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Tachyon inflation is reconsidered by using the recent observational data obtained from Planck-2013 and
BICEP2. The Hamilton-Jacobi formalism is picked out as a desirable approach in this work, which allows
one to easily obtain the main parameters of the model. The Hubble parameter is supposed as a power-law
and exponential function of the scalar field, and each case is considered separately. The constraints on the
model, which come from observational data, are explained during the work. The results show a suitable
value for the tensor spectral index and an appropriate form of the potential.
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I. INTRODUCTION

Inflationary cosmology has become the unrivaled para-
digm for explaining the early evolution of the Universe.
Over the past decades, this scenario has been supported by
different observational data [1]. It could perfectly describe
the problem of the hot big bang model and also provides a
mechanism for producing density perturbations, which are
absolutely necessary for large scale structure of the
Universe [1,2]. It also predicts a gravitational wave which
has just been confirmed [3]. Standard inflationary cosmol-
ogy is described by a single scalar field which slowly rolls
down its potential. This scenario is known as chaotic
inflation proposed by Linde in 1983 [4]. So far, different
inflationary scenarios have been introduced; however,
chaotic inflation has become the most favored one because
of its simplicity. Various potentials which give a desirable
inflation have been considered [5–7]. In addition to the
slow-rolling approximation, there is another method for
studying inflation known as the Hamilton-Jacobi approach
[8–11]. In this approach, the Hubble parameter is intro-
duced as a function of the scalar field, instead of intro-
ducing a potential. By doing so, the whole parameters of
the model could be derived easily.
M or string theory inspired models are under active

consideration in cosmology at present. It has recently been
suggested that the rolling tachyon condensate, in a class
of string theories, may have interesting cosmological con-
sequences [12]. Sen [13] has shown that the decay of
D-branes produces a pressureless gas with finite energy
density that resembles classical dust. Rolling tachyon matter
associated with unstable D-branes has an interesting
equation of state which smoothly interpolates between −1

and 0 [12]. The tachyon field associated with unstable
D-branes might be responsible for cosmological inflation at
early epochs due to tachyon condensation near the top of the
effective potential [14,15] and could contribute to some new
form of cosmological dark matter at late times [13]. The
cosmological aspect of tachyons has been studied by several
authors [14–32]. Besides the string theory aspect of this
model, tachyon inflation has been considered by utilizing
potentials which are related to the k-inflation model [33–35].
In the present work, we consider tachyon inflation by

using the Hamilton-Jacobi approach. The relevant param-
eters are obtained in terms of the Hubble parameter and its
first derivative. It shall be shown that all of the main
parameters of the model could easily be derived. The latest
observational data are used to determine the free parameters
of the model. The biggest problem in the study of scalar
field models is unknown potential form. Based on this, we
will obtain some potential forms which have the best
agreement with observational data in the inflation epoch.
The paper is organized as follows: Sec. II is related to the

general equation of the model. The Friedmann equations
and conservation equation are expressed in this section.
Then, in two subsections, the Hamilton-Jacobi and attrac-
tive behavior of the model are discussed. In Sec. III, for
more specific results, two typical functions are introduced
for the Hubble parameter in two separate subsections, as
power-law and exponential functions, and the observational
constraints on the model are explained. The results of the
work are summarized in Sec. IV.

II. GENERAL FRAMEWORK

In Born-Infeld form, the effective action for tachyon
could be described by [36]

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
m2

p

16π
R − VðϕÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ gμν∂μϕ∂νϕ

q �
; ð1Þ
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in which R is the Ricci scalar, derived from metric gμν, and
ϕ is the tachyon scalar field with minimal coupling to
gravity. The potential of the scalar field is denoted by VðϕÞ.
Also, mp is the Planck mass. In this work, we are going to
consider the Universe evolution at one of the earliest times,
namely, inflation. In this period of time, it is assumed that
the scalar field dominates the Universe and derives
inflation.
Taking a variation of action with respect to two inde-

pendent variables gμν and ϕ leads to two main dynamical
equations. Based on recent observational data, the Universe
is isotropic, homogeneous, and spatially flat. The common
metric to describing such a geometry is the Friedmann-
Lemaître-Robertson-Walker (FLRW) metric, which is read
as

ds2 ¼ −dt2 þ a2ðtÞðdx2 þ dy2 þ dz2Þ: ð2Þ

The energy-momentum tensor for such a spatially flat
FLRW universe is described by Tν

