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Compact binaries that emit gravitational waves in the sensitivity band of ground-based detectors can
have non-negligible eccentricities just prior to merger, depending on the formation scenario. We develop a
purely analytic, frequency-domain model for gravitational waves emitted by compact binaries on orbits
with small eccentricity, which reduces to the quasicircular post-Newtonian approximant TAYLORF2 at zero
eccentricity and to the postcircular approximation of Yunes et al. [Phys. Rev. D 80, 084001 (2009)] at small
eccentricity. Our model uses a spectral approximation to the (post-Newtonian) Kepler problem to model the
orbital phase as a function of frequency, accounting for eccentricity effects up to Oðe8Þ at each post-
Newtonian order. Our approach accurately reproduces an alternative time-domain eccentric waveform
model for e ∈ ½0; 0.4� and binaries with total mass ≲12M⊙. As an application, we evaluate the signal
amplitude that eccentric binaries produce in different networks of existing and forthcoming gravitational
waves detectors. Assuming a population of eccentric systems containing black holes and neutron stars that
is uniformly distributed in comoving volume, we estimate that second-generation detectors like Advanced
LIGO could detect approximately 0.1–10 events per year out to redshift z ∼ 0.2, while an array of Einstein
Telescope detectors could detect hundreds of events per year to redshift z ∼ 2.3.
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I. INTRODUCTION

Numerical studies suggest that, depending on the metal-
licity and chemical composition, the end point of stellar
evolution for most massive stars above ≳7M⊙ will be either
a stellar mass black hole (BH) or a neutron star (NS) [1].
Binary systems of stellar-mass compact objects are the most
promising sources of gravitational waves (GWs) for second-
generation ground-based interferometric detectors, such as
Advanced LIGO (aLIGO), Virgo, LIGO India, and Kagra
[2–4], as well as for planned third-generation detectors like
the Einstein Telescope (ET) [5]. Most previous analyses have
assumed that these compact binaries will be in nearly
quasicircular orbits by the time they reach the sensitive
frequencies of these detectors (i.e., orbital frequencies greater
than a few Hz). Such assumptions were made because GW
emission rapidly reduces the eccentricity of a binary system
[6], and thus most astrophysical binaries that were formed at
large separations and low frequencies will circularize well
before their signal enters the detector’s sensitive band.
Many recent investigations, however, now suggest that

there may exist several plausible, observationally

unconstrained astrophysical mechanisms through which
GWs emitted by compact binaries with significant eccen-
tricity may persist into the detector’s sensitivity band [7–10].
Dense stellar environments in Galactic nuclei can facilitate
frequent interactions, enabling direct dynamical capture
[10–16] into high-eccentricity orbits via single-single,
binary-binary, and binary-single processes [8]. A high
density of compact objects in the Galactic center cusp is
expected on theoretical grounds, from mass segregation of
individual objects [17,18] and satellite stellar systems (e.g.,
clusters and small galaxies) [18,19]. The compact object
density, and hence the event rate, remains highly uncertain,
but Refs. [19,20] suggest ≳103 BHs in the central 0.1 pc of
our Galaxy, consistent with the high event rates quoted in
Refs. [11,12].
Globular clusters also provide an environment for stars

and binaries to interact and form eccentric binaries. While
typical interactions occur at large separations, binary-single
and binary-binary interactions can produce close encoun-
ters that form high-eccentricity systems even for relatively
low stellar velocities [8]. Additionally, these environments
naturally form hierarchical triples, the secular interactions
(the Kozai–Lidov mechanism [21,22]) of which can drive
the inner binary to high eccentricity [9,14,23–25]. This*elhuertaescudero@mail.wvu.edu
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effect also naturally occurs in binaries bound to super-
massive BHs and could therefore yield eccentric systems
in galactic centers as well [7]. While relatively few BHs
are known to exist in globular clusters, recently several
accreting BH candidates have been found in extragalactic
globular clusters [26,27], and more recently in the
Milky Way globular cluster M22 [28]. Recent numerical
calculations also lend support to the idea that a significant
population of BHs will persist in clusters for the full cluster
lifetime [29,30].
Another potential mechanism for forming eccentric

ultracompact binaries is tidal capture. NSs can absorb
orbital energy during close passages, i.e., capture via
closest approach for pericenter distances rp ≃
Oð10–100 kmÞðM=10M⊙Þ [31]. The tidal capture event
rate is very sensitive to assumptions made about the
retention rate of NSs [32], the fraction of NSs in the core
of the globular cluster [33], BH ejection [24,34–37], and
the tidal capture cross section used.

A. Previous work

All of the above scenarios are quite uncertain; hence, even
a null GW result will significantly constrain previously
inaccessible astrophysics. A null result could also arise from
selection biases against eccentric binaries—for example, due
to systematic errors in the waveform modeling if, for
example, one tried to extract eccentric signals with quasi-
circular waveforms. Selection biases are estimated by
characterizing the “effectualness” of model A for finding
members of model B: a candidate signal from B is compared
with a dense, discrete, complete sample of A. Using leading-
order post-Newtonian (PN) expansions, i.e., an expansion in
small velocities and weak fields, for eccentric binary
systems, Ref. [38] concluded that quasicircular templates
could effectively detect low-eccentricity compact binary
sources: nonspinning searches were effectual for eccentric
binaries. Subsequent studies quantified the selection bias
against eccentric binaries [39–41]. For example, in initial
LIGO [39], targeting binary NSs with quasicircular tem-
plates would lead to a detection loss ≳10% for binaries with
eccentricities e≳ 0.05 at a Keplerian mean orbital frequency
of 20 Hz. By contrast, in this paper we perform “faithful-
ness” studies, demonstrating that eccentricity has a distin-
guishable impact by comparing GWs from otherwise
identical binaries with eccentricity to those without.
The studies mentioned above motivated the development

of accurate eccentric waveform models to target compact
binaries on eccentric orbits. Several authors over the years
have generated time-domain eccentric waveforms, includ-
ing kludge waveforms typically applied at high mass ratio
[42–49], precessing time-domain signals [50–56], and
finally relatively high-accuracy time-domain PN models
[57]. Though useful for qualitative work, these calculations
faced some limitations. First, PN approximations become
inaccurate when the orbital velocity becomes large enough,

which can occur during pericenter passages for certain
orbits but always occurs close to merger. In such instances,
numerical relativity was required to build confidence in
the associated dynamical evolution and waveform models
[58–60]. Second, the construction of such models is
computationally expensive because of the need to solve
ordinary differential equations in the time domain with a
very fine and constant discretization, so that aliasing and
Nyquist noise is under control when computing the discrete
Fourier transform (DFT) of the GW response function.
These limitations have been recently addressed in two

different waveform models: the x model of Ref. [59] and
the postcircular (PC) model of Ref. [61]. The former is a
time-domain model with conservative orbital dynamics
accurate to 3 PN1 order and radiation-reaction accurate
to 2 PN order. The x model has been validated against one
numerical relativity simulation of an equal-mass BH-BH
with initial eccentricity e ¼ 0.1, 21 GW cycles before
merger [59]. The x model, however, is quite computation-
ally expensive (mainly because of the need to solve for the
orbital evolution in the time-domain and then to Fourier
transform the resulting response function to the frequency
domain) [41] and not sufficiently accurate to model
low-mass binary inspirals [63].
The PC model is a frequency-domain approach, where

the conservative and dissipative orbital dynamics are
treated in the PN approximation, but further expanded in
a small-eccentricity approximation through an analytic,
high-order spectral decomposition [61]. The frequency-
domain response function is then computed through the
stationary-phase approximation (SPA) [61,64]. Although in
principle this model can be implemented to arbitrary PN
order, only the leading PN order terms were included
explicitly in Ref. [61], while 1 PN corrections [65], 2 PN
corrections [66], and 3 PN corrections [57,67] are now
available to extend Ref. [61].

