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Given the extreme accuracy of modern space science, a precise relativistic modeling of observations is
required. We use the time transfer function formalism to study light propagation in the field of uniformly
moving axisymmetric bodies, which extends the field of application of previous works. We first present a
space-time metric adapted to describe the geometry of an ensemble of uniformly moving bodies. Then, we
show that the expression of the time transfer functions in the field of a uniformly moving body can be easily
derived from its well-known expression in a stationary field by using a change of variables. We also give a
general expression of the time transfer function in the case of an ensemble of arbitrarily moving point
masses. This result is given in the form of an integral that is easily computable numerically. We also provide
the derivatives of the time transfer function in this case, which are mandatory to compute Doppler and
astrometric observables. We particularize our results in the case of moving axisymmetric bodies. Finally,
we apply our results to study the different relativistic contributions to the range and Doppler tracking for the
Juno mission in the Jovian system.
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I. INTRODUCTION

In modern times, the accuracy of spacecraft tracking
requires a very detailed modeling of the light propagation
in order to compute range and Doppler observables. For
example, the Cassini spacecraft reaches the level of few
meters accuracy for the range and 3 × 10−6 m=s for the
Doppler [1–3], while the future BepiColombo mission
should reach an accuracy of 10cm on the range and
10−6 m=s on the Doppler [4,5]. Similar accuracies are
expected for the Juno mission [6], which will reach the
Jovian system by mid-2016.
The computation of radioscience observables, as well as

the determination of astrometric observables (very large
baseline interferometry tracking [7]) requires determining
the propagation of light in a curved space-time. In this
context, several approaches exist. Assuming that the metric
is known, solving the null geodesic equations [8] or the
eikonal equation [9] is the standard method allowing one to
get all the information about light propagation between two
point events. Many solutions have been proposed in the
post-Newtonian (PN) and in the post-Minkowskian (PM)
approximations when dealing with the bending effects due
to the mass multipole moments of the bodies in the Solar

System [10–17]. On the other hand, the effects of the motion
of monopoles on the light propagation have also been
studied [10,18–21]. A different approach is also available,
initially based on the Syngeworld function [22–24] and then
on the time transfer functions (TTFs) [25,26]. In this
formalism, the computation of the coordinate light time,
the frequency shift and the light deflection can be computed
as integrals of functions of the components of the metric
tensor over a straight line joining the emitter and the receiver
of the signal [25,26]. This method has already been
successfully used to compute the propagation of light in
different configurations. For example, the TTF in the field of
a stationary axisymmetric body has been determined at the
first post-Newtonian (1PN) approximation [22,27]. The light
propagation in the field of moving monopoles at 1.5 post-
Newtonian order has also been treated [28]. Finally, the
TTFs in the field of a static monopole up to the second and
third post-Minkowskian (3PM) approximation have also
been determined [26,29–31].
In this paper, we use the time transfer function formalism

to compute the coordinate propagation time, the frequency
shift and the deflection of light in the field of uniformly
moving axisymmetric bodies and in the field of arbitrarily
moving point masses. In Sec. III, we briefly review how
the radioscience and astrometric observables can be deter-
mined from the TTF and its derivatives. Then, in Sec. IV,
we determine the space-time metric describing the geom-
etry in the field of a uniformly moving axisymmetric body,
and we note the metric describing the field of arbitrarily
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moving point masses. In Sec. V, we use these metrics to
develop a general expression of the TTF. A general result is
given in the form of an integral that is computable
numerically. Moreover, an analytical result is developed
in the case of a uniform motion. The derivatives of the TTF
are also determined. In Sec. VI, we particularize our results
in the case of a uniformly moving axisymmetric body by
analytically determining the contribution of each multipole
to the TTF. Finally, in Sec. VII, we apply our results to
determine the different relativistic contributions to the
radioscience tracking of the Juno spacecraft in the
Jovian system. The contributions of the Sun and Jupiter
moving monopoles and of the Jupiter moving J2 are
identified. Finally, we give our conclusions and general
remarks in Sec. VIII.

II. NOTATION AND CONVENTIONS

In this paper, c is the speed of light in a vacuum and G is
the Newtonian gravitational constant. The Lorentzian
metric of space-time V4 is denoted by g. The signature
adopted for g is ðþ − −−Þ. We suppose that space-time is
covered by some global quasi-Galilean coordinate system
ðxμÞ ¼ ðx0; xÞ, where x0 ¼ ct, with t being a time coor-
dinate, and x ¼ ðxiÞ. We assume that the curves of
equations xi ¼ const are timelike, which means that g00 >
0 anywhere. We employ the vector notation a in order to
denote ða1; a2; a3Þ ¼ ðaiÞ. Considering two such quantities
a and b, we use a · b to denote aibi (Einstein convention on
repeated indices is used). The quantity jaj stands for the
ordinary Euclidean norm of a. For any quantity fðxλÞ, f;α
denotes the partial derivative of f with respect to xα.

III. TIME TRANSFER FUNCTION AND
OBSERVABLES

Let xA ¼ ðctA; xAÞ and xB ¼ ðctB; xBÞ be two events of
space-time that are supposed to be connected by a unique
light ray. They denote the emission and reception point
of the electromagnetic signal. The coordinate light time
of a photon connecting xA and xB is given by the TTF
[23,25,32,33] as

tB − tA ¼ T ðxA; tB; xBÞ ¼
RAB

c
þ 1

c
ΔðxA; tB; xBÞ; ð1Þ

where T ðxA; tB; xBÞ is the TTF,1 and RAB ¼ jxB − xAj and
ΔðxA; tB; xBÞ is the so-called “delay function.”2

As developed in detail in [26], the range, Doppler and
astrometric observables can all be computed from the TTF.
The range is directly related to the coordinate time of flight

of the photon through a coordinate transformation (see
also [34]).
The frequency shift is given by [24,34,35]

νB
νA

¼ ½g00 þ 2g0iβi þ gijβiβj�1=2A

½g00 þ 2g0iβi þ gijβiβj�1=2B

×
1 − Ni

ABβ
i
B − βiB

∂Δ
∂xiB −

1
c
∂Δ
∂tB

1 − Ni
ABβ

i
A þ βiA

∂Δ
∂xiA

; ð2Þ

where βiA=B ¼ dxiA=B=cdt is the coordinate velocity.
The astrometric observables are directly related to the

TTF through the use of [23]

ðk̂iÞB ¼
�
ki
k0

�
B
¼ −c

∂T
∂xiB

�
1 −

∂T
∂tB

�
−1

¼ −
�
Ni

AB þ ∂Δ
∂xiB

�
×
�
1 −

1

c
∂Δ
∂tB

�
−1
; ð3Þ

where kμ are the covariant components of the tangent vector
to the photon trajectory ðkμÞB ¼ dxμ=dλjB (λ being an
affine parameter) at xB and NAB ¼ RAB

RAB
¼ xB−xA

RAB
.