μ ¼ diagð−ρ; p; p; pÞ,
where ρ and p are tachyon energy density and pressure,
respectively, and given by

ρ ¼ VðϕÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − _ϕ2

q ; p ¼ −VðϕÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − _ϕ2

q
: ð3Þ

The Friedmann equation keeps its usual form as

H2 ¼ 8π

3m2
p
ρ; _H ¼ −4π

m2
p
ðρþ pÞ; ð4Þ

and the acceleration could be derived easily from Eq. (4) as

ä
a
¼ H2 þ _H ¼ 8πρ

3m2
p

�
1 −

3

2
_ϕ2

�
: ð5Þ

The Universe stays in the accelerated expansion phase as
long as _ϕ2 < 2=3. This condition is different from its
corresponding condition in standard inflation where
_ϕ2 < VðϕÞ because there is no mention of a potential [37].
The equation of motion of the tachyon scalar field comes

from Eq. (1) as

ϕ̈þ
�
3H _ϕþ V 0ðϕÞ

VðϕÞ
�
ð1 − _ϕ2Þ ¼ 0; ð6Þ

which could be rewritten as a familiar form of the
conservation equation _ρþ 3Hρð1þ ωÞ ¼ 0. The tachyon
inflation should begin with a very small value of _ϕ, namely,
_ϕ2 ≪ 1, to get enough inflation.
There are two known approaches for studying the

inflation scenario. The first approach is “slow rolling,”
which has been widely used. In this formalism, it is
assumed that the potential of the scalar field dominated

over the kinetic term, and the scalar field slowly rolls down
to the minimum of its potential. The slow-rolling approxi-
mation comes to an almost flat potential during inflation,
which leads to enough expansion to solve standard cos-
mology problems. Moreover, it is necessary to introduce a
form of the potential to arrive at the final results of the
model. The second approach is known as Hamilton-Jacobi.
Instead of a potential, we need only to introduce a function
of the scalar field for Hubble parameter H ≔ HðϕÞ. Then,
one can derive almost the whole of the parameters of the
model. In the present work, the Hamilton-Jacobi approach
is picked out for considering the Universe evolution in the
inflationary epoch.

A. Hamilton-Jacobi approach

The Hubble parameter is supposed as a function of the
scalar field, namely, H ≔ HðϕÞ. Then, the time variable of
H could be rewritten as _H ¼ _ϕH0, where the prime denotes
derivative with respect to the scalar field. By using Eqs. (3)
and (4) , the time derivative of the scalar field could be
obtained in terms of scalar field as follows:

_ϕ ¼ −
2

3

H0ðϕÞ
H2ðϕÞ : ð7Þ

It is clear that, if H0 < 0 (H0 > 0), the scalar field increases
(decreases) by passing time, namely, _ϕ > 0 ( _ϕ < 0). Using
Eq. (7) and Friedmann equations (4), one can obtain

½H0ðϕÞ�2 − 9

4
H4ðϕÞ þ

�
4π

m2
p

�
2

V2ðϕÞ ¼ 0: ð8Þ

Equation (8) is the Hamilton-Jacobi equation. The potential
of the model is easily obtained as a function of the scalar
field from Eq. (8) as

VðϕÞ ¼ 3m2
p

8π
H2ðϕÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4

9

H02ðϕÞ
H4ðϕÞ

s
: ð9Þ

As the tachyon field grows up, its potential tends to zero
[ϕ → ∞ and VðϕÞ → 0]; however, the exact form of the
potential is unknown yet [38–40]. It was argued that the
exponential potential could explain the qualitative dynam-
ics of string theory of the tachyon [36]. Later, it was
suggested that a desirable cosmology could be constructed
by a runaway potential with the tachyonic equation of
state [41].
To avoid an imaginary potential, the term 4H02=9H4

must always be smaller than unity. Therefore, it comes to a
condition as 4H02=9H4 < 1, which must be satisfied.
In comparison to ordinary single scalar field inflation,

the slow-roll parameters are defined by [42]
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ϵðϕÞ≡ 2

