð27Þ

as defining the repulsion radius of the Reissner-Nordström
spacetime.
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In contrast with the value obtained from the Newtonian
limit in Sec. II, this value of the repulsion radius is greater
than the classical radius of a charged body with massM and
charge Q. It is therefore possible to interpret repulsive
gravity in this case as a classical effect.
In Fig. 2, we show the behavior of the eigenvalue λ3,

which determines the repulsion radius, for a fixed value of
the mass and different values of the charge. We notice that
even in the case of black holes a repulsion radius exists.
This is in accordance with the repulsive effects that have
been detected by analyzing the motion of test particles in
the Reissner-Nordström black hole [25,26]. In fact, the
outer horizon radius can be expressed as

rþ ¼ M

0
B@1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

rRNrep
2M

s 1
CA ð28Þ

in terms of the repulsion radius. We see that a black hole
can exist only if rRNrep ≤ 2M, and naked singularities are

characterized by rRNrep > 2M. The two radii coincide at

rþ ¼ rRNrep ¼ 3
2
M, i.e. for Q2

M2 ¼ 3
4
. Accordingly, for values

of the charge-to-mass ratio Q2

M2 ≤ 3
4
, the repulsion radius is

completely covered by the horizon. For values in the

interval 1 ≥ Q2

M2 > 3
4
, the repulsion radius is located outside

the horizon. Finally, for naked singularities with 1 < Q2

M2

only the repulsion radius exists. This is in agreement with
the results obtained by analyzing the circular motion of test
particles. In fact, in [26] it was found that due to repulsive

gravity a test particle situated on the radius Q2

M can stay at
rest with respect to an observer at infinity. The place where
the test particle can stay at rest is located inside the sphere
defined by the repulsion radius.
Consider now the case of the Kerr spacetime. The

curvature matrix is given by

R ¼ −M
�

r − ia cos θ
r2 þ a2cos2θ

�
3

diagð1; 1;−2Þ; ð29Þ

with eigenvalues

λ1 ¼ λ2 ¼ −
1

2
λ3 ¼ −M

�
r − ia cos θ
r2 þ a2cos2θ

�
3

: ð30Þ

Computing the partial derivatives of the real and imaginary
part of the eigenvalues, one can see that there are several
extremal points. We choose the greatest value to define the
repulsion radius

rKrep ¼ ð1þ
ffiffiffi
2

p
Þa cos θ ≈ 2.41a cos θ; ð31Þ

of the Kerr central source. The configuration determined by
this repulsion radius corresponds to two spheres whose
centers are located on the symmetry axis at a distance
1
2
ð1þ ffiffiffi

2
p Þa from the equatorial plane (see Fig. 3).

Notice that on the equatorial plane (cos θ ¼ 0) the
repulsion radius vanishes. This is in accordance with the
behavior of the curvature eigenvalues [cf. Eq. (29)] which
on the equatorial plane coincide with those of the
Schwarzschild spacetime. This, however, does not mean
that on the equatorial plane repulsive gravity is absent. In
fact, we interpret the repulsion spheres as the regions where
repulsive gravity is “generated,” and can become dominant.
Of course, outside these regions, the effects of repulsive
gravity can also be detected [27,28]. This has been recently
confirmed by studying the circular motion of test particles
on the equatorial plane of the Kerr spacetime [29].
Notice also that the Kerr repulsion radius vanishes as the

angular momentum vanishes, independently of the value of
the mass. This result is in agreement with the result
obtained in the Schwarzschild case. In fact, we have seen
that a positive mass cannot generate repulsive gravity and
therefore the limiting case of a vanishing angular

1 2 3 4 5
0.5

0.4

0.3

0.2

0.1

0.0

0.1

r

r

FIG. 2 (color online). Behavior of the curvature eigenvalues λ3
in terms of the radial coordinate r for M ¼ 1 and Q ¼ ffiffiffiffiffiffi

0.9
p

(red
dotted curve),Q ¼ 1 (blue solid curve),Q ¼ ffiffiffiffiffiffi

1.1
p

(black dashed
curve) and Q ¼ ffiffiffiffiffiffi

1.2
p

(green dash-dotted curve).
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0.01

0.00
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0.02
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r

