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Higher dimensional numerical relativity: Code comparison
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The nonlinear behavior of higher dimensional black hole spacetimes is of interest in several contexts,
ranging from an understanding of cosmic censorship to black hole production in high-energy collisions.
However, nonlinear numerical evolutions of higher dimensional black hole spacetimes are tremendously
complex, involving different diagnostic tools and “dimensional reduction methods.” In this work we
compare two different successful codes to evolve Einstein’s equations in higher dimensions, and show that
the results of such different procedures agree to numerical precision, when applied to the collision from rest
of two equal-mass black holes. We calculate the total radiated energy to be E,,q/M = (9.0 = 0.5) x 10~*in

five dimensions and E.q/M = (8.1 £0.4) x 107 in six dimensions.

DOI: 10.1103/PhysRevD.90.084014

I. INTRODUCTION

Higher-dimensional spacetimes have long played an
important role in theoretical physics. Such role has been
highlighted in recent decades, either through the realization
of braneworld scenarios or in broader contexts of quantum
gravity theories, namely string theory. From a conceptual
point of view, it is also useful—and instructive—to regard
the spacetime dimensionality D as one parameter more in
the theory from which to capitalize on to understand
and gain intuition on the field equations. The study of
D-dimensional spacetimes has subsequently flourished,
driven by many analytical or perturbative breakthroughs.
A plethora of stationary black hole (BH) phases and their
linear stability properties have been studied [1-5].
Simultaneously, exciting connections between dynamical
black objects and the dynamics of fluids have been
established [6-9].

Full-blown numerical methods are sometimes the only
tool to get an accurate, quantitative answer to complex
problems. It is a natural step in every exact science that the
resort to numerical methods becomes more frequent as the
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field matures. Numerical relativity—the task of solving the
dynamical gravitational field equations in full generality—
has traditionally focused on four-dimensional, asymptoti-
cally flat spacetimes. The “Holy Grail” of the field was
to solve and understand the two-body problem in general
relativity. Such attempts—made successful in 2005 by
several groups [10-12]—involve complex numerical tech-
niques and diagnostic tools, which had been developed
during decades [13]. The intricacy of such problems and
the need to calibrate—and confirm—results obtained with
some particular code, highlighted the need to compare
different codes and results worldwide. Such efforts have
recently materialized for four-dimensional asymptotically
flat spacetimes, in the context of binary BHs as gravita-
tional-wave (GW) sources [14,15].

Some of the numerical relativity results in higher
dimensions are truly spectacular, and range from black
string fragmentation [16] to BH collisions [17-19] and
nonlinear instability growth [20] (for a review see
Refs. [13,21,22]). These striking results, together with
the potential of the field, call for a calibration of the
different diagnostic tools and more urgently a comparison
of different codes used to evolve higher-dimensional
spacetimes. A key purpose of this work is precisely to
compare the two codes which have been developed to
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understand BH collisions and stability in higher dimen-
sional spacetimes, namely the HD-LEAN [17,23] and the
SACRAND codes [18,24]. In addition, we extend previous
results to six-dimensional spacetimes.

II. NUMERICAL FRAMEWORK

Both codes, SACRAND and HD-LEAN, are based on
finite-differencing, “3 417 evolution schemes where
Einstein’s equations are evolved using the Baumgarte-
Shapiro-Shibata-Nakamura (BSSN) formulation [25,26]
combined with the moving puncture method [11,12]; for
details of the respective 3 4 1 codes see [27,28]. Higher,
D-dimensional spacetimes with a SO(D —3) [or SO(D —2)
for the special case D = 5] isometry are accommodated in
the form of an effective 3 + 1 dimensional formulation with
additional fields that describe the extra dimensions, but
the two codes differ in the specific way in which this is
achieved as well as in some of the numerical technology
and diagnostic tools.

SACRAND uses the mesh-refinement algorithm described
in Ref. [27]. The Arnowitt-Deser-Misner spacetime split
[29,30] is applied to the D-dimensional Einstein’s equations
which are translated into a D-dimensional version of the
BSSN equations. The spacetime symmetry is then used to
cast the equations into a 3 + 1 form on a three-dimensional
computational domain with a modified version [20,21] of
the cartoon method originally introduced in [31].