Finally, the angular distance between two light rays
coming from two different sources can also be related to
ðk̂iÞB [26,36].
Therefore, the computation of the TTF (or equivalently

of the delay function) and its derivatives is crucial in order
to analyze different effects on observations that are done
using light propagation.

IV. METRIC AT FIRST POST-MINKOWSKIAN
APPROXIMATION

A. Uniformly moving axisymmetric body

Let us suppose that the gravitational field is generated by
an ensemble of axisymmetric bodies. We are interested in
calculating the contributions of the mass multipoles and of
the motion of the bodies on light propagation. The first step
is to consider the metric describing such a space-time. The
metric for each of the bodies at 1PM order in its own local
reference system is given by Gμν ¼ ημν þHμν, where Hμν

is given by [37]

H00 ¼ −2
WðXαÞ
c2

þOðG2Þ; ð4aÞ

H0i ¼ 0; ð4bÞ

Hab ¼ −2δab
WðXαÞ
c2

þOðG2Þ; ð4cÞ

with the spin multipoles being neglected. Let us stress
that the potential W depends on the local coordinate
Xα ¼ ðcT;XÞ.

1In this paper, we used the reception TTF. Similar results can
be obtained using the emission TTF, which depends on tA instead
of tB [25].

2In this paper, we call for simplicity ΔðxA; tB; xBÞ a “delay
function” even though it has the dimension of a distance.
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We can now perform a Poincaré transformation in order
to obtain the metric in the case of a uniformly moving body.
The procedure is similar to what is developed in [38]. The
coordinate transformation is given by

xμ ¼ bμ þ Λμ
αXα; ð5Þ

where xμ ¼ ðct; xÞ are the coordinates of the global
reference system and Λμ

α is given by

Λ0
0 ¼ γp; Λ0

i ¼ Λi
0 ¼ γpβ

i
p;

Λj
i ¼ δij þ

γ2p
1þ γp

βipβ
j
p; ð6Þ

where βip ¼ vip=c, vip is the coordinate velocity of the body

and γp ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2p

q
with βp ¼ jβpj. Note that bμ is a

constant four-vector that specifies the origin of the coor-
dinate system: it points from the origin of the global
reference system to the origin of the comoving frame at
T ¼ 0 [38]. We have

bi ¼ xipðt0Þ and b0 ¼ ct0; ð7Þ

and the trajectory of the moving body in the global frame is
given by

xpðtÞ ¼ xpðt0Þ þ cβpðt − t0Þ: ð8Þ

The inverse coordinate transformation is given by

Xα ¼ ~Λα
μðxμ − bμÞ; ð9Þ

where ~Λα
μ is the inverse of Λμ

α and is given by

~Λ0
0 ¼ γp; ~Λi

0 ¼ ~Λ0
i ¼ −γpβip;

~Λj
i ¼ δij þ

γ2p
1þ γp

βipβ
j
p: ð10Þ

The metric transformation is given by

gμν ¼ ημν þ hμν ¼ Λμ
αΛν

βG
αβ ¼ Λμ

αΛν
βðηαβ þHαβÞ; ð11Þ

which leads to

hμν ¼ Λμ
αΛν

βH
αβ: ð12Þ

From Eq. (4), we have3 Hαβ ¼ 2W
c2 δ

ab. The introduction of
this expression and the expression of Λμ

α given by Eq. (6)
into Eq. (12) leads to

h00 ¼ 2WðXαÞ
c2

γ2pð1þ β2pÞ þOðG2Þ; ð13aÞ

h0i ¼ 4WðXαÞ
c2

βipγ
2
p þOðG2Þ; ð13bÞ

hij ¼ 2WðXαÞ
c2

ðδij þ 2βipβ
j
pγ2pÞ þOðG2Þ: ð13cÞ

It is worth mentioning that this metric is a generalization of
the international astronomical union (IAU) metric [37]
which can be recovered in the limit of small βp. This limit
is explicitly developed in Appendix B 1. Let us also stress
that W still depends on the local coordinates Xα. Therefore,
we still need to use the coordinate transformation (9) to
express the potential W as a function of the global
coordinates xα. More precisely, we get

W ¼ WðXαÞ ¼ Wð ~Λα
μðxμ − bμÞÞ: ð14Þ

The metric (13) describes the geometry generated by a
uniformly moving body at 1PM. The metric describing the
geometry due to an ensemble ofN uniformly moving bodies
is then given by

h00 ¼
XN
p¼1

2Wp

c2
γ2pð1þ β2pÞ þOðG2Þ; ð15aÞ

h0i ¼
XN
p¼1

4Wp

c2
βipγ

2
p þOðG2Þ; ð15bÞ

hij ¼
XN
p¼1

2Wp

c2
ðδij þ 2βipβ

j
pγ2pÞ þOðG2Þ: ð15cÞ

In the case of an axisymmetric body, the Newtonian potential
can be decomposed in a multipolar expansion

WpðXiÞ ¼ GMp

R

�
1 −

X∞
n¼2

Jnp

�
rpe
R

�
n
Pn

�
kp · X

R

��
;

ð16Þ

where kp denotes the unit vector along the symmetry axis of
the body p, Mp is the mass of the body p, Jnp are its mass
multipole moments, Pn are the Legendre polynomials, rpe is
the equatorial radius of body p and R ¼ jXj. In this paper,
we assume that the symmetry axis of the body kp is time
independent, which means we neglect the precession and
nutation of the body.

