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We propose a model of quantum gravity in arbitrary dimensions defined in terms of the Batalin
Vilkovisky (BV) quantization of a supersymmetric, infinite dimensional matrix model. This gives an
Alexandrov-Kontsevich-Schwarz-Zaboronsky (AKSZ)-type Chern-Simons theory with gauge algebra the
space of observables of a quantum mechanical Hilbert space H. The model is motivated by previous
attempts to formulate gravity in terms of noncommutative, phase space, field theories as well as the
Fefferman-Graham (FG) curved analog of Dirac spaces for conformally invariant wave equations. The field
equations are flat connection conditions amounting to zero curvature and parallel conditions on operators
acting onH. This matrix-type model may give a better defined setting for a quantum gravity path integral.
We demonstrate that its underlying physics is a summation over Hamiltonians labeled by a conformal class
of metrics and thus a sum over causal structures. This gives in turn a model summing over fluctuating
metrics plus a tower of additional modes—we speculate that these could yield improved UV behavior.
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I. INTRODUCTION

The problem of unifying quantum mechanics and
gravity has vexed physicists since the early twentieth
century. However, the absence of hard experimental data
at scales where quantum gravity effects are expected to
dominate has meant that even knowing the physical
questions a unified model should answer has been
difficult. On the other hand, given the spectacular success
of classical general relativity which was discovered on
the basis of Einstein’s brilliant theoretical and math-
ematical insight, hope that its quantization could be
understood by theoretical methods has never been aban-
doned. Indeed, the major original stumbling block—
nonrenormalizability of gravity treated as the quantum
field theory of a massless spin 2 particle—is solved by
the leading quantum gravity candidate–string theory.
Moreover, by aiming for a grand unification of particle
physics, gravity and quantum mechanics, string theory in
principle applies to physical settings probed by collider
experiments. Although string theory even has standard
model-like solutions, it is currently believed to suffer
from a massive loss of predictivity due to a vast land-
scape of vacua that, for the moment at least, has forced
anthropic reasoning to the fore. It is therefore interesting

to investigate other models that, like string theory, predict
the presence of gravity. We present one such model in
this article.
The aim of physics is to predict the outcome of

experiments based on a minimal set of fundamental laws.
A basic physical construct is therefore a set of spacetime
events which is typically modeled by a spacetime mani-
fold. Often this spacetime is equipped with a (pseudo-)
Riemannian metric. Our first premise is that a causal
structure (or in geometrical terms a conformal class of
metrics) is more fundamental than a Riemannian metric.
In its most basic formulation our model is not written in
these terms, but we will demonstrate that it does predict a
sum over causal structures. Rather, as basic input, we
demand only a choice of quantum mechanical Hilbert
space. This should be thought of analogously to the single
particle Hilbert space of a quantum field theory. In
standard quantum mechanics, a Hamiltonian governing
dynamics is also a required input; our proposal however is
that the role of a quantum gravity theory is to give
dynamics to the space of all possible quantum mechanical
Hamiltonians.
Let us now give the ancestral history of our model,

which we will define in the next section. Its genesis is
Dirac’s discovery that conformally invariant wave equa-
tions in four-dimensional Minkowski space could be
reformulated in a six-dimensional spacetime with two
timelike directions [1]. This is in fact the Lorentzian
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version of what is known as the flat model for a conformal
geometry;1 see Fig. 1.
The next major ingredient is a curved analogue of the

Dirac space. In a seminal paper, Fefferman and Graham
showed that ambient ðdþ 2Þ-dimensional metrics gMN
obeying a closed homothety condition2

gMN ¼ ∇MXN ð1Þ

describe d-dimensional conformal geometries on an
underlying conformal manifold ðM; ½g�Þ [2]. [The
ðdþ 2Þ-dimensional geometry ð ~M; gMNÞ is called a
Fefferman-Graham (FG) ambient space and has signature
ðpþ 1; qþ 1Þ for signature ðp; qÞ conformal geometries.]
In fact, Fefferman and Graham also constructed
asymptotic expansions of Ricci flat solutions for gMN ;
these underly the FG expansions for asymptotically AdS
metrics relied upon by the AdS/CFT correspondence
(we will not require, by definition, that FG metrics obey
a Ricci flat condition).
The problem of finding conformal invariants and con-

formally invariant operators is more difficult than the
analogous one for diffeomorphisms. Important progress
was made by Graham, Jennes, Mason and Sparling (GJMS)
who realized that the FG ambient space admitted an slð2Þ
algebra of differential operators

�
X2;∇X þ dþ 2

2
;Δ

�
; ð2Þ

and that these could be used to generate conformally
invariant operators whose leading symbol is given by
powers of the d-dimensional Laplacian [3]. The space of
all such triples of operators, which we dub a GJMS algebra,
will play a crucial role in the following. To study its physics
applications we need to understand why conformal geom-
etries grant Einstein manifolds3 a distinguished mantle.
Tensors on the FG ambient space, classified by weight

(the eigenvalue of∇X), and defined up to equivalence along
the cone4 Q≔ZðX2Þ, i.e.