3

�
H0ðϕÞ
H2ðϕÞ

�
2

; ηðϕÞ≡ 1

3

ðH00ðϕÞ
H3ðϕÞÞ : ð10Þ

It is assumed that during inflation the Universe undergoes a
quasi–de Sitter expansion, in which the slow-roll param-
eters are much smaller than unity: ϵ; jηj ≪ 1 (known as the
slow-roll approximation). Inflation ends when ä vanishes
or, equivalently, when the slow-roll parameter ϵ arrives at
unity. Hence, at the end of inflation, we have

H4 ¼ 2

3
H02; ð11Þ

therefore, the scalar field at the end of inflation could easily
be read.
Another important parameter is the scale factor of the

Universe, which is denoted by aðtÞ. By using Eq. (7) and
relation _a ¼ _ϕa0, the scale factor is expressed as

aðϕÞ ¼ ac exp

�
−
3

2

Z
H3

H0 dϕ
�
; ð12Þ

where ac is the constant of integration. The number of
e-folds, which describe the amount of expansion, is
described as

N ≡
Z

te

ti

Hdt ¼
Z

ϕe

ϕi

HðϕÞ
_ϕ

dϕ; ð13Þ

in which the subscript “e” and “i,” respectively, denote the
end and beginning of inflation. It seems that, in the
Hamilton-Jacobi approach, the main parameters of model
could be derived more easily than the slow-rolling
approach, with less assumptions.
During inflation, the scalar field and gravitons under-

went quantum fluctuation. One of the most important
advantages of inflation is that this theory not only can
solve the problem of standard cosmology, it also is able to
provide a mechanism to explain the observed anisotropy.
The main fluctuations are known as scalar and tensor
fluctuations, which are, respectively, known as curvature
and gravitational perturbation. These perturbations for
tachyon inflation are derived by using a similar method
as original scalar field inflation. The scalar perturbation for
the tachyon scalar field gets a different equation because of
its different coupling to geometry. However, the tensor
perturbation part, which describes the propagation of
gravitational waves, possesses the same equation as the
original scalar field, since there it has no coupling to matter.
Both of these equations and their answers are discussed in
Ref. [37] in more detail.

B. Attractor behavior

By using the Hamilton-Jacobi approach, it is easy to
consider whether all possible trajectories (or solutions)

converge to a common attractor solution. Doing so, we are
going to follow Ref. [43] and assume a homogeneous
perturbation to a solution H0ðϕÞ. If the homogeneous
perturbation part δH becomes small by passing time, it
could be said that the attractor condition is satisfied.
Substituting HðϕÞ ¼ H0ðϕÞ þ δHðϕÞ into Eq. (8) and

linearizing, one arrives at

H3
0ðϕÞδHðϕÞ − 2

9
H0

0ðϕÞδH0ðϕÞ≃ 0: ð14Þ

The solution of the above differential equation is given by

δHðϕÞ ¼ δHðϕiÞ exp
�
9

2

Z
ϕ

ϕi

H3
0ðϕÞ

H0
0ðϕÞ

dϕ

�
; ð15Þ

where δHðϕiÞ is the initial value of perturbation at ϕ ¼ ϕi.
Having HðϕÞ, one could investigate the behavior of
perturbation δHðϕÞ. The Hamilton-Jacobi approach makes
it easy to consider attractive behavior of solutions.
In the following section, a few typical examples

are expressed for HðϕÞ, and the consequences will be
discussed in more detail.

III. TYPICAL EXAMPLES

Up to now, the general forms of parameters have been
derived, and some crude results were obtained. In this
section, in order to get more specific results, we are going to
introduce two functions for the Hubble parameter in terms
of the scalar field, as a power-law function and an
exponential function.

