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Recently we suggested a reformulation of general relativity which completely sequesters from gravity all
of the vacuum energy from a protected matter sector, assumed to contain the standard model. Here we
elaborate further on the mechanism, presenting additional details of how it cancels all loop corrections and
renders all contributions from phase transitions automatically small. We also consider cosmological
consequences in more detail and show that the mechanism is consistent with a variety of inflationary
models that make a universe big and old. We discuss in detail the underlying assumptions behind the
dynamics of our proposal, and elaborate on the relationship of the physical interpretation of divergent
operators in quantum field theory and the apparent “acausality” which our mechanism seems to entail,
which we argue is completely harmless. It is merely a reflection of the fact that any UV sensitive quantity in
quantum field theory cannot be calculated from first principles, but is an input whose numerical value must
be measured. We also note that since the universe should be compact in spacetime, and so will collapse in
the future, the current phase of acceleration with wDE ≈ −1 is just a transient. This could be tested by future
cosmological observations.
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I. INTRODUCTION

Cosmological observations suggest that the cosmologi-
cal constant is different from zero. Yet we have no clear and
compelling argument which would explain the observed
scale of the cosmological constant in quantum field theory
(QFT). This fact is recognized under the term “the cosmo-
logical constant problem” [1–3]. In a nutshell, the problem
arises because of the universality of gravity. The equivalence
principle of general relativity (GR), which controls how
energy distorts geometry, posits that all forms of energy
curve spacetime. Since in QFT even the vacuum possesses
energy density, given by the resummation of the QFT
bubble diagrams, this means that the vacuum geometry
generically must be curved. The scale of the curvature is
Lvac ∼ ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

GNρvac
p Þ−1. Cosmological observations then con-

strain it to be Lvac ≳ 1024 cm, implying that the energy
density of the vacuum must satisfy ρvac ≲ ð10−3 eVÞ4.
However, attempts to estimate the contributions to ρvac in
QFT, using the available scales in nature, exceed this value
manyfold. An early example of this contradiction led Pauli
to famously quip “that the radius of the world would not
even reach to the Moon” (cf. 3.8 × 107 cm) after he had
estimated the vacuum energy contributions down to the
scale set by the classical radius of the electron [4].
Estimates involving higher energy cutoffs yield energy
densities of the vacuum far in excess of this value, at least

as high as ðTeVÞ4, and possibly as high as Planckian
scales, M4

Pl.
The structure of GR, namely the underlying diffeo-

morphism invariance, allows one to freely add a classical
contribution to the cosmological constant and tune it with
tremendous precision to cancel off the vacuum energy.
This means one needs to pick the classical piece to be
the opposite of whatever the (regulated) result of a field
theory calculation of the quantum vacuum energy yields,
plus an extra ð10−3 eVÞ4, once one chooses to satisfy the
cosmological observations with the leftover remaining
after the cancellation. However, this choice is unstable in
any perturbative scheme for the computation of vacuum
energy: any change of the matter sector parameters or
inclusion of higher order loop corrections to the vacuum
energy shifts its value significantly, often by Oð1Þ in the
units of the UV cutoff.1 One must then retune the
classical term by hand order by order in perturbation
theory. This is discomforting. The classical contribution
to the cosmological constant is a separately conserved
quantity, coded in the initial conditions of the universe.
So the required retuning of its value needed to cancel the
subsequent corrections the vacuum energy in quantum
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1If exact, supersymmetry (SUSY) and/or conformal symmetry
can enforce the vanishing of vacuum energy. There are some
cases where the corrections might be smaller, of quadratic order
in the cutoff [5–7]. However the corrections are quartic in the
cutoff in generic cases, with interactions; without supersymmetry
and conformal symmetry, the vacuum energy is given by the
fourth power of the breaking scale of these symmetries [3,8–11].
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theory means that one—in reality—must choose a com-
pletely different approximate description of the cosmic
history to attain the required smallness of the vacuum
curvature at late times.
One could try to argue how this might be a red herring,

by proposing to sum all the quantum contributions to the
total vacuum energy right away. After that one could
simply pick the required value of the classical contribution,
however tuned, and be done with it. One might even
wonder if the large corrections from known field theory
degrees of freedom are merely a problem of perturbation
theory rather than a real physical issue.2 However, this is
clearly impossible if one does not know the full QFT up to
whatever the fundamental cutoff may be. One can merely
guess the quantum contents of the universe beyond the TeV
scale, and so cannot be sure just what it is that needs to be
canceled. Further, quantum corrections to the vacuum
energy coming from phase transitions at late times would
not be properly accounted for either.
In fact, the subtleties are brought into focus when one

recounts how one really deals with UV-divergent quantities.
In QFT they must be renormalized: after a suitable
regularization, which at a technical level introduces a cutoff
(that renders the divergence formally finite, but very
sensitive to whatever lies beyond the cutoff) the diver-
gence—i.e. the contribution which diverges as the cutoff is
sent to infinity—must be subtracted by the bare counter-
term. This is the real role of the classical contribution to
the cosmological constant: it is the bare counterterm which
one must keep in the theory for the purpose of renorm-
alization. This is true even in effective field theories with a
hard cutoff [12], where one still renormalizes away the
cutoff-dependent terms which signify the dependence on
the unknown short distance physics. The remainder is
finite. However since it depends on an arbitrary subtrac-
tion scale it cannot be computed from first principles.
Thus since the vacuum energy is divergent its final value
cannot be predicted within QFT. It must be measured, just
as, for example, a quadratically divergent mass of a scalar
field. Once the measurement is performed, and the
terminal numerical value obtained, predictions can be
made for other observables, which depend on the renor-
malized vacuum energy, but are not divergent themselves.
Now, the measurement of the cosmological constant may

seem to be a simple exercise, since, after all, it is just one
number. However, this depends on the nature of the
mechanism of subtracting the UV-sensitive part from it.
If the subtraction scheme involves local fields, then the
leftover value could in principle vary in spacetime and
needs to be measured more precisely. In other words, once
must be able to distinguish between the cosmological

constant, and the contributions which vary in the far IR
very slowly, having weak dependence on very low
momenta. The problem with measuring the vacuum energy
is that it is a quantity which characterizes an object of
codimension zero. To measure it, one therefore ultimately
needs a detector of the same codimension: namely, the
whole universe. Only in this way can one assure that the
remainder is really a constant, being the same everywhere
and at all times. The measurement with an arbitrary
precision thus must be nonlocal, in space and in time,
from the viewpoint of an observer of a smaller codimension
cohabiting the universe. Remarks about the necessity of a
nonlocal measurement of cosmological constant were also
noted in [13].
Thus asking why the cosmological constant is small,

large, or anything in between ultimately does not—really—
make sense in the context of QFT coupled of gravity. To see
what it is, one must regulate it, renormalize it and measure
it. The one aspect of the problem which remains, however,
is why is the evaluation of the leftover cosmological
constant radiatively unstable? Or in other words, why do
the measurements of the cosmological constant after
regularization require large modifications of the finite
subtractions between consecutive orders in perturbation
theory? This issue is fully analogous to the gauge hierarchy
problem in QFT, and is well defined in QFT coupled to
gravity. Yet there are precious few clues as to how to
address it, in contrast to various extensions of the standard
model beyond the electroweak breaking scale designed
precisely to address the gauge hierarchy problem.3 Note,
that this applies to any attempt to address the cosmological
constant problem within the realm of local QFT.
At first sight, not only does this perspective invoke

nonlocality, but it also resembles a “circular argument.”
There is a precedent for this logic, however. Recall how a
notion of force is defined in Newtonian mechanics. To
formulate the second law, m~a ¼ ~F, one needs to first
introduce a standard of mass whose accelerations in
response to various externally applied agents calibrate their
forces. Only after such a calibration has been completed,
can one begin to make predictions for all other masses in a
Newtonian universe. The mass standard must be taken out
of the clockwork, since no predictions can be made for it:
its motion defines the forces, rather than the other way
around. Of course, since the mass characterizes objects
whose codimension is 3, the sector of the universe whose
evolution cannot be predicted is a mere worldline, a set of
measure zero. This is far easier to ignore. That the mass
scales in QFTof the standard model are all set by the Higgs,
whose own mass is quadratically divergent, and therefore

2Of course, this might sound implausible given that no
convincing alternatives to perturbation theory calculations of
cosmological constant have been offered to date.

3The absence of direct signatures from the LHC of any such
new beyond Standard Model (BSM) physics to date may raise
concerns whether naturalness is realized in nature. In what
follows, however, we shall ignore this.
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can only be determined a posteriori, by measurement, only
reaffirms this view further. The challenge, therefore, is not
to ask why the cosmological constant is small, but why it is
radiatively stable.
Motivated by this “vacuum” of natural protection mech-

anisms of the vacuum energy, in a recent paper [14] we
proposed a mechanism that ensures that all vacuum energy
contributions from a protected matter sector are in fact
sequestered from (semi)classical gravity. Further the
mechanism automatically renders all the contributions to
vacuum energy coming from the phase transitions small,
and hence observationally harmless. Crucial for the mecha-
nism is that we only consider the theory in the decoupling
limit of gravity, prohibiting gravitons as internal lines of the
vacuum energy corrections.4 In this paper we will expand
on that proposal, providing further details of the mecha-
nism and its consequences. The sequestering works at each
and every order in perturbation theory, so there is no need to
retune the classical cosmological constant when higher
loop corrections are included. Instead, as we noted above,
one is left with a residual cosmological constant, which is
automatically radiatively stable, being completely indepen-
dent of the vacuum energy contributions from the protected
sector. In a universe that grows old and big, the residual
cosmological constant is naturally small, along with any
contributions from phase transitions in the early universe.
To be clear, our mechanism takes care of all vacuum energy
contributions from a protected matter sector, which we take
to include the standard model of particle physics, but has
nothing to say about virtual graviton loops.5

Our mechanism is based on the introduction of global
constraints in the formulation of the action describing the
matter coupled to gravity. We postulate two such con-
straints, by promoting the classical contribution to the
cosmological constant, Λ, and the dimensionless parameter
which controls the protected sector scales relative to a fixed
Planck scale, λ ∝ mphys=MPl, to global variables in the
variational principle, and extend the action by adding to it a
term σðΛ; λÞ outside of the integral. Then diffeomorphism
invariance guarantees that the vacuum energy always scales
with λ in the same way, regardless of the order in the loop
expansion, and the constraints imposed by the variation
with respect to the global variables amount to dynamically

determining the value of Λ which always precisely cancels
the vacuum energy. Since the theory remains completely
diffeormorphism invariant and locally Poincaré invariant,
no new local degrees of freedom appear. So locally the
theory looks just like a usual QFT coupled to gravity, but
with an a posteriori cosmological constant determined
by a nonlocal measurement intrinsic to the universe’s
dynamics—as it should be. An alternative way of describ-
ing the mechanism is to integrate out the auxiliary variables
Λ and λ. Then our mechanism can be understood simply as
setting all scales in the protected matter sector to be
functionals of the 4-volume element of the universe.6

This ensures that the vacuum energy quantum corrections
consistently drop out order by order in perturbation theory,
yet the local dynamics remains the same as in the standard
approach. Furthermore, the mechanism is consistent with
phenomenological requirements, specifically with large
hierarchies between the Planck scale, electroweak scale
and vacuum curvature scale, and with early universe
cosmology including inflation. In the paper [14] we have
illustrated the last point by showing that the mechanism is
completely harmonious with the Starobinsky inflation.
Here, in contrast we will show that it can also coexist
with a model where the last 60 e-folds of inflation are
driven by a quadratic potential from the protected sector.
Nevertheless, the global cosmology must differ. For the
protected matter scales to be nonzero, the universe should
have a finite spacetime volume, being spatially compact
and crunching in the future. This represents the main
prediction of our theory to date. An immediate corollary
is that the current phase of acceleration cannot last forever,
which means that wDE ≈ −1 is merely a transient phase.
Ergo, the dark energy cannot be an ever present cosmo-
logical constant.7 In addition, since the cosmological con-
tributions of local events are weighed down by the large
spacetime volume of the universe, the contributions to
vacuum energy from phase transitions are automatically
small. Hence in our framework the residual net cosmologi-
cal constant, which sources the curvature of the vacuum, is

(i) purely classical, set by the complete evolution of the
geometry;

(ii) a “cosmic average” of the values of nonconstant
sources;

(iii) automatically small in universes which grow old
and big.

This paper is organized as follows. In Sec. II, we review
the cosmological constant problem, outlining the key
features, and ending with a discussion of Weinberg’s
venerable no-go theorem prohibiting a local field theory
adjustment mechanism [3]. In Sec. III we present our main

4This limit of the problem is in fact precisely how Zeldovitch
formulated it in [1].

5The graviton contributions to the vacuum energy are context
dependent (see e.g. [15] for an exploration of loop contributions
to vacuum energy in string theory). The standard model con-
tributions are not, once we assume QFT to describe them. The
result of our protection mechanism might be desensitized from
gravity, for example, if we can supersymmetrize gravitational
sector down to a millimeter scale, in which case gravitational
contributions to vacuum energy in field theory would never
exceed the observational bounds. While this looks interesting,
further work is needed to determine if such an extension could
work.

6An equivalent interpretation is to fix the protected field theory
scales, and make the Planck scale a functional of the world
volume of the universe.