B. Executive summary

In this work we develop the enhanced postcircular (EPC)
model. This model is an extension of the PC analysis in
Ref. [61], designed to reproduce in the zero-eccentricity
limit the TAYLORF2 model at 3.5 PN order and to reproduce
in the small-eccentricity limit the PC model to leading
(Newtonian) order. The TAYLORF2 model is a waveform
family constructed from the PN approximation for non-
spinning, quasicircular binaries directly in the frequency
domain, using the SPA. Furthermore, as shown in
Refs. [68,69], TAYLORF2 3.5 PN is accurate and computa-
tionally efficient to construct effectual searches of quasi-
circular binary systems with total mass ≲12M⊙ [68,69]. It
is worth emphasizing that we could also try to reproduce
the evolution of the time domain PN-based approximant

1A term of Nth PN order is one that is proportional to ðv=cÞ2N ,
where v is the orbital velocity [62].
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TAYLORT4 3.5 PN in the quasicircular limit, since this
model provides an accurate representation of the evolution
of comparable mass quasicircular binaries [63].
Nonetheless, anticipating that the matched filtering in
future GW searches will be carried out in the frequency
domain, we provide a waveform family that is directly
applicable in this framework.
The EPC model is not a consistent PN expansion to

3.5 PN order of the PC model. Instead, it adds 3.5 PN order
corrections through a mapping between the TAYLORF2 and
the PC models. Such a mapping will necessarily neglect
high-order eccentricity-dependent terms at first and higher
PN order. We will show, however, that the EPC model is
remarkably simple and sufficient for data analysis explora-
tions. For simplicity and consistency with prior work, we
adopt the restricted PN (“quadrupole”) approximation,
wherein we include the aforementioned PN phase correc-
tions, but we neglect PN amplitude corrections. Recent
work suggests that amplitude corrections may play an
important role in detection [70–80], but we defer such an
analysis to future work.
We compare and validate the EPC model against other

waveforms commonly employed in the literature [41,59]. In
particular, we show analytically and numerically that the
EPC reduces to the TAYLORF2 model at 3.5 PN order in the
limit of zero eccentricity. We also compare the EPC model
numerically to other eccentric waveform families for com-
parable mass binaries [41,59] using data analysis measures,
focusing particularly on the x model [59]. We find that the
EPC model agrees better with the TAYLORF2 3.5 PN model
at small eccentricity than the x model, primarily because the
x model only includes the dissipative dynamics to 2 PN
order. We also find that the EPC model loses accuracy at a
slow rate as the eccentricity increases, remaining accurate
relative to the x model up to eccentricities of 0.4.
Once validated, we use the EPC model to study the

importance of eccentricity in GW searches with second- and
third-generation detectors. We confirm that eccentricity
corrections increase the in-band GW signal strength for a
fixed mass system, thereby increasing the distances to which
the system could be detected. Similarly, the presence of
eccentricity increases the range of masses that are accessible
to the detectors. We also use the EPC model to estimate the
cosmological range to which eccentric inspirals of NS-BH
and NS-NS binaries could be observed. Such binaries have
been proposed as possible progenitors of short gamma-ray
bursts (SGRBs) [81–85]. Following Ref. [86], and assuming
that one to a few eccentric binaries form per young massive
star cluster over its lifetime, we estimate that aLIGO could
observe approximately 0.1–10 events per year out to z ∼ 0.2,
while an array of ET detectors could observe from 60–7900
events per year out to z ∼ 2.3.
This paper is organized as follows. In Sec. II we

summarize the construction of time-domain and frequency-
domain waveform models. Section III presents and

develops the EPC model. Section IV studies the astro-
physical consequences of doing data analysis with the EPC
model. Section V concludes and points to future work.
Henceforth, we use geometric units with G ¼ c ¼ 1. We
follow the conventions in Refs. [87] and [61].

II. ECCENTRIC WAVEFORM MODELS

In this section, we review the basics on how to construct
time-domain and frequency-domain eccentric waveform
models. We concentrate on the time-domain x model
proposed in Ref. [59] and the frequency-domain PC model
proposed in Ref. [61]. Ultimately, detection and parameter
estimation is usually carried out in the frequency domain.
By time-domain waveform model, we here mean a wave-
form that is constructed (usually numerically) in the time
domain and then is discrete Fourier transformed to obtain a
frequency representation. By contrast, a frequency-domain
model is constructed (usually analytically) directly in the
Fourier domain.

A. x model

The x model [59] is a parameter-free, time-domain PN-
based waveform family. The binary orbit is given in the
Keplerian parametrization to 3 PN order, which can be
written as

r
M

¼ 1 − et cos u
x

þ
Xj¼3

j¼1

δrjxj−1; ð1Þ

l ¼ u − et sin uþ
Xj¼3

j¼2

δljxj; ð2Þ

while its conservative evolution is given also to 3 PN order
by [59]

M

 
_ϕ

_l

!
¼
Xj¼3

j¼0

 
δ _ϕj

δ _lj

!
x3=2þj: ð3Þ

In these equations, r and ϕ are the magnitude of the relative
separation vector and the relative orbital phase; et is the so-
called temporal eccentricity, defined by the change in mean
anomaly l when the eccentric anomaly u changes by one
full cycle to leading PN order; x ¼ ðM _lÞ2=3 ≪ 1 is the PN
expansion parameter, with _l ¼ n the mean Keplerian
orbital frequency; M ¼ m1 þm2 is the total mass; n is
the mean motion; and the PN coefficients (δrj, δlj, δ _ϕj,

δ _lj) can be found in Ref. [59] and references therein. The
above orbital evolution is conservative in that energy and
(z component of) angular momentum are conserved quan-
tities, and the equations can thus be derived from a given
PN Hamiltonian [88].
The true inspiral evolution, however, is not conservative

because GWs carry energy and angular momentum away
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from the binary. The loss of energy and angular momentum
can be mapped to a change in the PN expansion parameter x
and the eccentricity et, which are no longer conserved but
rather evolved according to the 2 PN equations

M

�
_x
_et

�
¼
X4
j¼0

�
δ_xj
δ_ej

�
x5þj=2; ð4Þ

where the dissipation coefficients (δ_xj, δ_ej) can be found,
for example, in Ref. [59] and references therein.
The above equations define the orbital evolution in the x

model, which is solved numerically in the time domain.
This evolution has been validated against one numerical
relativity simulation of an equal-mass, BH-BH binary with
initial eccentricity of 0.1 21 GW cycles before merger [59].
Once the orbital evolution has been obtained, one can
obtain the time-domain GW response function to leading
(mass-quadrupole or Newtonian) order [89], which one
then discrete Fourier transforms to obtain frequency-
domain templates for data analysis studies.
The x model reduces to some well-studied template

families used in GW data analysis. For example, in the limit
of zero eccentricity, the orbital phase in the xmodel reduces
to the TAYLORT4 PN model at 2 PN order [40]. In fact, the
TAYLORT4 2 PN differential equations that define the
orbital evolution are the same as those of the x model in
the zero-eccentricity limit by construction. However, the
amplitude of the x model differs from 2 PN TAYLORT4 in
that M _l in Eq. (3) introduces an additional amplitude
contribution [40].
The x model, however, deviates from some other well-

studied template families. One example is the TAYLORF2
templates, a family constructed to model GWs from the
quasicircular inspiral of nonspinning compact binaries.
This template family is defined directly in the frequency
domain through the SPA via

~hðfÞ ¼ Af−7=6eiΨF2ðfÞ; ð5Þ

ΨF2ðvÞ ¼ 2πftc − 2ϕc −
π

4
þΨPNðvÞ; ð6Þ

where the PN phase is defined as

ΨPNðvÞ ¼
3

128ηv5
Xi¼7

i¼0

anvn ð7Þ

and where A ∝ MC
5=6=DL, with the chirp mass,

MC ¼ Mη3=5, the symmetric mass ratio η ¼ m1m2=M2,
and the luminosity distance DL, while v ¼ ðπMfÞ1=3 is the
orbital velocity of the binary. The TAYLORF2 waveform
phase we will use throughout this article, Eq. (6), includes
PN corrections up to 3.5 PN order. The corresponding an
coefficients in Eq. (6) at this PN order can be found
in Ref. [69].

