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This paper considers the nature of apparent horizons for astrophysical black holes situated in a realistic
cosmological context. Using semitetrad covariant methods we study the local evolution of the boundaries
of the trapped region in the spacetime. For a collapsing massive star immersed in a cosmology with cosmic
background radiation (CBR), we show that the initial two-dimensional marginally trapped surface
bifurcates into inner and outer horizons. The inner horizon is timelike while the continuous CBR influx into
the black hole makes the outer horizon spacelike. We discuss the possible consequences of these features
for Hawking radiation in realistic astrophysical contexts.
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I. INTRODUCTION

This paper is about the location of apparent horizons
when astrophysical black holes form from the collapse of a
single astrophysical object in a cosmological context. A
current view with many proponents is that when black hole
formation takes place, a singularity forms and is hidden by
an event horizon, but then the black hole completely
evaporates away within a finite time due to Hawking
radiation [1–3]. The outcome however has recently been
challenged by various people proposing that the black hole
will not evaporate away [4–7], while others propose, using
different arguments, that a global event horizon will never
form [8,9].
A key issue in this debate is the location of local

apparent horizons, characterized as marginally outer
trapped 3-surfaces (MOTS), which are arguably crucial
to Hawking radiation emission. MOTS are important
features of the geometry of black holes, inter alia leading
to the prediction of the existence of singularities in the
classical black hole case [10,11]. They are distinct from the
global event horizon in realistic dynamical cases, when a pair
of MOTS surfaces form (an inner one—the IMOTS and an
outer—the OMOTS) as the radius of the collapsing object
falls in past the critical radius r ¼ 2M (see Figs. 1 and 2 and
their descriptions). They will be affected by infalling cosmic
background radiation (CBR), as well as by backreaction
from ingoing and outgoing Hawking radiation; and these
effects must be taken into account in realistic models of
black hole radiation.

In this paper we will show under what conditions each of
these surfaces is timelike or spacelike, and where they are
located.We find that the effect of theCBRon the nature of the
outer MOTS surface may be a crucial feature in determining
the context of Hawking radiation. Also, in realistic astro-
physical contexts, the inner surface does not lie where
Bardeen places it in his recent paper on black hole existence
[8]; this may significantly affect the outcomes he claims.
A further paper will explore the implications for

emission of Hawking radiation and black hole evaporation.
This paper only considers spherically symmetric collapse;
the situation will be much more complex in the case of
rotating black holes, but the spherical case indicates the
kind of outcomes we may expect in that case also.

FIG. 1 (color online). Astrophysical Black Holes in classical
theory: Classical black hole formation. The event horizon
continues to the centre, the OMOTS and IMOTS surfaces both
start at the SMOTS 2-surface.
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A. The context

This section sets thegeneral contextwithinwhich the issue
of the location of the event horizon arises. We are concerned
with the case of astrophysical black holes situated in a
realistic cosmological context. There are then three forks
in the possibilities that will determine the outcome of
Hawking radiation emission processes. The first two pos-
sibilities motivate the further studies in this paper.

1. The cosmic context

Considering black hole formation in a cosmological
context, two features need to be taken into account, based
on our present understanding of the Universe.
Cosmic background radiation.—Since the time of

decoupling, the Universe is everywhere pervaded by
cosmic background radiation (CBR), initially at a temper-
ature of 4000 K but then cooling down to the present
2.73 K, when the radiation is microwave background
radiation (CMB) [12,13].
Consequently any black hole formation will be subject to

this infalling radiation [14]. This will affect the nature of
the OMOTS surface, as discussed below.
Cosmic constant.—The late Universe is dominated by

dark energy that is consistent with existence of a small
positive cosmological constant. As the cosmological con-
stant does not decay away, the late time evolution of the
Universe is de Sitter, and future infinity is spacelike [10,15].
This means that, unlike the asymptotically flat case, there

is no single event horizon for any observer outside a black
hole. Different cosmological event horizons (which are in
the far future) occur for different observer motions that end
up at different places pi on future infinity (see Fig. 4

below), because the event horizon for an observer ending
up at pi is, by definition, the past light cone of pi [10,15].