A. Power-law function

As the first case, we assume the Hubble parameter is a
power-law function of scalar field HðϕÞ ¼ H1ϕ

n, where
H1 and n are constant. By using Eq. (7), the scalar field
could be expressed by

_ϕ ¼ −
2

3

n
H1ϕ

nþ1
: ð16Þ

Therefore, it clearly could be seen that the scalar field has a
decreasing (increasing) behavior for n > 0 (n < 0).
Regardless of the n sign, the general form of potential
could be derived from Eq. (9):

VðϕÞ ¼ 3m2
p

8π
H2

1ϕ
2n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4

9

n2

H2
1ϕ

2ðnþ1Þ

s
: ð17Þ

The condition of having a real potential leads to the
following expression:

ϕ2ðnþ1Þ >
4n2

9H2
1

; ð18Þ
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which should be satisfied during the inflation. It easily
could be checked that the potential condition is satisfied for
all values of n except for 0 < n < −1, where one encoun-
ters an imaginary potential.
Inflation ends when the acceleration ä vanishes. The

scalar field at the end of inflation could be obtained from
Eq. (11) as

ϕ2ðnþ1Þ
e ¼ 2

3

n2

H2
1

: ð19Þ

To get the initial value of the scalar field, the number of
e-folds relation (13) could be used. The integration is
computed easily, and one arrives at

ϕ2ðnþ1Þ
i ¼ 2n2

3H2
1

N ; ð20Þ

where

N ¼
�
2ðnþ 1ÞN

n
þ 1

�
:

The slow-roll parameters (10) for this case are

ϵðϕÞ ¼ 2n2

3H2
1ϕ

2ðnþ1Þ ; ηðϕÞ ¼ nðn − 1Þ
3H2

1ϕ
2ðnþ1Þ : ð21Þ

The scalar and tensor spectra indices, which directly come
from the amplitude of scalar and tensor perturbations
[37,44], are easily derived as

ns − 1 ¼ 4ηðϕiÞ − 6ϵðϕiÞ ¼
−ð4nþ 2Þ

nN
; ð22Þ

nT ¼ −2ϵðϕiÞ ¼
−2
N

; ð23Þ

and the consistency relation could be written as r ¼ −8nT
(for more details, refer to Refs. [37,44]). According to
recent observational data obtained from WMAP9þ
eCMBþ BAOþH0, the Planck-2013 satellite, and
Planck2013þWPþ highLþ BAO, the scalar spectral
index is about ns ¼ 0.9608� 0.0080, 0.9635� 0.0094,
and 0.9608� 0.0054, respectively. These observational
results could be used to impose a constraint on n, and
then one can obtain the tensor spectral index, predicted by
the model. In Table I, the variable n and tensor spectral
index nT are derived for three different values of ns and
number of e-folds N. It is seen that the parameter n gets a
negative value whose magnitude decreases by increasing
the number of e-folds and increases by a little enhancement
in the scalar spectral index. The tensor spectral index is
predicted to be about −0.02, which is acceptable in
comparison to observational data. In contrast with

parameter n, the magnitude of the tensor spectral index
increases by enhancement of N and reduces by increas-
ing ns.
Another perturbation is tensor perturbation, which is also

known as gravitational waves. The produced tensor fluc-
tuations induce a curled polarization in the CMB radiation
and increase the overall amplitude of its anisotropies at a
large scale. The physics of the early Universe could be
specified by fitting the analytical results of the CMB and
density spectral to corresponding observational data. At
first, it was thought that the possible effects of primordial
gravitational waves are not important and might be ignored.
However, a few years ago, it was found out that the tensor
fluctuations have an important role and should be more
attended for determining best-fit values of the cosmological
parameters from CMB and LSS spectra [45–47]. The
imprint of tensor fluctuation on the CMB brings this idea
to indirectly determine its contribution to power spectra by
measuring CMB polarization [46]. Such a contribution
could be expressed by the r quantity, which is known as the
tensor-to-scalar ratio and represents the relative amplitude
of the tensor to scalar fluctuation: r ¼ A2

T=A
2
s . Therefore,

constraining r is one of the main goals of a modern CMB
survey. On the other hand, determining an exact value for r,
which represents the existence of gravitational waves, is
very difficult. Based on Planck satellite data, we were able
only to put an upper bound for r as r < 0.11. A year later,
BICEP2 achieved this goal and found out an exact value for
this quantity as r ¼ 0.20, which is our latest observatio-
nal data.
The amplitude of the tensor perturbation is given by