7Although it can approximate a cosmological constant very
accurately for a long period.
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proposal in detail, explaining how the cancellation of
vacuum energy works, focusing on a pair of symmetries
that are ultimately responsible for this cancellation. In
Sec. IV we study the kinematics of our theory in some
detail. In particular we estimate the relevant historic cosmic
averages, demonstrating that the residual cosmological
constant will not exceed the critical density today, and
show that the contributions from (many) astrophysical
black holes in Sec. IV B are small. In Sec. IV C we outline
the procedure for finding general cosmological solutions
which satisfy the global constraints by their selection from
the families of known solutions of general relativity. The
very important question of contributions to vacuum energy
from early universe phase transitions are the topic of Sec. V,
where we show that after the transition they are automati-
cally small in large old universes. In Sec. VI, we show how
our mechanism is compatible with the observed mass scales
in particle physics, and how this can be achieved without
introducing any new hierarchies. Generalizations of our
proposal are presented in Sec. VII, including the effect of
radiative corrections to the Planck scale. Section VIII is
devoted to inflation. Commenting on consistency with
Starobinsky inflation, we also show that single monomial
inflationary models, and specifically quadratic inflation,
driven by fields from the protected sector, are also
compatible with our mechanism. We further comment on
the possible conflict with eternal inflation, which generi-
cally yields universes with infinite volume. Finally, in
Sec. IX, we briefly summarize some key features and
observational signatures of our proposal.

II. THE COSMOLOGICAL CONSTANT PROBLEM

We begin with a brief review of the vacuum energy
problem from the viewpoint of QFT coupled to gravity.
Further details can be found in many reviews of the subject,
for example [3,16–19]. So consider a QFT of matter,
which—to be complete in the flat space limit—requires
a specification of a UV regulator. By a UV regulator, we
mean a procedure for rendering the divergences in renor-
malizable QFTs formally finite, so that they can be
systematically subtracted by the addition of bare counter-
terms. This could just be a hard cutoff in nonrenormalizable
theories, which is really an avatar of the full renormaliza-
tion procedure in the UV completion of the theory
(assuming that one exists). Couple this theory to a covariant
semiclassical theory of gravity universally (i.e. minimally),
by defining the source of gravity to be stress energy of the
matter QFT. Then, by the equivalence principle, the
vacuum energy of the QFT, which corresponds to the
resummation of the bubble diagrams in the loop expansion
and drops out from the expressions for the scattering
amplitudes in flat space8 couples to gravity via the

covariant measure, −Vvac

R
d4x

ffiffiffi
g

p
, where g ¼ j det gμνj

is the determinant of the metric gμν. Hence the vacuum
energy sources gravity, yielding an energy-momentum
tensor Tμν ¼ −Vvacgμν. Since Vvac is divergent, we should
also include a bare cosmological constant—i.e. the
“classical contribution”—as a counterterm in the action,
−Λbare

R
d4x

ffiffiffi
g

p
, so that it is actually the combination

Λtotal ¼ Λbare þ Vvac that gravitates. Cosmology then
requires that this combination should not exceed the
observed dark energy scale, i.e., Λtotal ¼ Λbare þ Vvac≲
ð10−3 eVÞ4.
In practice, one computes Vvac in perturbation theory,

using the loop expansion in flat space.9 This means, one
truncates the infinite series of bubble diagram contributions
to a desired precision in the loop expansion, evaluates these
diagrams and sums them up. For example, at, say, one loop,
one simply evaluates the vacuum energy to one loop,
Vvac ¼ V tree

vac þ V1-loop
vac , and then subtracts the infinity in

Vvac by
(i) regulating Vvac with, e.g. a hard cutoff;
(ii) adding the bare term Λbare to subtract away the UV

sensitive contribution from Vvac;
(iii) tuning the remainder in Λbare so that the observa-

tional constraint is satisfied.
Although the definition of the calculated Λtotal ¼ Λbare þ
Vvac ensures that it is a constant, for it to actually
be measured one must continue measuring it across the
whole world volume of the universe, as we explained in
the Introduction. This fact is obscured by the description of
the flat space subtraction procedure utilized here—since it
is commonplace—because the subtraction procedure we
employ is local (being imposed by an external observer
who is computing Λtotal), and so the residual leftover Λtotal
is a constant by consequence.
Note that this implies that Λtotal can be very different

from either Λbare or Vvac. It is not predicted—it is to be
measured, as we stressed above, and so it can be anything.
This is standard in renormalization in QFT. So, saying that
Λtotal ≪ Vvac is not a problem by itself. The problem is that
the renormalization procedure sketched above is not
perturbatively stable. For example, generically, the regu-
lated two-loop correction is V2-loop

vac ∼ V1-loop
vac , which is much

greater than Λtotal that remains after the subtraction of the
UV-sensitive contribution at the one-loop level. This means
that the bare (“classical”) cosmological constant Λbare,
which was selected with a high degree of precision to
cancel the UV-sensitive contribution to the one-loop
vacuum energy needs to be retuned by Oð1Þ in the units
of the UV cutoff, in order to yield a new two-loop Λtotal that
remains compatible with the observational bound. Once
gravity is turned on, so that we can view Λbare as a classical

8Which is guaranteed by the fact that in flat space field theory one
can freely recalibrate the zero point energies of any matter fields.

9Note that the results are consistent with the UV-sensitive
terms computed in curved space using covariant regularization
techniques [20,21].
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conserved quantity fixed by some cosmological initial
condition, this implies that the initial condition must be
altered dramatically in order to readjust the two-loop value
of Λtotal to satisfy the bound. Thus the observable value of
the total cosmological constant is not a reliable, stable
prediction of the theory. It is very sensitive to both the
details of the UV physics, which are unknown, and to the
cosmological initial conditions, which are notoriously
difficult to reconstruct. This issue repeats at each successive
order in the loop expansion, indicating the radiative
instability of the small value of the observable Λtotal.
A simple illustrative example is provided by a massive

scalar field theory with quartic self-coupling and minimal
coupling to gravity. At one loop, the relevant Feynman
diagrams correspond to a single scalar loop with external
graviton legs carrying zero momenta. The sum of all such
diagrams generates a term −Vϕ;1-loop

vac
R
d4x

ffiffiffi
g

p
, so it suffices

to calculate just one. Perhaps the simplest contribution is
the tadpole diagram, given by [18]

tadpole ¼ 1

2

Z
d4k
ð2πÞ4

�
kμkν − 1

2
ημνðk2 þm2Þ

k2 þm2

�

¼ −
i
2
ημνVϕ;1-loop

vac : ð1Þ

Using dimensional regularization, one finds [18]

Vϕ;1-loop
vac ¼ −

m4

ð8πÞ2
�
2

ϵ
þ finiteþ ln

�
M2

UV

m2

��
; ð2Þ

whereMUV is the UV regulator scale. The bare counterterm
one would add to cancel the divergence would therefore be

Λbare ¼
m4

ð8πÞ2
�
2

ϵ
þ ln

�
M2

UV

M2

��
; ð3Þ

where M is the subtraction point. The one-loop renormal-
ized cosmological constant would then be

Λren ¼ Vϕ;1-loop
vac þ Λbare ¼

m4

ð8πÞ2
�
ln

�
m2

M2

�
− finite

�
: ð4Þ

Note that the remainder depends on lnM, illustrating the
dependence of the renormalized cosmological constant on
the arbitrary subtraction scale M. This is why the value of
Λren can only be fixed by a measurement. At two loops, we
consider the so-called scalar “figure of eight” with external
graviton legs. Its contribution to vacuum energy is given by
Vϕ;2-loop
vac ∼ λm4. For perturbative theories without finely

tuned couplings, where λ ∼Oð0.1Þ (as for example the
standard model Higgs), the higher loop corrections remain
competitive with the leading order contributions.
One could try to improve the situation by designing

dynamical mechanisms which cancel the vacuum energy
contributions to the total cosmological constant order by

order in the loop expansion. An example is provided by
either supersymmetric theories or conformal field theories.
In both cases, it is the underlying unbroken symmetry
which automatically sets the vacuum energy at any order in
the loop expansion to zero. In the case of supersymmetry,
this follows from the cancellations of loop diagrams
between bosons and fermions with degenerate masses.
For conformal theories, it is the unbroken conformal
symmetry which simply scales away all the dimensional
characteristics of the vacuum. Both examples represent
technically natural solutions of the problem: the vacuum
energy, and the total cosmological constant vanish as a
consequence of the underlying symmetry. However, in the
real world, both of these symmetries, if they exist, are
broken, at least below the electroweak breaking scale. The
prediction which follows from the breaking, and which is in
fact technically natural, is that the resulting vacuum energy
should be at leastM4

EW. Restoring either supersymmetry or
conformal symmetry (or both) would render the vacuum
energy to be zero, and so these symmetries could be
protecting the cosmological constant from the corrections
larger thanM4

EW. However, in our world the observed value
of the cosmological constant must be much smaller, by at
least 60 orders of magnitude.
An alternative approach could be to look for some

dynamical extension of the minimal framework of QFT
coupled to gravity, where a symmetry protecting a small
total cosmological constant could be hidden. This was an
idea behind many past attempts to address the cosmological
constant problem via the adjustment mechanism. This
approach is obstructed by the venerable Weinberg’s no-
go theorem [3], which precludes a dynamical adjustment
mechanism of the cosmological constant in the framework
of an effective QFT coupled to gravity. We review it here, as
it provides a very clear and important guide for the
formulation of our mechanism of vacuum energy seques-
tration, to which we will turn in the next section.
Consider a local and locally Poincaré-invariant 4D QFT

describing finitely many degrees of freedom below a
certain UV cutoffMUV. Imagine, for starters, that it couples
minimally to gravity described by the 4D metric gμν. Next
look for a Poincaré-invariant vacuum; if it exists, the theory
admits a vacuum with a zero cosmological constant.
Clearly, the aim is to evaluate under which circumstances
this can happen. Now, in the Poincaré state, all the fields,
regardless of their spin are annihilated by the translation
generators. Choosing them as the coordinate basis, this
implies that the fields must be Φm ¼ const and gμν ¼ ημν
modulo a residual rigid GL(4) symmetry, inherited from
diffeomorphisms. Hence the field equations for matter and
gravity, respectively, reduce to

∂L
∂Φm

¼ 0;
∂L
∂gμν ¼ 0: ð5Þ
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The residual rigid GL(4) symmetry of the system is
realized linearly. The metric and matter fields and the
Lagrangian density transform as gμν → JμαJνβgαβ, Φm →
J ðJÞΦm and L → detðJÞL, respectively, where J ðJÞ is
some appropriate representation of GL(4). Now, since the
field equations (5) are linearly independent, and the
Poincaré-invariant ground state is unique, by virtue of
the matter field equations in (5) and the residual GL(4)
symmetry, the Lagrangian in this state is

L ¼ ffiffiffi
η

p
Λ0ðΦmÞ; ð6Þ

where Φm are field configurations which extremize Λ0.
Here, clearly, one can think of Λ0 and Φm as the renormal-
ized variables, computed to some fixed order in the loop
expansion, and using some type of a covariant regulator and
subtraction scheme to cancel the divergent contribution and
obtain a finite value. The bottom line is that the final
equation of (5) then implies Λ0ημν ¼ 0, and so consistency
requires settingΛ0 ¼ 0—by hand, and resetting it to zero—
also by hand—if further loop corrections are included.
Technically, the problem is that the last equation of (5) is
completely independent of the other equations.
What if that were not the case? Clearly, an adjustment

mechanism, if it exists, would set the value of Λ0 auto-
matically to zero (or sufficiently close to it) once field
variables attain their extrema. This could be enforced by
requiring that the trace of the last equation of (5) is replaced
by an equation of the form

2gμν
∂L
∂gμν ¼

X
m

fmðΦnÞ
∂L
∂Φm

: ð7Þ

If a theory exists such that one of the resulting gravitational
equations yields (7), it would open the road to constructing
a successful adjustment mechanism within the domain of
effective QFT coupled to gravity. Furthermore, to ensure
the absence of fine-tunings, one can require that fmðΦnÞ are
a set of smooth functions in field space, which only depend
on the fieldsΦm in order to maintain Poincaré invariance. A
closer look [3] reveals that the first order (functional) partial
differential equation (7) is in fact a requirement that the
total action describing the theory is invariant under a
transformation generated by

δgμν ¼ 2ϵgμν; δΦm ¼ −ϵfmðΦnÞ: ð8Þ

This is clearly a scaling symmetry in disguise. Now, since
(i) the number of field theory degrees of freedom is finite,
and (ii) the functions fmðΦnÞ are smooth, one can perform a
field redefinition Φm → ~Φm ¼ ~ΦmðΦnÞ, so that in terms of
the new field theory degrees of freedom the transformations
(8) simplify to

δgμν ¼ 2ϵgμν; δ ~Φ0 ¼ −ϵ; δ ~Φm≠0 ¼ 0: ð9Þ

That such a transformation exists is guaranteed by
a theorem of differential geometry on embeddings of
hypersurfaces [22] and Poincaré symmetry. The field
space generator of transformations (8) is a smooth finite-
dimensional vector field X ¼ P

mfmðΦnÞ ∂
∂Φm

, so that the
transformation (8) represents a motion along the flow lines
generated by X. Then one defines the new field space
coordinates by picking the parameter measuring the flow
along X (which being a single degree of freedom must be a
scalar by unbroken local Poincaré invariance) and the
coordinates orthogonal to it. They are the n − 1 integration
constants ~Φm≠1 of the solution of the system of differential
equations δΦm

δ ~Φ0

¼ fmðΦnÞ which remain after using one to

pick the origin of ~Φ0. See Fig. 1.
In the new coordinates in field space, the field theory

equations, the Poincaré invariance of ground state and the
residual GL(4) symmetry imply that the Lagrangian in this
state is

L ¼ ffiffiffi
η

p
Λ0ð ~Φm≠0Þe−4 ~Φ0 : ð10Þ

Again, this is the regulated and renormalized vacuum
energy coming from a calculation involving contributions
from all diagrams in the loop expansion involving
some fixed, but arbitrarily chosen, finite number of
loops. Now, the modified gravity equation (7) yields
Λ0ð ~Φm≠0Þe−4 ~Φ0 ¼ 0. This could be solved while avoiding
fine-tuning Λ0 ¼ 0 if one allows ~Φ0 to run off to infinity.
However, because Eq. (10) is the renormalized vacuum
energy at an arbitrary finite order in the loop expansion, and
since the mechanism suppressing it must operate inde-
pendently of the order of the loop expansion to guarantee
radiative stability, the form of (10) must be preserved order
by order in perturbation theory. But this means that in order
to satisfy this, all the scales in the theory must depend on

the power of expð− ~Φ0Þ given by their engineering

m 0

~

~

m

0

FIG. 1. Field redefinition Φm → ~Φm.
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dimension. This includes the scales of the regulator and the
subtraction point, and is necessary because the corrections to
(10) come as the powers of these scales and logarithms of
their ratios. Only then will all the corrections, including
the log-dependent terms, scale the same way as in (10).
So (10) will accomplish the task if all the matter fields and
the regulator couple to the “rescaled” metric ĝμν ¼
expð−2 ~Φ0Þgμν. However, after canonically normalizing
the fields in the matter sector on the background given by
solving the vacuum equations, one finds that all dimensional
parameters in QFT must scale as md ∝ e−d ~Φ0 . This means
that in the limit ~Φ0 → ∞ not only does the cosmological
constant vanish, but so do all the other scales in the theory. In
other words, this restores conformal symmetry in the field
theory sector. As noted this is not our world. Hence the
problem.