2. Key question 1: Local or global?

The first key question is whether the location of
Hawking radiation emission is locally or globally
determined. Is it just outside a globally determined event
horizon, as argued strongly by Don Page (private commu-
nication), or just outside a local horizon (a MOTS surface)
that is locally determined, as argued strongly by Visser [16]
and supported by others [17–19]. In fact the source of the
Hawking radiation is still a grey area and we need to
perform very detailed and deep semiclassical investigations
on the global aspects of physically realistic gravitational
collapse to pinpoint such a source. The attempts so far, to
introduce a timelike emitting surface outside the event
horizon (for example [8,20–22]) are ad hoc in the sense that
the existence of such a surface lacks a proper geometrical
interpretation. In the last two works mentioned above, this
emitting surface has zero energy density but nonzero
surface stress which is unphysical. It is hard to motivate
why such a surface should exist in an absolutely regular and
future asymptotically simple spacetime outside the black
hole. On the other hand, trapped regions (which have
proper geometrical interpretation in terms of null con-
gruences) do play an important role in the “particle pair-
creation picture” of Hawking radiation. Hence for a local
analysis it is quite natural to assume that the boundary of
the trapped region is the source of the radiation. In the case
of an unperturbed Schwarzschild black hole, since this
boundary exactly coincides with the future event horizon,
the event horizon and its vicinity can be considered as a
global source. However the problem arises when this
degeneracy is broken by infalling matter in the black hole.
The viewpoint underlying the basis of this paper is that the
Hawking radiation emission must be locally, rather than
globally, determined. This is for two reasons. First, this
seems to be the only way the concept of a black hole locally
emitting radiation makes sense (it seems absurd that we have
to wait until the end of the Universe before we know what
happens locally [16]). Second, because of the point just
made: in a realistic context, future infinity outside the black
hole is spacelike rather than null, so different observers who
are initially near the black hole will experience different
event horizons. Which one should we associate with the
radiation? The prescription is not well defined.

3. Key question 2: Timelike or spacelike?

Assuming that Hawking radiation emission is associated
with a MOTS surface, the question then is, does it matter
whether this surface is timelike, spacelike, or null? If the
calculation is based on the idea of tunnelling (e.g. [19])
then it will be applicable only if the MOTS surface is
timelike or null (when “inside” and “outside” can be
defined). If it is spacelike, then a tunneling viewpoint is

FIG. 2 (color online). Astrophysical Black Hole trapping
properties: The sign of the divergence θþ of the outgoing null
geodesics in different domains. The MOTS surfaces separate
domains where it has opposite signs.
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simply not applicable (spacetime regions will be “before”
or “after” the surface, but not inside or outside it). The same
applies to heuristic explanations based on one of a pair of
virtual particles being trapped behind the horizon (they
cannot be trapped behind a spacelike surface) or using
S-matrix ideas (scattering takes place off a timelike world
tube, not a spacelike surface). These mechanisms can only
work if the horizon is timelike.
Now the particle picture is considered suspect by many

workers. As emphasized by Paul Davies and Malcolm
Perry (private communication) what is needed to make this
conclusive is to calculate the stress energy tensor associated
with local horizons (see e.g. [1,17]), and see if this confirms
what is suggested by the particle picture or not. That will be
the subject of a separate paper.
For the present paper, the issue is that whether a MOTS

surface is timelike or spacelike is not only geometrically
important, because it determines the relation of the MOTS
surface to global event horizons, but it may also play a key
role in the Hawking radiation emission.

4. Key question 3: Vacuum or fluid?

The above two questions assume that the emission of
radiation due to quantum processes in a collapsing black
hole context is due to the properties of the vacuum domain
near the event horizon or trapping surface. However there is
another effect at work: the interior of the collapsing fluid is
a time-varying gravitational field due to the collapse
process, and this can potentially lead to particle creation
in an evolving fluid filled spacetime, as noted long ago by
Leonard Parker [23]. This is the mechanism of particle
creation by a fluid collapsing as it forms a black hole that is
discussed by Hawking ([24]: pp. 207–208) and Birrell and
Davies ([1]: pp. 250–262). In this case the role of the
horizon is not creation of the radiation, rather it is
modulation of the propagation of the radiation that has
already been emitted in the time-dependent gravitational
field of the fluid; the result is that the outcome is
independent of the details of the fluid collapse [1,24].
This is also the mechanism considered by Mersini-