The xmodel captures all critical features that eccentricity
introduces to nonspinning binary physics, both on the
dynamics and on the waveform, to high PN order, i.e., to
3 PN order in the conservative dynamics and to 2 PN order
in the dissipative dynamics. First and foremost, eccentric
binaries precess, and the x model captures this well at high
PN order. Second, eccentricity shortens the duration of the
orbit and hence of the waveform, compared to circular
binaries starting at the same mean orbital frequency. Third,
binaries with eccentricity have complicated, highly modu-
lated waveforms, which is also captured in the x model to
high PN order.
As a concrete example, Fig. 1 shows the waveforms

predicted by the x model for a circular (e ¼ 0) and
eccentric (e ¼ 0.4) (5M⊙, 5M⊙) binary. Observe the
amplitude modulations present in the eccentric waveform
and the fact that the eccentric inspiral is noticeably shorter.
The latter is driven both by long-term effects at low
frequencies and by waveform termination. In the figure,
the orbital evolution terminates when the system reaches
the innermost stable circular orbit (ISCO) for a test particle
in an eccentric orbit around a Schwarzschild BH, i.e.,
rISCO ¼ 6M þ 2eISCO [90], where eISCO stands for the
eccentricity at the ISCO.

B. Limitations of the x model

Even though the x model is capable of reproducing the
main features of the eccentric numerical simulation used to
calibrate it, the model does have some limitations, which
we list below:

(i) Computational expense: The x model requires
the numerical solution of the orbital evolution
equations in the time domain at a small and constant
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FIG. 1 (color online). Sample waveforms for an equal-mass
binary system with total massM ¼ 10M⊙ starting at a Keplerian
mean orbital frequency fK ¼ 5 Hz. The figure uses a logarithmic
scale in the time axis to clearly exhibit the structure of the
eccentric waveform at low frequencies.

E. A. HUERTA et al. PHYSICAL REVIEW D 90, 084016 (2014)

084016-4



discretization so that a DFT of the GW response can
be accurately computed [41].

(ii) PN accuracy: Although the x model reduces to the
2 PN TAYLORT4 approximant when e0 → 0, higher
PN order models (e.g., TAYLORT4 at 3.5 PN order)
are needed to describe the dynamical evolution of
low-mass, quasicircular binaries at the level of
accuracy required for GW data analysis [63].

Let us discuss some of these limitations in more detail.
To do so, we employ some basic data analysis tools. Given
two signals h1 and h2, the noise-weighted inner product is
defined as

ðh1jh2Þ ¼ 2

Z
fmax

fmin

~h�1ðfÞ ~h2ðfÞ þ ~h1ðfÞ ~h�2ðfÞ
SnðfÞ

df; ð8Þ

and the normalized overlap is

ðĥ1jĥ2Þ ¼
ðh1jh2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðh1jh1Þðh2jh2Þ

p ; ð9Þ

where SnðfÞ is the power spectral density of the detector
noise and ~hðfÞ is the Fourier transform of the signal. For
the former, in this paper we always use the zero detuned
high power (ZDHP) spectral density for aLIGO [2] and the
Einstein Telescope with optical configuration B (ETB) or
Einstein Telescope with optical configuration D (ETD)
noise configurations for ET [5]. The lower limit in
integration depends on the detector under consideration,
namely fmin ¼ ½1 Hz; 10 Hz�, for the ET and aLIGO,
respectively, and fmax is the last frequency at which the
waveform is sampled.
Maximizing over the time of coalescence, tc, and the

phase of coalesce, ϕc, one can compute the maximized
overlap, Oðh1; h2Þ, between any two given signals, namely

Oðh1; h2Þ ¼ max
tcϕc

ðĥ1jĥ2eið2πftc−ϕcÞÞ: ð10Þ

This quantity is a data analysis measure of how similar two
waveforms h1 and h2 are, without allowing for any biasing
in the system parameters other than tc and ϕc. When

quoting overlaps, we will assume optimally oriented
sources.
The x model agrees quite well with the TAYLORT4

waveform family at 2 PN order, but it disagrees with
higher PN order families. For example, in the limit of zero
eccentricity, the overlap between the x model and the
TAYLORT4 model at 3.5 PN order is roughly 0.5 and 0.7 for
binaries with component masses (1.35M⊙, 1.35M⊙) and
(6M⊙, 6M⊙), respectively. This is to be expected, since the
x model is built with 2 PN equations to describe the
dissipative dynamics. Even if one compares the x model to
the TAYLORT4 model at 2 PN order, the overlap drops
rapidly with increasing eccentricity, crossing the 0.97
threshold at an initial eccentricity at a GW frequency of
10 Hz of approximately 0.02 and 0.05 for binaries with
component masses (1.35M⊙, 1.35M⊙) and (6M⊙, 6M⊙),
respectively.

C. The postcircular approximation

One of the first attempts to develop a consistent eccentric
waveform model in the frequency domain was through the
PC approximation [61]; we refer the reader to Secs. II and
III of Ref. [61] for a careful description of the generali-
zation of the SPA to eccentric orbits. The PC stipulates that
one can expand all quantities assuming the eccentricity is
small. In principle, one can keep an arbitrary number of
eccentricity corrections, but in the work of Ref. [61], terms
up to Oðe8Þ were kept. Expanding the time-domain
response in this way, one can obtain an expression that
is amenable to the SPA when computing the Fourier
transform. The main result of the PC approach is the
frequency-domain response function for eccentric binary
inspirals [61],

~hðf > 0Þ ¼ Af−7=6
X10
l¼1

ξl

�
l
2

�
2=3

e−iðπ=4þΨlÞ; ð11Þ

where A is a function of the component masses and the
distance to the source only and ξl are functions of the beam
pattern functions and the eccentricity [61]. The Fourier
phase to leading PN order is given by

Ψl ¼ −lϕc þ 2πftc þ
3

128ðMπfÞ5=3
�
l
2

�
8=3
�
1 −

2355

1462
e20χ

−19=9 þ
�
5222765

998944
χ−38=9 −

2608555

444448
χ−19=9

�
e40

þ
�
−
75356125

3326976
χ−19=3 −

1326481225

101334144
χ−19=9 þ 17355248095

455518464
χ−38=9

�
e60

þ
�
−
250408403375

1011400704
χ−19=3 þ 4537813337273

39444627456
χ−76=9 −

6505217202575

277250217984
χ−19=9 þ 128274289063885

830865678336
χ−38=9

�
e80

þOðe100 Þ
�
; ð12Þ
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where χ ≡ F=F0 ¼ f=f0, with F the orbital frequency, f
the GW frequency, and subscript zero to indicate the initial
values of these quantities at which the eccentricity e0 is
defined. Such a model does contain amplitude corrections
relative to its circular counterpart, because the ξl’s are
functions of eccentricity, which in turn is a function of the
orbital frequency.
The PC formalism is appealing, but the waveforms

presented above are not adequate for a data analysis study.
This is simply because the expansions have been truncated
at leading PN order. Therefore, by construction, the PC
model does not reduce to the TAYLORF2 waveform family
in the limit of zero eccentricity beyond leading PN order.
The resulting overlaps are thus terrible. Having said that,
the PC formalism is still promising because one could
in principle include higher-order PN corrections, thus
systematically improving the waveform family.