III. OUR PROPOSAL

In the attempt to evade the Weinberg’s no-go theorem, in
[14] we proposed a very minimal modification of general
relativity with minimally coupled matter. The idea was to
promote the classical cosmological constant Λ to that of a
global dynamical variable, and introduce a second global
variable λ corresponding to scales in the matter sector. The
variation with respect to these new variables however is
used to impose a global constraint on the dynamics of the
theory, similar in spirit to the constraint imposed in the
classic isoperimetric problem of variational calculus [23].
To do this, we supplemented the local action with an
additive function σðΛ; λÞ which is not integrated over the
spacetime. Then the variations with respect to Λ, λ select
the values of these parameters. In particular, this procedure
sets the boundary condition for the variable λ such that at
any order of the loop expansion it takes precisely the right
value to completely absorb away the whole of vacuum
energy contribution from the matter sector at that loop
order. Our approach is a simplified hybrid of thinking about
GR as unimodular gravity, with a variable Λ specified by
arbitrary cosmological initial conditions, and the proposal
of Linde [24], further considered by Tseytlin [25], of using
modified variational procedures to fix values of global
variables such as Λ. Our variational prescription however
differs from those previously considered in that it is more
minimal, and that it uses a global scaling symmetry as an
organizing principle for accounting for all quantum vacuum
energy contributions.
The idea is to start with the action

S ¼
Z

d4x
ffiffiffi
g

p �
M2

Pl

2
R − Λ − λ4Lðλ−2gμν;ΦÞ

�
þ σ

�
Λ

λ4μ4

�
;

ð11Þ

where the matter sector described by L is minimally
coupled to the metric ~gμν ¼ λ2gμν. We imagine that the

standard model is included in it. For simplicity, we consider
the matter to only belong to this sector, henceforth referred
to as the “protected sector.” One could also include other
matter sectors to the theory, which could couple to a
different combination of λ and gμν. However, vacuum
energy contributions from such sectors would not cancel
automatically. In what follows we will focus on the matter
dynamics only from the protected sector, for simplicity’s
sake. The function σðzÞ is an (odd) differentiable function
which imposes the global constraints. The parameter μ is a
mass scale introduced on dimensional grounds. The precise
form of σ is determined in order to fix the particle masses in
QFT in accordance with a specific phenomenological
model of physics beyond the standard model, as we will
discuss in Sec. VI. For example, an asymptotically expo-
nential form of σ allows us to choose μ to be up near the
Planck scale, etc.
The global variable λ sets the hierarchy between the

matter scales and the Planck scale, since

mphys

MPl
¼ λ

m
MPl

; ð12Þ

where mphys is a physical mass scale of a canonically
normalized matter theory, and m is the bare mass in the
Lagrangian. As an illustration, consider a scalar field with
bare mass m,

ffiffiffi
~g

p
Lϕ ¼ 1

2

ffiffiffi
~g

p
½~gμν∂μϕ∂νϕþm2ϕ2�

¼ 1

2

ffiffiffi
g

p
λ4½λ−2gμν∂μϕ∂νϕþm2ϕ2�

¼ 1

2

ffiffiffi
g

p ½gμν∂μφ∂νφþm2
physφ

2�; ð13Þ

where φ ¼ λϕ is the canonical scalar and the physical mass
is mphys ¼ λm.
It is absolutely essential for our cancellation mechanism

to enforce the UV regulator of this sector to also couple to
exactly the same metric as the fields from L. This is
necessary in order to ensure the correct operational form of
the vacuum energy sequestration from L, and makes the
effective UV cutoffMUV and the subtraction scaleM scale
with λ in exactly the sameway as mass scales from L, given
by Eq. (12). This can be accomplished, for example, by
regulating the theory with a system of Pauli-Villars
regulators, which couple to the metric ~gμν.
With this in place, the form of (11) guarantees that all

vacuum energy contributions coming from the protected
Lagrangian

ffiffiffi
g

p
λ4Lðλ−2gμν;ΦÞ must depend on λ only

through an overall scaling by λ4, even after the logarithmic
corrections are included. This follows since the regulator of
the QFT introduces contributions where the scales depend
on λ in the same way as those from the physical degrees of
freedom from L. That ensures the cancellation of λ in loop
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logarithms, and so only the powers of λ remain. This fact
follows from diffeomorphism invariance of the theory,
which since λ is a global variable, is unbroken both for
the metrics gμν and ~gμν. Diffeomorphism invariance ensures
that the full effective Lagrangian computed fromffiffiffi
g

p
λ4Lðλ−2gμν;ΦÞ ¼ ffiffiffi

~g
p

Lð~gμν;ΦÞ, including all quantum
corrections—and the divergent terms, as well—still cou-
ples to the exact same ~gμν [26]. Of course, this is true only
when we restrict our attention to the vacuum energy
contributions from loop diagrams involving only protected
sector degrees of freedom in the internal lines which are
integrated over. This is, however, all of the vacuum energy
in the decoupling limit of gravity, which we calculate using
standard flat space field theory techniques in locally freely
falling frames. As we stressed previously, we recouple
these terms to gravity by the minimal coupling procedure,
taking gravity as a purely (semi)classical field which
merely serves the purpose of detecting vacuum energy.
At present, this is the sharply formulated part of the
cosmological constant problem, and as we discussed in
the Introduction we choose to focus on it alone.
The field equations that follow from varying the action

(11) with respect to global auxiliary fields Λ, λ are

σ0

λ4μ4
¼

Z
d4x

ffiffiffi
g

p
; 4Λ

σ0

λ4μ4
¼

Z
d4x

ffiffiffi
g

p
λ4 ~Tμ

μ; ð14Þ

where ~Tμν ¼ − 2 ffiffi
~g

p δSm
δ~gμν is the energy-momentum tensor

defined in the “Jordan frame.” To go to the “physical”
frame, in which matter sector is canonically normalized,
note that

Tμ
ν ¼ gμα

�
−

2ffiffiffi
g

p δSm
δgαν

�
¼ λ2 ~gμα

�
−
2λ4ffiffiffi
~g

p δSm
λ2δ~gαν

�
¼ λ4 ~Tμ

ν;

where σ0 ¼ dσðzÞ
dz . As long as it is nonzero,10 eliminating it

from the two equations (14) one finds

Λ ¼ 1

4
hTμ

μi;

where we defined the 4-volume average of a quantity by
hQi ¼ R

d4x
ffiffiffi
g

p
Q=

R
d4x

ffiffiffi
g

p
. Note that Λ is the bare cos-

mological constant, which is now however completely
fixed by this condition. One has to define these averages
meaningfully, since after regulating the divergences they
can still be indeterminate ratios when the spacetime volume
is infinite [9]. We will address this in short order, since this
issue has very important physical implications and ties into
how our proposal evades Weinberg’s no-go theorem.

The variation of (11) with respect to gμν yields

M2
PlG

μ
ν ¼ −Λδμν þ λ4 ~Tμ

ν; ð15Þ
whereGμ

ν is the standard Einstein tensor. After eliminating
Λ and canonically normalizing the matter sector, this
becomes

M2
PlG

μ
ν ¼ Tμ

ν −
1

4
δμνhTα

αi: ð16Þ

This equation is one of the two key ingredients of our
proposal. Note that this is the full system of ten field
equations, with the trace equation included. It differs from
unimodular gravity [27–35], where although the restricted
variation removes the trace equation that involves the
vacuum energy, this equation comes back along with an
arbitrary integration constant, after using the Bianchi
identity. Here there are no hidden equations nor integration
constants, and all the sources are automatically accounted
for in (16). Crucially, however,

1

4
hTα

αi

is subtracted from the right-hand side of (16). This means
that the hard cosmological constant, be it a classical
contribution to L in (11), or a quantum vacuum correction
calculated to any order in the loop expansion, divergent
(but regulated) or finite, never contributes to the
field equations (16). To see this explicitly, we take the
effective matter Lagrangian, Leff at any given order in
loops, and split it into the renormalized quantum vacuum
energy contributions (classical and quantum) ~Vvac ¼
h0jLeffð~gμν;ΦÞj0i, and local excitations ΔLeff ,

λ4
ffiffiffi
g

p
Leffðλ−2gμν;ΦÞ ¼ λ4

ffiffiffi
g

p ½ ~Vvac þ ΔLeffðλ−2gμν;ΦÞ�:
ð17Þ

It follows that Tμ
ν ¼ Vvacδ

μ
ν þ τμν, where Vvac ¼ λ4 ~Vvac

is the total regularized vacuum energy and τμν ¼
2ffiffi
g

p δ
δgμν

R
d4x

ffiffiffi
g

p
λ4ΔLeffðλ−2gμν;ΦÞ describes the physical

excitations. By our definition of the historic 4-volume
average, hVvaci≡ Vvac and so the field equations (16)
become

M2
PlG

μ
ν ¼ τμν −

1

4
δμνhτααi: ð18Þ

The regularized vacuum energy Vvac has completely
dropped out from the source in (16). There is a residual
effective cosmological constant coming from the historic
average of the trace of matter excitations:

Λeff ¼
1

4
hτααi: ð19Þ

10And nondegenerate: it cannot be the pure logarithm. In
that case Eq. (14) turns into two independent constraints,
1
Λ ¼ R

d4x
ffiffiffi
g

p
, 4 ¼ R

d4x
ffiffiffi
g

p
Tμ

μ, the latter placing an artificial
constraint on the matter sector.
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We emphasize that this residual cosmological constant has
absolutely nothing to do with the vacuum energy contri-
butions from the matter sector, including the standard
model contributions. Instead, after the cancellation of
the vacuum energy contributions enforced by the global
variables Λ, λ, the residual value of hτααi is picked as a
“boundary condition,” resulting from the measurement of
the finite part of the cosmological constant after it was
renormalized. As we noted above, this measurement
requires the whole history of the universe for this one
variable, in effect setting the boundary condition for it at
future infinity. Obviously, it is crucial that the numerical
value of Λeff is automatically small—one might hope for it,
since it is the contribution coming predominantly from the
IR modes in the cosmological evolution, but a quantitative
confirmation is necessary since otherwise the proposal
would have failed. It turns out that indeed Λeff is auto-
matically small enough in large old universes, as we will
show in the next section. This follows from the fact that our
universe is large and old, which in the very least is a
consequence of extremely weak anthropic considerations.
In actual fact, a large universe like ours can be formed by at
least 60 e-folds of inflation, which we will show is
consistent with the vacuum sequestration proposal. The
smallness of Λeff is completely safe from radiative insta-
bilities, and the required dynamics is essentially insensitive
of the order of perturbation theory. The apparent acausality
in the determination of Λeff is therefore of no consequence;
a better terminology is a posteriority, that follows from the
nature of the measuring process needed to set the numerical
value of the renormalized cosmological constant. This has
no impact on local physics and so cannot lead to any
pathologies normally associated with any local acausality.
One might only worry if there do not appear some
unexpected restrictions on a possible range of numerical
values which the renormalized cosmological constant
might have, that follow from the global constraints which
we introduced. We will turn to this later, when we address
how the solutions of the theory are constructed.
The second key ingredient of our mechanism is that

the field theory spectrum has a nonzero gap, which can
be arbitrarily large compared to jhτααij1=4. Otherwise, the
mechanism would fail to provide a way around Weinberg’s
no-go theorem—reducing yet again to a framework with at
least scaling symmetry. This means that on the solutions
the parameter λ must be nonzero, since λ ∝ mphys=MPl.
But by virtue of the first equation of (14), since σðzÞ is a
differentiable function, if λ is nonzero,