A2
T ¼ rA2

s , where A2
s is the amplitude of the scalar pertur-

bation. Based on Planck-2013 data, this quantity is about
lnð1010A2

sÞ ¼ 3.098 [48]. The differential equation of the

TABLE I. Constraint on variable n, tensor spectral index nT ,
and free parameter H1 for three different values of the number
of e-folds and scalar spectral index. The scalar spectral index
is predicted by WMAP9þ eCMBþ BAOþH0 about ns ¼
0.9608 − 0.0080 ¼ 0.9528, Planck-2013 about ns ¼ 0.9635−
0.0094 ¼ 0.9541, and Planck2013þWPþ highLþ BAO about
ns ¼ 0.9608 − 0.0054 ¼ 0.9554, and, based on the latest obser-
vational results of Planck-2013, the tensor-to-scalar ratio is taken
as r ¼ 0.10.

ns 0.9528 0.9541 0.9554

N ¼ 55 n −2.57 −2.78 −3.05
nT −0.029 −0.027 −0.026
H1 1.97 × 10−5 4.25 × 10−6 5.88 × 10−7

N ¼ 60 n −2.14 −2.25 −2.40
nT −0.030 −0.029 −0.028
H1 5.49 × 10−4 2.3 × 10−4 8.03 × 10−5

N ¼ 65 n −1.89 −1.97 −2.06
nT −0.032 −0.030 −0.029
H1 3.76 × 10−3 2.12 × 10−3 1.08 × 10−4
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tensor perturbation for the tachyon scalar field is the same
as the ordinary scalar field, because there is no coupling
between the tensor perturbation and matter term. Then one
could arrive at the same results for the amplitude of the
tensor perturbation as A2

T ¼ 4H2=25πm2
p [37,49]. By using

this relation, and the newest observational data about A2
s

and r, the quantity H1 could be determined. In Table I, the
values of free parameters H1 are presented for different
values of the number of e-folds and spectral index, by using
recent observational data. H1 increases by enhancement of
the number of e-folds, and, for each value of N, it decreases
by increasing the scalar spectral index.
The free parameters of the model have been determined

from observational data and are expressed in Table I. These
results could be used in potential equation (17), to find out
which kind of potential has been predicted by the model for
this case. The potential is depicted for three different values
ofN in Figs. 1(a), 1(b), and 1(c). In each plot, we have three
potential curves corresponding to three different values of
ns. A negative value of n comes to a decreasing potential
which approaches to zero by increasing the scalar field. It is
clearly seen that the gap between these curves reduces by
enhancement of N, and they come close to each other.

1. Attractive behavior

As a final step of the first typical example, the attractor
behavior of the solution is considered. From Eq. (15), the
perturbation δHðϕÞ is obtained as

δHðϕÞ ¼ δHðϕiÞ exp
�

9H2
1

4nðnþ 1Þ ½ϕ
2ðnþ1Þ − ϕ2ðnþ1Þ

i �
�
:

ð24Þ

For negative values of n in Table I, the time derivative of
scalar field is positive, which shows that the scalar field
increases by passing time. Therefore, the exponential term
on the right-hand side of Eq. (24) decreases by passing
time and tends to zero, then the perturbation part of the
Hubble parameter vanishes, and the model has an attractive
behavior.

B. Exponential function

In the second case, an exponential function of the scalar
field is introduced for the Hubble parameter as
HðϕÞ ¼ H2 expðsϕÞ, where s is constant and it could be
positive or negative. The time derivative of the scalar field
is read from Eq. (7):

_ϕ ¼ −2s
3H2

expð−sϕÞ; ð25Þ

so the scalar field increases (decreases) for negative
(positive) values of s. The potential for this case is
expressed as follows:

VðϕÞ ¼ 3m2
p

8π
H2

2 expð2sϕÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4s2

9H2
2

expð−2sϕÞ
s

; ð26Þ

which remains real during inflation. By the same method, at
the end of inflation, by using Eq. (11), the scalar field is
derived as

expð2sϕeÞ ¼
2s2

3H2
2

; ð27Þ

and, on the other hand, the initial scalar field is given in
terms of the number of e-folds by

expð2sϕiÞ ¼
2s2

3H2
2

ð1þ 2NÞ: ð28Þ

From Eqs. (10), the slow-roll parameters are expressed by

ϵðϕÞ¼ 2s2

3H2
2 expð2sϕÞ

; ηðϕÞ¼ s2

3H2
2 expð2sϕÞ

: ð29Þ

Then scalar and tensor spectral indices related to this case
are obtained by using the above relation and initial value of
the scalar field as