III. ENHANCED POSTCIRCULAR
WAVEFORM MODEL

Systematic, well-controlled PN expressions for time-
domain elliptic orbits are available in the literature
[65–67,91–93]. One could in principle use this work to
extend the analysis of Ref. [61] to higher PN order. Doing
so, however, becomes increasingly difficult with higher PN
order, so much so that the analytic expressions become
unwieldy and the resultant frequency-domain waveform
becomes computationally expensive.

Rather than systematically using those expressions as
the basis for a Fourier-domain approximation, this paper
adopts a physically motivated ansatz to extrapolate the
form of ~hðfÞ from known behavior in two limits: the
high-order quasicircular PN approximation and the leading-
order PC approximation. Though lacking some eccentricity-
dependent modifications beyond leading PN order, this
ansatz is particularly easy to construct; it captures the
leading-order effects of eccentricity, and (as we show later)
it is effective at reproducing the results of time-domain
calculations like the x model at suitable PN orders.

A. Requirements and construction

We construct the EPC model with the following
requirements:

(i) To zeroth order in the eccentricity, the model must
recover the TAYLORF2 PN waveform at 3.5 PN
order.

(ii) To zeroth PN order, the model must recover the PC
expansion of Ref. [61], including eccentricity cor-
rections up to order Oðe8Þ.

There is an infinite number of ways in which one can
modify the PC expansion of Ref. [61] to satisfy these two
requirements. We choose to employ the same functional
form for the Fourier phase as that used in the TAYLORF2
model at 3.5 PN order, Eq. (6). However, we will use a
modified velocity function vðfÞ → veccðf; e0Þ calculated
by equating Eq. (12) at l ¼ 2 with Eq. (6) at i ¼ 0, which
leads to

veccðf; e0Þ ¼
�
1þ 471e20

1462
χ−19=9 þ e40

�
521711

444448
χ−19=9 −

391963333705

533796714784
χ−38=9

�

þ e60

�
265296245

101334144
χ−19=9 −

1302494157901715

243411301941504
χ−38=9 þ 6142097676388541753

2135203940630873088
χ−19=3

�

þ e80

�
1301043440515

277250217984
χ−19=9 −

9626858181465026345

443982214741303296
χ−38=9 þ 20410190578639124245219

649101997951785418752
χ−19=3

−
2140356054716884783056259067777

152020619381675205883794309120
χ−76=9

��
ðπMfÞ1=3: ð13Þ

With this at hand, the EPC model is defined as the PC
model for ~hðfÞ of Eq. (11) but with Ψl → Ψ̄l, where

Ψ̄l≡ Re0≪1

�
2πftc−lϕc−

π

4
þ
�
l
2

�
8=3

ΨPNðveccÞ
�
; ð14Þ

where R½·� stands for reexpanding in e0 up to Oðe80Þ.
The different PN expressions for Ψ̄2 are presented in
Appendix A.
In summary, the EPC model has some appealing features

of the two waveform families taken as reference points (the
x model at 2 PN order and the TAYLORF2 model at 3.5 PN

order). First, as shown in Fig. 2, the phase prescription used
to construct the EPC model is reliable for e0 ≲ 0.6 for a
(6M⊙, 6M⊙) system and for e0 ≲ 0.4 for a (1.4M⊙,
1.4M⊙) system. That is, for initial eccentricities at a
GW frequency of 10 Hz below these eccentricity values,
the error induced by neglecting theOðe100 Þ terms in the EPC
model lead to a loss of overlap of less than 3%. Second, like
the TAYLORF2 model, the EPC family has the advantage
that it is already written analytically in the frequency
domain. Therefore, it can be readily used as an efficient
and accurate waveform family for future searches of
eccentric systems, or to explore the efficiency of current
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matched-filter algorithms to clearly distinguish instrumen-
tal glitches from eccentric signals. Regarding efficiency, we
have found that, averaging over 100 iterations, the code we
have developed to generate EPC waveforms is two times
faster than the xmodel used in Ref. [41]—a numerical code
that was enhanced by implementing adaptive time stepping.
The EPC model also has the advantage of encoding high

PN order corrections that faithfully describe the dynamical
evolution of quasicircular binaries and high-order eccen-
tricity corrections that reproduce the dynamics of compact
sources with low to moderate values of eccentricity.
Of course, this model is not perfect, as we will see next,
but it can be systematically improved by correcting the
eccentricity-dependent and higher PN order terms in the
phase and amplitude modulations, using the results in
Refs. [65–67,91–93].

B. Comparison to other models

Figure 3 shows the overlap between different waveform
families as a function of GW frequency. We have used 10
and 5 Hz as the initial filtering frequencies for aLIGO and
ET, respectively. Observe that the EPC model does reduce
to the TAYLORF2 3.5 PN model in the e0 → 0 limit.
Specifically, the blue curves (TAYLORF2 vs EPC) go to
1 as e → 0. Observe also that the overlap between the x
model and either the EPC model or the TAYLORF2 3.5 PN
model is roughly the same as e → 0. Additionally, the
x model is systematically unfaithful to the EPC model by a
nearly constant amount, which is nearly independent of
eccentricity at each mass. These differences arise due to

systematic differences between time- and frequency-
domain waveforms, as well as by slight differences in
PN order used to construct these models.
In Fig. 3we also compare the performance of EPC and the

x model against the time-domain PN-based TAYLORT4
3.5 PN approximant, which has been shown to accurately
reproduce the features of numerical relativity simulations for
the very last few cycles of nonspinning equal-mass binary
inspirals [63,69]. Notice that the overlap between EPC and
TAYLORT4 3.5 PN shows that EPC captures faithfully the
features of quasicircular binaries. In contrast, the low-order
PN expansion used to construct the x model leads to
substantial drops in overlap in the quasicircular limit.
Figure 3 also demonstrates the significant impact of

eccentricity in data analysis. As also seen in previous
studies, the overlap between quasicircular and eccentric
waveforms decreases rapidly as the eccentricity is increased
even by a small amount. In addition, the longer a binary
spends in band (i.e., the lower the mass or the initial
frequency of the system), the greater is the effect of
eccentricity on data analysis, since more cycles accumulate.
In principle, higher-order eccentricity corrections in the

PN expansion that we have neglected could contaminate
our ability to identify the unique impact of eccentricity. In
fact, the PN approximation for quasicircular inspirals is
known to converge slowly or even diverge, particularly late
in the inspiral [12,94–96]. In practice, however, eccentric
effects are weakest at the end of the inspiral and strongest
early on, so we expect that eccentric effects are less
susceptible to large systematic errors from unknown
higher-order PN terms.