R
d4x

ffiffiffi
g

p
must be

finite. Fortunately this can be accomplished in a universe
with spatially compact sections, which is also temporally
finite: it starts with a bang and ends with a crunch. In other
words, the spacelike singularities regulate the world
volume of the universe without destroying diffeomorphism
invariance and local Poincaré symmetry. Therefore, in our
framework the universes which support nonscale invariant

particle physics must be spatiotemporally finite. Infinite
universes are solutions too, however their phenomenology
is not a good approximation to our world, since all scales
in the protected sector vanish. Note that the quantity which
controls the value of λ, and therefore mphys=MPl, is the
world volume of the universe, and not hτααi. This is
essential for the phenomenological viability of our pro-
posal, since it separates the scales of the observed
cosmological constant and masses of particle physics.
We will address these points in more detail in Sec. IV,

focusing on quantitative statements, demonstrating, in
particular, that the residual cosmological constant is nat-
urally small, never exceeding the critical density of the
universe today. This is of course the final touché of our
model, guaranteeing that the cancellations of the vacuum
energy did not—in turn—necessitate large classical values
to appear. Before we address these, and other phenomeno-
logically important issues, let us look in more depth at just
how the vacuum energy contributions get canceled.
A holy grail of the past attempts to protect the

cosmological constant from radiative corrections, which
is partially realized with supersymmetry and conformal
symmetry, was to find a symmetry which will insulate the
finite term left after renormalization from higher order
loop corrections. As it turns out, a system of two
symmetries is the reason why our cancellation works.
Our action (11) has approximate scale invariance, broken
only by the Einstein-Hilbert term,

λ → Ωλ; gμν → Ω−2gμν; Λ → Ω4Λ; ð20Þ

such that the action changes by

δS ¼ M2
Pl

2
Ω−2

Z
d4x

ffiffiffi
g

p
R ¼ M2

Pl

2
Ω−2hRi

Z
d4x

ffiffiffi
g

p
: ð21Þ

The other symmetry appears as an approximate shift
symmetry

L → Lþ ϵm4; Λ → Λ − ϵλ4m4; ð22Þ

under which the action changes by

δS ¼ σ

�
Λ

λ4μ4
− ϵ

m4

μ4

�
− σ

�
Λ

λ4μ4

�
≃ −ϵσ0

m4

μ4
: ð23Þ

The scaling symmetry ensures that the vacuum energy at
an arbitrary order in the loop expansion couples to the
gravitational sector exactly the same way as the classical
piece. The “shift symmetry” of the bulk action then
cancels the matter vacuum energy and its quantum
corrections. The scaling symmetry breaking by the gravi-
tational sector is mediated to the matter only by the
cosmological evolution, through the scale dependence onR
d4x

ffiffiffi
g

p
, and so is weak. This is why the residual
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cosmological constant is small: substituting the first equa-
tion of (14) and using λ ¼ mphys=m, we see that
δS≃−ϵm4λ4

R
d4x

ffiffiffi
g

p ¼−ϵðmphys

MPl
Þ4½M4

Pl

R
d4x

ffiffiffi
g

p �. Holding
the volume fixed, this is small when mphys=MPl ≪ 1,
vanishing in the conformal limit11 λ ∝ mphys → 0. This
restoration of symmetry renders a small residual curvature
technically natural.
Let us see how this occurs at the level of the field

equations (14) and (16). First off, note that the historic
average of the trace of the right-hand side of (16) is zero,
hRi ¼ 0. Hence, by (21), the action (11) is in fact invariant
under scaling (20) on shell. Next, the variation of the matter
Lagrangian under the shift L → Lþ ϵm4 is equivalent to
letting ~Tμ

ν → ~Tμ
ν − ϵm4δμν. Then if gμν, Λ and λ solve

Eqs. (14) and (15) for a source ~Tμ
ν, by manipulating the

constraint equations (14) one finds that

ĝμν ¼ gμν; Λ̂ ¼ Λ
ẑσ0ðẑÞ
zσ0ðzÞ ; λ̂4 ¼ λ4

σ0ðẑÞ
σ0ðzÞ ; ð24Þ

are solutions with a source ~Tμ
ν − ϵm4δμν, where z ¼

Λ=λ4μ4, and ẑ ¼ zð1 − 4ϵm4=h ~TiÞ. Crucially, gμν remains
unchanged, which means that a shift of the vacuum
energy—by adding higher order corrections in the loop
expansion—is absorbed by an automatic readjustment of
the global variables, and so has no impact whatsoever on
the geometry.
Finally, since the role of the two global auxiliary fields, λ

and Λ, is to enforce global constraints, they only appear
algebraically in the theory and can be integrated out
explicitly. The resulting formulation of the theory provides
further insight into the protection mechanism. So using the
variable z defined above, the constraints (14) are

σ0ðzÞ
λ4μ4

¼
Z

d4x
ffiffiffi
g

p
; z ¼ h ~Tα

αi
4μ4

: ð25Þ

Solving for λ, Λ yields

λ ¼
�
σ0ðh ~Tα

αi=4μ4Þ
μ4

R
d4x

ffiffiffi
g

p
�1=4

;

Λ ¼ σ0ðh ~Tα
αi=4μ4Þh ~Tα

αi=4μ4R
d4x

ffiffiffi
g

p : ð26Þ

Substituting these back into the action, we obtain

S ¼
Z

d4x
ffiffiffi
g

p �
M2

Pl

2
R − λ4Lðλ−2gμν;ΦÞ

�
þ Fðh ~Tα

αi=4μ4Þ;

ð27Þ

where λ is given by Eq. (26), and ~Tα
α ¼

~gαβð 2 ffiffi
~g

p δ
δ~gαβ

R ffiffiffi
~g

p
Lð~gμν;ΦÞÞ. An important point here is that

the function FðzÞ ¼ σðzÞ − zσ0ðzÞ is the Legendre trans-
form of σ. This explicitly shows that the independent
variable z (or Λ) has been traded for the new independent
variable σ0ðzÞ—which, by the first equation of (26), is
λ4μ4

R
d4x

ffiffiffi
g

p
. Thus, the independent variable of the theory

is really not the cosmological counterterm Λ, (like in GR or
in unimodular extension of GR) but the world volume of
the universe,

R
d4x

ffiffiffi
g

p
. So this in fact reveals how our

mechanism operates. The cosmological system responds
instead to changes in the spacetime volume, rather than
changes in Λ. Furthermore, in GR, when higher order
corrections to the vacuum energy are included, Λ stays
fixed forcing the spacetime volume

R
d4x

ffiffiffi
g

p
to absorb the

corrections (inflating a lot due to a large vacuum energy).
For our scenario it is exactly the opposite: it is the
spacetime volume that remains fixed, forcing Λ to adjust.
As a result, the cosmological system is stable against
radiative corrections to the vacuum energy.
Indeed, let us consider the gradient expansion of the

effective matter Lagrangian, including any number of loop
corrections. To the lowest order, we retain only the full
effective potential of the theory, and truncate it to the zero
momentum limit, which represents the vacuum energy ~Vvac.
We find that Leff ¼ ~Vvac, h ~Tα

αi ¼ −4 ~Vvac, and the action is

S ¼
Z

d4x
ffiffiffi
g

p �
M2

Pl

2
R −

�
σ0ð− ~Vvac=μ4Þ

μ4
R ffiffiffi

g
p

�
~Vvac

�

þ Fð− ~Vvac=μ4Þ

¼
Z

d4x
ffiffiffi
g

p �
M2

Pl

2
R

�
þ σð− ~Vvac=μ4Þ: ð28Þ

We see how the choice of coupling of gμν to the standard
model given by Eq. (27) guarantees that all gμν dependence
is canceled in the vacuum energy contribution to the action.
This is how the standard model vacuum energy is seques-
tered. Diffeomorphism invariance guarantees that the full
effective Lagrangian computed from

ffiffiffi
~g

p
Lð~gμν;ΦÞ, includ-

ing all quantum corrections, still couples to the same

~gμν ¼ ½σ0ðh ~Tα
αi=4μ4Þ

μ4
R ffiffi

g
p �1=2gμν. The loop corrections are accom-

modated by (small) changes of the scaling factor

½σ0ðh ~Tα
αi=4μ4Þ

μ4
R ffiffi

g
p �1=2, while the metric gμν remains completely

unaffected. This works to any order in the loop expansion,
as is the core element of the adjustment mechanism.
So to summarize, we see that the key point of our

mechanism is a dramatically altered role of
R
d4x

ffiffiffi
g

p
, which

provides the way around Weinberg’s no-go theorem [3].
Instead of Λ in GR or in its unimodular formulation, nowR
d4x

ffiffiffi
g

p
is the independent variable. Taking all the

physical scales in the protected matter sector to depend
11Defined by fixing

R
d4x

ffiffiffi
g

p
and taking μ → ∞ in the first

equation of (14).
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on it, automatically removes all the vacuum energy con-
tributions to drop out. For example, if we were to take the
linear function σðzÞ ¼ z in (11) and declare L to be literally
the standard model, integrating Λ and λ out and rewriting
(11) as just Einstein-Hilbert action coupled to the standard
model, the only modification is that the Higgs vev v is
replaced by v=ðμ4 R d4x

ffiffiffi
g

p Þ1=4. Further, in a collapsing
spacetime, since

R
d4x

ffiffiffi
g

p
is finite, the protected sector

QFT has a nonzero mass gap, by virtue of (14), while the
residual cosmological constant hτααi=4 ≠ 0, but it is
completely independent of all the vacuum energy correc-
tions, and as we will show below is automatically small in a
large old universe. The particle sector scales are affected by
the historic value of the world volume.12 However, this
dependence of field theory scales on

R
d4x

ffiffiffi
g

p
is completely

invisible to any nongravitational local experiment, by
diffeomorphism invariance and local Poincaré symmetry.
Locally the theory looks just like standard GR, in the (semi)
classical limit—but without a large cosmological constant,
and without its radiative instability, at least in the limit of
(semi)classical gravity.

IV. HISTORIC INTEGRALS AND QUANTITATIVE
CONSIDERATIONS

We have already stated that in a universe which is
compact, starting in a bang and ending in a crunch, the
world volume

R
d4x

ffiffiffi
g

p
is finite. Also the residual cosmo-

logical constant given by the historic average of the trace of
stress-energy tensor −hτααi=4 is automatically small in big
and large universes, as long as τμν satisfies the dominant
and null energy conditions (DEC and NEC, respectively).
In this section we will give a proof of this statement at the
classical level. Semiclassically, it has been shown that the
integrals hτααi are finite if NEC is valid in [36]. Then for
bounded ταα our argument automatically extends to the
semiclassical case, too. Further, we will consider the
techniques for finding solutions of field equations in our
setup. From a practical point of view, solving the equa-
tion (18) requires a bootstrap method: allow hτααi ¼ C to
be arbitrary to start with, find the family of solutions
parametrized by this integration constant, and finally
substitute this family of solutions back into hτααi in order
to show that a subset of them is compatible with the initial
choice. This is akin to the gap equation in superconduc-
tivity. Here we will focus on the proof of existence of
solutions to this procedure in the case of background
Friedmann-Roberston-Walker (FRW) cosmologies. In the
forthcoming paper [37] we will show that consistent
solutions of this type including the current epoch of

(transient) acceleration exist. Specific dynamics will resort
to the earliest quintessence with linear potential dating back
to, at least, 1987 [38], as the really relevant model of
transient cosmic acceleration. We will show in [37] that it
has a natural embedding in our proposal. Other scenarios
and aspects of transient acceleration have also been
considered (see e.g. [39]).

A. Historic integrals and the cosmological background

The integrals which appear in the definition of our
historic averages are

Z
d4x

ffiffiffi
g

p
⊃ Vol3

Z
tcrunch

tbang

dta3; ð29Þ

Z
d4x

ffiffiffi
g

p
ταα ⊃ Vol3

Z
tcrunch

tbang

dta3ð−ρþ 3pÞ; ð30Þ

where the cosmology takes place over a finite proper time
interval tbang < t < tcrunch, with a scale factor a, and finite
spatial comoving volume Vol3. We will approximate the
integrals for the most part by the FRW geometry with fluids,
whose energy density and pressure are ρ and p respectively.
We will eventually impose DEC and NEC, which combined
together require jp=ρj ≤ 1. The integrals are regulated—i.e.,
finite—because we assume that spatial sections are compact,
and that the universe starts at a bang and ends in crunch. This
guarantees that (29) is finite, and that the QFT spectrum has
a nonzero mass gap. Further, wewill see that validity of NEC
then also guarantees that (30) is also finite, and bounded by
the contributions from near the turning point, being esti-
mated by the product of the minimal energy density during
cosmological evolution and the age of the universe. At the
technical level, we will take the evolution to be symmetric in
time for simplicity. This does not impair the generality of our
analysis because the integrals are dominated by the con-
tributions near the turning point. Approximating the spatial
volumes by homogeneous 3-geometries, we will first con-
sider time integrals. We will briefly return to contributions
from inhomogeneities later, when we consider the effects
from black holes.
For starters, note that the DEC and NEC together

—jp=ρj ≤ 1—put a very strong bound on the contributions
to the integral (30) from the bang and crunch singularities.
Namely while at the singularities the energy density and
pressure diverge, the spacelike volume which they occupy
shrinks, and jp=ρj ≤ 1 ensures that the rate of shrinking is
faster than the divergence of ταα. Indeed, near the singu-
larities ρ scales as ρ ∼ 1=ðt − tendÞ2, by virtue of the
Friedman equation, where tend is either of the singular
instants. Since in this limit a3 ∼ ðt − tendÞ2=ð1þwÞ, the
integrand ∝ a3ρ ∼ ðt − tendÞ−2w=ð1þwÞ will not diverge pro-
vided jwj < 1. For w ¼ þ1 the divergence is at most
logarithmic, with coefficients≃Oð1Þ so that when properly

12In the case where σ is a linear function, they would be too
sensitive to the initial conditions in the early universe. This is why
the forms of σ which are asymptotically exponential are pre-
ferred, since they reduce the sensitivity to merely logarithmic
corrections.
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cut off at the physical Planckian density surfaces these
contributions are still much smaller than the cutoff. Hence
our historic averages will always be finite in a bang/crunch
universe for all realistic matter sources. Having shown that
(30) is bounded, we can proceed with a more careful
comparison of contributions to (30) from different cosmo-
logical epochs.
Now, to get a more accurate estimate of various con-

tributions to (30) we can split the history of the universe
into epochs governed by different matter sources, which we
can approximate as perfect fluids. So let us consider one
such epoch, during which a fluid with equation of state wi
controls the evolution of a in an interval ai < a < aiþ1.
The contribution of this epoch to the temporal integral
in (29) is