FIG. 1 (color online). Behavior of the curvature eigenvalues λ1
(dashed curve) and λ3 (solid curve) in terms of the radial
coordinate r for the values M ¼ 1 and Q2 ¼ 2 that correspond
to a naked singularity.
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momentum with positive mass cannot correspond to a
repulsion radius. This means that a positive mass alone
cannot generate repulsive gravity, but only in connection
with an angular momentum can it act as a source of
repulsive gravity.
Using the expression for the repulsion radius, it is

possible to rewrite the radius of the outer ergosphere as

rerg
M

¼ 1þ
�
1 −

�
rKrep

ð1þ ffiffiffi
2

p ÞM

�
2
�
1=2

; ð32Þ

so that the two radii coincide at

rKrep ¼ rerg ¼
ð1þ ffiffiffi

2
p Þ2

2þ ffiffiffi
2

p M ≈ 1.71M: ð33Þ

This implies that the repulsion spheres can be entirely
contained inside the ergosphere, depending on the value of
the angular momentum. Nevertheless, there exists a wide
interval of values for black holes and naked singularities in
which parts of the repulsion spheres can be situated outside
the ergosphere.
We finally analyze the case of the Kerr-Newman

spacetime. The curvature matrix is given in Eq. (20),
and the eigenvalues are

λ1 ¼ λ2 ¼ l; λ3 ¼ −2lþ k ¼ −2λ1 þ k; ð34Þ

with l and k given in Eqs. (21) and (22), respectively. A
numerical analysis shows that all the eigenvalues have
extremals, and the one of the real part of λ3 is the first found
when approaching the origin of coordinates from infinity.
The real part of λ3 has extremals at the roots of the equation

r3ðMr − 2Q2Þ þ a2cos2θ½2Q2rþMða2cos2θ − 6r2Þ� ¼ 0:

ð35Þ
In the limiting case of a vanishing angular momentum
ða ¼ 0Þ, we obtain the Reissner-Nordström repulsion
radius, rRNrep ¼ 2Q2

M , and for a vanishing electric charge we
recover the expression for the Kerr repulsion radius
rKrep ¼ ð1þ ffiffiffi

2
p Þa cos θ. In general, the roots will depend

on the explicit values of Q and a. In Fig. 4, we find
numerically the zeros of the polynomial (35) for a particular
naked singularity, indicating that the repulsion radius
exists.
We see that on the equator, the repulsion radius coincides

with the Reissner-Nordström radius. Then, it increases as
the azimuthal angle decreases and reaches its maximum
value on the axis, θ ¼ 0. A more detailed numerical
analysis shows the presence of a second repulsion radius
at distances very close to the singularity. We illustrate this
behavior in Fig. 5 for a particular extreme black hole. It
follows that in this case each repulsion region is represented
by two intersecting spheroids whose radius is proportional
to the value of the angular momentum parameter a. The
intersection of the spheroids with the equatorial plane
determines a circle whose radius coincides with the
Reissner-Nordström repulsion radius, rRNrep ¼ 2Q2

M . This
means that as the value of the electric charge tends to
zero, the intersecting circle must vanish, and the repulsion
regions turn into two spheres with only one point of
intersection on the origin of coordinates. This coincides
with the result obtained for the Kerr spacetime, as illus-
trated in Fig. 3. In the case of naked singularities, the
geometric structure of the repulsion regions remains
unchanged for small values of Q. In the limit Q → ∞,
however, the outer repulsion regions turn into a sphere,
whereas the interior repulsion region still corresponds to
two spheroids with no intersection on the equatorial plane.

0 2 4 6 8 10
2000

0

2000

4000

6000

r

r

FIG. 4. The zeros of the polynomial (35) determine the
repulsion radius of a Kerr-Newman naked singularity with
M ¼ 1, Q ¼ ffiffiffi

2
p

, and a ¼ ffiffiffiffiffi
10

p
, for different values of the

azimuthal angle: θ ¼ 0 (solid curve), θ ¼ π
6
(long-dashed curve),

θ ¼ π
3
(dash-dotted curve), θ ¼ π

2
(dotted curve).

FIG. 3 (color online). Region determined by the repulsion
radius rKrep ¼ ð1þ ffiffiffi

2
p Þa cos θ in a Kerr spacetime with a ¼ 1.

Only the projection of the repulsion spheres on a plane orthogo-
nal to the equatorial plane is here illustrated.
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Our numerical study of the Kerr-Newman repulsion
radius leads to results that are in agreement with the
limiting cases in which the results can be obtained
analytically. In addition, the idea of determining regions
where repulsive effects occur may represent a criterion to
investigate how to match interior and exterior solutions of
Einstein’s equations [30].