Houghton in her recent paper [9], based on the Hartle-
Hawking vacuum, and the assumption that the energy
momentum tensor of the ingoing Hawking radiation is that
of radiation in thermal equilibrium. However, the Hartle-
Hawking vacuum is based on the unphysical case of a white
holebeing in thermal equilibriumwith theblackhole; also the
ingoing radiation may have a form different from thermal
equilibrium. Thus it is still an open question as to how
significant this mechanism is compared to the horizon based
mechanisms usually associatedwithHawking radiation [24].
What we need to do to convincingly determine the

outcome of this fluid based mechanism is to study the
evolution of a collapsing body, and then ask what difference
do quantum fieldsmake to this dynamical situation. It will be

significant to see how this relates to the nature and locationof
global and local horizons that are discussed in this paper.

B. The dynamical horizons

There is a marginal outer trapped 3-surface (the OMOTS)
that lies outside the outgoing initial null surface generated
by the initial marginally trapped 2-surface (the SMOTS) that
marks the onset of black hole dynamics. The OMOTS
surface is locally determined; it moves outwards with time
because of incoming cosmic microwave background radia-
tion, so that the associated mass moutðuÞ increases with
time, and the surface r ¼ 2MoutðuÞ is spacelike. Because the
OMOTS bounds the trapped domain in spacetime (the
outward directed null geodesics are converging inside this
surface), it determines the outside edges of any future
singularity that may occur. Thus it nonlocally determines
the location of the event horizon. OMOTS is a spacelike
dynamical horizon whose properties characterize the exterior
massmout and angular momentum Jout of the body. However,
its nature could possibly be changed to timelike at late times
by the backreaction of Hawking radiation on its geometry.
That is one of the important issues to be investigated.
We make the case below that there is an inner timelike

marginally outer trapped 3-surface (the IMOTS), which is a
dynamical horizon [25]. This surface lies inside both the
OMOTS surface and the event horizon and its location is
locally determined. It is timelike and also emanates from
the SMOTS 2-surface, which is therefore a bifurcation
surface originating both MOTS surfaces. It is potentially
possible that backreaction from Hawking radiation causes
them to merge again in the future at a final FMOTS
2-surface, if the OMOTS surface eventually becomes
timelike. Whether that happens or not depends on detailed
balance between local dynamics of the fluid and the
incoming Hawking radiation in those cases where the
OMOTS is timelike at late times.

C. This paper

The paper considers these issues in the case of a single
black hole with spherical symmetry, where the relevant
exterior solution is the exterior Schwarzschild solution
surrounding the single collapsing mass. The result is
probably stable in the case of more general geometries
such as rotating black holes, perturbed black holes, and if
there are later infalling shells of matter. The paper does not
consider multiple black holes or black hole collisions.
Since we consider only astrophysically relevant situations,
it also does not consider charged black holes either.
As we confine our attention to spherically symmetric

black holes produced by the gravitational collapse of a
massive star, the Schwarzschild solution is the basic
relevant exterior metric but the interior will be modeled
by spherical fluid body: it might be a Friedmann-Lemaître-
Robertson-Walker (FLRW) metric, a Lemaître-Tolman-
Bondi (LTB) metric, or a spherical metric with pressure
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[12]. However, in addition there may be incoming or
outgoing radiation in both the exterior and interior regions;
we therefore need to consider generic spherically symmet-
ric metrics. For technical reasons it is convenient to
consider a class of spacetimes which are a generalization
of spherically symmetric metrics: namely locally rotation-
ally symmetric (LRS) class II spacetimes [26–28]. These
are evolving and vorticity free spacetimes with a one-
dimensional isotropy group of spatial rotations at every
point. Except for few higher symmetry cases, these space-
times have locally (at each point) a unique preferred spatial
direction that is covariantly defined.
To describe this class of spacetimes in terms of metric

components, we use the most general line element for
LRS-II which can be written as [27]

ds2 ¼ −A2ðt; χÞdt2 þ B2ðt; χÞdχ2
þ C2ðt; χÞ½dy2 þD2ðy; kÞdz2�; ð1Þ

where t and χ are parameters along the integral curves of
the timelike vector field ua ¼ A−1δa0 and the preferred
spacelike vector field ea ¼ B−1δaν . The function Dðy; kÞ ¼
sin y; y; sinh y for k ¼ ð1; 0;−1Þ respectively. The 2-metric
dy2 þD2ðy; kÞdz2 describes spherical, flat, or open homo-
geneous and isotropic 2-surfaces for k ¼ ð1; 0;−1Þ.
Spherically symmetric spacetimes are the k ¼ 1 subclass
of LRS-II spacetimes.
Wecaneasily see that the physically interesting spherically