Ii ¼
Z

tiþ1

ti

dta3 ¼
Z

aiþ1

ai

da
a2

H

¼ a3iþ1

Hiþ1

Z
aiþ1

ai

da
aiþ1

�
a

aiþ1

�
2 Hiþ1

H
; ð31Þ

whereH ¼ _a=a andHi,Hiþ1 are the values ofH at a ¼ ai,
aiþ1 respectively. Using the Friedmann equation,
H2 ≃H2

iþ1ðaiþ1

a Þ3ð1þwiÞ, and so

Ii ¼
2

3ð3þ wiÞ
�
a3iþ1

Hiþ1

��
1 −

�
ai
aiþ1

�
3ð3þwiÞ=2�

: ð32Þ

For jp=ρj ≤ 1, this integral is always finite, even if ai → 0.
Similarly, the contribution of this epoch to the temporal
integral in (30) is

Ji ¼
Z

tiþ1

ti

dta3ð−ρþ 3pÞ ¼ ð3wi − 1Þ ρiþ1a3iþ1

Hiþ1

×
Z

aiþ1

ai

da
aiþ1

�
a

aiþ1

�
2
�
Hiþ1

H

�
ρ

ρiþ1

¼ ð3wi − 1Þ ρiþ1a3iþ1

Hiþ1

Z
aiþ1

ai

da
aiþ1

�
a

aiþ1

�
2
�

H
Hiþ1

�
;

ð33Þ

where in the last step we have used H2 ≃H2
iþ1

ρ
ρiþ1

. Since

H2 ≃H2
iþ1ðaiþ1

a Þ3ð1þwiÞ,

Ji ¼
2ð3wi − 1Þ
3ð1 − wiÞ

�
ρiþ1a3iþ1

Hiþ1

��
1 −

�
ai
aiþ1

�
3ð1−wiÞ=2�

:

ð34Þ

Clearly these integrals describe contributions from both
expanding and contracting regimes.
Note that (33) is logarithmically divergent near the

singularity for a stiff fluid wi ¼ 1, as we noted above.

But this divergence is a red herring. We cut the evolution
off at a time when the density reaches Planck scale,
lpl ≲ a≲ a⋆, and so

Jsingularitystiff ¼ 2

�
ρ⋆a3⋆
H⋆

�
log

�
a⋆
lpl

�
≃

�
H⋆
MPl

�
log

�
a⋆
lpl

�
;

ð35Þ

where H⋆ and ρ⋆ are the Hubble scale and energy density
when a ¼ a⋆. Hence Jsingularitystiff ≤ 1. For all other cases with
−1 ≤ w < 1, the integral Ji is automatically finite—
and small.
Next we consider the contributions from the turning point

at a time T. During this time, the universe is approximately
static, with the scale factor roughly a constant, a≃ amax,
over a time interval Δt. The turning point happens roughly
at the time given by the total age of the universe,
T ≃ Δt≃ 1=Hage. The effective Hubble parameter at that
time is approximately zero, by virtue of a cancellation
between different contributions to the energy density, where
somemust be negative to trigger the collapse (e.g., a positive
spatial curvature or a negative potential). But since 1=a2max
measures the characteristic curvature of the universe at that
time, jRj ∼H2

age ∼ 1=a2max, we obtain

Iturn ¼
Z

TþΔt=2

T−Δt=2
dta3 ≃ a3maxΔt ∼

a3max

Hage
∼

1

H4
age

: ð36Þ

The contribution from the turning point to the temporal
integral in (30) is

Jturn ¼
Z

TþΔt=2

T−Δt=2
dta3ð−ρþ 3pÞ≃Oð1Þa3maxρageΔt

∼
ρage
H4

age
; ð37Þ

where ρage ∼M2
PlH

2
age corresponds to the characteristic

energy density of the universe at that time.
Clearly, (36) and (37) are dominant contributions to (29)

and (30), respectively. To see this, consider first two
consecutive epochs away from the turning point. After
simple algebra one finds Ii=Ii−1 ¼ Oð1Þðaiþ1

ai
Þ3ð3þwiÞ=2,

Ji=Ji−1 ¼ Oð1Þðaiþ1

ai
Þ3ð1−wiÞ=2 using the Friedmann equa-

tion. Clearly, the epoch with a larger value of the scale
factor at any of its end points gives a dominant contribution.
This means that the larger contributions to (29) and (30)
come from the regimes of evolution nearer the turning
point. Indeed, at the turnaround, we find that the contri-
butions from the quasistatic interval at during the turning

and the adjacent epochs are Iturn=Ii ¼ Oð1ÞðHiþ1

Hage
Þða3max

a3iþ1

Þ and
Jturn=Ji ¼ Oð1ÞðHage

Hiþ1
Þða3max

a3iþ1

Þ. Now Hage < Hiþ1, and

amax > aiþ1. Next, as long as jwij ≤ 1, we also have
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H2
age ≳H2

iþ1ðaiþ1

amax
Þ6, which follows from the fact that the

stiff fluid yields the fastest allowed decrease of H with
expansion. From these inequalities we conclude that the
contributions to (29) and (30) are indeed dominated by the
evolution near the turning point. Thus we obtain

�Z
d4x

ffiffiffi
g

p �
FRW

¼ Oð1ÞVol3
H4

age
; ð38Þ

�Z
d4x

ffiffiffi
g

p
ταα

�
FRW

¼ Oð1ÞVol3ρage
H4

age
: ð39Þ

Therefore the residual cosmological constant is

Λeff ¼
1

4
hτααi≃Oð1Þρage ≃Oð1ÞM2

PlH
2
age ≲M2

PlH
2
0: ð40Þ

This is guaranteed to be bounded by the current critical
density of the universe as long as the universe lives at least
H−1

age ≳H−1
0 ∼ 1010 years. This proves the previously stated

claim that Λeff is automatically small enough in large old
universes, which is a crucial check of our proposal. On the
other hand, this cannot—by itself—be taken as a prediction
of the late epoch of cosmic acceleration. For one, the sign
of Λeff is determined by equation of state of the dominant
fluid close to the turning point; if w > 1=3, Λeff is positive,
and if w < 1=3 it is negative. Second, if the residual
cosmological constant were dominant today, future col-
lapse would have been impossible as long as all other
matter satisfies standard energy conditions. Thus Λeff
cannot be identified with dark energy, since the universe
must collapse in order to be phenomenologically accept-
able within the context of our proposal. The current
cosmological acceleration must be a transient phenomenon,
with the net potential turning negative some time in the
future, and/or our universe were spatially closed, with a
small but nonzero positive spatial curvature. We will return
to this issue in the future [37].

B. Historic integrals and black holes

One may worry13 that astrophysical black holes may
provide a significant contribution to the spacetime volume
of the universe. The point is that the familiar black hole
solutions in GR have infinite volumes in their interiors.
However, black holes in compact spacetimes are different.
For simplicity let us model a small black hole in a
collapsing universe as a Schwarzschild black hole on a
spacetime where time is an interval limited by the total age
of the universe, Δt≲ 1=Hage. The analytic extension across
the horizon then trades the radial and time coordinates,
making t spacelike inside. But because t is compactified,

that automatically means the internal volume is finite.
Further reduction of black hole contributions may come
from the fact that they evaporate, although this seems to be
much less important for astrophysical black holes which
mainly gain weight in the course of their lifetime.
Properties of black holes in compactified spacetimes have
been studied in [40].
Now we estimate the black hole internal volume. Wewill

stick with the model of a small Schwarzschild black hole
with a compactified time direction. The geometry is
approximately ds2¼−ð1−rH=rÞdt2þð1−rH=rÞ−1dr2þ
r2dΩ2, where dΩ2 is the metric on the unit 2-sphere,
and rH is the Schwarszchild radius. So the interior
spacetime volume is

Z
interior

d4x
ffiffiffi
g

p ¼ 4π

Z
Δt

0

dt
Z

rH

0

drr2

¼ 4π

3
r3Ht≲ 4π

3
r3H=Hage: ð41Þ

The total contribution from all black holes to the spacetime
volume of the universe cannot significantly exceed the
contribution from the largest black holes known to exist,
with a mass ∼109M⊙ [41]. Assuming there is one such
black hole in all 1011 galaxies in the Hubble volume today,
and assuming that our Hubble volume is typical, we
extrapolate the galaxy population in the whole collapsing
universe to be about Ngal ∼ 1011H3

0a
3
0, where H0 ∼

10−33 eV is the current Hubble scale and a0 > 10=H0

the current scale factor. This yields

�Z
d4x

ffiffiffi
g

p �
galBH

≲ 1011
H3

0a
3
0

Hage

�
109

M⊙
M2

Pl

�
3

¼ 10−19
�

a0
amax

�
3 1

H4
age

; ð42Þ

as the contribution of all black hole interiors to the total
spacetime volume of the universe. We have used that the
scale factor near the turning point is amax ∼ 1=Hage. Since
a0 < amax, we see that the galactic black hole interiors’
contribution to the spacetime volume is completely neg-
ligible in comparison to the background cosmology.
Estimating the contribution of their mass to hτααi is now

straightforward. Since the total volume integral is unaf-
fected, and since

R
interior d

4x
ffiffiffi
g

p
ταα ≲MBHΔt≲MBH=Hage,

where MBH is the total mass in all black holes, the black
hole contribution to hτααi is bounded by MBHH3

age. Again
using the extrapolated number of black holes in the whole
universe to be Ngal ∼ 1011H3

0a
3
0, the total mass in black

holes is MBH ∼ 1020H3
0a

3
0M⊙. So after a straightforward

calculation, using M⊙ ≃ 1039MPl, we find that the con-
tribution to hτααi is bounded by

13We thank Paul Saffin and Alex Vikman for raising this
question.
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hτααigalBH ≲ ρnow
10

�
a0
amax

�
3

; ð43Þ

where ρnow ¼ M2
PlH

2
0 is the critical density today. As

a0 ≲ amax, this is clearly subleading even with our over-
estimate of the black hole population, ρBH ∼ MBH

a3
0

∼ 0.1ρnow.

C. Historic integrals and FRW cosmology

So far we have been considering the implications of the
historic integrals and averages on the phenomenology of
solutions, assuming they exist. Do they? Now we address
this question.14 In principle, one should expect that such
solutions should exist, on the grounds that one could
always start with a family of solutions in GR with
an arbitrary value of cosmological constant, construct
the geometry, and then pick the specific value of the—
initially arbitrary—bare cosmological constant to satisfy
Λeff ¼ hτααi=4. Equivalently, this merely means taking the
special solution from each one parameter family of sol-
utions, parametrized by Λbare, for which hRi ¼ 0. In a way,
the freedom of picking Λ and the arbitrariness of initial
conditions appear to guarantee the existence of specific
solutions. Nevertheless, an explicit proof is still required
given that the determination of Λeff ¼ hτααi=4 involves
specific future boundary conditions which must be picked
to find the self-consistent solution. This “bootstrapping”
logic is very similar to what one encounters in BCS theory
of superconductivity, where one also has to solve a nonlocal
equation—the gap equation—to decide if the solutions
exist in the first place. Here, we will review the conditions
under which such solutions do exist in the family of FRW
cosmologies. In a forthcoming publication [37] we will
consider the requirements to build a fully realistic model,
consistent with cosmic phenomenology, that includes a
transient phase of acceleration like the one we see today.
For simplicity we will focus on solutions which are

dominated by a single fluid and the residual effective
cosmological constant. Adding more ingredients in
fact makes the existence of solutions easier to prove, by
adding additional parameters. So, FRW cosmologies with
spatial curvature k, a cosmological constant Λeff and a
single perfect fluid with equation of state parameter
w ¼ p=ρ ¼ const, which obeys DEC and NEC, jwj ≤ 1,
are described by the Friedmann equation,

3M2
Pl

�
H2 þ k

a2

�
¼ ρ0

�
a0
a

�
3ð1þwÞ

þ Λeff : ð44Þ

The special solution of (44) which also satisfies Eq. (19),
which in this case reduces to

Λeff ¼ −
ð1 − 3wÞ

4

R
dta3ρR
dta3

; ð45Þ

is the solution of our theory. We will assume that the
spatial volume is compactified, so that the integral over the
spatial coordinates stays finite. We will further assume that
ρ0 > 0. It is instructive to rewrite (44) in the form
resembling the energy conservation equation for a particle
in one dimension,

_a2 þ VeffðaÞ ¼ −k; Veff ¼ −
κ2

a1þ3w −Ω2a2; ð46Þ

where κ2 ¼ ρ0a
3ð1þwÞ
0

3M2
Pl

> 0, but Ω2 ¼ Λeff
3M2

Pl
can take

either sign.
Let us first consider the (simpler) case of universes with

k ≤ 0. When w ≥ 1=3, by (45) Λeff and Ω2 are non-
negative. So the “potential” Veff in (46) is negative definite.
For the total conserved “energy” −k ≥ 0, the solutions exist
for all _a ≠ 0, since the lines Veff and _a2 ¼ const > 0 never
intersect. An expanding solution expands forever.
Therefore the temporal “volume”