T ∼ T þ X2S; ð3Þ
for smooth tensors T and S, are known as tractors. These
are equivalent to sections of the so-called tractor bundle
along the underlying conformal manifold M. These vector
bundles were first formalized by Bailey, Eastwood and
Gover [4] in order to generalize Penrose’s twistor con-
struction [5] to arbitrary dimensions. The tractor bundle
T M comes equipped with a canonical (tractor) connection
which is crucial for an extremely important result: T M
admits a parallel section,

∇IM ¼ 0; ð4Þ
if and only if the conformal manifold is conformally
Einstein [4]. This result is constructive; it determines the
Weyl rescaling required to bring a given metric in the
conformally Einstein class of metrics to an Einstein one in
terms of the parallel scale tractor IM. In fact, the scale
tractor provides the link between physics and conformal
geometry: The dynamics of—not necessarily conformally
invariant—physical systems is given by evolution along the
ambient vector field IM.
This sets the stage for a crucial observation, first made by

Marnelius and then extended to a new physics rubric by
Bars and collaborators: The ambient space of a Lorentzian
space time has signature ð−;−;þ;þ; � � �Þ and thus two
timelike directions. Thus, in what was dubbed 2T-physics,
they studied the analog of a relativistic particle moving in a
spacetime with two timelike directions, subject to not one
mass-shell constraint, but an slð2Þ triplet of first class
constraints [6,7]. In this context, it is enlightening to view
slð2Þ as either soð2; 1Þ ¼ coðRÞ or spð2Þ. From the former
viewpoint, one is gauging the worldline conformal group,
while the latter manifests a Howe dual pair [8] of the
ambient symplectic group

spð2Þ ⊗ soðd; 2Þ ⊂ spð2ðdþ 2ÞÞ: ð5Þ

n+1,1

S

Q

I

n

R

FIG. 1. The flat model for a conformal manifold. The n-sphere
with its canonical conformal class of metrics is given by the space
of lightlike rays Q in Rnþ1;1.

1Note that the term conformal invariance is employed in the
physics literature to indicate invariance under the conformal
isometries of a background spacetime, while in the mathematics
literature it refers to symmetry under local rescalings of the metric
(Weyl invariance in physics parlance).

2Observe that this equation is the real analog of the condition
that Kähler metrics derive from a Kähler potential, since it implies
gMN ¼ 1

2
∇M∇NX2 where X2 is the defining function for the

curved analogue of the Dirac cone.

3Recall that an Einstein manifold is one whose Einstein tensor
is proportional to the metric (in other words these are solutions of
cosmological Einstein gravity).

4We use the notation Z for the zero locus of a function.
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In the above, the two algebras on the left-hand side are
maximal cocommutants so that gauging spð2Þ in ðdþ 2Þ-
dimensional quantum mechanics guarantees a remaining
(but possibly hidden) conformal symmetry soðd; 2Þ.
Different worldline gauge choices give various d-
dimensional theories (or “shadows,” e.g. the relativistic
particle [6], the hydrogen atom and harmonic oscillator, to
name a few of these surprisingly dual theories [9]) from the
same ðdþ 2Þ-dimensional models and thus establish a
string of dualities between models with soðd; 2Þ-symmetry
[10]. A key problem, therefore, was to second quantize this
model, the original hope being that this might give a unified
model for duality symmetries. The crucial observation of
[11] was that this could be achieved via a noncommutative
field theory with fields living on the phase space of the
ðdþ 2Þ-dimensional ambient manifold governed by a
Chern-Simons action. A remarkable feature of this model
is that it can be used to describe gravity.
The dynamics of the model in [11] amounts to finding all

triplets of quantum mechanical Hamiltonians obeying an
slð2Þ algebra. The classical version of this problem was
solved in [12] and subsequently quantized in [13]. These
Hamiltonians are described by conformal geometry moduli
consisting of a FG ambient metric as in (1) and a (tractor)
Maxwell gauge field [14]. A proposal how to obtain gravity
from this data was given in [15] based on Becchi-Rouet-
Stora-Tyutin (BRST) reasoning and results for “2T-grav-
ity” actions. This amounts to imposing the three
Schrödinger equations (more strictly Hamiltonian con-
straints) for each of these Hamiltonians and integrating
over the conformal geometry moduli. This computation
was performed in [13] using tractor calculus [4] and in
particular the parallel condition (4) (an earlier 2T-gravity
approach was proposed and studied in [14] which amounts
essentially to rewriting the Einstein-Hilbert action in the FG
ambient space). The result was a sequence of seven
equivalent action principles ending at the Einstein-Hilbert
action (we review and extend that computation in
Appendix A). Physically, the model corresponds to cou-
pling a “conformal gravity multiplet” to a “dilaton multi-
plet.” Despite this nice physical interpretation, the model
suffered a serious shortcoming; namely that one first solved
the GJMS algebra problem, substituted the result into the
dilaton multiplet action and then successively integrated out
auxiliaries to reach the Einstein-Hilbert theory. Clearly this
ignores backreaction, the missing ingredient being a master
action describing the coupled conformal geometry–dilaton
system. Our candidate Chern-Simons matrix model of
quantum gravity provides a mechanism for solving this
backreaction problem.
The model we propose is an infinite dimensional-matrix

Chern-Simons theory where the matrices are the space of
observables of a supersymmetric Hilbert space. The differ-
ential of the model is the BRST operator corresponding to
the slð2Þ Lie algebra cohomology differential. In fact this

means that the model is the minimal Batalin Vilkovisky
(BV) formulation of an underlying matrix model with
a Chern-Simons BV action given by an Alexandrov-
Kontsevich-Schwarz-Zaboronsky (AKSZ) construction
[16]. Our article is structured as follows: In the next section
we give some further background details and state our
model. In Sec. III we explain why this is a model of
quantum gravity and how the earlier backreaction problem
is solved. In Sec. IV, we focus on the model’s linearization
and gauge fixing; these are amenable to quantum mechani-
cal path integral techniques. In the conclusion we delineate
various open problems and discuss the outlook for model
building and a mathematical well-defined approach to
quantum gravity. Appendix A reviews how gravity can
be obtained by coupling conformal geometry moduli to a
dilaton multiplet.