1.5 2.0 2.5 3.0 3.5 4.0
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V

(a) (b) (c)

FIG. 1 (color online). The potential for different values of the number of e-folds and scalar spectral index as ns ¼ 0.9528 (solid line),
0.9541 (large-dashed line), and 0.9554 (dotted line). The vertical axis indicates the potential (×10−45), and the horizon axis denotes the
scalar field (×10−4). (a) Potential for N ¼ 55; (b) Potential for N ¼ 60; (c) Potential for N ¼ 65.
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ns − 1 ¼ 4ηðϕiÞ − 6ϵðϕiÞ ¼
−4

1þ 2N
; ð30Þ

nT ¼ −2ϵðϕiÞ ¼
−2

1þ 2N
; ð31Þ

which, in contrast to the previous case, depend only on the
number of e-folds parameter.
Recent observational data of WMAP9þ eCMBþ

BAOþH0, the Planck-2013 satellite, and Planck2013þ
WPþ highLþ BAO show that the scalar spectral index is
about ns ¼ 0.9608� 0.0080, 0.9635� 0.0094, and
0.9608� 0.0054, respectively. Therefore, from Eq. (30),
one could arrive at the number of e-folds predicted by the
model and then get the tensor spectral index. The model
predictions for the number of e-folds and nT are displayed
in Table II for different values of ns. By increasing the
scalar spectral index, the number of e-folds increases;
however, the magnitude of the scalar spectral index reduces.
As in the previous case, the tensor perturbation for this

case could be derived as well. Therefore, by using the
tensor perturbation expression, one could easily determine
the free parameter s. Table II provides the constraint on
variable s for different values of the scalar spectral index.
The model supports both positive and negative values of s.
The potential for this case has been expressed in Eq. (26),
which could be plotted by using the results of Table II. In
order to have a usual behavior for the potential, the negative

values of s are picked out. Finally, the potential is plotted
for three different values of H2 in Figs. 2(a)–2(c). In each
figure, we have plotted the evaluation of the potential for
three different values ns. In Fig. 2(a), it is seen that the
potential has a decreasing behavior and tends to zero by
increasing the scalar field.

1. Attractive behavior

As a final step of the first typical example, the attractor
behavior of the solution is considered. From Eq. (15), the
perturbation δHðϕÞ is obtained as

δHðϕÞ ¼ δHðϕiÞ exp
�
9H2

2

4s2
½expð2sϕÞ − expð2sϕiÞ�

�
:

ð32Þ
By taking a negative value of parameter s, it is mentioned
that the scalar field increases by passing time. Therefore,
the exponential term on the right-hand side of Eq. (32)
reduces, which gives rise to the perturbation term δH
becoming smaller by passing time. Then, it seems that the
second example of the model possesses the attractive
behavior as well.

IV. PARAMETERS BASED ON BICEP2

BICEP2 is the second generation of the background
imaging cosmic extragalactic polarization (BICEP) instru-
ment, which is placed at the South Pole. It is designed to
measure the polarization of the CMB on an angular scale of
1–5, near the peak of the B-mode polarization signature of
primordial gravitational waves from cosmic inflation.
BICEP2 has completed three years of observation
(2010–2012). The report given in March 2014 stated that
BICEP2 has detected B modes from gravitational waves of
the early Universe. An announcement was made on March
17, 2014, that BICEP2 has detected B modes at the level of
r ¼ 0.20þ0.07

−0.05 (for more details about the results and
experiment, refer to Ref. [3]). In this section, we are going
to use the BICEP2 result for our model and find out what
happens to the parameters. By utilizing the same process as

TABLE II. The constraint on the number of e-folds N and
variable s for different values of ns. The scalar spectral index is
predicted by WMAP9þ eCMBþ BAOþH0 about ns ¼
0.9608 − 0.0080 ¼ 0.9528, Planck2013þWPþ highLþ BAO
about ns ¼ 0.9611, and Planck-2013 about ns ¼ 0.9675, and,
based on the latest observational results of Planck-2013, the
tensor-to-scalar ratio is taken as r ¼ 0.10.