B. Arbitrarily moving point masses

The determination of the metric describing the geometry
around an arbitrarily moving extended body at the

3Notice that we define Hαβ ¼ Gαβ − ηαβ, which at the linear
order is given by Hαβ ¼ −ηαμηβνHμν.
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post-Minkowskian approximation is very complex. In
particular, one cannot simply use an instantaneous
Lorentz transformation, but a local accelerated reference
system has to be defined (see the discussion in the
conclusion of [38]). This is beyond the scope of this paper.
Nevertheless, the metric for arbitrarily moving point
masses at the post-Minkowskian approximation has already
been determined using the Liénard-Wiechert potentials
[18,19,38]. In Appendix A, we briefly note how to compute
this metric.
The space-time metric describing the geometry around

an arbitrarily moving point mass can be written as
[18,19,38] (see also Appendix A)

h00 ¼ 2WðXiÞ
c2

γ2prð1þ β2prÞ þOðG2Þ; ð17aÞ

h0i ¼ 4WðXiÞ
c2

βiprγ
2
pr þOðG2Þ; ð17bÞ

hij ¼ 2WðXiÞ
c2

ðδij þ 2βiprβ
j
prγ2prÞ þOðG2Þ; ð17cÞ

with WðXiÞ ¼ GM=R (since this metric is only valid for
point masses),

Xi ¼ −βiprγprrpr þ ripr þ
γ2pr

1þ γpr
βiprðβpr · rprÞ; ð18Þ

and where the index r denotes quantities that have to be
evaluated at the retarded time tr defined by

tr ¼ t −
jx − xpðtrÞj

c
¼ t −

rpr
c

; ð19Þ

where rpr ¼ jx − xpðtrÞj and xpðtrÞ is the position of the
body p at the retarded time. The expression of the potential
WðXiÞ can then be explicitly written as

WðXiÞ ¼ GM
jXij ¼

GM
γprðrpr − ðrpr · βprÞÞ

: ð20Þ

In the limit of small velocities, the expression of the IAU
metric is recovered (see Appendix B 2). Finally, the metric
for an ensemble of masses is the sum of the metrics
generated by each body.

V. TIME TRANSFER FUNCTION AT
GENERALIZED 1PM APPROXIMATION

In [24], a PM expansion of the TTF is presented. It
develops the TTF in terms of integrals of functions of the
metric components over a straight line between the emitter
and the receiver of a light signal. At 1PM order, the delay
function is given by Ref. [35] as

ΔðxA; tB;xBÞ

¼RAB

2

Z
1

0

½h00−2Ni
ABh

0iþNi
ABN

j
ABh

ij�zαðλÞdλþOðG2Þ;

ð21Þ

where the integral is taken along a straight line para-
metrized by

z0ðλÞ ¼ ct ¼ ctB − λRAB; ð22aÞ

zðλÞ ¼ xB − λRAB ¼ xBð1 − λÞ þ λxA: ð22bÞ

A. General expression in the case of uniform motion

As can be seen from the expression of the metric (15),
Δ can be written as a sum of delay functions generated
by each individual body Δ ¼ P

N
p¼1 Δp. Replacing the

expression of the metric (15) in (21) gives

ΔpðxA; tB; xBÞ

¼ 2RAB

c2

Z
1

0

γ2pð1 − NAB · βpÞ2Wpð ~Λi
μðzμðλÞ − bμÞÞdλ:

ð23Þ

It is useful to express the argument appearing in the
expression of the potential Wp in the right-hand side of
(23) as

~Λi
μðzμðλÞ − bμÞ ¼ −βipγpcðt − t0Þ þ ziðλÞ − xip0

þ γ2p
1þ γp

βipβp · ðzðλÞ − xp0Þ

¼ xiB þ γ2p
1þ γp

βip½βp · ðxB − xp0Þ�

− xip0 − γpvipðtB − t0Þ − λRAB

× ½Ni
AB − γpβ

i
p þ

γ2p
1þ γp

βipðβp · NABÞ�;

ð24Þ

by using Eqs. (8), (10) and (22) and by denoting
xp0 ≡ xpðt0Þ. It is also possible to rewrite Eq. (24) in a
more compact form as

~Λi
μðzμðλÞ − bμÞ ¼ Ri

pB − λGi
AB ð25Þ

by setting

RpX ¼ xX þ γ2p
1þ γp

βp½βp · ðxX − xp0Þ�

− xp0 − γpvpðtB − t0Þ; ð26aÞ
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GAB ¼ RAB

�
NAB − γpβp þ

γ2p
1þ γp

βpðβp · NABÞ
�

¼ RABgpAB ð26bÞ
and

gpAB ¼ NAB − γpβp þ
γ2p

1þ γp
βpðβp · NABÞ: ð26cÞ

Let us denote by I the integral appearing in the TTF
expression (23) in the case where the body p is static.
Therefore, I is given by

IðxpA; xpBÞ ¼ ~IðRAB; xpBÞ ¼
Z

1

0

WpðxpB − λRABÞdλ;
ð27Þ

where xpA ¼ xA − xp and xpB ¼ xB − xp. Usually, the
solution of this integral is given in terms of xpA and
xpB, but formally, the integral depends on RAB and xpB. The
transition between the two expressions of I and ~I in the
static case is trivial because xpA ¼ xpB − RAB. However,
this transition no longer applies in the moving case, and it
has to be replaced in Eq. (23) by

~IðGAB;RpBÞ ¼
Z

1

0

WpðRpB − λGABÞdλ ð28Þ

with the two variables defined by Eqs. (26) and similarly to
what was proposed in [28].
Therefore, all the results in the moving case can be

derived from the expressions used in the static case by
replacing xpB by RpB (26a) and RAB by GAB (26b). We can
use the conversions given below, where for each “static
case” quantity on the left we give the “moving case”
equivalent on the right. We get

xpB → RpB ¼ xB þ γ2p
1þ γp

βp½βp · ðxB − xp0Þ�

− xp0 − γpvpðtB − t0Þ; ð29aÞ

rpB ¼ jxpBj → RpB ¼ jRpBj; ð29bÞ

npB → NpB ¼ RpB

RpB
; ð29cÞ

RAB → GAB ¼ RABgpAB

¼ RAB

�
NAB − γpβp þ

γ2p
1þ γp

βpðβp · NABÞ
�
;

ð29dÞ

RAB → RABγpð1 − βp · NABÞ; ð29eÞ

NAB →
gpAB
gpAB

¼ gpAB
γpð1 − βp · NABÞ

; ð29fÞ

xpA ¼ xpB − RAB → RpB − GAB ¼ RpA þ γpβpRAB;

ð29gÞ

rpA ¼ jxpAj → RpA ¼ jRpAj; ð29hÞ

nPA →
RpA þ γpβpRAB

jRpA þ γpβpRABj
; ð29iÞ

with

gpAB ¼ jgpABj ¼ γpð1 − βp · NABÞ; ð30Þ

and RpX given by Eq. (26a). Therefore, we can rewrite
Eq. (23) as

ΔpðxA; tB; xBÞ ¼
2RAB

c2
γ2pð1 − NAB · βpÞ2

×
Z

1

0

WpðRi
pB − λGi

ABÞdλ: ð31Þ

Then, using the definition of I from Eqs. (27) and (28)
and the correspondences (29), we are able to express
the exact form of the TTF in the field of moving bodies
as