R
dta3 is infinite, and

so Λeff vanishes. However, this also means that
R
d4x

ffiffiffi
g

p
diverges. Hence these solutions are all cosmologies in
which field theory has no mass gap, and are not good
candidates to accommodate our universe.
When −1 < w < 1=3, Λeff and Ω2 are negative. The

potential Veff is a sum of two powers, a−ð1þ3wÞ and a2, with
opposite coefficients. However, since w > −1, the quad-
ratic always wins at large a. This means that a “particle”
moving from the origin (an expanding universe starting
with a bang) with a total energy which is non-negative
(−k ≥ 0) encounters a potential barrier at some finite a
from the origin and turns around. So such configurations
always admit a collapsing solution, and for the given “free
parameters” describing the solutions of (44) in GR (Λeff
and the value of a at the turning point, specified by the
integration constant), one needs to pick the combination
which solves (45), which as we see exists. Note that this
does not mean tuning the initial conditions for a to find the
solution. It means, for the given initial conditions speci-
fying the solution, one needs to pick the right value of
the a posteriori parameter Λeff. The same logic applies to
all cases.
The case k > 0 is slightly more subtle. In the language of

the one-dimensional dynamics (46) we are now looking
for states with negative conserved energies. Now, when
−1 < w < −1=3, since Λeff and Ω2 are negative, and so is
1þ 3w, the potential Veff is a sum of two positive powers
of a, with opposite coefficients. This sum is negative
between the origin and some (large) value of a, beyond
which it turns positive, going again as a2 at large a. But
since we are looking for trajectories with −k < 0 now, it
means that the total energy −k can be greater than the
effective potential Veff only in a finite interval of a’s. So

14We thank Guido D’Amico and Matt Kleban for discussions
on the subject of this section.
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classical motion is only possible between these two turning
points, and it continues forever. This case corresponds to
oscillating cosmologies of [42], which have finite spatial
volume, and where the negative effective cosmological
constant, needed for oscillating motion, is generated by our
constraint. Here, even though

R
d4x

ffiffiffi
g

p
is infinite, and so

the QFT is gapless, Λeff remains finite as can be seen
readily by splitting the integration into the sum of integrals
over full periods. Yet, such universes are not phenomeno-
logically viable since QFT is scale invariant.
When −1=3 < w < 1=3, Λeff and Ω2 are still negative,

but 1þ 3w > 0. Thus Veff is a combination of an infinite
potential well at the origin and a quadratic barrier far away.
So solutions with −k < 0 always exist, again representing
universes which start with a bang, expand to the maximum
radius and subsequently crunch. The cases w ¼ −1=3 and
w ¼ 1=3 are special limits. In the former, the barrier has
finite depth, again admitting collapsing solutions, while in
the later case the barrier is pushed to infinity since Λeff ¼ 0
by scale invariance. This latter case corresponds to a
radiation dominated universe with vanishing cosmological
constant.
Finally, when w > 1=3, Λeff and Ω2 are positive. Hence

the potential Veff is negative definite, diverging at the origin
and infinity, with a maximum in between. Since −k < 0,
solutions exist if the “conserved energy” −k is smaller than
the value of Veff at the maximum, representing again
cosmologies that start with a bang and end with a crunch.
The solutions would not have existed if −k were larger than
the maximum. But this is not the case; the limiting case,
where −k is exactly equal to VeffðmaxÞ, would have been a
static Einstein universe, that would have been eternal. This
would require ä ¼ _a ¼ 0. Taking the derivative of (46) one
can easily check that this requires w ¼ −1, contradicting
w > 1=3. So therefore the closed cosmologies describing
bang/crunch always exist for w > 1=3.
Before closing this section, we should clarify the role

and the implications of the constraint hRi ¼ 0 which
follows from tracing and integrating Eq. (18) and using
Eq. (19). On FRW geometries with spatially compact
smooth sections it reduces to

R
dta3ð _H þ 2H2 þ k

a2Þ ¼ 0
after factoring out the finite spatial integral. Integrating the
term ∝ _H by parts yields

a3Hjtcrunchtbang ¼
Z

dta3
�
H2 −

k
a2

�
: ð47Þ

If we were to take the limits of integration to be the time
intervals where the scale factor literally vanishes, and the
dominant stress-energy sources determining the behavior
ofH obey NEC, the left-hand side would have vanished for
precisely the same reasons as we have already discussed in
Sec. IVA. This would appear to have ruled out spatially
open and flat FRWuniverses, as is clear from Eq. (47) since

in this case the right-hand side could only have vanished if
H and k were exactly zero at all times.
This argument is a little hasty, however. The point is that

the integration must be ended at times when the curvature R
reaches the Planck scale, and not when the scale factor
exactly vanishes. Thus the left-hand side does not vanish,
but simply represents a boundary condition which the
terminal geometry must satisfy to ensure that (1) it is a
solution of Einstein’s equations and (2) that the vacuum
energy is sequestered. Indeed, the left-hand side is merely a
nonzero number which represents the difference between
a3H at the beginning and the end of cosmology, encoding
the posterior determination of the effective cosmological
constantΛeff ¼ hτi=4, communicated to the on-shell geom-
etry by way of Einstein’s equations. For small universes,
the contributions to this term from beyond the cutoff are
sufficiently important that we can treat it as an arbitrary
boundary condition allowing any value of k. However, for
large and old universes, the integrals on the right-hand side
are dominated by the contributions from large volumes near
the turning point, and thus essentially insensitive to the
boundary conditions. Since the left-hand side is much
smaller, the integrals on the right-hand side must include
negative contributions that yield cancellations to match the
left-hand side. Thus having a large old approximately FRW
universe does require k ¼ 1 (and so Ωk < 1). Small
inhomogenous universes may evade this. A similar obser-
vation was made in a different context in [34].

V. VACUUM ENERGY SEQUESTERING AND
PHASE TRANSITIONS

In the course of the cosmological evolution the field
theory dynamics may go through many phase transitions:
QCD phase transition, electroweak symmetry breaking, etc.
This means that the local vacuum of the theory changes. As
a result, since after renormalization the effective potential
governing the dynamics is fixed, this implies that the net
renormalized cosmological constant may actually change
in time and space. The variation is typically of the order of
ΔV ∼M4

PT, whereMPT is the energy scale of the transition.
So the question arises, if the universe has undergone many
phase transitions in its past, how come the initial finite
value of cosmological constant was just right to exactly
cancel the phase transitions and yield a very small value
which obeys current observational bounds [8–10]?
In our framework, such contributions do not drop out

from (16) and (18), but they become automatically small
at times after the transition in a large and old universe. Let
us assume, for simplicity, a single phase transition that
took place in the past. If the phase transition is first order,
it proceeds through bubble formation, which will percolate
some time after the transition. If it is second order, then it
is characterized by some order parameter smoothly tran-
sitioning from one value to another in the universe, where
the onset of this rolling in different regimes is local. In any
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case the process takes some time to complete, and there-
fore involves gradients of fields or background geometry.
Either way, the energy density in the gradients will not
exceed the total potential energy density change. So for
simplicity we will model the phase transitions as a sudden
jump in the potential across the whole universe. This
means that we ignore the gradients of fields, as they just
give an Oð1Þ correction, and model the transition with a
simple step function potential V ¼ Vbeforeð1 − Θðt − t�ÞÞþ
VafterΘðt − t�Þ, where Θðt − t�Þ is the step function, and t�
the transition time. Substituting into (18), we find

τμν −
1

4
δμνhτααi ¼

�
−hVbefore − Viδμν t < t�;
−hVafter − Viδμν t > t�:

ð48Þ

Hence, after the transition, the historic average in (48) is

hVafter − Vi ¼ −ΔV

R t�
tbang dta

3R tcrunch
tbang dta3

; ð49Þ

where ΔV ¼ Vbefore − Vafter. The denominator is just the
spacetime volume, computed in Sec. IVA, and is given by
∼1=H4

age. To estimate the numerator, we use the result of
Sec. IVA, where we showed that the largest contributions
to the temporal integrals during a particular epoch come
from the region where the scale factor is largest. Since we
are considering the phase transitions in the past, as dictates
by the structure of the standard model, the dominant
contributions come from just before the transition itself.
Hence,

Z
t�

tbang

dta3 ∼Oð1Þ a
3�

H�
;

where a� is the scale factor and H� the curvature scale
during the transition. Therefore

hVafter − Vi ¼ Oð1Þρage
ΔV

M2
PlH

2�

�
H�
Hage

��
a�
amax

�
3

; ð50Þ

where we have used the fact that ρage ∼M2
PlH

2
age, and

amax ∼ 1=Hage. Assuming that the cosmological evolution
after the transition to the turning point is dominated by a
single perfect fluid with an equation of state w, so that
H2

age ¼ H2�ð a�
amax

Þ3ð1þwÞ we then find that

hVafter − Vi ¼ Oð1Þρage
ΔV

M2
PlH

2�

�
Hage

H�

�1−w
1þw

: ð51Þ

If the phase transition is followed by several different
epochs dominated by different matter distributions, the
correction is merely a factor of Oð1Þ. Now assuming
DEC and NEC, jwj ≤ 1, along with the fact that
H� ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Vbefore

p
=MPl ≳

ffiffiffiffiffiffiffi
ΔV

p
=MPl, we conclude that

jhVafter − Vij ≲ ρage < ρnow; ð52Þ

which means that the contributions of phase transitions to
the net effective vacuum energy are automatically sup-
pressed to below the critical energy density of the universe
today. As we also see, the earlier they are, the more
suppressed: the reason is the historic weighting of the
contributions, since the “imbalance” is weighted only by
the spacetime volume before the transition. Dividing by
the total spacetime volume of the universe then suppresses
the contributions from the transition more efficiently if
they occur earlier. For the standard model all the phase
transitions occur early, with H� ≫ H0 > Hage, and so the
suppression is considerable.
What about the period before the transition? Using

similar arguments, we find that hVbefore − Vi ∼Oð1ÞΔV.
Since ΔV ∼M2

plH
2�, this contribution could be large, but it

affects the universe only at early times before the transition,
when H ≳H�. This means that this a posteriori contribu-
tion is subdominant to the contributions from other energy
sources, except at most during the period immediately
before the transition. Indeed, it is consistent with the
standard model and a reheating scale ≫ TeV to assume
that all transitions occur during the radiation era. So this
could at most yield several short bursts of inflation (of at
most a few e-folds) in the run up to a transition, as long as it
is sharp. Such phases are only a small perturbation of the
radiation driven cosmology, and occurring at very short
scales in the present universe. If, however, the transition is
very slow, say a second order phase transition where the
order parameter takes a long time to move from its initial
position to the new vacuum, this in fact can drive a long
inflation responsible for making the universe subsequently
big and old. This, in fact, is beneficial, and we will show in
Sec. VIII that it is the key reason why our proposal is
consistent with inflation, even in the protected sector.

VI. PARTICLE MASSES AND PHENOMENOLOGY

So far we have shown that vacuum energy can be
sequestered away from curvature yielding a small residual
net cosmological constant, while particle physics still has a
mass gap as long as the universe is compact in spacetime,
with a finite spacetime volume. Here we expand on the
latter point, and discuss in greater detail the properties that
the function σ must have in order to ensure that the particle
mass gap is phenomenologically reasonable. Since the
numerical value of the parameter λ sets the physical scales
in L, setting mphys ¼ λm, where m is the bare mass, the
function σ must be carefully engineered to generate the
right hierarchies between the various scales in a given
model of (beyond) the standard model physics. This cannot
protect the hierarchy between mphys and MPl, nor the
hierarchies between different physical masses in L, but
it can help set the scale hierarchy, and it can coexist with
specific mechanisms designed by model builders to protect
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particle physics hierarchies, by removing the vacuum
energy contributions.
Since by virtue of the Eq. (14)

mphys

m
¼ λ ¼

�
σ0ðh ~Tα

αi=4μ4Þ
μ4

R ffiffiffi
g

p
�1=4

; ð53Þ

to compute it we need to specify the cutoff for the regulated
vacuum energy contributions. We will assume that the
cutoff is large enough that the vacuum energy gives the
dominant contribution to ~Tα

α. We approximate ~Tα
α ≈

−4 ~Vvac, where ~Vvac ¼ h0jLeffð~gμν;Φj0i is the regulated
vacuum energy of the effective matter Lagrangian in the
protected sector L at any given order in the loop expansion.
It is related to the physical regulated vacuum energy via the
relation Vvac ¼ λ4 ~Vvac. The regulator scale, i.e., the cutoff,
of the protected sector isMphys

UV ¼ λMUV, and in principle it
can be as high as MPl. Depending on the model, the “bare”
regulator,MUV, could also be as high asMPl, in which case
we must ensure that the solutions saturate λ ∼Oð1Þ. Even
in this most extreme scenario, the regulated vacuum energy
Vvac ∼ ~Vvac ∼M4

Pl is still completely sequestered from
gravity by our mechanism. The scale μ needs to be chosen
appropriately in order to be consistent with λ ∼Oð1Þ, via
the condition

Oð1Þ ¼
�
σ0ð�Oð1ÞM4

Pl=μ
4Þ

μ4
R ffiffiffi

g
p

�
1=4

∼ ½σ0ð�Oð1ÞM4
Pl=μ

4Þ�1=4Hage

μ
; ð54Þ

where the � reflects the fact that the vacuum energy may
take either sign. Since we are introducing μ by hand, we can
take it to have as natural a value as possible, and pick it
close to the cutoff in the protected sector. Note that this
parameter is entirely external—a mere normalization
required for dimensional purposes—since neither it nor
the function σ ever gets explicitly renormalized. The value
of the function σ can only change because the ratio Λ=λ4

which appears in the argument of σ may change between
different orders in the loop expansion. So setting
μ ∼MPl=

ffiffiffiffiffi
10

p
, we now require

Oð1Þ ∼ ½σ0ð�Oð100ÞÞ�1=4Hage

MPl
: ð55Þ

Provided the lifetime of the universe, 1=Hage, does not
exceed its lower bound, 10=H0, by too much, getting λ ∼
Oð1Þ will follow if σðzÞ≃ expðzÞ for z > 1. To allow for
both positive and negative vacuum energy, we need an odd
function, so we can simply take σðzÞ ∼ sinh z.
We should note that the exponential form of σ, which

easily sets up the required hierarchy between the electro-
weak scale and the Planck scale, is also highly beneficial
by protecting particle physics masses from a significant

sensitivity to the cosmological initial conditions. This can
be easily seen as follows. Consider Eq. (14) and imagine,
for example, that σðzÞ ¼ z. In this case, the first equation of
(14) translates to λ ¼ 1=½μðR d4x

ffiffiffi
g

p Þ1=4�, which by
Eq. (38) implies λ≃Hage=μ. In this case, if we take the
cutoff to be MUV ∼MPl, to get mphys ∼ TeV, we need
λ ∼ 10−15. If Hage ∼H0 ∼ 10−33 eV, this requires
μ ∼ 10−18 eV. Besides having such a tiny μ, this setup is
even more problematic from extreme sensitivity to the
cosmological conditions that yield the terminal value of
Hage. For example, if they are changed so that one has a few
more or less e-folds of inflation,Hage will change by orders
of magnitude. If this happens, one must redial all the
particle scales by those amounts by hand. Having an
exponential form of σ reduces this sensitivity to logarithms,
which are far tamer.
Of course, the standard model may be embedded in L via

some of its BSM extensions, such as some version of
supersymmetry, in which case we could get a much lower
value of the vacuum energy. For example, the SUSY
breaking scale might still be close to TeV, in which case
Λvacuum ≳ ðTeVÞ4. In this case, to retain λ ∼Oð1Þ as the
solution, and keep the exponential form for σ, which
protects particle scales from sensitivity to cosmological
initial conditions, we ought to rescale μ so that it is closer to
TeV. Either way, in principle we can adjust the external
parameters μ and/or σðzÞ to fit with a dynamical mechanism
which protects the hierarchy within L. Then our mecha-
nism can complement the QFT hierarchy protection by
sequestering those vacuum energy contributions which the
BSM extension cannot remove.