IV. ASTROPHYSICS AND COSMOLOGY WITH
ECCENTRIC WAVEFORMS

Having constructed a waveform model that captures the
main features of eccentric binaries, in this section we
compute the signal-to-noise ratio (SNR) distribution of a
variety of compact binary sources on eccentric orbits of
which the mass-ratios represent typical binary BH and
NS-BH systems. As is well known for circular [68,97,98]
and eccentric [61] binaries, the presence of multiple
harmonics provides additional signal power, particularly
at frequencies where the dominant harmonic may be
inaccessible. For this reason, eccentric binaries can poten-
tially be detected with very large masses that are inacces-
sible for quasicircular inspirals. Because of cosmological
redshift, massive eccentric binaries can conceivably be
detected to much greater distances than their quasicircular
counterparts.
The SNR can be computed via

SNR ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
ðh; hÞ

p
; ð15Þ

where, as before, flow ¼ 1 and 10 Hz for ET and aLIGO,
respectively. Since the PN approximation breaks down as
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FIG. 2 (color online). We explore the accuracy of the phase
prescription of the EPC model by deriving two different phase
expressions which include eccentricity corrections up to orders e8

and e6, respectively. Integrating from a fiducial GW frequency of
10 Hz, the y axis shows the overlap between both phase
approximations. Notice that the overlap between both phase
prescriptions is reliable, i.e., the overlap ≳0.97 for e0 ≲ 0.6 for a
(6M⊙, 6M⊙) system and for e0 ≲ 0.4 for a (1.4M⊙, 1.4M⊙)
system.
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the system approaches merger, we truncate the signal at an
orbital frequency corresponding to the ISCO of a test
particle in Schwarzschild spacetime; eccentricity correc-
tions to the ISCO are negligible for SNR calculations.
As shown in Ref. [71], different GW harmonics will

contribute signal over different GW frequency ranges if we
terminate the integration of Eq. (15) at the ISCO orbital
frequency. Hence, to ensure that the harmonics contribute
to the SNR within their region of validity, we will truncate
the waveforms using step functions, [HðxÞ ¼ 1, if x ≥ 0,
and HðxÞ ¼ 0 otherwise], as [61]

~h ¼ Af−7=6
Xl¼10

l¼1

�
l
2

�
2=3

ξleiΨlHðlFISCO − 2FÞ; ð16Þ

where F is the Keplerian mean orbital frequency and FISCO
is that frequency at ISCO.

A. Increase in reach

An immediate consequence of the inclusion of eccen-
tricity in the waveform model is the ability to detect
systems at a fixed mass farther out and to detect heavier
systems at a fixed distance. The former case was already
made in Ref. [61] for space-borne GW detectors, so let us
discuss the latter. Figure 4 shows the SNR contribution
from each harmonic vs total mass for an optimally oriented
equal-mass binary directly overhead for a single aLIGO
(left) or ET detector (right). The SNR contribution is
obtained from

ΔSNR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jSNR2

lmax
− SNR2

lmax¼10j
q

; lmax ¼ 2; 3;…; 9;

ð17Þ

where the subscript lmax indicates the number of harmonics
included in the calculation of SNR. Observe that for the

FIG. 3 (color online). Overlap between the EPC waveform and three waveform families: TAYLORF2, TAYLORT4 and the x model, and
the x model with TAYLORF2 and TAYLORT4. Note that both TAYLORF2 and TAYLORT4 include waveform phase corrections at 3.5 PN
order (see the legend of the top-left panel for reference). The different panels show the overlap for binaries with component masses
(1.35M⊙, 1.35M⊙)] (left) and [(6M⊙, 6M⊙)] (right). The top panels assume an aLIGO detector with the ZDHP sensitivity configuration
and a lower-frequency cutoff of 10 Hz, while the bottom panels use an ET-like detector with the ETB configuration and a lower-
frequency cutoff of 5 Hz.
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eccentric inspirals investigated here the role of higher
harmonics is important.
Based on Fig. 4, we notice that in the context of aLIGO

the SNR difference peaks at approximately (200M⊙,
500M⊙, 600M⊙, and 700M⊙) for lmax ¼ 2, 3, 4, and 5,
respectively. In the context of ET, the SNR difference
reaches a maximum at approximately (600M⊙, 4500M⊙,
5500M⊙, and 7000M⊙) for lmax ¼ 2, 3, 4, and 5, respec-
tively. We have also found that, both for aLIGO and ET, in
order to ensure that the SNR difference [see Eq. (17)] is less
than 10, then we need to include up to the ninth harmonic
throughout the whole parameter space.
Figure 5 shows the SNR vs total mass and eccentricity

for an optimally oriented, equal-mass binary directly over-
head for a single detector. We have used two different

detectors—aLIGO and ET—to illustrate the increase in
reach as a function of sensitivity and eccentricity.
We should emphasize, however, that for total mass M ≳
300M⊙ Fig. 4 provides a conservative estimate of the SNR
that may be expected from these type of events, based on
well-understood physics only. All of these results are
consistent with those presented in Ref. [61].

B. Eccentric neutron star-black hole binaries

Observational and theoretical evidence suggests that
SGRBs may be associated with NS-NS and NS-BH
mergers [81,82,99]. Our previous calculations show that
eccentric mergers can be detected with a larger range than
quasicircular mergers.
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FIG. 4 (color online). Absolute contribution from each harmonic to the total SNR of an optimally oriented equal-mass binary directly
overhead a single detector [see Eq. (17) for further reference]. The left figure assumes a LIGO-type detector and a fixed distance of
DL ¼ 100 Mpc. The right figure assumes an ET-type detector and a fixed distance of DL ¼ 1 Gpc. We have assumed that the binaries
have an initial eccentricity e0 ¼ 0.4 at a GW frequency of 1 Hz for ETand 10 Hz for aLIGO. For comparison, Fig. 5 shows the total SNR
vs mass.
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FIG. 5 (color online). SNR vs eccentricity for an optimally oriented, equal-mass binary directly overhead a single detector. Observe
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DL ¼ 1 Gpc.
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To assess the astrophysical impact of including eccen-
tricity in event rate calculations, we estimate the detection
rate for a simply parametrized astrophysical toy model,
using EPC waveforms. Our astrophysical toy model
assumes that one to a few eccentric, merging NS-BH
binaries form per young massive star cluster, over its
lifetime [100]. Following Ref. [86], we then extrapolate
this optimistic formation rate to the entire Universe,
assuming that the star formation rate (SFR) per unit volume
in the Universe and the cluster formation rate (CFR) are
given by

SFR ¼ 1M⊙ × 10−2 galaxiesMpc−3 yr−1; ð18Þ

CFR ¼ SFR=106M⊙: ð19Þ

Assuming that a significant fraction of star formation
occurs in clusters, gcl, and that a substantial fraction of
clusters undergoes evaporation and segregation, gevap,
then present-merger rates of compact binaries can be
approximated as nrate ¼ CFR × number per cluster:

nrate ≈ 10−2gevapgcl Mpc−3Myr−1: ð20Þ

Given the lack of a universally accepted model for star
formation history, we will present results for merger rates
normalized by the factor Γ ¼ gevapgcl, i.e.,

nrate ¼ 10Γ Gpc−3 yr−1: ð21Þ

Using Eq. (21), we notice that we can readily estimate the
number of present-day event rates using the relation

nevents ¼ 10Γ
�

Vc

Gpc3

�
yr−1: ð22Þ

If one assumes that 10% of all clusters survive disruption
due to photoionization and supernova gas-driven ejection
during their first ∼10 Myr of existence, then Γ ∼ 5 × 10−2.
Under more optimistic assumptions, Γ can plausibly be as
high as ∼1.
For a given network of identical GW detectors, a

straightforward calculation provides the detection volume
Vc for a given source [101,102], including cosmology.
Specifically, for each source, sky location, and distanceDL,
we evaluate the SNR in each detector and hence the
network SNR ρ, carefully accounting for the topology
and geographical location of its components [101]. For
each distance and sky position, a fraction of sources has
ρ > ρthreshold ≡ 10. Using concordance cosmology, we
translate the SNR of sources with ρ > ρthreshold to a
detection range, and finally into a redshift estimate, which
in turn determines the detection volume Vc.
We evaluate the detection volume for several combina-