ΔpðxA; tB; xBÞ ¼
2RAB

c2
γ2pð1 − NAB · βpÞ2

× IðRpA þ γpβpRAB;RpBÞ; ð32Þ

with RpX given by (26a). The last expression can also be
written as

ΔpðxA; tB; xBÞ ¼
γ2pð1 − NAB · βpÞ2

gpAB

× ~ΔpðRpA þ γpβpRAB;RpBÞ ð33Þ

¼ γpð1 − NAB · βpÞ
× ~ΔpðRpA þ γpβpRAB;RpBÞ; ð34Þ

where ~ΔðxpA; xpBÞ is the expression of the static TTF.
This particularly simple equation is very useful since it
allows one to determine the TTF of a uniformly moving
body from the corresponding static TTF.
The derivatives of the TTF, needed to compute the

frequency shift (2) and the astrometric direction (3), can
be computed from (34), keeping in mind Eq. (26). In the
case of a uniformly moving body, their expressions are
given by
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∂ΔpðxA; tB; xBÞ
∂xiA ¼ γpð1 − NAB · βpÞ ~Δp;jAðRpA þ γpβpRAB;RpBÞ

�
δij − γpβ

j
p

�
Ni

AB −
γp

1þ γp
βip

��

þ γp
βip − Ni

ABβp · NAB

RAB

~ΔpðRpA þ γpβpRAB;RpBÞ; ð35aÞ

∂ΔpðxA; tB; xBÞ
∂xiB

¼ γpð1 − NAB · βpÞ
�
~Δp;jBðRpA þ γpβpRAB;RpBÞ

�
δij þ

γ2p
1þ γp

βipβ
j
p

�
þ γpβ

j
pNi

AB
~Δp;jAðRpA þ γpβpRAB;RpBÞ

�

− γp
βip − Ni

ABβp · NAB

RAB

~ΔpðRpA þ γpβpRAB;RpBÞ; ð35bÞ

∂ΔpðxA; tB; xBÞ
∂tB ¼ −cγ2pð1 − NAB · βpÞβip½ ~Δp;iAðRpA þ γpβpRAB;RpBÞ þ ~Δp;iBðRpA þ γpβpRAB;RpBÞ�; ð35cÞ

where ~Δp;iXðxA; xBÞ is the expression of the derivative of
the static TTF with respect to xX,

~Δp;iXðxA; xBÞ ¼
∂ ~ΔpðxA; xBÞ

∂xiX : ð36Þ

It is worth mentioning that in the static case, we have the
relation

~ΔpðxA; xBÞ ¼ ~ΔpðxB; xAÞ ð37Þ

and consequently

~Δp;iBðxA; xBÞ ¼ ~Δp;iAðxB; xAÞ: ð38Þ

Therefore, the expression of the derivatives of the TTF in
the moving case is also obtained by inserting into Eqs. (35)
the static TTF and its derivatives. We present an application
in the field of moving axisymmetric bodies in Sec. VI.

B. Case of a nonuniform motion

The previous section gives the exact solution of the TTF
in the field of uniformly moving bodies. If the bodies
undergo acceleration, it is still possible to use the previous
formula, which corresponds to neglecting higher order
terms related to the acceleration of the body. In this case,
the choice of the parameter t0 introduced in Eq. (24)
becomes critical. It has been shown [10,12,21] that a good
choice of t0 (i.e. which minimizes the approximation error)
is given by the time of closest approach of the photon with
respect to the body, which is given by

t0 ¼ max

�
tA; tB −max

�
0;
g · ðxB − xpðtBÞÞ

cjgj2
��

ð39Þ

with g ¼ NAB − βpðtBÞ.

In the case of arbitrarily moving point masses, it is
possible to numerically integrate the TTF (21) using the
metric (17). This approach has the convenience to be
strictly valid at the 1PM order, whatever the motion of
the bodies. Inserting (17) in the expression (21) gives

ΔpðxA; tB; xBÞ ¼
2RAB

c2

Z
1

0

γ2prð1 − NAB · βprÞ2

×Wp

�
ziðλÞ − xipðtrÞ þ

γ2pr
1þ γpr

βiprβpr

· ðzðλÞ − xpðtrÞÞ − cβiprγprðt − trÞ
�
dλ;

ð40Þ

where γpr and βpr depend on the retarded time coordinate tr
that is related to t through (19). The integral in Eq. (40) can
then be evaluated numerically, whatever the motion of the
body xpðtÞ.

C. Moving emitter

In the previous sections, we handle the case where the
source of the gravitational field is moving. In general, the
emitter and the receiver of the electromagnetic signal are
also moving. In this case, the determination of the time
transfer requires solving Eq. (1), which is now implicit,

tB − tA ¼ T ðxAðtAÞ; tB; xBÞ

¼ jxB − xAðtAÞj
c

þ 1

c
ΔðxAðtAÞ; tB; xBÞ:

In practice, the solution of this implicit equation can be
determined by an iterative procedure to find tA [for
example, see Eq. (7) of [26]]. Another solution consists
in a post-Newtonian expansion of tA from the TTF [for

A. HEES, S. BERTONE, AND C. LE PONCIN-LAFITTE PHYSICAL REVIEW D 90, 084020 (2014)

084020-6



example, see Eq. (6) of [26]]. Let us denote by t̄A the
Minkowskian coordinate time of the emission solution of

tB − t̄A ¼ jxB − xAðt̄AÞj
c

; ð41Þ

and then we can write, at first order in β̄A ¼ vAðt̄AÞ=c,

tB − tA ¼ R̄AB

c
þ ΔðxAðt̄AÞ; tB; xBÞ

−
R̄AB

c
β̄iA

∂ΔðxAðt̄AÞ; tB; xBÞ
∂xiA ; ð42Þ

where the “bar” denotes quantities evaluated at t̄A like
R̄AB ¼ jxB − xAðt̄AÞj. The contribution proportional to β̄A is
also known as a Sagnac term. It has the same form as the
contribution from the velocity of the source of the gravi-
tational field at first post-Newtonian order as can be seen
from Eq. (50). The order of magnitude of this contribution
can reach a few meters for a Juno-Earth signal, as can be
seen from Fig. 4. Therefore, when iteratively solving the
light-time equation, one needs to include the relativistic
perturbations or take into account the Sagnac terms to avoid
the risk of significant errors.