symmetric spacetimes (for example the Schwarzschild,
FLRW, LTB, and Vaidya solutions) fall in the class
LRS-II. Hence both the interior and the exterior of a
collapsing star can be described by this class, which can be
characterized covariantly through the properties of the vector
fields ua and ea [28]. A parallel paper is being developed by
Hellaby to study the same problem using a metric based
formalism. The basic results presented in this paper are
supported by studies using that different formalism.
Unless otherwise specified, we use natural units

(c ¼ 8πG ¼ 1) throughout this paper, Latin indices run
from 0 to 3. The symbol ∇ represents the usual covariant
derivative and ∂ corresponds to partial differentiation. We
use the ð−;þ;þ;þÞ signature.

II. COVARIANT DESCRIPTION
OF LRS-II SPACETIMES

In this section we give a brief summary of the semitetrad
1þ 1þ 2 covariant description of LRS-II spacetimes. For
more details we refer to [28–32].
As the first step of the covariant description [33],we define

a timelike congruence with a unit tangent vector ua. One
natural and obvious choice of this vector may be the tangent
to the matter flow lines. Any 4-vectorXa in the manifold can
then be projected onto the 3-space by the projection tensor
hab ¼ gab þ uaub asXa ¼ Xua þ Xhai,whereX is the scalar

along ua and Xhai is the projected 3-vector. A natural
definition for two kinds of derivatives are then:

(i) The covariant time derivative along the observers’
worldlines (denoted by a dot). Hence for any tensor
Sa…b

c…d we have _Sa…b
c…d ≡ ue∇eSa…b

c…d.
(ii) Fully orthogonally projected covariant derivative D

with the tensor hab, with total projection on all
the free indices. Hence we have DeSa…b

c…d ≡
hafhpc…hbghqdhre∇rSf…g

p…q.
This 1þ 3 splitting defines the 3-volume element naturally
as ϵabc ¼ −

ffiffiffiffiffijgjp
δ0½aδ

1
bδ

2
cδ

3
d�u

d. For the LRS-II class of

spacetimes, the covariant derivative of the timelike vector
ua can be irreducibly split in the following way:

∇aub ¼ −Aaub þ
1

3
habΘþ σab; ð2Þ

where Aa ¼ _ua is the acceleration, Θ ¼ Daua is the expan-
sion, σab ¼ Dhaubi (where the angle brackets denote the
projected symmetric trace-free part) is the shear tensor. Also
for these spacetimes all the independent components of the
Weyl tensor can be expressed in terms of the projected
symmetric tracefree gravitoelectric tensor defined as
Eab ¼ Cacbducud ¼ Ehabi. The gravitomagnetic part of the
Weyl tensor [34] is identically zero. Using this timelike
vector ua, the energy momentum tensor for a general matter
field is decomposed as follows:

Tab ¼ ρuaub þ qaub þ qbua þ phab þ πab; ð3Þ

where ρ ¼ Tabuaub is the energy density, p ¼ ð1=3ÞhabTab

is the isotropic pressure, qa ¼ qhai ¼ −hcaTcdud is the
3-vector defining the heat flux and πab ¼ πhabi is the
anisotropic stress.
The symmetry of the LRS-II spacetimes, having a

preferred spatial direction, points towards an extension
of the 1þ 3 splitting mentioned above, by further splitting
the 3-space by the preferred spatial vector ea. This is
commonly known as 1þ 1þ 2 splitting. This allows us to
derive a set of covariant scalar variables which are more
advantageous to treat these systems. This spatial vector is
orthogonal to ua such that it satisfies eaea ¼ 1; uaea ¼ 0.
The 1þ 3 projection tensor hab ≡ gab þ uaub combined
with ea defines a new projection tensor defined as Na

b ≡
gab þ uaub − eaeb which projects vectors orthogonal to ea

and ua (eaNab ¼ 0 ¼ uaNab) onto a 2-surface which is
defined as the sheet (Na

a ¼ 2). The volume element of
this 2-surface is the Levi-Civita 2-tensor εab ≡ ϵabcec ¼
udηdabcec. The preferred spatial vector ea introduces two
new derivatives as a natural result of the new splitting of the
3-space, for any 3-tensor ψa…b

c…d:
(i) The hat derivative is the spatial derivative along the

vector ea. Thus we have ψ̂a…b
c…d ≡ efDfψa…b

c…d.
(ii) The delta derivative is the projected spatial deriva-

tive on the 2-sheet by the projection tensor Na
b

ELLIS et al. PHYSICAL REVIEW D 90, 084013 (2014)