II. THE MODEL

The space of all GJMS algebras can be used to encode
conformal geometries. Hence our first task is to develop a
conformal geometry multiplet and accompanying action
principle whose solutions are GJMS algebras; this is done
in Sec. II A. This model has a large gauge invariance which
we handle using BV machinery in Sec. II B. Thanks to the
AKSZ construction, this model is governed by a Chern-
Simons–type action. To obtain a candidate quantum gravity
model, the conformal geometry multiplet must still be
coupled to scale. This is achieved in Sec. II C by super-
symmetrizing the BV extension of the theory; this intro-
duces a dilaton multiplet.

A. Conformal geometry multiplet

The conformally improved scalar wave equation

�
Δ −

d − 2

4ðd − 1ÞR
�
φ ¼ 0

in d dimensions may be recast as triple of equations in a
ðdþ 2Þ-dimensional FG ambient space5

X2Φ ¼ 0;

�
∇X þ dþ 2

2

�
Φ ¼ 0; ΔΦ ¼ 0;

with metric obeying the closed homothety condition (1).
These three—scalar singleton—conditions are exactly

5See [3]; to explicitly verify this, solve the first equation by
writing Φ ¼ δðX2Þφ so that the second equation implies that φ is
a weight 1 − d

2
conformal density in d dimensions. The ambient

Laplace equation then descends to the conformally improved
scalar wave equation. This method underlies the standard con-
struction of irreducible representations from wave equations [17];
see [18] for an account of how it extends to curved spaces and
tractor calculus. It has also been extensively employed in the 2T
literature [19].
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those imposed by the Dirac quantization of the GJMS
algebra (2). This suggests (see [12]) that gravity can be
studied by considering the space of operators obeying an
slð2Þ ¼ soð2; 1Þ algebra. More specifically we propose, as
suggested by [7,11], considering quantum mechanical
observables subject to

½Qa;Qb� ¼ εab
cQc; ð6Þ

where a ¼ ð�; 0Þ and indices are raised and lowered with
the soð2; 1Þ metric ηab where ηþ− ¼ 1 ¼ η00. We call the
observables Qa the conformal multiplet and the solution
space of (6) conformal moduli. A noncommutative field
theory action principle underlying these equations of
motion based on a star product was given in [11].
However, rather than work with star products, since we
ultimately are interested in diffeomorphism invariant sys-
tems, it is better to work directly with operators;6 thus we
view the Qa as infinite dimensional matrices with a trace
operation given by any complete set of states on the Hilbert
space H so that

TrHO≔
X
α

hαjOjαi:

Note that for our purposes H is not a positive definite
Hilbert space, but instead an indefinite relativistic Hilbert
space of an ambient space with two timelike directions. In
these terms, the action principle is simply7

S ¼ TrH

�
1

2
QaQa þ 1

3
ϵabcQaQbQc

�
: ð7Þ

This model has a large gauge invariance

Qa ∼ Qa þ ½Qa; ϵ�;

for any operator ϵ. The equations of motions (6) can be
solved by fixing most of this gauge freedom, leaving
residual symmetries corresponding to diffeomorphisms
of the ambient manifold and soð1; 1Þ Maxwell transfor-
mations. These invariances are in fact quite propitious in a
conformal geometry situation; indeed the remaining con-
formal geometry moduli are then an ambient FG metric and
Maxwell field.

B. Minimal BV and AKSZ formulation

Returning to an off shell setting, to handle the model’s
gauge invariance, we enlarge the “field space”8 to its
minimal BV content: fields Φα (= ghosts, gauge fields)
and corresponding antifields Φ�

α; their names and
Grassmann parities are given as follows:

field C Qa Q�
ab ≔ 1

2
ϵabcQ�c C�

abc ≔ 1
3!
ϵabcC�

parity − þ − þ :

By introducing odd coordinates ca, the above can be neatly
packaged in a single AKSZ field [16] (see also [15]),

A≔Cþ Qaca þ Q�
abc

acb þ C�
abcc

acbcc:

The minimal BVaction is a sum of the classical action plus
antifields multiplied by BRST variations of the fields:
Scl½Φα� þ Φ�

αδBRSTΦα. The field space ðΦα;Φ�
αÞ is a Q-

manifold [22] endowed with an odd symplectic structure
(and hence a BV bracket) and a nilpotent vector field
[generated by the BV action and BV bracket ðSBV; ·ÞBV].
The quantum action is given by the BV action along a
Lagrangian submanifold of this Q-manifold. The geometry
of suchQ-manifolds was studied in [16] who noted that the
minimal BV action for Chern-Simons theories was a
“master” Chern-Simons theory. That situation applies here,
where the minimal BV action is simply9

S ¼ TrH

Z
d3c

�
1

2
AdAþ 1

3
A3

�
: ð8Þ

In this formula, the nilpotent operator

d≔
1

2
cbcaϵabc

∂
∂cc

is the BRST operator/differential of the Lie algebra coho-
mology H�ðsoð2; 1ÞÞ.10 The mechanics of the analogous
three-dimensional Chern-Simons computations carries over
to show that the above action (i) enjoys the gauge
invariance

6Albert Schwarz–private communication. This has also been
used in [20].

7In [11] an additional Uð1Þ observable is added to the spð2Þ
triplet to handle the dilaton. As we show later, this can be
achieved, while at the same time solving the backreaction
problem, by instead enlarging the quantum mechanical Hilbert
space. Note also that large N matrix models reminiscent of the
above have been studied in [21].

8Strictly speaking, because spacetime is emergent in this
model, the dynamical variables are operators not fields; none-
theless we shall henceforth employ this abuse of language.