tions of detectors, as described in Table I. The first detector

network is comprised of four LIGO-type L-shaped detec-
tors that operate with the target ZDHP laser configuration,
from a low-frequency cutoff of 10 Hz. The second detector
network consists of up to four ET-type detectors, including
one triangular-shaped detector at the geographic location of
Virgo, and up to three L-shaped detectors at the location of
LIGO Livingston, LIGO Hanford, and the proposed loca-
tion for LIGO India (see Table II). We explore two different
design sensitivities for these networks, ETB and ETD, and
we assume that both configurations operate from a low-
frequency cutoff of 1 Hz. Given that the results obtained by
using ETB and ETD are quantitatively similar, we will only
quote results derived using ETB in the following. Table II
provides the comoving volume for several compact binaries
that may be detected during the advanced detector era and
beyond using a four detector network, assuming a uniform
distribution of inclination angles and adopting an eccen-
tricity e0 ¼ 0.4 at forb ¼ 0.5 and 5 Hz for ET and aLIGO,
respectively. For context, these tables also provide the
median luminosity distance and associated redshift. Based
on Table II, we notice that in a conservative or in an

TABLE I. Configurations, Ci, used to compute the SNR
distributions of compact binaries that will be targeted by second-
and third-generation ground-based detectors.

Network LIGO Livingston LIGO Hanford Virgo INDIGO

C1 ✓

C2 ✓ ✓

C3 ✓ ✓ ✓

C4 ✓ ✓ ✓ ✓

TABLE II. Average range (DL), redshift (z), source-frame
masses [M, m], and comoving volume (Vc) for several combi-
nations of compact binary systems uniformly distributed in the
sky with initial eccentricity e0 ¼ 0.4 at a Keplerian mean orbital
frequency of 0.5 and 5 Hz for ETB and aLIGO, respectively, and
using the networks described in Table I with aLIGO’s ZDHP
(top) and the ETB (bottom) noise configurations. These results
are obtained by fixing the masses and initial eccentricity of the
sources and then running Monte Carlo simulations over random
choices of the extrinsic parameters: inclination angles, location of
the source in the sky, polarization angle, etc.

DL [Gpc] z m½M⊙� M½M⊙� Vc [Gpc3]

aLIGO
0.425 0.090 1.38 5.50 0.255
0.612 0.126 1.33 10.66 0.682
0.661 0.135 1.41 14.98 0.834
0.726 0.147 1.39 20.05 1.066

ET
15.168 1.917 1.71 5.14 589.596
17.587 2.164 1.26 9.48 719.221
18.894 2.296 1.51 14.56 789.238
16.593 2.063 1.31 19.26 665.925
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optimistic scenario (Γ ∼ 5 × 10−2 or 1), an array of four
advanced GW detectors could detect from 0.1 to 10 events
per year. In Fig. 6 we present the redshift distribution up to
which these events may be detected depending on the
number of operating GW detectors. Notice that some of
these events could be detected up to cosmological red-
shifts z ∼ 0.2.
We have found that the SNR distribution of eccentric

inspirals is quantitatively similar to that obtained for
quasicircular binaries, even though the former stay in the
sensitive frequency band of GW detectors only half of the
time the latter do. In other words, assuming optimal
filtering, the event rate does not increase or decrease
significantly due to the presence of eccentricity.
Moreover, prior investigations have showed that existing
searches will only be slightly selection biased against
eccentric binaries with e0 ≲ 0.4. Hence, for existing
searches, the relative detection rate for eccentric and

quasicircular binaries is effectively identical. By
contrast, our work shows that eccentricity produces a
significant, measurable effect on radiated GWs, unless
e0 ≲ 10−2. Measurement of eccentricity thereby provides
a mechanism to help distinguish between different astro-
physical formation scenarios for merging binaries
[8,10,14,103].

C. Third-generation detectors

In the context of third-generation detectors, Table II
shows that an array of four ET-like detectors will enable the
detection of NS-BH mergers up to redshifts z ∼ 2.3.
Therefore, detection of gravitational radiation emitted by
high-redshift NS-BH mergers could be used in conjunction
with optical observations to provide further insight on the
astrophysical mechanisms that lead to the formation of
high-redshift SGRBs.
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FIG. 6 (color online). We run Monte Carlo simulations to estimate the SNR distributions of typical NSBH mergers assuming uniform
distributions in the extrinsic parameters of the sources: inclination angles, location of the source in the sky, polarization angle, etc. Using
concordance cosmology, we translated the median of the SNR distribution to a detection range and finally into a redshift estimate. The
error bars represent the upper and lower quartiles of the redshift distributions. Each panel shows the redshift distribution for an array of
aLIGO detectors (top panels) and ET detectors (bottom panels) with the sensitivity of the target [ETB, ZDHP] configuration operating
from a low-frequency cutoff of [1, 10 Hz], respectively. The x axis indicates the number of detectors in the array, as defined in Table I.
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If we repeat our earlier exercise, now using Table II in
Eq. (22) along with the conservative or the optimistic
scenario (Γ ∼ 5 × 10−2 or 1), we find that an array of four
third-generation GW detectors could observe from 60 to
7900 NS-BH mergers per year up to redshift z ∼ 2.3, again
depending on the components masses under consideration
(see Fig. 6).
The results presented in this final section suggest that a

network of aLIGO/VIRGO-type detectors operating at
design sensitivity will be capable of detecting NS-BH
mergers occurring at cosmological distances and could
enable a joint search of GW sources and their electromag-
netic counterparts. Looking ahead, our results also suggest
that third-generation GW detectors may enable us to
discover inspiraling eccentric NS-BH binaries at redshifts
comparable to the most distant known SGRBs.

V. CONCLUSIONS

In this paper we have developed and studied a fast and
accurate ready-to-use waveform model (the EPC model) to
search for compact binary mergers with significant eccen-
tricity (e < 0.4) just prior to merger [7–10]. We have shown
that the EPC model includes desirable features of higher-
order PN expansions for quasicircular waveforms and also
includes the same dynamical contributions as time-domain
PN-based eccentric waveforms that have been successfully
compared with results from numerical relativity.
Anticipating that matched filtering in the advanced

detection era and beyond may be carried out in the
frequency domain, the EPC model has been developed
in the frequency domain using the SPA. This model is a
natural extension of the frequency-domain quasicircular PN
approximant TAYLORF2 3.5 PN to now include eccentricity.
The EPC model could be used to develop an optimal search
that targets moderately eccentric events, which may be
important sources for advanced and third-generation GW
detectors [2–5], and complementary missions such as
NANOGrav [104,105] and space-based missions such as
eLISA [106,107].
We have explored the astrophysics that could be studied

if eccentric mergers occur in nature by computing the
improvement in the detection range of second- and third-
generation GW detectors. We have also carried out
Monte Carlo simulations to explore the SNR distribution
of a population of eccentric sources uniformly distributed
in the sky, assuming the existence of two types of networks:
(i) an array of up to four second-generation detectors at the
geographical locations of existing and planned LIGO-type
detectors, which operate at the target sensitivity of the
ZDHP configuration from a low-frequency cutoff of 10 Hz,
and (ii) an array of up to four ET-type detectors at the
geographical locations of existing and planned GW detec-
tors, which operate at the target sensitivity of the ETB and
ETD configurations from a low-frequency cutoff of 1 Hz.
Using the median of the SNR distribution of compact

binaries for which the source-frame masses represent typical
NS-BH systems, we have found that GW observations will
enable us to observe the merger of eccentric NS-BH systems
up to redshifts z ∼ 0.2 and z ∼ 2.3, in the context of second-
and third-generation detectors, respectively. These results
suggest that a detector network in the advanced detector era
may be capable of testing whether the compact object
merger model is the correct description for the generation
of SGRBs at cosmological distances [108,109].
The estimates presented here may be refined once we

take into account the SNR that is generated during the
merger and ringdown phases of NS-BH systems. To have a
complete picture of the dynamical evolution of these
events, we may need to develop a complete inspiral-
merger-ringdown model in a similar manner as has been
done for quasicircular binaries with comparable and inter-
mediate mass ratios [110–114]. Moreover, the EPC model
itself may be improved by consistently accounting for PN
corrections to eccentric waveforms in the PC approxima-
tion. Such improvements would not only enter in the
Fourier phase but also in relaxing the restricted PN
approximation to account for PN amplitude corrections.
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APPENDIX: FINITE MASS-RATIO
CORRECTIONS IN THE EPC MODEL