084013-4



and projected on all the free indices. Hence
δfψa…b

c…d ≡ Na
f…Nb

gNh
c…Ni

dNf
jDjψf…g

i…j.
The set of 1þ 1þ 2 covariant scalars that fully describe

LRS-II spacetimes is fA;Θ;ϕ;Σ; E; ρ; p;Π; Qg, which are
defined as follows:

_ua ¼ Aea; ϕ ¼ δaea; ð4Þ

σab ¼ Σ
�
eaeb−

1

2
Nab

�
; Eab ¼ E

�
eaeb −

1

2
Nab

�
; ð5Þ

πab ¼ Π
�
eaeb −

1

2
Nab

�
; qa ¼ Qea: ð6Þ

The full covariant derivative of ea and ua is now
written as

∇aeb ¼ −Auaub þ
�
Σþ 1

3
Θ
�
eaub þ

1

2
ϕNab; ð7Þ

∇aub¼−Auaebþeaeb

�
1

3
ΘþΣ

�
þNab

�
1

3
Θ−

1

2
Σ
�
: ð8Þ

We also write the useful relation

ûa ¼
�
1

3
Θþ Σ

�
ea: ð9Þ

We now derive the equations governing the evolution
and propagation of the covariant scalars that fully describe
the LRS-II spacetimes. Using the Ricci identities for the
vectors ua and ea and the doubly contracted Bianchi
identities, we obtain the following:

(i) Propagation:

ϕ̂ ¼ −
1

2
ϕ2 þ

�
1

3
Θþ Σ

��
2

3
Θ − Σ

�
−
2

3
ðρþ ΛÞ

− E −
1

2
Π; ð10Þ

Σ̂ −
2

3
Θ̂ ¼ −

3

2
ϕΣ −Q; ð11Þ

Ê−
1

3
ρ̂þ1

2
Π̂¼−

3

2
ϕ

�
Eþ1

2
Π
�
þ
�
1

2
Σ−

1

3
Θ
�
Q:

ð12Þ
(ii) Evolution:

_ϕ ¼ −
�
Σ −

2

3
Θ
��

A −
1

2
ϕ

�
þQ; ð13Þ

_Σ −
2

3
_Θ ¼ −Aϕþ 2

�
1

3
Θ −

1

2
Σ
�

2

þ 1

3
ðρþ 3p − 2ΛÞ − E þ 1

2
Π; ð14Þ

_E −
1

3
_ρþ 1

2
_Π ¼ þ

�
3

2
Σ − Θ

�
E þ 1

4

�
Σ −

2

3
Θ
�
Π

þ 1

2
ϕQ −

1

2
ðρþ pÞ

�
Σ −

2

3
Θ
�
:

ð15Þ

(iii) Propagation/evolution:

Â − _Θ ¼ −ðAþ ϕÞAþ 1

3
Θ2 þ 3

2
Σ2

þ 1

2
ðρþ 3p − 2ΛÞ; ð16Þ

_ρþ Q̂ ¼ −Θðρþ pÞ − ðϕþ 2AÞQ −
3

2
ΣΠ; ð17Þ

_Qþ p̂þ Π̂ ¼ −
�
3

2
ϕþA

�
Π −

�
4

3
Θþ Σ

�
Q

− ðρþ pÞA: ð18Þ

The 3-Ricci scalar of the spacelike 3-space orthogonal to ua

can be expressed as

3R ¼ −2
�
ϕ̂þ 3

4
ϕ2 − K

�
; ð19Þ

whereK is the Gaussian curvature of the 2-sheet defined by
2Rab ¼ KNab. In terms of the covariant scalars we can
write the Gaussian curvature K as