9Performing the Grassmann integration this action can equiv-
alently be written

S ¼ TrH

�
1

2
QaQa þ 1

3
ϵabcQaQbQc − Q�a½C;Qa� −

1

2
C�fC;Cg

�
;

which exhibits the BRST transformations of the fields and ghosts.
10This theory was developed over sixty years ago in the

mathematics literature; the book [23] gives an excellent account;
for a computation of the cohomology of d in a physics context,
see the appendix of [24].
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A ∼ Aþ dAε;

with operator valued Grassmann-even gauge parameters
ε ¼ εðcÞ and covariant derivative

dA ≔ dþ ½A; :g;

where ½:; :g denotes a graded commutator; (ii) is extremal
on flat connections given by the zero curvature condition

FA ≔ d2A ¼ dAþ A2 ¼ 0;

and (iii) linearized about a solution Ā, fluctuations a≔A −
Ā obey the parallel condition

dĀa ¼ 0;

modulo linearized gauge transformations a ∼ aþ dĀε.
Note that the zero curvature condition implies that dĀ is
nilpotent:

d2
Ā
¼ 0 ð9Þ

so this system is cohomological, and in fact amenable to a
quantum mechanical analysis; see Sec. IV.

C. Dilaton coupling

Up to this point, we have only discussed the model
describing the conformal geometry moduli. However,
having expressed this in its BV form, coupling to a dilaton
multiplet is simple. For that, we supersymmetrize the
Chern-Simons algebra of quantummechanical observables.
In the BV formalism every field has a corresponding
antifield of opposite Grassmann parity so supersymmetriz-
ing the BV description of the model and viewing the
superpartners of antifields as further fields avoids intro-
ducing physical superpartners. We introduce internal
Grassmann coordinates ðγ; γ̄Þ and replace all fields by
superfields ðΦα;Φ�

αÞ↦ ðΦαðγÞ;Φ�
αðγÞÞ. The Hilbert space

trace becomes a supertrace StrH ≔ TrH
R
d2γ (the reader

should not confuse the slightly longer bar notation for
complex conjugation with that for background solutions).
The action is

S ¼ StrH

Z
d3c

�
1

2
AdAþ 1

3
A3

�
ð10Þ

In the following section, we argue that this theory is a
model for quantum gravity. To that end, we record a few
basic facts about the theory: (i) It enjoys a gauge symmetry

A ∼Aþ dAE;

(ii) the action is extremal on flat connections obeying the
zero curvature condition

FA ≔ d2A ¼ dAþA2 ¼ 0;

and (iii) its linearization proceeds exactly as discussed
above. To exhibit the minimal BV nature of the action we
can perform the integration over the Grassmann coordi-
nates ca and find

S ¼ StrH

�
1

2
QaQa þ 1

3
ϵabcQaQbQc −Q�a½C;Qa�

−
1

2
C�fC; Cg

�
;

where we have defined

A≔ C þQaca þ
1

2
ϵabcQ�acbcc þ 1

3!
C�ϵabccacbcc:

Alternatively we can perform the integral over the internal
Grassmann coordinates ðγ; γ̄Þ and find

S ¼ TrH

Z
d3cfχFA þ Ψ̄dAΨg; ð11Þ

where the superfield A has the expansion
Aðc; γÞ≔Aþ Ψ̄γ þΨγ̄ þ χ γγ̄.

III. QUANTUM GRAVITY

We now analyze how the functional integral, weighted
by the action (10), produces a sum over conformal
geometries, and thus models quantum gravity. First remem-
ber that there are two equivalent ways of presenting the
action [obtained by integrating explicitly over the ca or
ðγ; γ̄Þ Grassmann coordinates] which manifest either the
minimal BV structure or the dilaton-conformal geometry
coupling respectively. We begin with action in the form
(11) because it manifests the dilaton–conformal geometry
coupling and thus consider the (Euclidean11) functional
integral:

Z ¼
Z

½Dχ �½DΨ̄�½DΨ�½DA�exp

×

�
−TrH

Z
d3c½χFA þ Ψ̄dAΨ

��
: ð12Þ

Note that this functional integration over operator valued
fields could also be viewed as an (infinite dimensional)
integral over matrix elements of the operators themselves,
or alternatively as a path integral over an infinite tower of
ambient space tensor fields which arise by expanding
operators in powers of ∇M. Since the action we integrate
over is already of BV type, we do not need any further

11For the formal computations performed here, we could
equally well consider a Lorentzian path integral.

IS QUANTUM GRAVITY A CHERN-SIMONS THEORY? PHYSICAL REVIEW D 90, 084018 (2014)

084018-5



extension of the field space to deal with gauge sym-
metries. Moreover, in BV perturbation theory one can use
as a propagator a partial inverse of the BV kinetic operator
[25].12 By doing so one neither needs to introduce a
nonminimal BV sector, nor choose a gauge fixing fer-
mion: indeed the choice of propagator is equivalent to a
choice of gauge fixing fermion in the usual setting.
Having discussed how the model’s gauge symmetries are

correctly dealt with at the quantum level, we are now ready to
perform some formal manipulations on the path integral (12).
To begin with, we notice that integrating over χ imposes a
zero curvature condition; in fact it precisely solves the
backreaction problem described in the introduction:Z

½Dχ � exp
�
−TrH

Z
d3cχFA

�

¼ δðFAÞ

¼
X
Ā

δðA − ĀÞ
�
det

δFA

δA

����
A¼Ā

�
−1

¼
X
Ā

δðA − ĀÞðdet dĀÞ−1; ð13Þ

where the sum over flat connections is generically a path
integral possibly combined with a sum over distinct topo-
logical sectors. This result can be inserted in (12), which,
remembering that ðΨ̄;ΨÞ are Grassmann even, allows the
integrations over remaining fields to be performed:

Z ¼
X

fĀjFĀ¼0g
½det dĀ�−2 ð14Þ

where dĀ ≔ dþ ½Ā; :g acts in the (operator) adjoint repre-
sentation. At this point, the functional determinant det dĀ
could be computed in BV perturbation theory (see Sec. IV)
but for now we are more interested in relating this result to
quantum gravity. The fact that the path integral localizes over
flat connections is not so surprising from a Chern-Simons
viewpoint; this hints that quantum gravity partition functions
can be better mathematically defined as infinite dimensional
matrix models. A first step in that direction is to show that the
partition function (14) includes an integral over conformal
classes of metrics. To see this we recall that the superfield
AðcÞ contains the gauge fieldsQa, together with their ghosts
and antifields. Hence, the integration over flat connections
contains an integral over conformal geometry moduli Q̄a
solving13 (6). Remarkably, this gives a solution to the

backreaction problem, since the supersymmetric coupling
to the dilaton multiplet still implements the spð2Þ algebra
condition (6) governing the conformal geometry moduli
space. Solutions to (6) which solve the flatness condition
activating only the Q̄a moduli onlywere given in [13] and are
reproduced in Appendix A. They depend on an ambient FG
metric and Maxwell field ðgMN; AMÞ. Thus we see that the
formal sum over flat connections in (14) includes a path
integral over conformal geometry moduli

X
Ā

⊃
Z

½DgMN �½DAM�:

For the moment we refrain from trying to analyze the whole
moduli space coming from the flatness conditionFĀ ¼ 0; for
our current purposes it suffices that conformal geometries are
included in this space; we will return to this issue in our
conclusions. Also, the appearance of an integral over con-
formal geometries alone is not enough to show that we are
dealing with a model of quantum gravity. We still need to
show that the quantummeasure, at least in a “diagonal limit,”
is governed by the exponential of the Einstein-Hilbert action.
In fact, in [13] it was shown (see also Appendix A) that
classical gravity arises when coupling conformal geometry
moduli Qa to scale, i.e. a dilaton multiplet. In the framework
of [15], the Einstein-Hilbert action arose from a BRST-type
Lagrangian of the form

Sgravity ¼
Z

~M
ΨaQ̄aΨ; ð15Þ

where the conformal geometrymoduli Q̄a are given explicitly
in (A2), and ðΨa;ΨÞ are ambient fields (not operators). In our
present context the dilaton multiplet ðΨ̄;ΨÞ is also operator
valued, being on the same footing as the conformal geometry
multiplet, and consists of a minimal BV field content:

ΨðcÞ ¼ ψ þ caψ�
a þ

1

2
cacbϵabcψc þ 1

3!
cacbccϵabcψ�:

Grassmann parities are given by

field ψ ψ�
a ψa ψ�

parity þ − þ −

and the bar involution is defined as

Ψ̄ðcÞ ¼ ψ̄ þ caψ̄�
a þ

1

2
cacbϵabcψ̄c þ 1

3!
cacbccϵabcψ̄�:

The relevant interaction comes from the Ψ̄dAΨ part of the
Lagrangian:

TrH½ψ̄a½Qa;ψ� þ ψ̄½Qa;ψa��:

12By partial inverse we mean that the propagator G is an inverse
under an adjoint action, i.e. ½K;Gg ¼ 1, where K is the kinetic
quadratic form. The partial inverse is determined only up to an
equivalence class that reflects the arbitrary choice of a Lagrangian
submanifold.

13Strictly, the flatness condition FA ¼ 0 amounts, in the Qa
sector, to ½Q̄a; Q̄b� − ϵabcQ̄c ¼ ϵabcfC̄; Q̄�cg. The right-hand side
of this is BRST exact; we omit it because we only turn on the
conformal geometry moduli Qa.
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The coupling (15) is in fact hidden in the above. Touncover it,
we consider the diagonal limit where the operators ψa and ψ
are pure states up to a phase (so no sum over a in the
following):

ψpure ¼ zjψihψ j; ψa
pure ¼ wjψaihψaj;

with z; w ∈ C so that

TrH½ψ̄a½Qa;ψ� þ ψ̄½Qa;ψa�� ¼ 2Re
Z

Ψ̄aQaΨ

where the ambient (Schrödinger representation) fields
Ψ≔ΨðyÞ ¼ hyjψi and Ψa ≔ΨaðyÞ ¼ ðwz̄ − zw̄Þhψajψi
hyjψai (for y ∈ ~M). This precisely recovers a complexified
version of theLagrangian (15).We analyze this in detail in the
appendix and find a nonlinear sigma model coupled to
gravity. Hence, our model gives a candidate theory of
quantum gravity in the sense that

Z ¼
Z

½Dg � � �� expf−SEH þ � � �g;

where the dots indicate corrections to an integration over
metrics weighted by the exponential of Einstein-Hilbert
action over both of which we do not yet have full control,
due to our lack of understanding of the full moduli space of
flat connections and the determinant det dĀ. These are in
principle calculable. In the next sectionwe sketch approaches
for handling the determinant.