VI. CASE OF UNIFORMLY MOVING
AXISYMMETRIC BODIES

We can now use the general procedure presented in the
previous section in the case of uniformly moving
axisymmetric bodies whose potential is given by the
multipole expansion (16). The TTF in the case of a static
axisymmetric body has been computed in [27] and is
given by

ΔpðxpA; xpBÞ ¼ ΔMpðxpA; xpBÞ þ ΔJpnðxpA; xpBÞ; ð43Þ

where ΔMp represents the mass monopole contribution
and ΔJpn represents the mass multipole contribution.
The TTF corresponding to a static monopole is well

known [22] and is given by

~ΔMpðxpA; xpBÞ ¼ 2
GMp

c2
ln
rpA þ rpB þ RAB

rpA þ rpB − RAB
: ð44Þ

By inserting (44) into (34) and using the substitutions (29),
we obtain the TTF in the field of monopoles in uniform
motion as

ΔMðxA; tB; xBÞ ¼ 2
GMp

c2
γpð1 − NAB · βpÞ ln

jRpA þ γpβpRABj þ RpB þ γpRABð1 − βp · NABÞ
jRpA þ γpβpRABj þ RpB − γpRABð1 − βp · NABÞ

; ð45Þ

with RpX given by (26a). On the other hand, the mass multipole contribution ΔJpn has been computed in [27] as

~ΔJnpðxpA; xpBÞ ¼ Kpn

Xn
m¼1

�
1

ðrpA þ rpB − RABÞn−mþ1
−

1

ðrpA þ rpB þ RABÞn−mþ1

�
ΘnmðxpA; xpBÞ; ð46aÞ

with Kpn ≡ 2GMpJnprnpe=c2 and

ΘnmðxpA; xpBÞ ¼ ð−1Þn−m
X0

i1;…;im

ðn −mÞ!
i1!i2!…im!

Ym
l¼1

½SlðxpA; xpBÞ�il ; ð46bÞ

where the sum
P0

i1;…;im
denotes the summation over the

sets of non-negative integers i1; i2;…; im satisfying the pair
of equations

�
i1 þ 2i2 þ 3i3 þ � � � þmim ¼ n

i1 þ i2 þ � � � þ im ¼ n −mþ 1
ð46cÞ

and where SlðxpA; xpBÞ is defined by

SlðxpA; xpBÞ ¼
1

rl−1pA

Cð−1=2Þ
l

�
kp · xpA
rpA

�

þ 1

rl−1pB
Cð−1=2Þ
l

�
kp · xpB
rpB

�
; ð46dÞ

with Cð−1=2Þ
l ðxÞ the Gegenbauer polynomial of degree l and

of parameter −1=2.
Therefore, the multipole term of the TTF for the case of

moving axisymmetric bodies is given by inserting (46) into
the relation (34) and using the substitutions (29),
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ΔJnpðxA; tB; xBÞ ¼
2GMpJnprnpe

c2
γpð1 − NAB · βpÞ

×
Xn
m¼1

�
1

ðjRpA þ γpβpRABj þ RpB − RABγpð1 − βp · NABÞÞn−mþ1

−
1

ðjRpA þ γpβpRABj þ RpB þ RABγpð1 − βp · NABÞÞn−mþ1

�
ΘnmðRpA þ βpRAB;RpBÞ; ð47Þ

with RpX given by (26a).
In order to compute the derivatives of the TTF in the case of moving bodies from Eq. (35), one also needs the derivatives

of the TTF in the static case. The derivative of the TTF in the case of a static monopole is known (see, for example, [39]),
and it is given by

~ΔMp;iAðxpA; xpBÞ ¼ −
4GMp

c2
Ni

ABðrpA þ rpBÞ þ RABnipA
ðrpA þ rpBÞ2 − R2

AB
; ð48aÞ

~ΔMp;iBðxpA; xpBÞ ¼ þ 4GMp

c2
Ni

ABðrpA þ rpBÞ − RABnipB
ðrpA þ rpBÞ2 − R2

AB
¼ ~Δp;iAðxpB; xpAÞ: ð48bÞ

Also, the derivatives of Eq. (46) can be computed as

~ΔJpn;iAðxpA; xpBÞ ¼ Kpn

Xn
m¼1

�
−ðn −mþ 1Þ

�
npA þ NAB

ðrpA þ rpB − RABÞn−mþ2
−

npA − NAB

ðrpA þ rpB þ RABÞn−mþ2

�
ΘðxpA; xpBÞ

þ
�

1

ðrpA þ rpB − RABÞn−mþ1
−

1

ðrpA þ rpB þ RABÞn−mþ1

�
ΥAjnmðxpA; xpBÞ

�
; ð49aÞ

~ΔJpn;iBðxpA; xpBÞ ¼ Kpn

Xn
m¼1

�
−ðn −mþ 1Þ

�
npB − NAB

ðrpA þ rpB − RABÞn−mþ2
−

npB þ NAB

ðrpA þ rpB þ RABÞn−mþ2

�
ΘðxpA; xpBÞ

þ
�

1

ðrpA þ rpB − RABÞn−mþ1
−

1

ðrpA þ rpB þ RABÞn−mþ1

�
ΥBjnmðxpA; xpBÞ

�
; ð49bÞ

where

ΥXjnmðxpA; xpBÞ ¼ ð−1Þn−m
X0

i1;…;im

ðn −mÞ!
i1!i2!…im!

Xm
l¼1

il½SlðxpA; xpBÞ�il−1

×
Ym

q¼1;q≠l
½SqðxpA; xpBÞ�iq

½Pl−1ðkp · npXÞkp − Plðkp · npXÞnpX�
rlpX

: ð49cÞ

The derivatives of the TTF function in the case of a moving axisymmetric body are then given by combining Eqs. (44) and
(49) with Eq. (43) and by using it together with the combination of Eqs. (48) and (49) with Eqs. (35) [using the
correspondences (29)].