ns 0.9528 0.9611 0.9675

N 41.87 50.91 61.03
nT −0.023 −0.019 −0.016
s=mp �8.77 × 10−6 �7.96 × 10−5 �7.28 × 10−5
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FIG. 2 (color online). The potential for different values of the number of the scalar spectral index as ns ¼ 0.9528 (solid line), 0.9611
(large-dashed line), and 0.9675 (dotted line). The vertical axis indicates the potential (×10−64), and the horizon axis denotes the scalar
field (×10−14). (a) Potential for H2

2 ¼ 1030; (b) Potential for H2
2 ¼ 1031; (c) Potential for H2

2 ¼ 1032.
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the previous section, the parameters could be derived for
both cases, in which the results are expressed in Table III.
Note that the spectra indices remain unchanged, because

they are independent of r, and we have different values for
H1 in the first case and s=mp in the second case. In a
comparison, one could realize that the obtained parameters
by using BICEP2 results are smaller than the corresponding
parameters which are obtained by using Planck-2013 data.
However, the general behavior of potentials are the same as
previous cases.

V. CONCLUSION

By using the Hamilton-Jacobi approach, we have recon-
sidered inflationary cosmology by this assumption that the
scalar field dominating the Universe is a tachyon scalar
field. After deriving the general equation of the model, it
was supposed that the Hubble parameter could be defined
as a function of the scalar field. By utilizing this approach,
the main parameters of the model could easily be derived.
The slow-roll parameters and the potential of the model
were acquired as a function of the Hubble parameter. In the
next step, to arrive at more specific results, two typical
examples were considered, in which the Hubble parameter
was introduced as a power-law and exponential function of
the scalar field. By using recent observational data of the
Planck-2013 satellite, WMAP9þ eCMBþ BAOþH0,
and Planck2013þWPþ highLþ BAO, about the scalar
spectral index, and BICEP2 about the tensor-to-scalar ratio,
the free parameters of the model are determined, and then
the appropriate potential for each case was obtained. As a
first case, the power-law case was considered, in which, by
using the recent observational data for the scalar spectral

index and the usual value of the number of e-folds, a
constraint on variable n has been obtained. The conse-
quence has shown that there is n ≅ −2.7;−2.2, and −1.9,
respectively, for N ¼ 55, 60, and 65. These values of n lead
to a tensor spectral index about −0.02, which is in good
agreement with observational data. Another constraint
came from the amplitude of the perturbation for constant
coefficient H1. By using these results, a schematic picture
of the potential was prepared which shows that the potential
decreases by increasing the scalar field.
In the second case, the Hubble parameter was described

as an exponential function. The scalar spectral index
relation for this case depended only on the number of e-
folds. Therefore, a constraint on N was acquired by
utilizing the observational data of ns. It was shown that
the number of e-folds should be about 42–61. The tensor
spectral index was only related to the number of e-folds,
too. Therefore, the observational constraint on N came to
the tensor spectral index about −0.019, which is acceptable
in comparison to observational data. The same as the
previous case, by using the amplitude of the perturbation,
we got another constraint for variable s. It was shown that
this variable could be positive or negative. In order to plot
the potential of this case, one needs to determine the
coefficient H2. This parameter was not derived from
observational data; however, there is another condition
for H2, which comes from positivity of the scalar field.
Then, for some proposed value of H2 and different values
of ns, the potential was depicted. It was found that the
model is able to predict a kind of potential which decreases
by enhancement of the scalar field.
Constraining the parameters of the model performed by

using Planck-2013 and BICEP2 data, it was found out that
the only changes appear in the values of H1, in the first
case, and s=mp, in the second case, and other parameters
such as spectra indices remain unchanged. These param-
eters get a larger value by using the Planck-2013 data. It is
expressed that the general behavior of the potential for both
cases is the same.
The attractive behavior of the model was considered for

each case. The results show a desirable situation, in which
the homogeneous perturbation of the Hubble parameter δH
decreases by increasing the scalar field (or passing time).
The final results demonstrate that the attractive behavior
could be satisfied for both proposed cases.
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