IV. EFFECTIVE ACTIONS

The expression appearing inside the sum (14), for Ā
fixed, can be viewed as (the exponential of) a field theory
one-loop effective action ΓðĀÞ which can be handled using
the BV perturbative strategy devised in [25]. Indeed the
naïve determinant in (14) is ill defined as the Grassmann
operator dĀ has zero modes due to the nilpotency condition
(9) responsible for the linearized gauge symmetry
δa ¼ dĀε. It is thus propitious to treat dĀ as the BRST
operator of an underlying quantum mechanical model.
Focusing on backgrounds Ā ¼ caQ̄a where only the

conformal geometry moduli backgrounds are turned on14

we can rewrite it as

dQ̄ ≔ dþ ½Q̄aca; :g ¼ dþ ca½Q̄a; :� ¼ caðDa þ daÞ;

where

Da ≔ ½Q̄a; :�; da ≔
1

2
ϵba

ccb
∂
∂cc :

We can similarly construct a nilpotent anti-BRST-like
operator

δQ̄ ¼ ∂
∂ca η

abðDb − dbÞ:

The latter allows us to partially invert the operator dQ̄
because

fdQ̄; δQ̄g ¼ ΔQ̄ ≠ 0

implies

�
dQ̄;

δQ̄
ΔQ̄

�
¼ 1:

In the above we have

ΔQ̄ ¼ D2 þ 1

2
NðN − 3Þ; N≔ ca

∂
∂ca

which are (quantum mechanically) a central Hamiltonian
and ghost number operator:

½dQ̄;ΔQ̄� ¼ 0 ¼ ½δQ̄;ΔQ̄�; ½N; dQ̄� ¼ dQ̄;

½N; δQ̄� ¼ −δQ̄:

The inverse
δQ̄
ΔQ̄

amounts to a Dirac-type propagator in the
presence of an external field Q̄. Therefore, in Feynman
diagram notation it corresponds to a sum of infinitely many
graphs:

14Observe that the zero curvature solution (A2) is not pure gauge: Ā ¼ Q̄aca has ghost number one, whereas nonvanishing terms in a
pure gauge solution e−λdeλ have, at least, ghost number two. Hence (A2) is a cohomologically nontrivial solution. Note also that more
general backgrounds can also be analyzed by similar methods.
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with an arbitrary number of insertions of the external
“potential.” One way to represent it is by using the
worldline formalism: first, one exponentiates the propaga-
tor using the super-Schwinger trick

δQ̄
ΔQ̄

¼
Z

∞

0

dT
Z

dΘe−TΔQ̄−δQ̄Θ ¼ ∶P;

whereΘ is a Grassmann variable, and then treatsΔQ̄ and δQ̄
as operators in single particle quantum mechanics. In fact,
thanks to their centrality and nilpotency properties, they can
be interpreted as a pair of Abelian, first class constraints.
Representing the operator valued integrand of the above as
a worldline path integral in a (super)phase space ðZ;ωÞ,
schematically one can write the Greens function for the
partial propagator P as

Pðzi; zfÞ ¼
Z

∞

0

dT
Z

dΘ
Z

zf

zi

½dz�

× exp

�Z
f

i
½θ − ðTΔðzÞ þ δðzÞΘÞdτ�

�
; ð16Þ

where z ∈ Z and we have locally integrated the symplectic
form ω ¼ dθ to a symplectic current θ. The operators ΔQ̄
and δQ̄ are here replaced by their corresponding classical
Hamiltonians ΔðzÞ and δðzÞ. To obtain the effective action,
one “glues” together the propagator end points and traces
over them. This model amounts to the minimal quantum
mechanical BV treatment of the linearization of the GJMS
algebra equations (6).
In general, understanding how to correctly glue propa-

gator end points to obtain an effective action is rather
intricate. A way to circumvent those difficulties is to notice
that the above propagator can be thought of as a gauge-fixed

worldline path integral for a locally (super)symmetric
particle action, where the super-Schwinger times are nothing
but moduli for particle gauge fields and the first class
constraints generate gauge transformations (reparametriza-
tion and local supersymmetry) for the dynamical worldline
fields z. Therefore the expression (16) can be written as

Pðzi; zfÞ ¼
Z
l

½dz�½de�
VolðgaugeÞ e

−S½z;e�;

where l indicates that we are computing a path integral with
a “line” topology (i.e. fixed boundary conditions) and e
collectively denotes the particle gauge fields of the worldline
action S½z; e� whose gauge fixing on the line leads to the
action in (16). Finally one obtains the effective action by
taking the same path integral but with a circle topology—i.e.
(anti)periodic boundary conditions:

Γ½Q̄� ¼
Z
S1

½dz�½de�
VolðgaugeÞ e

−S½z;e�:

The above particle path integral can be computed by gauge
fixing the worldline action using Hamiltonian BRST meth-
ods: One adds (further nonminimal) ghosts c and ghost
momenta π for all gauge symmetries and develops an
extended BRST operator as a graded sum (in the ghost
momenta) Ω ¼ P

pΩp, so that the quantum Hamiltonian
becomes Hqu ¼ HBRST þ fK;Ωg where HBRST is a BRST-
invariant Hamiltonian and K a gauge fixing fermion. If the
particle action is worldline-diffeomorphism invariant the
Hamiltonian itself enters as a constraint (i.e. a local-
symmetry generator) and we can set HBRST ¼ 0. This
procedure leaves a set of modular parameters tk that must
be integrated over a fundamental domain (FD); they para-
metrize gauge-inequivalent configurations. Hence,

where êðtÞ are the fixed gauge fields and Squ½z; êðtÞ; c; π� ¼R
1
0 ðθgh −HqudτÞwhere θgh is the ghost-extended symplectic
current. As depicted the one-loop effective action describes a
sum of one-particle irreducible diagrams with insertions of
external fields. We plan to report on this computation in a
future publication [26].