K ¼ 1

3
ðρþ ΛÞ − E −

1

2
Πþ 1

4
ϕ2 −

�
1

3
Θ −

1

2
Σ
�

2

: ð20Þ

Finally the evolution and propagation equations for the
Gaussian curvature K are

_K ¼ −
�
2

3
Θ − Σ

�
K; K̂ ¼ −ϕK: ð21Þ

III. NULL GEODESICS IN LRS-II SPACETIMES

On any spacetime ðM; gÞ, null geodesics (light rays) are
characterized by the curves xaðνÞ, where ν is an affine
parameter along the geodesics. The tangent to these curves

is defined by ka ¼ dxaðνÞ
dν , where ka is a null vector obeying

kaka ¼ 0. Also, since the tangent vector to the geodesic is
parallelly propagated to itself, we can write

kb∇bka ¼
δka

δν
¼ 0; ð22Þ
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where δ
δν ¼ kb∇b as the derivative along the ray with

respect to the affine parameter.
On LRS-II spacetimes if light rays move along the

preferred spatial direction (for the special case of spherical
symmetry this is equivalent to radial null rays), then the
sheet components of these null curves are zero. Also at this
point we may define the notion of locally outgoing and
incoming null geodesics with respect to the preferred
spatial direction. Consider any open subset S of ðM; gÞ
and let xaðνÞ be a null geodesic in S. Let ka be the tangent
to this geodesic. If eaka > 0 in S then the geodesic is
considered to be outgoing with respect to the preferred
direction in S. Similarly eaka < 0 denotes an incoming
geodesic. Therefore for LRS-II spacetimes, the equation
of the tangent to the outgoing null geodesics along the
preferred spatial direction can be written as

ka ¼ Effiffiffi
2

p ðua þ eaÞ; ð23Þ

where E∶½u; e� → R denotes the energy of the light ray.
The propagation of E along the null geodesic is given by
the geodesic equation (22) as [using (7) and (8)]

E0 ≡ δE
δν

¼ ∓E2A − E2

�
Σþ 1

3
Θ
�
: ð24Þ

We can easily see that the hypersurface orthogonal to
null vector ka contains ka. Therefore we need a different
construction to define a locally orthogonal space with
respect to the outgoing null geodesics. Let us now define
the projection tensor ~hab, which projects tensors and
vectors into the 2D screen space orthogonal to ka, as [35]

~hab ≡ gab þ 2kðalbÞ; ~haa ¼ 2;

~hac ~h
c
b ¼ ~hab; ~habkb ¼ 0; ð25Þ

where la is the null ingoing geodesic that obeys

lala ¼ 0; kala ¼−1 and
δla

δν
¼ kb∇bla ¼ 0: ð26Þ

Using these definitions, the general form of la can be
written as

la ¼ 1ffiffiffi
2

p
E
ðua − eaÞ; ð27Þ

and substituting (27) into (25) the screen-space projection
tensor is obtained as

~hab ¼ gab þ uaub − eaeb ¼ Nab: ð28Þ

Hence we note that the 2D screen projection tensor is
absolutely the same as the 2-sheet projection tensor Nab.

For the LRS-II spacetimes the 1þ 3 decomposition of the
covariant derivative of the null vector ka is given as [35]

∇bka ¼
1

2
~hab ~Θout þ ~σab þ ~Xakb þ ~Ybka þ λkakb; ð29Þ

where

~Xa¼
1

E
ed∇dka; ~Ya ¼

1

E
ed∇akd; λ¼−

1

E2
eced∇dkc;

ð30Þ

and ~Θout and ~σab represent the expansion and shear of the
outgoing null congruence respectively. From the above
definitions and the geometry of LRS-II spacetimes we can
easily calculate that

~Θout ≡ ~hab∇bka ¼
Effiffiffi
2

p Nab∇aðub þ ebÞ: ð31Þ

Now using (7) and (8) in (31) we obtain

~Θout ¼
Effiffiffi
2

p
�
2

3
Θ − Σþ ϕ

�
: ð32Þ

A similar 1þ 3 decomposition of the covariant derivative
of the ingoing null geodesic la can be performed, giving