In this Appendix, we provide the PN corrections
introduced to the EPC model. Using the convention

Ψ̄2ðfÞ ¼ 2πftc−ϕc−
π

4
þ 3

128ηðπMfÞ5=3
X7
n¼0

αnðπMfÞn=3;

ðA1Þ

and x ¼ ðπMfÞ1=3, the αn coefficients are given by
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α0 ¼ 1þ 6505217202575e80
277250217984χ19=9

−
34527299926564117885e80
443982214741303296χ38=9

þ 70854027727533517312175e80
649101997951785418752χ19=3

−
1480771978371648379295884378817e80
30404123876335041176758861824χ76=9

þ 1326481225e60
101334144χ19=9

−
4671472830986095e60
243411301941504χ38=9

þ 21322307471421461725e60
2135203940630873088χ19=3

þ 2608555e40
444448χ19=9

−
1405799828765e40
533796714784χ38=9

þ 2355e20
1462χ19=9

; ðA2Þ

α2 ¼
71557389228325e80η

831750653952χ19=9
−
454638749586390872855e80η

1331946644223909888χ38=9
þ 942278545508138530341925e80η

1947305993855356256256χ19=3

−
19670327207880872553538752792427e80η

91212371629005123530276585472χ76=9
þ 690482340216175e80
9981007847424χ19=9

−
30708780994789856230115e80
111883518114808430592χ38=9

þ 63646632664776993458550025e80
163573703483849925525504χ19=3

−
1328641192314135300661753938615751e80
7661839216836430376543233179648χ76=9

þ 14591293475e60η

304002432χ19=9

−
61511689912720685e60η

730233905824512χ38=9
þ 283562607736424474975e60η

6405611821892619264χ19=3
þ 985575550175e60
25536204288χ19=9

−
4154835055013769905e60
61339648089259008χ38=9

þ 19153365231651216809675e60
538071393038980018176χ19=3

þ 28694105e40η

1333344χ19=9
−
18510890735095e40η

1601390144352χ38=9
þ 1938156365e40
112000896χ19=9

−
1250326528743235e40
134516772125568χ38=9

þ 8635e20η

1462χ19=9
þ 583255e20
122808χ19=9

þ 55η

9
þ 3715

756
; ðA3Þ

α3 ¼ −
1301043440515πe80
8664069312χ19=9

þ 8946508632426975653πe80
13874444210665728χ38=9

−
18731723667094131800179πe80
20284437435993294336χ19=3

þ 115205353044886385251076880001πe80
279449667981020599051092480χ76=9

−
265296245πe60
3166692χ19=9

þ 1210444259975591πe60
7606603185672χ38=9

−
5636991774629591273πe60
66725123144714784χ19=3

−
521711πe40
13889χ19=9

þ 364262491717πe40
16681147337χ38=9

−
7536πe20
731χ19=9

− 16π; ðA4Þ

α4 ¼
4013719013988775e80η

2

19962015694848χ19=9
−
29698857489819606274325e80η

2

31966719461373837312χ38=9
þ 62965437935101698296500615e80η

2

46735343852528550150144χ19=3

−
1320599685760317911145711844818409e80η

2

2189096919096122964726638051328χ76=9
þ 5045260598968525e80η

19962015694848χ19=9
−
261321065335868140135025e80η

223767036229616861184χ38=9

þ 554034623257159027636469755e80η

327147406967699851051008χ19=3
−
11619993021057967487212430478961333e80η

15323678433672860753086466359296χ76=9

þ 2842476030950240425e80
20121711820406784χ19=9

−
147227055972380882628700925e80
225557172519453796073472χ38=9

þ 312140494238689330362483671935e80
329764586223441449859416064χ19=3

−
6546649274949058130045037091614679921e80
15446267861142243639111158090170368χ76=9

þ 818438915825e60η
2

7296058368χ19=9
−
4018194477126790775e60η

2

17525613739788288χ38=9

þ 18948371331658651308005e60η
2

153734683725422862336χ19=3
þ 7201466570525e60η

51072408576χ19=9
−
35356203916242053675e60η

122679296178518016χ38=9

þ 166727241425566965885185e60η

1076142786077960036352χ19=3
þ 4057272307914425e60
51480987844608χ19=9

−
19919518567158561620975e60
123660730547946160128χ38=9

þ 93933341630661850846368845e60
1084751928366583716642816χ19=3

þ 1609478435e40η
2

32000256χ19=9
−
1209206884479925e40η

2

38433363464448χ38=9
þ 14161845095e40η

224001792χ19=9

−
10639844693422225e40η

269033544251136χ38=9
þ 7978716747515e40
225793806336χ19=9

−
5994438328967367325e40
271185812605145088χ38=9

þ 484345e20η
2

35088χ19=9
þ 4261765e20η

245616χ19=9

þ 2401058305e20
247580928χ19=9

þ 3085η2

72
þ 27145η

504
þ 15293365

508032
; ðA5Þ
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α5 ¼ −
84567823633475πe80η