V. CONCLUSIONS AND OUTLOOK

In this paper we have proposed a Chern-Simons matrix
model for quantum gravity. Its input data are only a Hilbert
space whose observables play the role of the space of

matrices integrated over, or in other words the model is
defined by a choice of quantum mechanics. For the choice
given by the quantum mechanics of a ðdþ 2Þ-dimensional
ambient space, we found that the model can be written as a
sum of d-dimensional causal structures plus further moduli
determined by a certain zero curvature condition. We
showed that the leading path integral measure was the
exponential of the Einstein-Hilbert action. Spacetime is
emergent15 in this model: the ambient space ~M—and hence

15In the 2T shadow picture of [7], one could hope that a
landscape of dual spacetimes could emerge from these shadows.
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pacetime M equipped with a causal structure—arises from
a dual pair construction (5).
There are many open questions. The situation is

somewhat reminiscent of the early development of string
theory: First we need to know what propagating degrees
of freedom (DoF) the model describes. The problem here
is that simpler models involving only metric degrees of
freedom could only be treated by ignoring backreaction
(see Appendix A). To determine the DoF of the full model
requires us to (i) solve the zero curvature condition
FĀ ¼ 0; and (ii) compute the determinant det dĀ. It seems
rather unlikely that this yields only the metric fluctuations
and Einstein-Hilbert dynamics that we found by special-
izing to pure states. However, just as is the case for the
infinite tower of (gapped) massive string states, additional
propagating modes and accompanying dynamics could
well be a virtue. Indeed, one can even speculate that the
finiteness properties of the underlying matrix model may
be better than that of an integral over metrics. Moreover,
one might try to regulate the sum over quantum mech-
anical observables by Hermitean matrices, in which
case a slew of random matrix model techniques
could be brought to bear on the problem; indeed the
model itself is structurally very close16 to string field
theory [28] which has been amenable to a matrix model
approach [29]. In particular, we note that we need not
require strict finiteness, but only renormalizability of the
matrix model.
If it is truly the case that the model we have proposed is

better defined than a path integral over metrics, then an
urgent problem would be to study how to build models in
this framework; in particular coupling to matter fields and
their stress energy would be a pressing question. There is
much work to be done here, since at present we have
only a rudimentary understanding of how to couple the
conformal geometry multiplet to a dilaton to yield gravity.
Nonetheless, it is interesting to observe that supersymmetry
already played a part here, without necessarily implying
that elementary particles come in Bose-Fermi marriages.
Instead, working in the BV formalism, adding additional
supersymmetry in fact just gave additional Bose partners
for Bose fields.
Another interesting feature of the model is that space-

time plays a rather secondary role because it only enters
through a particular Schrödinger representation of the
input Hilbert space. If our proposed model is to be a useful
formulation of quantum gravity, it ought be able to see the
types of dualities present in leading approaches such as
string theory. That this would require a model where
spacetime is an emergent quantity is perhaps not
surprising.
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APPENDIX: THE GRAVITY SECTOR

Here we show why the complexified version of the
action (15) is equivalent to Einstein-Hilbert gravity. This
account follows directly the one given in [13]. The starting
point is the model

Sgravity½Q̄a;Ψa;Ψ� ¼
Z

~M
½Ψ̄aQ̄aΨþ Ψ̄Q̄aΨa�:

It is important to note that here ðΨa;ΨÞ are fields on the
ambient manifold while Qa are operators. Varying Ψa

imposes the triplet of field equations

Q̄aΨ ¼ 0: ðA1Þ
The next ingredient is the on shell conformal geometry
multiplet

Q̄þ ¼ 1

2
ffiffiffi
2

p XMgMNXN;

Q̄0 ¼
1

2

�
∇XðAÞ þ

dþ 2

2

	
;

Q̄− ¼ −
1

2
ffiffiffi
2

p ∇MðAÞ∇MðAÞ; ðA2Þ

where the ambient metric is the gradient of a homothety

gMN ¼ ∇MXN

and the connection ∇MðAÞ≔∇M þ AM whose Maxwell
curvature FMN of the soð1; 1Þ gauge field AM obeys

XMFMN ¼ 0:

In the above it is possible to add a higher spin branch to the
solutions by adding terms ΣþHð∇ðAÞÞ to the operator Q̄−
where the scalar Σ obeys ∇XΣ ¼ −2Σ and H is an expan-
sion in ∇ with coefficients of ∇s obeying ð∇Xþ2−sÞ
HM1���Ms

¼0¼XMHMM2…Ms
¼0 and s ≥ 2. This higher spin

branch was first discovered in [12] appearing in the
classical solution to (6) where quantum commutators were
replaced by Poisson brackets. In [13], it was shown that at
the quantum level, the higher spin branch can be gauged
away, so long as17 Σ ≠ 0. We proceed, therefore, to analyze
the case where the higher spin branch of solutions is absent.

16Recently [27] appeared which actually uses methods
similar to those proposed here to analyze string field theory
itself.

17This point is perhaps slightly subtle: solutions with Σ ≠ 0
and H ≠ 0 are gauge equivalent to solutions where both Σ ¼ 0
and H ¼ 0.
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Thus, evaluated on solutions (A2) we have an action
depending only on ambient fields (here we rescaled fields
to normalize coefficients)

S½gMN; AM;Ψ;Ψa�

¼ Re
Z

~M

�
Ψ̄þX2Ψþ Ψ̄0

�
∇XðAÞΨþ dþ 2

2
Ψ

	

þ Ψ̄−ΔðAÞΨÞ
�
:

This action enjoys residual gauge invariances

AM ∼ AM þ∇Mα;

Ψ ∼Ψ − αΨ;

Ψ− ∼Ψ− þ αΨ− − X2θ −
�
XM∇ðAÞM þ dþ 2

2
− 2

	
ω;

Ψ0 ∼Ψ0 þ αΨ0 þ X2λ − ΔðAÞω − 4θ;