~Θin ¼
1ffiffiffi
2

p
E

�
2

3
Θ − Σ − ϕ

�
: ð33Þ

IV. MARGINALLY OUTER TRAPPED
SURFACES

As described in [10], let us consider a spherical emitter
of light, surrounding a massive body, emitting a flash of
light. In a normal situation, (like Minkowski spacetime or
Schwarzschild spacetime outside the horizon) the volume
expansion of the outgoing null congruence orthogonal to
the sphere is always positive ( ~Θout > 0) while that of the
incoming congruence is always negative ( ~Θin < 0).
However, if a sufficiently large amount of matter is present
within the emitting sphere, the volume expansion of the
outgoing null congruence orthogonal to the sphere
becomes negative. This is the case where both outgoing
and ingoing wave fronts collapse towards the center of the
emitting sphere. In this case, the emitting sphere is then
called a closed trapped 2-surface. The collection of all
closed trapped 2-surfaces in a four-dimensional manifold
constitutes a four-dimensional trapped region. Marginally
outer trapped surfaces (MOTS) are the three-dimensional
boundary of the trapped region. We will now derive the
equations for a MOTS surface and its evolution in the ½e; u�
plane. Similar derivations were done in [36] using a
different formalism.
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A. Equation for MOTS is LRS-II spacetimes

To define MOTS we generalize the definition of dynami-
cal horizons by Ashtekar and Krishnan [25] by removing
the restriction that it is a spacelike surface.
Definition: Marginally outer trapped surface

(MOTS).—A smooth, three-dimensional submanifold H
in a spacetime ðM; gÞ is said to be a marginally outer
trapped surface if it is foliated by a preferred family of
2-spheres such that, on each leaf S, the expansion ~Θout
of the outgoing null normal ka vanishes and the expansion
~Θin of the other ingoing null normal la is strictly negative.
Consequently a MOTS is a 3-manifold which is foliated

by marginally trapped 2-spheres. On this definition, such
3-surfaces can be timelike, spacelike, or null, with rather
different properties. The essential point is that they are
locally defined, and therefore are able respond to local
dynamic change. We do not need to know what is happen-
ing at infinity in order to determine a local physical effect.
At this point let us consider spacetimes that have a

positive sheet expansion, ϕ≡ δaea > 0. In the geometrical
context this implies that at any given epoch, the local
Gaussian curvature of the two sheets is monotonically
decreasing functions of the affine parameter along the
preferred spatial direction. Schwarzschild, FLRW, and
LTB spacetimes have this property. Furthermore, by the
symmetries of LRS-II spacetimes, we can easily see that
it suffices to study the one-dimensional MOTS curve in the
local ½u; e� plane to determine its local properties. Now
using Eqs. (32) and (33) it is evident that the equation of the
MOTS curve in the local ½u; e� plane is given by

Ψ≡
�
2

3
Θ − Σþ ϕ

�
¼ 0: ð34Þ

Thus, if ϕ > 0, on the MOTS curve we have ~Θout ¼ 0 and
~Θin < 0, as it should be by the above definition. Here we
would like to show another important geometrical property
of MOTS. Let us calculate the quantity ∇aK∇aK for a
spherically symmetric spacetime (where K ≠ 0):

∇aK∇aK ¼ − _K2 þ K̂2: ð35Þ

Now using (21) in (35) we get

∇aK∇aK ¼
�
2

3
Θ − Σþ ϕ

��
2

3
Θ − Σ − ϕ

�
K2: ð36Þ

Hence for any 2-sheet on the MOTS, the gradient of its
local Gaussian curvature is null. This property allows us to
easily locate the MOTS in a given spacetime.
As an example let us consider the spherically symmetric

vacuum spacetime. Then by Birkhoff’s theorem [10] we
know that the spacetime has an extra symmetry, it is either
static or spatially homogeneous. Let us consider the static
exterior part. Existence of a timelike Killing vector implies

that Θ ¼ Σ ¼ 0 [37]. Thus the horizon is described by the
curve ϕ ¼ 0. This is the event horizon of the Schwarzschild
spacetime. Indeed if we calculate ϕ from the LRS-II field
equations in Schwarzschild coordinates, we get

ϕ ¼ 2

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2m
r

r
; ð37Þ

and ϕ ¼ 0 corresponds to the event horizon at r ¼ 2m.