HD-LEAN is based on the CACTUS computational toolkit
[32,33], uses mesh refinement by CARPET [34] and
AHFINDERDIRECT [35,36] for the calculation of apparent
horizons. In contrast to the SACRAND method, a dimen-
sional reduction is applied directly to the D dimensional
Einstein equations analogous to Geroch’s [37] decompo-
sition; see also [38,39]. This results in the 3 + 1 Einstein
equations coupled to a scalar field which is converted into a
BSSN system with nonvanishing sources given by the
scalar field [23].

III. WAVE EXTRACTION

Wave extraction is performed with two different
approaches by the two codes.

The approach of SACRAND (described in detail in [24])
is based on the fact that the spacetime is asymptotically
flat. It is then possible to describe the energy flux of the
GWs produced in the collision, in terms of the Landau-
Lifshitz pseudotensor 7, [40], which has been generalized
to a higher-dimensional spacetime in Refs. [24,41]. The
energy flux is

dE ,
= [ fnas, 0

where the integral is performed on a surface far away from
the collision. We remark that 74, is not a tensor, but it
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behaves as a tensor under general coordinate transforma-
tions of the background; in addition, the total radiated
energy obtained by integrating Eq. (1) is a gauge-invariant
quantity in the limit where the integration surface goes to
infinity.

The approach of HD-LEAN (described in detail in [17])
is based on the fact that far away from the collision, the
spacetime approaches a spherically symmetric BH space-
time in higher dimensions i.e., the Tangherlini BH solution
[42]. GWs produced in the collision can be treated as
perturbations of the Tangherlini solution using the Kodama-
Ishibashi (KI) formalism [43,44], which generalizes the
Regge-Wheeler-Zerilli-Moncrief  formalism [45-48] to
higher dimensions.

In the KI formalism the perturbations are expanded
in tensor harmonics on the (D — 2)-sphere S?~2. These
harmonics belong to three classes: scalar, vector and tensor
harmonics; the metric perturbations associated to the
different classes are decoupled in Einstein’s equations.
For each of these classes, it is possible to define a (gauge-
invariant) “master variable” encoding the radiative degrees
of freedom. Finstein’s equations yield a wave equation for
each master variable.

As shown in [17], in the case of head-on collisions the
only nonvanishing metric perturbations are those associated
to scalar harmonics, due to the SO(D —3) isometry of
the spacetime. The corresponding master variable ®’
(where [ > 2 is the index labeling the harmonic) can be
constructed in terms of the metric components, and it
carries the GW energy flux [49]

dEl_ 2 2(12 1\2
& 3D 2k K —D+2)(®) )

where k2 = [(l + D - 3).

IV. HEAD-ON COLLISIONS IN D=5:
COMPARISON OF RESULTS

A. Runs

Black hole collisions in D =5 spacetime dimensions
have been reported in the literature separately using both
codes, HD-LEAN [17] and SACRAND [18]. As such, we
take D = 5 to be the fiducial value for which to perform the
comparison of results. For this purpose we have performed
a large set of simulations of equal-mass, nonrotating BH
binaries starting from rest with varying initial distance
d/rg =0.81,...,12.93 (where rg is the Schwarzschild
radius of the final BH). The numerical domain typically
consisted of 8 nested grids where the two smallest refine-
ment levels contained components centered around each
BH. For the results presented in this section we typically
used a (medium) resolution of //rg = 1/84 (for HD-LEAN)
and h/rg = 1/60 (for SACRAND) near the BHs resulting
in, respectively, hwg/rs = 4/21 and hyg/rg = 8/15 in the
wave zone.
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Convergence results for the head-on collision of two BHs in D = 5 dimensions, for initial separation d/rg = 7

and d/rg = 6.47 (left and right panels, respectively). Top panels refer to energy fluxes obtained respectively with SACRAND and
HD-LEAN codes at different resolutions 4. The corresponding convergence plots are shown in the bottom panels. Panel (a) indicates
4th order convergence for the simulation performed with the SACRAND code. Panel (b) indicates 2nd order convergence for the

simulations performed with the HD-LEAN code.

B. Discretization and extrapolation error estimates

A crucial component of our analysis involves the
estimate of the numerical or discretization error which
affects diagnostics using gravitational radiation output.
In order to estimate the numerical accuracy of both codes
we have performed convergence tests using resolu-
tions h./rg =1/72, hy/rs=1/84 and h,/rq=1/96
(for HD-LEAN) and h./rg = 1/50, h,/rs=1/60 and
hy/rs = 3/200 (for SACRAND) near the BHs.