VII. PLANCK MASS RENORMALIZATON AND
GENERALIZED ACTIONS

So far we have conspicuously ignored discussing the
renormalization of the Planck mass. In the context of QFT
coupled to (semi)classical gravity, however,we cannot avoid
facing this issue. The reason is precisely the logic we have
adopted in addressing the problem of vacuum energy
corrections to the cosmological constant. These are calcu-
lated in the loop expansion in QFT, and involve loops with
gravitons only in external lines. However, similar loop
diagrams also give rise to graviton vacuum polarization—
i.e., wave function renormalization. These are precisely the
corrections to the Planck mass. For example, if one includes
one-loop corrections to the graviton wave function, one
finds that each field theory species contributes to the
regulated Planck mass an expression of the form ΔM2

Pl ≃
Oð1Þ× ðMphys

UV Þ2 þOð1Þ×m2
phys lnðMphys

UV =mphysÞþOð1Þ×
m2

phys þ � � �, where Mphys
UV ¼ λMUV is the matter UV regu-

latormass andmphys ¼ λmbare themass of the virtual particle
in the loop [20]. It is important to note that here, as well as in
the corrections to the vacuum energy, the dependence on λ is
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multiplicative, since λ’s in the logs cancel by virtue of the
careful choice of the regulator. Renormalization ofMPl then
corresponds to picking a suitable subtraction scale M and

canceling the MUV dependent pieces, which yields M2
Pl →

M2
Pl þ Oð1Þ × M2

phys þ Oð1Þ × m2
phys lnðMphys

mphys
Þ þ Oð1Þ×

m2
phys þ � � �. But, since Mphys ¼ λM, this implies that the

counterterm in the renormalization of the Planck scale must
also go as λ2, implying that the consistent semiclassical
theory really is given by the action

S ¼
Z

d4x
ffiffiffi
g

p �
M2

Pl þ λ2M2

2
R − Λ − λ4Lðλ−2gμν;ΦÞ

�

þ σ

�
Λ

λ4μ4

�
: ð56Þ

Here, λM is the total finite renormalization of MPl which
remains after subtracting the infinities. As long as Mphys

UV ¼
λMUV < MPl, a condition automatically satisfied by picking
a cutoff of the QFT belowMPl and maintained by evolution
in a large old universe,15 the value of the Planck scale is
radiatively stable in our original model. The change of the
form of (56) relative to (11) then does not affect the
dynamics of vacuum energy sequestering at all in the limit
of (semi)classical gravity.
To see this, note that the field equations that follow from

varying the action (56) with respect to Λ, λ now take a
slightly different form,

σ0

λ4μ4
¼

Z
d4x

ffiffiffi
g

p
;

4Λ
σ0

λ4μ4
¼

Z
d4x

ffiffiffi
g

p ðλ2M2Rþ λ4 ~Tμ
μÞ; ð57Þ

yielding

Λ ¼ 1

4
hλ2M2Rþ λ4 ~Tμ

μi: ð58Þ

The variation of (56) with respect to gμν gives
ðM2

Pl þ λ2M2ÞGμ
ν ¼ −Λδμν þ λ4 ~Tμ

ν. After eliminating Λ
from this equation with the help of Eq. (58) and canonically
normalizing the matter sector, this becomes

ðM2
Pl þ λ2M2ÞGμ

ν ¼ Tμ
ν −

1

4
δμνhλ2M2Rþ Tα

αi: ð59Þ

Rewriting this as M2
PlG

μ
ν ¼ Tμ

ν − λ2M2Gμ
ν − δμνhTα

α−
λ2M2Gα

αi=4, we see that the right-hand side vanishes
identically upon taking the trace and the spacetime average.
Thus, as long as M2

Pl ≠ 0, we again obtain hRi ¼ 0, and so

the gravitational equations reduce to

ðM2
Pl þ λ2M2ÞGμ

ν ¼ Tμ
ν −

1

4
δμνhTα

αi: ð60Þ

The theory is identical to the one described previously but
with a renormalized Planck mass ðMren

Pl Þ2 ¼ M2
Pl þ λ2M2

and everything we have said so far remains unchanged.
A curious limiting case occurs if we take the bare Planck

scale to zero, M2
Pl → 0, in effect thinking of the whole

theory as “induced gravity” [43,44]. The action becomes

S ¼
Z

d4x
ffiffiffi
g

p �
λ2M2

2
R − Λ − λ4Lðλ−2gμν;ΦÞ

�

þ σ

�
Λ

λ4μ4

�
: ð61Þ

Now the resulting gravitational field equations have a
vanishing historic trace:

0 ¼ Tμ
ν − λ2M2Gμ

ν −
1

4
δμνhTα

α − λ2M2Gα
αi: ð62Þ

This degeneracy of the averaged trace is an artifact of the
global scale invariance (20) being unbroken, so that the
field equations no longer force the constraint hRi ¼ 0.
Nevertheless, the vacuum energy from the protected matter
sector is again sequestered from gravity in this model—all
loop corrections still automatically cancel. Indeed, as
above, at any given order in loops, we can separate off
vacuum energy and local excitations by writing
Tμ

ν ¼ Vvacδ
μ
ν þ τμν. Then the vacuum energy is seen to

drop out, and the field equations become

λ2M2Gμ
ν ¼ τμν −

1

4
δμνhταα þ λ2M2Ri: ð63Þ

With the vacuum energy eliminated, the theory now
behaves like GR with an effective Planck mass
Mphys

Pl ¼ λM, and a residual cosmological constant
Λeff ¼ hταα þ λ2M2Ri=4. Unlike the generic class of the-
ories, in this case the choice of Λeff does not impose any
boundary conditions on the matter sources. This of course
is a consequence of the fact that the whole theory now has
unbroken scale invariance. Choosing Λeff breaks it sponta-
neously, but it does not fix hτααi. Thus this limit of our
mechanism has more in common with unimodular gravity
than the main case, in that it leaves an unspecified
integration constant as the effective residual cosmological
constant. However, the vacuum energy corrections from the
QFT are still completely canceled, unlike in the standard
formulation of unimodular gravity. Thus the residual
cosmological constant is completely classical.
The unbroken scale invariance of the theory (61) makes

it tempting to argue that the sequestering of the vacuum
15This is because the physical masses scale as λ, and λ

decreases with increasing spacetime volume.
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energy corrections from gravity may now be extended to
include also the corrections involving virtual graviton lines.
This, however, does not happen. While some of the loops
involving internal graviton lines might indeed cancel, the
presence of R in the historic average in (63) is indicative of
the problem. It will be renormalized by quantum gravity
effects, both quantitatively and by the fact that other higher
derivative operators will appear in the action, which implies
that the radiative stability of the residual cosmological
constant will be lost. In general however, allowing grav-
itons in the loops takes us on a road to the—as yet
unexplored—realms of quantum gravity, so it is difficult
to say anything concrete. To sequester contributions from
graviton loops at each and every order we would presum-
ably need stronger symmetry requirements than just global
scale invariance which appears here. Therefore we will
refrain from delving into this complex issue here, hoping to
return to this in the future.
Note that the phenomenology of this limiting case of our

mechanism also differs. In this case λ does not set the
hierarchy between the physical matter scales and the Planck
mass, since mphys

Mphys
Pl

¼ λm
λM ¼ m

M. This implies that now the

spacetime volume is allowed to be infinite, and in particular
it admits Minkowski spacetime as a solution. This immedi-
ately raises the specter of Weinberg’s no-go theorem, which
we have evaded previously by requiring a collapsing
spacetime. In the Minkowski limit, our scale invariant
theory corresponds to the runaway behavior as ~Φ0 → −∞
discussed at the end of our review of Weinberg’s theorem in
the previous section. There we argued that such a runaway
also set all QFT scales to zero, in obvious conflict with the
universe we see. The caveat here is that in the case of
Weinberg’s no-go, the Planck mass were held fixed. That is
not the case here. The effective Planck mass experiences
exactly the same runaway behavior, dependent on the
volume, so that ratios between masses are maintained.
So it appears that at least in the limit of classical gravity we
can consistently take all bare masses to infinity such that
the physical masses remain finite. However, it is not clear
this will survive when quantum effects are in fact included
on the gravitational side, even in infrared. Again this is a
question which we leave to future considerations.
Finally, let us comment here on the main difference

between our proposal and the suggestion by Tseytlin [25]
which seems to be similar (for follow-ups to Tseytlin’swork,
exploring his proposal at the classical level, see [45]).
This proposal posits that the standard action of a QFT
minimally coupled to gravity should be divided by the

spacetime volume of the universe, ST ¼ R
d4x

ffiffiffi
g

p ½M2
Pl
2
R−

Lðgμν;ΦÞ�=½μ4 R d4x
ffiffiffi
g

p �. Clearly, this trick immediately
removes the classical and zero-point (tree-level) corrections
to the cosmological constant. However it does not remove
the loop corrections to vacuum energy. To see that, rewrite
the theory as

ST ¼
Z

d4x
ffiffiffi
g

p �
λ4M2

Pl

2
R − Λ − λ4Lðgμν;ΦÞ

�
þ Λ
λ4μ4

;

ð64Þ

with the introduction of the global variables Λ, λ. Ignoring
any phenomenological problems associated with the linear
function σ, we see that the main difference between (64) and
our proposal (11) is the dependence of the bulk terms on λ.
Here, the Einstein-Hilbert term has a λ4 prefactor, and the
matter sector does not have the kinetic energy scaling 1=λ2.
Now, it is convenient to normalize the Einstein-Hilbert term
canonically, by taking gμν → λ−4gμν. The action (64) then

becomes ST ¼ R
d4x

ffiffiffi
g

p ½M2
Pl
2
R − Λ

λ8
− 1

λ4
Lðλ4gμν;ΦÞ� þ Λ

λ4μ4
.

Now it is clear that the tree-level vacuum energy scales
like 1=λ4 and so will be automatically eliminated from the
dynamics once λ is integrated out. However, after canoni-
cally normalizing the QFT Lagrangian, it is straightforward
to see that the physicalmasses scale asmphys ¼ m=λ2, and so
the radiative corrections to the vacuum energy scale as
∼1=λ8. Thus they will not automatically cancel, and will
restore the vacuum energy radiative instability in much the
same way as in GR (or unimodular gravity). In effect, the λ
dependence of (64) does not correctly count the engineering
dimension of the vacuum energy loop corrections. Further,
as already alluded in [25], the Planck mass is not radiatively
stable. The reason is that the corrections to it come as
ΔM2

Pl ≃Oð1Þ ×m2
phys ≃Oð1Þm2=λ4, and so they are

extremely large in old and large universes. Therefore in a
large and old universe like ours, the Planck scale would
receive very large radiative corrections (unless of course the
bare particle masses are incredibly small to start with). This
is in complete contrast to what happens in our model.