831750653952χ19=9
þ 669968502482700007405πe80η

1331946644223909888χ38=9
−
1440902965169982699005075πe80η

1947305993855356256256χ19=3

þ 2334216112662079584736091244017πe80η

7016336279154240271559737344χ76=9
þ 7182689108386025πe80

9981007847424χ19=9
−
56903148963613058870695πe80
15983359730686918656χ38=9

þ 122381747448338420666046425πe80
23367671926264275075072χ19=3

−
18041156334765213110425249225007393πe80
7661839216836430376543233179648χ76=9

−
17244255925πe60η

304002432χ19=9

þ 90645363628809535πe60η

730233905824512χ38=9
−
433615096349678814025πe60η

6405611821892619264χ19=3
þ 10252373388025πe60

25536204288χ19=9

−
7698879291066691165πe60
8762806869894144χ38=9

þ 36828693183369973116475πe60
76867341862711431168χ19=3

−
33911215πe40η

1333344χ19=9
þ 27278171420045πe40η

1601390144352χ38=9

þ 20161521595πe40
112000896χ19=9

−
2316846009950855πe40
19216681732224χ38=9

−
10205πe20η

1462χ19=9
þ 6067265πe20
122808χ19=9

−
65πη

9
−
65

3
πη log ð

ffiffiffi
6

p
xÞ þ 38645

252
π log ð

ffiffiffi
6

p
xÞ þ 38645π

756
; ðA6Þ

α6 ¼
19887378305015logð4xÞe80

12996103968χ19=9
−
1175668628910900667003logð4xÞe80

145681664211990144χ38=9
þ2568467130783058548836609logð4xÞe80

212986593077929590528χ19=3

−
271831420459973064883705332651019logð4xÞe80

49881765734612176930620007680χ76=9
þ166305877783829875η3e80

359316282507264χ19=9
−
98950858868368325η2e80
479088376676352χ19=9

þ19887378305015γe80
12996103968χ19=9

−
2933852958361325π2ηe80
3327002615808χ19=9

þ2925073821111304814575ηe80
120730270922440704χ19=9

þ6505217202575π2e80
6498051984χ19=9

−
487482116356903781533459e80
37184923444111736832χ19=9

−
1404484509257344651959425η3e80
575400950304729071616χ38=9

þ15767144696141518291115η2e80
14475495605150416896χ38=9

−
1175668628910900667003γe80
145681664211990144χ38=9

þ24776941665365243028895π2ηe80
5327786576895639552χ38=9

−
172919601366556448542601792915ηe80
1353343035116722776440832χ38=9

−
54937786397705638645π2e80
10405833157999296χ38=9

þ145132197850314788879078394300739e80
2084148274079753075718881280χ38=9

þ3068358046657424850514388275η3e80
841236189345513902702592χ19=3

−
34446264791342888014771345η2e80
21163174574729909501952χ19=3

þ2568467130783058548836609γe80
212986593077929590528χ19=3

−
54129844672110252594640685π2ηe80

7789223975421425025024χ19=3

þ377775081733314667944614526636745ηe80
1978587517340648699156496384χ19=3

þ120021828541264418169935π2e80
15213328076994970752χ19=3

−
317665040175671089647133596190236377e80
3047024776704598996701004431360χ19=3

−
64947385645413190689270344198348605η3e80
39403744543730213365079484923904χ76=9

þ729117922168338968426387200662079η2e80
991289170911451908555458740224χ76=9

−
271831420459973064883705332651019γe80
49881765734612176930620007680χ76=9

þ1145756734835961236098608458183267π2ηe80
364849486516020494121106341888χ76=9

−
7996297546594766343088603842357850964359ηe80
92677607166853461834666948541022208χ76=9

−
2540480565046477241903788155617π2e80
712596653351602527580285824χ76=9

þ33641288006290009112960754500321337034087507e80
713617575184771656126935503765871001600χ76=9

þ28386698215logð4xÞe60
33250266χ19=9

−
159065553051674041logð4xÞe60

79869333449556χ38=9
þ772936241583827429683logð4xÞe60

700613793019505232χ19=3

þ33911492517125η3e60
131329050624χ19=9

−
20177105913475η2e60
175105400832χ19=9

þ28386698215γe60
33250266χ19=9

−
598243032475π2ηe60
1216009728χ19=9
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þ 4175170127655540575ηe60
308885927067648χ19=9

þ 1326481225π2e60
2375019χ19=9

−
695818599616190365379e60
95136865536835584χ19=9

−
190023872138600320475η3e60
315461047316189184χ38=9

þ 2133262323636936905η2e60
7936126976507904χ38=9

−
159065553051674041γe60
79869333449556χ38=9

þ 3352269365715186565π2ηe60
2920935623298048χ38=9

−
23395667238587898146461505ηe60
741964383287676960768χ38=9

−
7432969768769815π2e60
5704952389254χ38=9

þ 19636088561834767348202868433e60
1142625150263022519582720χ38=9

þ 923369860564978889712425η3e60
2767224307057611522048χ19=3

−
10366014081054134220515η2e60
69615705837927333888χ19=3

þ 772936241583827429683γe60
700613793019505232χ19=3

−
16289450698799353775095π2ηe60
25622447287570477056χ19=3

þ 113684947858355301819023330315ηe60
6508511570199502299856896χ19=3

þ 36118515961861094845π2e60
50043842358536088χ19=3

−
95595859216271769379215647363899e60
10023107818107233541779619840χ19=3

þ 111646154 logð4xÞe40
291669χ19=9

−
95736113783734 logð4xÞe40

350304094077χ38=9

þ 66687708575η3e40
576004608χ19=9

−
39678730105η2e40
768006144χ19=9

þ 111646154γe40
291669χ19=9

−
1176458305π2ηe40
5333376χ19=9

þ 8210565447201485ηe40
1354762838016χ19=9

þ 10434220π2e40
41667χ19=9

−
6841714201879530781e40
2086334770544640χ19=9

−
57184433385073825η3e40
691800542360064χ38=9

þ 641968800372235η2e40
17403787229184χ38=9

−
95736113783734γe40
350304094077χ38=9

þ 1008808114870655π2ηe40
6405560577408χ38=9

−
7040525801561209192435ηe40
1627114875630870528χ38=9

−
8947300353620π2e40
50043442011χ38=9

þ 5909144917795596553777571e40
2505756908471540613120χ38=9

þ 537568 logð4xÞe20
5117χ19=9

þ 20068525η3e20
631584χ19=9

−
11940635η2e20
842112χ19=9

þ 537568γe20
5117χ19=9

−
354035π2ηe20
5848χ19=9

þ 2470829204695ηe20
1485485568χ19=9

þ 50240π2e20
731χ19=9

−
2058896840770247e20
2287647774720χ19=9

−
127825η3

1296
þ 76055η2

1728

−
6848γ

21
þ 2255π2η

12
−
15737765635η

3048192
−
6848

21
logð4xÞ − 640π2

3
þ 11583231236531

4694215680
; ðA7Þ

α7 ¼
13762251650419025πe80η

2

14971511771136χ19=9
−
863950161122145266182945πe80η

2

167825277172212645888χ38=9
þ 1919251873874486617026907175πe80η

2

245360555225774888288256χ19=3

−
40866306288716811342278348158188713πe80η

2

11492758825254645564814849769472χ76=9
−
70352065412362175πe80η

29943023542272χ19=9

þ 4416477753219647720024815πe80η

335650554344425291776χ38=9
−
9811136782221639568423793225πe80η

490721110451549776576512χ19=3

þ 208906879936169138297285285341303271πe80η

22985517650509291129629699538944χ76=9
−
14329446184895255375πe80
5030427955101696χ19=9

þ 899556820693249630490850175πe80
56389293129863449018368χ38=9

−
1998351515473594240053655597625πe80
82441146555860362464854016χ19=3

þ 42550561609719173085177224221604751095πe80
3861566965285560909777789522542592χ76=9

þ 19643860461025πe60η
2

38304306432χ19=9

−
116890683997652041915πe60η

2

92009472133888512χ38=9
þ 577566016814470844726725πe60η

2

807107089558470027264χ19=3
−
100418608176175πe60η

76608612864χ19=9

þ 597540377518688130805πe60η

184018944267777024χ38=9
−
2952493765339042903528075πe60η

1614214179116940054528χ19=3
−
20453458379485375πe60
12870246961152χ19=9

þ 121708191973727871410725πe60
30915182636986540032χ38=9

−
601369700714292579011030875πe60
271187982091645929160704χ19=3

þ 38630090995πe40η
2

168001344χ19=9
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−
35176251579191105πe40η

2

201775158188352χ38=9
−
197475439165πe40η

336002688χ19=9
þ 179819553872611535πe40η

403550316376704χ38=9
−
40222183410925πe40
56448451584χ19=9

þ 36625998186496500575πe40
67796453151286272χ38=9

þ 11625065πe20η
2

184212χ19=9
−
59426855πe20η

368424χ19=9
−
12104177975πe20
61895232χ19=9

−
74045πη2

756
þ 378515πη

1512
þ 77096675π

254016
; ðA8Þ

and recall χ ¼ f=f0 with f0 the GW frequency of the l ¼ 2 harmonic at which the eccentricity equals e0.
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