A. Particular case: Post-Newtonian expansion

Section VA gives a way to compute the TTF in the field of uniformly moving bodies. The obtained expressions are exact
at any order in βp. Nevertheless, a post-Newtonian expression can sometimes be more practical to use in the case of slowly
moving bodies. Therefore, we present here an expansion of the previous results in terms of the small parameter βp. An
expansion of (32) gives

ΔpðxA; tB;xBÞ ¼ ð1− βp ·NABÞ ~ΔpðxpA;xpBÞ þ ðRAB − cðtB − t0ÞÞβip ~Δp;iAðxpA;xpBÞ− cðtB − t0Þβip ~Δp;iBðxpA;xpBÞ; ð50Þ

with xpX ¼ xX − xpðt0Þ. For example, the use of this formula in the case of the moving monopoles leads to
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ΔpðxA; tB; xBÞ

¼ 2
GMp

c2
ð1 − βp · NABÞ ln

rpA þ rpB þ RAB

rpA þ rpB − RAB

− 4
GMpRAB

c2
ðrpA þ rpBÞNAB · βp þ RABnpA · βp

ðrpA þ rpBÞ2 − R2
AB

þ 4
GMpRAB

c
ðtb − t0Þ

βp · ðnpA þ npBÞ
ðrpA þ rpBÞ2 − R2

AB
þOðc−4Þ;

ð51Þ

with npX ¼ xpX
rpX

¼ xpX
jxpX j. This expression is equivalent to the

one given by Eq. (20) of [28]. Obtaining this result in such a
straightforward way illustrates the effectiveness of the TTF
approach.

B. Particular case: The quadrupolar term

An explicit calculation for each of the multipoles is
straightforward given the above formulas. As an example,

let us explicitly develop the expression for the quadrupolar
term J2. The only sets of integer solutions to Eqs. (46c) are
i1 ¼ 2 for m ¼ 1 and fi1 ¼ 0; i2 ¼ 1g for m ¼ 2. As
shown in [27], we obtain

~ΔJp2ðxpA; xpBÞ ¼
GMp

c2
Jp2r2pe
rpArpB

RAB

1þ npA · npB

×

�
1 − ðkp · npAÞ2

rpA
þ 1 − ðkp · npBÞ2

rpB

−
�

1

rpA
þ 1

rpB

� ½kp · ðnpA þ npBÞ�2
1þ npA · npB

�
:

ð52Þ

Therefore, inserting (52) into (34) and using the substitu-
tions (29), we obtain

ΔJp2ðxpA; xpBÞ ¼
GMp

c2
γ2pð1 − NAB · βpÞ2

Jp2r2pe
jRpA þ γpβpRABjRpB

RAB

1þ ~NA · NpB

×

�
1 − ðkp · ~NAÞ2

jRpA þ γpβpRABj
þ 1 − ðkp · NpBÞ2

RpB
−
�

1

jRpA þ γpβpRABj
þ 1

RpB

� ½kp · ð ~NA þ NpBÞ�2
1þ ~NA · NpB

�
ð53Þ

and
~NA ¼ RpA þ γpβpRAB

jRpA þ γpβpRABj
: ð54Þ

The derivative of (52) with respect to xpA can be computed using Eq. (49a) and is given by

~ΔJp2;iAðxpA; xpBÞ ¼ 2
GMp

c2
Jp2r2pe

�
½kp · ðnpA þ npBÞ�2

�
npA þ NAB

ðrpA þ rpB − RABÞ3
−

npA − NAB

ðrpA þ rpB þ RABÞ3
�

−
1

2

�
1 − ðkp · npAÞ2

rpA
þ 1 − ðkp · npBÞ2

rpB

��
npA þ NAB

ðrpA þ rpB − RABÞ2
−

npA − NAB

ðrpA þ rpB þ RABÞ2
�

−
1

r3pA

RABðrpA þ rpBÞ
r2pB

kp · ðnpA þ npBÞ
ð1þ npA · npBÞ2

½kp − ðkp · npAÞnpA�

−
1

2r3pA

RAB

rpB

2ðkp · npAÞkp þ ½1 − 3ðkp · npAÞ2�npA
1þ npA · npB

; ð55aÞ

while the derivatives with respect to xpB can be obtained by symmetry as

~ΔJp2;iBðxpA; xpBÞ ¼ ~ΔJp2;iAðxpB; xpAÞ: ð55bÞ

In order to evaluate the contribution of the moving quadrupole to the derivatives of the time transfer, it is then sufficient to
combine Eqs. (55) and (52) as shown in Eqs. (35).
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VII. APPLICATION TO JUNO

As an example, we use the equations presented in
previous sections to give estimates of the relativistic
corrections on the observables for the Juno mission.
Juno is currently on its way to Jupiter, which it will reach
in 2016. The spacecraft will orbit Jupiter during one year.
Some of the relativistic perturbations on the Juno orbit have
been studied in [40,41]. The main goal of this section is to
assess the order of magnitude produced by different effects
due to the Sun and Jupiter on the time transfer. We shall use
the nominal orbit of the mission around Jupiter obtained
using the Naif SPICE toolkit [42] and kernels, as well as the
DE430 planetary ephemeris [43]. The expected accuracy
for Juno is of the order of 10 cm on the range and 10−6 m=s

on the Doppler [6]. In the following, we present different
relativistic contributions to the two-way coordinate light
time between Earth and Juno and the corresponding range
rate. The range rate has been computed with an integration
time of 10 seconds.
In the following figures, all the time scales are given in

terms of the coordinate time, which is similar to the
barycentric coordinate time introduced in the IAU conven-
tions (see [37]). The observations, done in terms of local time,
can be derived by a relativistic coordinate transformation,
which is conventional [37,44]. Nevertheless, this transforma-
tionwill not significantly change the figures presented below.
Figure 1 represents the lower order time transfer and

range rate between Juno and Earth, as well as the relativistic
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FIG. 1 (color online). Representation of different contributions on the range (left panels) and range rate (right panels) between Juno
and Earth over one year. The contributions represented are the lower order contribution (the actual value of the observables) and the
corrections produced by the Shapiro due to the monopole of the Sun.
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panels) and the contributions due to the velocity of Jupiter (bottom panels).
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Shapiro correction from the Sun. These corrections are
standard.
Figure 2 represents the contributions of the mass

monopole of Jupiter on the range and on the range rate.
These contributions have been split into two parts: a part
related to the case where Jupiter is static and a contribution
proportional to Jupiter’s velocity βJup. The static part is
computed using (44) with the position of Jupiter taken at
the critical time t0 given by Eq. (39). The contribution
relative to the velocity is computed by taking the difference
between the relations (45) and (44). As one can see, the
contributions relative to the motion of Jupiter are 2 orders
of magnitude below the expected accuracy of Juno and can