A convergence analysis, summarized in Fig. 1 for
the energy flux, shows second-order convergence for
HD-LEAN and fourth-order convergence for SACRAND.
The numerical error in the total radiated energy is estimated
to be

AE, 4/ Evaa ~ (0.7%, 1.3%) (3)

for HD-LEAN and SACRAND, respectively.

In numerical time evolution codes, GW amplitudes
are often measured at a finite “extraction” radius r., (but
see Refs. [50,51] for exceptions developed for the four-
dimensional case). To compute physically relevant and
unambiguous quantities, it is desirable to extrapolate these
quantities to r.,/rg — oo: fluxes and GW amplitudes are
measured at a sphere of arbitrarily large radius. Applying
this extrapolation to our numerical results, however, we
find this procedure to amplify numerical noise which
manifests itself in the form of a considerably larger
uncertainty than the other error sources. We therefore
regard the energy flux at finite radius the best quantity
to compare. For completeness, we here estimate the error
due to extrapolation, but will consider in our comparison

below the error budget consisting only of discretization
error and spurious, unphysical radiation.

We estimate the radiated energy as it would be measured
at roy/rg — oo by assuming an expansion of the form

Exy=ES+ ) Aj/rk, 4)
j=12....

using the values E/; calculated at fixed extraction radii to

estimate £y, and the associated error. We evaluate the error
due to the extraction at finite radii and the extrapolation to

be about 5%.

C. (Spurious) Radiation content in initial data

Due to the initial data construction, in which we assume
the maximal slicing condition K = 0 and a finite initial
distance between the BHs, the system contains a pulse
of unphysical1 or spurious radiation, colloquially called
“junk” radiation. This spurious radiation is typically
emitted in a short burst after which the collision process
proceeds normally. This is a well-known phenomenon in
numerical relativity simulations of BH binaries in D = 4.
Typically,2 starting the collision at larger initial separations
allows for most of the spurious radiation to cross the
extraction sphere before the main physical radiation. In
these cases, it can be removed from the physical radiation

l“Unphysical” in the sense that a binary BH at rest at infinite
initial separation would not be accompanied by such pulse of
radiation at any finite distance.

But not always, for example high energy collisions evolving
conformally flat initial data are very challenging on account of
the growing spurious radiation content at large Lorentz boosts
[52,53].
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by starting the integration at a time after the passage of
the spurious but before that of the physical wave signal. As
the initial separation d between the two BHs decrease,
however, the energy content in the “spurious” pulse grows
and furthermore starts overlapping with the physical signal.
This has been observed repeatedly in four-dimensional
spacetimes [28,54] and we find the same pattern in D = 5
spacetime dimensions. For simulations with initial separa-
tion d/rg = 3,12 for example, the fraction of the total
radiated energy in the initial pulse is estimated to be 3% and
0.1%, respectively.

In the analysis of our simulations, we have found a
relatively clean removal of the spurious energy possible for
initial separations d > 3rg, but not for smaller separations.
The GW energies reported below in Sec. IVD have
therefore been corrected for the spurious initial radiation
for those configurations starting at d > rg whereas for
energies reported for d < rg (i.e., the two left most cases in
the right panel of Fig. 2) we have not subtracted the junk
radiation. We estimate the numerical error due to the junk
radiation and its subtraction to be ~1% at d < 3rg and
decrease with increasing d to about 0.5% at d = 6rg and
0.1% at d = 12rs.

D. Energy flux and total radiated energy

Results for the energy flux are shown in the left panel of
Fig. 2. This is one of the main results of this work: both
codes, using different dimensional reduction techniques
and different diagnostic tools, yield the same result for the
flux and total radiated energy within 3%; the total radiated
energy is completely dominated by the large flux contri-
butions within 40 < f—r., <60 where the relative
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difference between the two codes’ results is largest. This
discrepancy needs to be compared with the error budget of
the two codes. From Eq. (3), we obtain a 2% discrepancy
margin due to discretization and from the subtraction of
the spurious initial radiation we obtain a further ~0.5% for
each code. The error budget thus marginally accounts for
the observed discrepancy of the two codes. We note,
however, that the two codes use different gauge or
coordinate conditions and therefore the coordinate spheres
at ro, = 40rg will not be quite identical which introduces
an additional small uncertainty, although likely well below
the 5% estimate obtained from extrapolation (which is the
reason we have not included this contribution in our error
budget).