V. FINAL OUTLOOKS
AND PERSPECTIVES

In this work, we proposed an invariant definition of the
repulsion radius in terms of the eigenvalues of the curvature
tensor. It is defined as the radial distance between the origin
of coordinates and the first extremal that is found in any
curvature eigenvalue when approaching the origin of
coordinates from infinity. The space contained within
the repulsion radius can be interpreted as the region where
the effects due to repulsive gravity can become very
important.
We tested our invariant definition of the repulsive gravity

in all the naked singularity spacetimes with a black hole
counterpart. In the case of the Schwarzschild metric we
established that repulsive gravity can only exist for negative
values of the mass parameter, a result which is in agreement
with our intuitive representation of a Schwarzschild naked
singularity. In the case of a Reissner-Nordström spacetime
we found an analytic expression for the repulsion radius,

rRNrep ¼ 2Q2

M . In this case, for black holes with Q2

M2 ≤ 3
4
the

repulsion sphere is covered by the horizon. Otherwise, the
repulsion sphere is located outside the horizon.
We derived for the Kerr spacetime the repulsion radius

rKrep ¼ ð1þ ffiffiffi
2

p Þa cos θ, determining a configuration of two
spheres that can be located either completely or partially
inside the ergosphere. In the case of the Kerr-Newman

spacetime, it was not possible to derive an analytic
expression for the repulsion radius, but we performed a
detailed numerical analysis of the corresponding condi-
tions. We found that in this case the repulsion region
consists of two intersecting ellipsoids that generate a
geometric structure which is symmetric with respect to
the equatorial plane and to the azimuthal axis. This
structure reduces to the corresponding configurations in
the limiting Kerr and Reissner-Nordström cases.
We notice that the invariant definition of repulsion radius

as presented in this work is not unique. One could, for
instance, define an alternative radius as the largest distance
from zero of the radial integral of the curvature eigenvalues
which vanish at infinity.1 A straightforward computation
shows that the integral of the real part of λ3 yields the
largest alternative repulsion radius which can be expressed
as

~rKNrep ¼ Q2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q4 þ 4a2M2cos2θ

p
2M

ð36Þ

for the Kerr-Newman spacetime. The technical advantage
of this alternative definition is that it leads to an analytic
expression also in the Kerr-Newman spacetime, instead of
the numerical approach that must be used when applying
our definition as given in Eq. (18). However, there is a
particular difference between the two radii, suggesting that
our definition could lead to more physically reasonable
results. In fact, we can see that ~rrep as well as rrep define a
similar geometric structure for the repulsion regions, but in
general the only difference is that ~rrep < rrep in all the cases
(the exterior repulsion radius in the Kerr-Newman space-
time). So, for instance, in the Reissner-Nordström space-
time, the alternative repulsion radius coincides with the
classical radius Q2=M. This choice, however, does not
agree with the results obtained by analyzing the motion of
test particles in this spacetime. In fact, in [26] it was shown
that a particle located at the classical radius can remain “at
rest” (zero angular momentum) with respect to an observer
situated at infinity. This means that the classical radius
corresponds to the place where repulsive gravity entirely
compensates attractive gravity and, therefore, cannot be
considered as a definition for the onset of repulsion.
Moreover, inside the classical radius no timelike circular
orbits are allowed. It is also interesting to note that at the
classical radius the Weyl part of the curvature tensor (25)
vanishes, which could be interpreted as a spot of “zero
gravity.” The definition proposed here in Eq. (18) yields in
this case rRNrep ¼ 2Q2=M, which is greater than the classical
radius and, therefore, more suitable to be used as the
definition of the onset of repulsive gravity.

FIG. 5 (color online). Location of the repulsion regions of a
Kerr-Newman extreme black hole with M ¼ 1, Q ¼ 1

2
and

a ¼
ffiffi
3
4

q
. The repulsion region closer to the central singularity

exists only for θ ≠ 0, and corresponds to a second root of the
polynomial (35) which exists only outside the equator.

1We thank an anonymous referee for pointing out this
possibility.
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The repulsion region as defined here is located in all the
cases near the origin of coordinates so that repulsive effects
are expected to become very important only in the vicinity
of the central compact object. This result is confirmed by a
different study in which the circular motion of test particles
has been investigated for black holes and naked singular-
ities [26,29,31].
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