safely be neglected in the modeling of the time transfer. A
similar conclusion holds for the motion of the Sun around
the Solar System barycenter, which is even smaller. Note
that the analytical results presented in these graphs have
been checked by numerically integrating the TTF (40).
Figure 3 represents the contributions of the quadrupole

of Jupiter (J2) on the range and on the range rate of Juno.
As above, we have split these contributions into two parts:
one related to the case where Jupiter is static and one
proportional to Jupiter’s velocity βJup. The static part is
computed using (52) with the position of Jupiter taken at
the critical time t0 given by Eq. (39). The contribution
relative to the velocity is computed by taking the difference
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FIG. 3 (color online). Representation of different contributions on the range (left panels) and range rate (right panels) between Juno
and Earth over one year. The contributions represented are the corrections produced by the J2 of Jupiter (top panels) and the
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between the relations (53) and (52). As one can see, the
contributions relative to the J2 of Jupiter are of the same
order as the Juno’s expected accuracy. Therefore, the effect
of the J2 should be taken into account in the reduction of
the tracking data. The contribution related to the velocity of
the J2 is far beyond the current tracking accuracy. Once
again, the analytical results presented in these graphs have
been checked by numerically integrating the TTF (40). It is
important to notice that the curves highly depend on the
geometry of the probe orbit. Since Juno has a polar orbit
and is never in conjunction with Jupiter; the velocity effects
are not detectable. Therefore, the situation can be different
for another space mission like JUICE [45].
Figure 4 is given for illustrative purposes, and it shows

more effects on the range of Juno. First of all, the effects of
the second order in βJup are represented. They are computed
by making the difference between the formula valid at all
orders in βJup (45) and the 1PN expansion (50). This shows
that one can safely use the PN expansion presented in
Sec. VI A within the Solar System. The effect of the
acceleration of Jupiter on the range is also presented.
This is computed by making the difference between the
numerical integration of the TTF in which we are using the
real Jupiter trajectory (40) and the result valid at all orders
in the velocity (45). The small rapid oscillations come from
oscillations in Jupiter’s acceleration, which results from the
perturbations due to the Galilean satellites.
Finally, on the right of Fig. 4 the Sagnac effects due

to the motion of Juno are represented. The contributions
represented are due to the Shapiro of the Sun and Jupiter,
which has been computed using (42). These contributions
should be included in the analysis of Juno data either as a
perturbation or when solving the light-time iterations.

VIII. CONCLUSIONS

In this paper, we computed the TTF and its derivatives in
the field of uniformly moving axisymmetric bodies and in
the field of arbitrarily moving point masses, which is useful
in order to evaluate range, Doppler and astrometric observ-
ables. First, in Sec. IV, we computed a metric adapted to
describe the space-time geometry due to N bodies in a
global reference system by using a Poincaré transformation.
Then, we presented a general method to compute the

TTF and its derivatives in the case where the bodies
generating the gravitational field are in uniform motion.
We showed that the TTF in the case of uniform motion can
be directly derived from the static TTF, as can be seen from
Eqs. (34) and (35). This result is very powerful and valid for
any velocities. Moreover, in Sec. V B, we developed a
general expression of the TTF in the case where the
gravitational field is generated by arbitrarily moving point
masses. The result is given as an integral over a straight line
between the emitter and the receiver (40), which can be
computed numerically. This general formulation has been
used to numerically check our analytical derivations but is

also useful to assess the effects due to the acceleration of
the body on the light propagation.
Then, in Sec. VI, we showed how our method can be

easily applied to the metric presented in Sec. IV to
analytically compute the TTF and its derivatives (and thus
the range, frequency shift and astrometric direction) for a
light signal propagating in the field of one or more
axisymmetric bodies in uniform motion. The results of
this paper complete the work of [27,28] and, in general,
extend the field of applicability of the TTF formalism [25].
Finally, as an example of our method, we computed the

range and Doppler for the Juno mission during its orbit
around Jupiter and studied in detail the different perturba-
tions due to the Sun and Jupiter on light propagation. In
particular, we showed that in addition to the standard
Shapiro contributions due to the mass monopole of Jupiter
and of the Sun, the contribution of Jupiter J2 is also relevant
at the level of accuracy expected for Juno. The motion of
the Sun and of Jupiter produces effects that are too small
compared to Juno accuracy. Nevertheless, this conclusion
highly depends on the geometry of Juno orbit and it should
be assessed carefully for other space missions (JUICE, for
example [45]).
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APPENDIX A: METRIC OF ARBITRARILY
MOVING POINT MASSES

The standard way to compute the metric for an arbitrarily
moving point mass is to use the Liénard-Wiechert poten-
tials as in [18,19,38]. Based on the analogy between the
Maxwell equations and the linearized Einstein field equa-
tions [46], the guidelines of classical electromagnetism (see
Chapter 8 of [47]) follow. This procedure is described in
detail in [38]. According to the formulas for the retarded
potentials, the field at the point of observation at time t is
determined by the state of motion of the body at the earlier
time tr which is determined by (19) (in the following, the
index r denotes quantities evaluated at the retarded time tr).
We can introduce a reference system comoving with the

body at the retarded time, whose temporal origin coincides
with the retarded time. The coordinates with respect to this
frame will be denoted by Xα, and they can be derived by the
instantaneous Lorentz transformation

Xα ¼ ~Λα
rμðxμ − xμprÞ; ðA1Þ

where x0pr ¼ ctr and xpr ¼ xpðtrÞ are the coordinates of the
body at the retarded time. It is important to notice that the
Lorentz transformation is done at the retarded time [i.e.
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~Λα
rμ ¼ ~Λα

μðtrÞ]. The four-vector Xα is a null four-vector
[ηαβXαXβ¼ημνðxμ−xμrÞðxν−xνrÞ¼c2ðt−trÞ2−jx−xpðtrÞj¼
0]. In this frame, the space-time metric is known,

Hαβ ¼ 2WðXiÞ
c2 δαβ, which can be written in a manifestly

covariant way as Hαβ ¼ 4WðXiÞ
c2 ðUα

prU
β
pr − 1

2
ηαβÞ with Uα

pr

the four-velocity of the body at the retarded time (in the
comoving frame Uα

pr ¼ δα0). Since the expression of
the metric is manifestly covariant, we can express it in
the global frame by using the local transformation (A1),

hμν ¼ 4WðXiÞ
c2

�
uαpru

β
pr −

1

2
ηαβ

�
; ðA2Þ

where the Xi are given by the transformation (A1) and
where uμrp is now given by uμrp ¼ γprð1; βprÞ with γpr ¼
γpðtrÞ and vpr ¼ dxp=dtjtr .
We can write the space-time metric as (17) with Xi given

by (A1), which can be explicitly written as (18). For
example, in the case of a point mass (W ¼ GM=R), one
gets