VIII. INFLATION

So far, we have shown that in our framework the residual
effective cosmological constant is automatically small in
large old universes. How does a universe become large and
old? A common approach to answering this question is to
resort to the inflationary paradigm, and postulate that at
some early epoch the universe was dominated by a transient
large vacuum energy which made it very big and smooth
quickly. But, we want to get rid of vacuum energy here. So
how do we reconcile these two requirements? Is our
framework compatible with inflation? If so, why does
our mechanism not sequester away the vacuum energy
during inflation?
In [14] we noted that in principle one could add an extra

sector to (11) which contains an inflaton, outside of the
protected sector L. However, since inflation must end and
the universe must reheat, this means that the inflaton must
couple to the protected sector fields in L. Then one must
worry about quantum cross-contamination between the
two sectors and how this may spoil the vacuum energy
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sequestration. In particular, loops involving inflaton inter-
nal lines could spoil the scaling of the vacuum energy
corrections with λ, and so they could end up yielding large
corrections to the residual cosmological constant. We noted
however that there is an easy way out: since we are already
treating gravity (semi)classically, prohibiting internal grav-
iton lines in vacuum energy loops, we could just embed the
inflaton in the gravitational sector, and imagine that some
—yet unknown—mechanism protects the residual vacuum
corrections involving virtual inflaton lines in the same
way it protects them from corrections involving virtual
gravitons.
Such a model is readily provided by the original inflation

model of Starobinsky [46]. This model has—until very
recently—been favored by the data [47], and even post
BICEP2 [48], there may still be variants in play [49]. The
model can be simply embedded in our framework by
extending the action (11) by

S ¼
Z

d4x
ffiffiffi
g

p �
M2

Pl

2
Rþ βR2 − Λ − λ4Lðλ−2gμν;ΦÞ

�

þ σ

�
Λ

λ4μ4

�
; ð65Þ

where β ∼Oð106Þ is a dimensionless parameter. Such a
large parameter is radiatively stable to the corrections from
the loops of the protected sector fields, and retains its form
as long as we pick the UV regulators that couple to ~gμν, as
before. We can now go to the axial gauge, by first extracting
the Starobinsky scalaron χ by the field redefinition

ḡμν ¼ ð1þ 4β
M2

Pl
RÞgμν, χ ¼

ffiffi
3
2

q
MPl ln ð1þ 4β

M2
Pl
RÞ [50]. The

scalaron has the potential V ¼ M4
Pl

16β ½1 − exp ð−
ffiffi
2
3

q
χ=MPlÞ�

2

and the protected matter sector couples to both ḡμν and to
χ, via

S ¼
Z

d4x
ffiffiffī
g

p �
M2

Pl

2
R̄ −

1

2
ð∂̄χÞ2 − V − Λe−2

ffiffi
2
3

p
χ

MPl

− λ4e−2
ffiffi
2
3

p
χ

MPlL
�
e

ffiffi
2
3

p
χ

MPl

λ2
ḡμν;Φ

��
þ σ

�
Λ

λ4μ4

�
: ð66Þ

Clearly, the sequestering of vacuum energy in the protected
sector goes through unaffected, which follows from the
scaling of the protected sector Lagrangian with λ.
The Starobinsky inflation χ does not spoil it, since coming
from the gravitational sector it is also treated purely
classically, like the graviton. By a direct variation of
(66) one could directly verify this, noting that a substitution
Tμ

ν ¼ −Vvacδ
μ
ν þ τμν, where Vvac is the physical vacuum

energy computed up to any given order in loops, and τμν is
the energy momentum tensor describing local on-shell
modes, still leads to a complete cancellation of Vvac.

Furthermore, we find that the deviations from
the original Starobinsky scenario go like hτααiχ=V,
where the χ-modified average is defined as hQiχ ¼R

d4x
ffiffī
g

p
e
−2

ffiffi
2
3

p
χ

MPlQR
d4x

ffiffī
g

p
e
−2

ffiffi
2
3

p
χ

MPl

. Since χ ≠ 0 only during inflation, the

dominant contribution to the χ-modified averages comes
from the full history of the universe, which means that
hτααiχ ≈ hτααi ∼ ρage. This is very small compared to the
inflaton potential V ∼M4

pl=β during inflation. We see, then,
that the dynamics of Starobinsky inflation with sequester-
ing is identical to the standard case to an accuracy
of ∼ρage=ðM4

Pl=βÞ≲ 10−110.
However, if the BICEP2 claim survives the ongoing

scrutiny, the inflationary mechanism which shaped our
universe may be different from Starobinsky. In fact,
BICEP2 appears to favor large field chaotic inflation
[51], which can be UV completed consistently [52,53].
It turns out that such inflationary models are also consistent
with vacuum energy sequestering. This means, the inflaton
itself resides in the protected sector—so that the exit from
inflation, reheating and all the usual inflationary phenom-
enology may proceed without spoiling the cancellation of
vacuum energy loop corrections. A clue that this is the case
comes from the consideration of phase transition contri-
butions to vacuum energy in Sec. V. There we have noted
that while the phase transition contributions are small after
the transition, they could end up dominating before. Slow-
roll large field inflation can in fact be viewed as one such
slow, second-order phase transition—very slow, in fact, to
ensure that at least Oð60Þ e-folds of accelerated expansion
may occur.
To check this, the simplest way to proceed is to consider

the field equations that follow from the action

S ¼
Z

d4x
ffiffiffi
g

p �
M2

Pl

2
R − Λ −

λ4

2

�ð∂φÞ2
λ2

þm2φ2

�

− λ4Lðλ−2gμν;Φ;φÞ
�
þ σ

�
Λ

λ4μ4

�
; ð67Þ

where φ is the inflaton avatar and Φ are the fields that it
decays into after the end of inflation, including the standard
model. This guarantees that the vacuum energy corrections
remain completely sequestered even if they involve inflaton
loops. Further, the inflaton sector needs to have an internal
mechanism which protects the flatness of its potential [in
this case, the smallness of m in (67)], and allows for
sufficient reheating, as explained, for example, in [53]. We
will ignore these—important—details here, and merely
focus on showing that (67) supports inflation driven by the
quadratic potential of φ, which is sufficient to prove the
consistency between vacuum sequestration and large field
inflation. This means, we will focus only on the quadratic φ
potential in the matter sector.
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For our purposes, it suffices to show that there exists an
inflating FRW flat (toroidal) cosmology driven by the field
φ in the slow roll, and including the historic average
cosmological term. With this, after canonically normalizing
φ → φ=λ, m → m=λ, the variational equations (14) and
(16) reduce to

3M2
PlH

2 ¼ 1

2
_φ2 þ 1

2
m2φ2 þ Λeff ;

Λeff ¼ −
R
dta3ð1

2
m2φ2 − 1

4
_φ2ÞR

dta3
;

φ̈þ 3H _φþm2φ ¼ 0: ð68Þ

In slow-roll approximation, the field kinetic energy
and acceleration terms are negligible, so this system
simplifies to

3M2
PlH

2 ¼ 1

2
m2φ2 þ Λeff ; Λeff ¼ −

m2

2

R
dta3φ2R
dta3

;

3H _φþm2φ ¼ 0: ð69Þ

Now, it is clear that the integral for Λeff picks up significant
contributions only from the time interval during which
φ ≠ 0. In other words,

R
dta3φ2 ≃ R tend

0 dta3φ2 where tend
is the end of inflation. We can bound this by taking φ ≤
few ×MPl during the last 60 e-folds, which implies thatR
dta3φ2 ≲ 100M2

Pl

R tend
0 dta3 ≃ 100M2

Ple
3N=H4, where H

is the Hubble scale during inflation, and N the number of

e-folds. So we find that jΛeff j≲ 50
m2M2

Pl

H4
R

dta3
e3N . But the

integral in the denominator involves the full cosmic history,
and so by Eq. (36) it is ≃1=H4

age. This means

jΛeff j≲ 50
m2M2

PlH
4
agee3N

H4
: ð70Þ

So relative to the scale of inflation, this gives
jΛeff j
M2

PlH
2 ≲ 50

m2H4
agee3N

H6 . Now, to have slow-roll inflation we

must enforce m < H. More importantly, for inflation to
solve the horizon problem, we must require that
H0eN=H ≤ 1. Since Hage ≤ H0, this immediately shows
that

jΛeff j
M2

PlH
2
≪ 1: ð71Þ

This means that the historic average contribution to the
residual cosmological constant from the inflationary dynam-
ics is completely negligible during inflation. Similar con-
siderations also apply to other power law potentials. Hence
large field inflation proceeds as in GR.
The one remaining point of potential conflict between

our proposal and inflation is the regime of eternal inflation
[54]. For our proposal to work we need the spacetime

volume of the universe to be finite. On the other hand, in
eternal inflation large quantum fluctuations of the inflaton
field restart inflation in various regions of space. In effect
this allows the inflaton to utilize an entire ensemble of
initial conditions, many of which yield never-ending
exponential expansion creating infinite spacetime volumes.
Although the dynamics of eternal inflation remains a topic
of debate, it is nevertheless an important ingredient of the
inflationary paradigm and hence we cannot ignore it.
The success of our mechanism in its present form

precludes eternal inflation. We can imagine two ways to
accomplish this. The simplest possibility is to imagine that
the true minima of the QFT have negative potential, in
which case the vacuum would have been an anti–de Sitter
(AdS). This is even consistent with the fact that our historic
term hτααi generically yields a very small negative residual
cosmological constant. If this happens, then a random
observer will eventually find herself in the global AdS
minimum and experience an apocalyptic crunch. Of course,
this does not rule out an infinite universe, as the birth rate of
inflating bubbles could exceed the death rate due to
crunches. Whether or not this is the case depends on the
shape of the potential barrier separating inflationary vacua
from the AdS minimum. A scenario in which the rate of
terminal collapse of a universe exceeds their birth rate
corresponds to the case where the barrier is neither too wide
nor too steep [55,56]. One could reasonably expect to
achieve this and still allow the inflaton field to explore an
ensemble of inflationary initial conditions. The convincing,
quantitative estimates of the likelihood of such a scenario at
this point are obstructed by the ambiguities in the definition
of the cosmological measures, and dynamics of eternal
inflation. Another possibility is to imagine that inflationary
potential at high energies—or large displacements of the
inflaton from the vacuum—is dramatically modified pre-
venting inflationary slow roll altogether. For this, one needs
to have very steep potentials away from the minimum. This
does appear to be a designer model, but it is nevertheless
possible to construct such theories [55–58]. In such setups,
one can avoid eternal inflation but then one needs a
different approach for addressing initial conditions for
inflation.

IX. SUMMARY

We have proposed a mechanism for stabilizing the
cosmological constant from vacuum energy corrections.
The main idea behind it is to modify the dynamics by
introducing two global variables which yields a theory with
two new approximate symmetries: global scale invariance
of the matter sector, which is broken only by the Einstein-
Hilbert term, and a shift symmetry that allows us to shift the
matter Lagrangian by a constant without affecting the
geometry. These symmetries provide the key insight into
how the vacuum energy is sequestered. At a fixed scale
below the cutoff, the shift symmetry is responsible for the

VACUUM ENERGY SEQUESTERING: THE FRAMEWORK AND … PHYSICAL REVIEW D 90, 084023 (2014)

084023-21



cancellation of the vacuum energy after it is renormalized.
The scaling symmetry then guarantees that the shift
symmetry remains operational at all scales below the
cutoff. Thus, all the vacuum energy corrections coming
from a sector whose dynamics is constrained by the global
variables is completely removed from the gravitational field
equations. Since the two symmetries are approximate,
being broken by the gravitational sector, the net residual
cosmological constant is not zero, but it is automatically
small in old large universes, being given by the historic
average hτααi ¼

R
d4x

ffiffiffi
g

p
ταα=

R
d4x

ffiffiffi
g

p
, where the trace

involves only the contributions from the fluctuating on-
shell sources that affect cosmic evolution.
This term is nonlocal. However this nonlocality is not

pathological, but a mere consequence that the starting
cosmological constant is a UV-divergent variable in the
theory. It must be renormalized, which means that the finite
leftover part is a quantity that cannot be predicted, but must
be measured. Since the cosmological constant is a global
variable, a parameter of a system of codimension zero, and
its measurement requires carefully separating it from all the
other long-wavelength modes in the universe, it takes a
detector of the size of the universe to measure it. Once
determined, however, it is independent of any vacuum
energy corrections, and can be used to predict other, UV-
insensitive, observables. Note that the cancellation of the
UV-sensitive contributions is perfectly local in spacetime.
This a posteriority of the measurement of Λeff represents

a self-consistent determination of a single number, and does
not give rise to any pathologies one typically associates
with local violations of causality. It is interesting to note
Coleman has argued that the universe should possess a
degree of what he calls precognition—it knows from the
beginning that it intends to grow old and big [59].
All this follows from the modification of the gravita-

tional sector, accomplished with the introduction of two
global variables and two global constraints. This approach,
equivalent to the isoperimetric problem of variational
calculus, does not affect local particle physics at all. The
theory still has diffeomorphism invariance and local
Poincaré symmetry, and so local QFT behaves exactly
the same as in the conventional formulation. Further,
because of these symmetries the number of local degrees
of freedom in gravity is still just two, the usual spin-2
helicities of GR. The global variables disappear from local
dynamics, one canceling the quantum vacuum energy and

the other being absorbed into the definition of physical
scales of the local QFT, without affecting particle physics.
A key ingredient of the proposal, however, which allows for
this disappearance of the variable λ, is that the universe
should be compact in space and time. This is necessary in
the present formulation in order to have nonzero mass gap
in the QFT sector. So far we have not specified the detailed
mechanism which produces collapse, but have shown that
this is consistent with the dynamics of the proposal. In a
forthcoming paper [37] we will return to this issue.
The main phenomenological differences of our proposal

relative to the standard formulation of QFT coupled to
gravity, and so predictions, follow from this requirement.
This completely changes cosmic eschatology since we now
require the universe to be spatially closed and to exist for a
finite proper time, starting out with a big bang and ending
with a big crunch. A spatially closed universe can have
observational signatures, yielding doubling of images due
to nontrivial spatial topology or affecting CMB at the
largest scales. Currently there is no direct evidence of such
topology [60], but the search continues. Further, it may be
possible to forecast the impending collapse observationally,
as noted in [61], particularly if the impending doom is
triggered by whatever is driving the current acceleration.
The key consequence, however, is the prediction that the
current epoch of cosmic acceleration with wDE ≈ −1 is a
transient. So finding deviations away from this equation of
state of dark energy may indeed be a harbinger of a future
cosmological collapse.
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