The flux and waveforms show a clear ringdown at late
times. In particular, by fitting our numerical results to
exponentially damped sinusoids, we estimate the / = 2 and
[ = 4 quasinormal frequencies to be

rs@)—np = 0.95 — 10.26, (53)

rs®i—4 = 2.12 — l036 (Sb)

We find good agreement with linearized predictions for the
ringdown frequencies [55,56]

rsw—, = 0.9477 —10.2561, (6a)
re@_y = 2.1924 —10.3293. (6b)

The right panel of Fig. 2 compares the total integrated
energy for various initial separations using both codes. The
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(b) Integrated fluxes

Energy fluxes for head-on collisions of two BHs in D = 5 spacetime dimensions, obtained with HD-LEAN

(solid black line) and SACRAND (red dashed line). The BHs start off at an initial coordinate separation d/rs = 6.47. The left panel
shows the energy fluxes obtained with both codes (top) and the relative difference between the two data sets (bottom panel). The right
panel shows the total integrated energy for different BH initial separations. Note that the radiated energy in this panel includes
spurious radiation due to the initial data construction for the two left most cases (d < 3rg) whereas the junk radiation has been

subtracted for all d > 3rg.
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Summary of results for head-on collisions in D = 6 spacetime dimensions. Left: Time derivative of the [ = 2

multipole of the Kodama-Ishibashi gauge-invariant wave function ® (top) and its convergence properties (bottom) computed with the
HD-LEAN code and measured at the extraction radius r.,/rg = 40. The initial separation of the BHs has been d/rg = 6.47. The
convergence factor Q, = 1.33 indicates second order convergence. Right: Total radiated energy E,,q/M emitted in the head-on collision
of two BHs. The top panel shows the radiated energy, extrapolated to r,/rg — oo as a function of the initial separation d/rg. The
bottom panel shows the radiated energy as a function of the extraction radius r./rg for different initial separations.

behavior with initial separation d for five spacetime
dimensions closely resembles the one found in four-
dimensions [57,58]: at very small initial separations the
binary closely resembles a single distorted BH, and the
radiation output is consequently very small. At large initial
separations the radiation output asymptotes to a constant
value,

Ena/M = (9.0 £0.5) x 10~ (7)

in agreement with Ref. [17].

There is a local maximum at finite initial separations,
also reported in four-dimensional simulations in the point-
particle limit [58]. We highlight again the close agreement
between the two codes. Finally, the area of the final AH
allows one to estimate also the radiated energy. These are
in good agreement with the estimates obtained via wave
extraction [17].

V. HEAD-ON COLLISIONS IN D=6

Previous results in the literature concerning detailed
analysis of BH collisions were specialized to four and five
spacetime dimensions. We now briefly describe results in
D = 6, summarized in Fig. 3. A typical waveform is shown
in the top left panel of Fig. 3. The GW signal, as measured
by the gauge-invariant function ®, displays the usual
dominant quasinormal ringdown. We estimate the ring-
down parameters for the quadrupolar, / = 2, component to
be given by rs@;—, = 1.14 —10.30. This number compares
very well against linearized calculations, which predict
[55,56] rqw;—, = 1.1369 — 10.3038.

As we mentioned previously, the computation of the
energy flux is performed at a finite extraction radius. The
total integrated flux yields the energy radiated in GWs
and is consequently also computed at a finite location. The
physical total energy, computed at infinity, is estimated via
extrapolation. These different quantities are shown in Fig. 3
for different BH initial separations.

In the limit of infinite initial separation, the total radiated
energy is

Ena/M = (8.1 £0.4) x 107, (8)

This number is comparable to, but smaller than the
corresponding value in D =5 [see Eq. (7)], in agreement
with the linearized point-particle calculations of Ref. [59].

VI. CONCLUSIONS

Higher-dimensional spacetimes offer a vast and rich
arena to test and understand the gravitational field equa-
tions. The demand to understand, at a quantitative level,
complex dynamical processes was met by different, com-
plex numerical codes and associated diagnostic tools.
The main purpose of this work is to show that the current
numerical infrastructure to handle BHs and BH-binaries in
higher-dimensional spacetimes is solid and trustworthy. We
have compared two different numerical relativity codes,
HD-LEAN [17,23] and SACRAND [18,24] which use differ-
ent “dimensional-reduction” techniques and different wave
extraction methods. Our main result is that both codes yield
the same answer, up to numerical errors which are under
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control. In addition, we determined the radiated energy in
head-on collisions of six-dimensional black holes.
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