R ¼ jXij ¼ γprðrpr − ðrpr · βprÞÞ

and the metric can be written as

h00 ¼ 2GM
c2ðrpr − ðrpr · βprÞÞ

γprð1þ β2prÞ þOðG2Þ; ðA3aÞ

h0i ¼ 4GM
c2ðrpr − ðrpr · βprÞÞ

βiprγpr þOðG2Þ; ðA3bÞ

hij ¼ 2GM
c2ðrpr − ðrpr · βprÞÞγpr

ðδij þ 2βiprβ
j
prγ2prÞ þOðG2Þ:

ðA3cÞ

This expression is exactly the same as the one found in
[18,19,38]. In the limit of small velocities, the expressions
of the IAU metric are recovered (see Appendix B 2).

APPENDIX B: CORRESPONDENCE WITH
THE IAU METRIC

1. Case of uniformly moving bodies

In Sec. IVA, we derive the post-Minkowskian metric
related to uniformly moving bodies (13). It is interesting to
show that the post-Minkowskian limit of the IAU metric
[37] is recovered in the limit of the small velocities. In order
to show this, we first need to develop the argument
appearing in the potential W from Eq. (14) as

~Λi
μðxμ − bμÞ ¼ −γpβipcðt − t0Þ þ xi − xipðt0Þ

þ γ2p
1þ γp

βipβ · ðx − xpðt0ÞÞ: ðB1Þ

Using the fact that the motion of the body is uniform, this
expression can also be written as

~Λi
μðxμ − bμÞ ¼ xi − xipðtÞ þ

γ2p
1þ γp

βipβ · ðx − xpðtÞÞ:

ðB2Þ

In the limit of the small velocities (βp ≪ 1), we have

~Λi
μðxμ − bμÞ ¼ xi − xipðtÞ þ

1

2
βipβp · ðx − xpðtÞÞ þOðβ4pÞ:

ðB3Þ

Using this expansion in the limit of small velocities, the
expression of the potential W appearing in the metric (13)
becomes

W½ ~Λi
μðxμ − bμÞ� ¼ W½xi − xipðtÞ� þ

1

2
W;j½xi − xipðtÞ�βjβp

· ðx − xpðtÞÞ þOðβ4pÞ; ðB4Þ

where W;j ¼ ∂W=∂Xj. Introducing this expression in the
metric (13) leads to

h00 ¼ 2Wðxi − xipÞ
c2

þ 4
Wðxi − xipÞ

c2
β2p

þ βp · ðx − xpðtÞÞ
c2

βjpW;jðxj − xjpðtÞÞ þOðG2Þ
þOðβ4p=c2Þ; ðB5aÞ

h0i ¼ 4Wðxi − xipÞ
c2

βip þOðG2Þ þOðβ3p=c2Þ; ðB5bÞ

hij ¼ 2Wðxi − xipÞ
c2

δij þOðG2Þ þOðβ2p=c2Þ: ðB5cÞ

For example, in the case of a point mass (W ¼ GM
R ), the

last expression becomes

h00 ¼ 2
GM
rpc2

þ 4
GM
rpc2

β2p −
GM
c2r3p

ðr · βpÞ2 þOðG2Þ

þOðβ4p=c2Þ; ðB6aÞ

h0i ¼ 4
GM
rpc2

βip þOðG2Þ þOðβ3p=c2Þ; ðB6bÞ

hij ¼ 2
GM
rpc2

δij þOðG2Þ þOðβ2p=c2Þ; ðB6cÞ
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with rp ¼ jrpj and rp ¼ x − xpðtÞ. This expression is
exactly the one recommended in the IAU conventions
[see Eqs. (8) and (51–55) from [37] or Resolutions B1.5. in
the Appendix of the same paper].

2. Case of arbitrarily moving point masses

The metric (17) or (A3) describes the space-time
geometry around an arbitrarily moving point mass at the
first post-Minkowskian approximation. It is interesting to
show that the post-Minkowskian limit of the IAU metric
[37] is recovered in the limit of the small velocities.
We need to express the quantities at the retarded time tr

as a function of the quantities at the time t. Since

tr − t ¼ −
rpr
c

; ðB7Þ

we have

rpðtÞ ¼ rp ¼ x − xpðtÞ

¼ x − xpðtrÞ − ðt − trÞvpðtrÞ −
ðt − trÞ2

2
apðtrÞ

þOððt − trÞ3Þ ðB8Þ

¼ rpr −
rpr
c

vpr −
r2pr
2c2

apr þOðc−3Þ: ðB9Þ

It is useful to notice that in the last term of this expression,
we can replace tr by t (this will introduce a higher order
correction). A simple calculation leads to

r2p þ ðβp · rpÞ2 ¼ ðrpr − ðβpr · rprÞÞ2 þ r2prβ2pr

−
r2p
c2

ap · rp þOðc−3Þ: ðB10Þ

This leads to

rpr−ðβpr ·rprÞ¼ rp

�
1−

β2pr
2

þðβp ·rpÞ2
2r2p

þap ·rp
2c2

�

þOðc−3Þ: ðB11Þ

Since

γpr ¼ γp þOðc−3Þ ¼ 1þ β2p
2
þOðc−3Þ; ðB12Þ

we have

1

γprðrpr − ðβpr · rprÞÞ
¼ 1

rp

�
1 −

ðβp · rpÞ2
2r2p

−
ap · rp
2c2

�
:

ðB13Þ

Introducing Eq. (B13) in the space-time metric (A3) leads
to

h00 ¼ 2GM
c2rp

þ 4
GM
c2rp

β2p −
GM
c2r3p

ðrp · βpÞ2

−
GM
c4rp

ðap · rpÞ þOðG2Þ þ ð1=c5Þ; ðB14aÞ

h0i ¼ 4
GM
r2pc2

βip þOðG2Þ þOð1=c4Þ; ðB14bÞ

hij ¼ 2
GM
rpc2

δij þOðG2Þ þOð1=c3Þ: ðB14cÞ

The only additional term with respect to the metric (B6) is
the term proportional to the acceleration in g00. This term is
exactly the one appearing in the IAU metric [see Eq. (54) of
[37]] as already noticed in [48].
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