Ψþ ∼Ψþ þ αΨþ þ ΔðAÞθ þ
�
XM∇ðAÞM þ dþ 2

2
þ 2

	
λ:

ðA3Þ

Here the local parameter α is real while ðθ;ω; λÞ are
complex. Now we integrate out two of the Lagrange
multipliers Ψþ and Ψ0 which imposes

Ψ ¼ δðX2Þϕ; ϕ ∼ ϕþ X2χ;

as well as

�
∇X − 2þ XMAM þ dþ 2

2

	
ϕ ¼ 0:

The Maxwell invariance of the model [with parameter α in
(A3)] can be used to choose a gauge for the top slot
XMAM ¼ −w so this condition then implies that ϕ is a
conformal density of weight w − 1þ d

2
on the conformal

manifoldM. (Our final result will not depend on the choice
of w; note that in the ambient description, weights are given
by the eigenvalue of ∇X.) There is still the freedom using
the gauge parameter ω to mostly gauge away Ψ̄− (this
exhausts the gauge transformations with parameter ω save
for ω in the kernel of XM∇MðAÞ þ d

2
− 1). Hence all that

remains is the part ψ̄ of Ψ̄− with weight −w − d
2
þ 1 so the

remaining fields and their weights are now

Field ψ̄ ϕ AM

Weight −w − d
2
þ 1 w − d

2
þ 1 −1

The action becomes (up to an unimportant normalization
and integrations by parts ensuring no derivatives act on the
delta function)

S ¼ Re
Z

~M
δðX2ÞI ; I ≔ ϕ̄ð∇M − AMÞð∇M − AMÞψ :

Since the quantity I multiplying the delta function has
definite weight and is defined up to the equivalence (3), it is
a weight −d conformal density, and thus can be expressed
in terms of tractors [4]:

I ∼ ϕ̄

�
1

w
AMDM −

1

d − 2
ðDMAMÞ þ A2

�
ψ :

In this formula DM is the celebrated Thomas D-operator
which maps weight w tractors to weight w − 1 tractors
[i.e. it respects the equivalence relation (3)]; in the
ambient space it is given by the operator DM ≔
∇Mðdþ 2∇X − 2Þ − XMΔ. In turn, this allows the action
to be written as a Weyl invariant integral over the under-
lying conformal manifold M

Sð½g�; AM;ψ ;ϕÞ

¼ Re
Z
M
ϕ̄

�
1

w
AMDM −

1

d − 2
ðDMAMÞ þ A2

�
ψ : ðA4Þ

The integrand here depends on some metric g from the
conformal class of metrics ½g� on M determined by the FG
metric gMN and the integral is over the corresponding
volume form. The product of the volume form and
integrand above is Weyl invariant, so the action depends
only on the conformal class of the metric ½g�, as indicated.
Presently we will show that this action is in fact just a
rewriting of the Einstein-Hilbert action. Before doing so,
we note that integrating out ðψ ;ϕÞ in the path integral of
this action gives the partition function

Z¼
Z

½Dg�½DAM�
�
det

�
1

w
AMDM−

1

d−2
ðDMAMÞþA2�

�
−2
:

Here to obtain a well-defined Gaussian and in turn a
functional determinant, we performed a Wick rotation on
half the fields. This formula actually represents the partition
function for the most naïve proposal for a model quantum
gravity—an integration over metrics weighted by the
exponential of the Einstein-Hilbert action—and thus should
be compared with our proposal (14).
Returning to our goal of obtaining the gravity action

from (A1), we observe that the tractor-Maxwell field AM in
(A4) appears quadratically and algebraically so we can
directly integrate it out. In fact, the bottom slot of AM totally
decouples and we have gauged the top slot to the constant
−w. Thus we only need to algebraically determine the
middle slot and find
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Āμ ¼ −
χ̄Tσ∇μχ −∇μχ̄

Tσχ

2λ
; χ ≔

�
ψ

ϕ

	
; λ≔ χ̄Tσχ;

where σ is the Pauli matrix σx and the singlet λ is Maxwell
gauge invariant. Thus the on shell covariant derivative
becomes

ð∇μ þ ĀμÞχ ¼ Π∇μχ þ
1

2
∇μ log λχ

where the projector

Π≔ 1 −
χχ̄Tσ

λ
:

Reinserting this in the action and calling λ≔ φ2 gives

Sð½g�; χÞ ¼
Z
M

�
∇μχ̄TσΠ∇μχ þ∇μφ∇μφþ d − 2

4ðd − 1ÞRφ
2

�
:

As indicated, this model only depends on the conformal
class of the metric since it enjoys the gauge symmetry
transformations

gμν ∼ Ω2gμν; χ ∼Ω1−d
2χ ⇒ φ ∼ Ω1−d

2φ:

Note that the second two terms constitute the action of a
conformally improved scalar. One can use that the projector
obeys Πχ ¼ 0 to verify conformal invariance of the first
term. The model therefore describes gravity coupled to a
nonlinear sigma model. To see this, choose the gauge φ ¼ 1
so that

ψ̄ϕþ ϕ̄ψ ¼ 1:

This describes a hyperboloid in R4. Hence the action
becomes, as promised, a sum of the Einstein-Hilbert action
plus additional terms (with leading contribution a nonlinear
sigma model). Note that without a Wick rotation of the
scalar field measure, the Euclidean action has indefinite
signs for its kinetic term. Given that we do not yet have full
control over the moduli space of flat Chern-Simons con-
nections, or the integration measure for the underlying
functional integral (12) because the Hilbert space H is an
indefinite relativistic one, it is premature to declare that the
model has ghost excitations. We reserve a detailed study of
this key issue for further work [26].
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