B. Evolution of MOTS

Let us now describe how the MOTS evolve geometri-
cally. What are the local conditions in terms of geometry or
the matter energy momentum tensor that determine whether
MOTS will be locally timelike, spacelike or null? As we
stated earlier, due to the symmetries of LRS-II spacetimes,
it suffices to study the behavior of the MOTS curve in the
local ½u; e� plane. Let the vector Ψa ¼ αua þ βea be the
tangent to the curveΨ ¼ 0 in the local ½u; e� plane. Then we
must have Ψa∇aΨ ¼ 0. Since we know that ∇aΨ ¼
− _Ψua þ Ψ̂ea, we can immediately see that the slope of
the tangent to the MOTS on the local ½u; e� plane is given
by α

β ¼ − Ψ̂
_Ψ
. Now using this decomposition with the field

equations (10) to (17), we obtain

∇aΨ ¼
�
1

3
ðρþ ΛÞ þ ðp − ΛÞ − E þ 1

2
Π −Q

�
ua

þ
�
−
2

3
ðρþ ΛÞ − 1

2
Π − E þQ

�
ea; ð38Þ

and hence

α

β
¼

2
3
ðρþ ΛÞ þ 1

2
Πþ E −Q

− 1
3
ðρþ ΛÞ − ðp − ΛÞ þ E − 1

2
ΠþQ

: ð39Þ

We now define the notion of future outgoing (ingoing) in
the following way. If α

β > 0 then the MOTS is said to be
future outgoing and if α

β < 0 then the MOTS is said to be
future ingoing. The nature of the MOTS in terms of it being
timelike, spacelike or null can also be determined by the
ratio α

β. We can easily see that

ΨaΨa ¼ β2
�
1 −

α2

β2

�
: ð40Þ

Therefore α2

β2
> 1ð< 1Þ denotes the MOTS to be locally

timelike (spacelike). If α2

β2
¼ 1 (as in the case of vacuum

spacetime, Schwarzschild or Schwarzschild–de Sitter,
where all the thermodynamical terms vanish), the MOTS
are null.
It is interesting to see how the local matter thermody-

namical quantities, along with the Weyl curvature, entirely
determine the nature of the dynamical horizon. In special
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cases, where the matter is a perfect fluid (Q ¼ Π ¼ 0), then
the condition for the MOTS being timelike is given by
(assuming Λ ¼ 0)

�
1

3
ρ − pþ 2E

�
ðρþ pÞ < 0: ð41Þ

Thus if the weak energy condition is satisfied so that
ρþ p > 0, then ρ > ð3p − 6EÞ would ensure a time-
like MOTS.

V. MISNER-SHARP MASS FOR
LRS-II SPACETIMES

In this section, we derive the Misner-Sharp [38] mass
equation for LRS-II spacetimes in terms of the 1þ 1þ 2
kinematical quantities. We know, for the metric (1), we can
define the mass function as [39]

Mðr; tÞ ¼ C
2
ðk −∇aC∇aCÞ; ð42Þ

where C represents the physical radius and k ¼ þ1; 0;−1
represents closed, flat or open 3-space geometry. Here we
are concentrating on spherically symmetric spacetimes and
hence we will only consider the case k ¼ 1. Then we can
write C ¼ 1ffiffiffi

K
p , where K is the Gaussian curvature of the

spherical 2-sheets. Then we obtain the expression of the
mass as

M ¼ 1

2
ffiffiffiffi
K

p
�
1 −

1

4K3
∇aK∇aK

�
: ð43Þ

Geometrically, the above expression gives the amount of
mass enclosed within the spherical shell at a given value of
affine parameter of the integral curves of ea at a given
instant of time. Using the 1þ 1þ 2 decomposition of the
covariant derivative for LRS-II together with (20), (21), the
Misner-Sharp mass takes the form

M ¼ 1

2K3=2

�
1

3
ðρþ ΛÞ − E −

1

2
Π
�
: ð44Þ

We can easily see from this equation, even in the case of
vacuum spacetimes, the mass does not vanish due to the
electric part of Weyl curvature E, which plays the role of the
mass source.
As an example let us consider the Schwarzschild static

spacetime again. Since it is a vacuum spacetime the
thermodynamical quantities vanish and in Schwarzschild
coordinates we have

E ¼ −
2m
r3

: ð45Þ

In this case we see that the Misner-Sharp mass is the same
as the Schwarzschild mass. As discussed in the previous

section, on the MOTS ∇aK∇aK ¼ 0 [40]. Therefore the
mass enclosed within the MOTS at a given instant of time
(which can be regarded as the local mass of the black hole)
is given by

MBH ¼ 1

2
ffiffiffiffiffiffiffiffiffi
KBH

p ; ð46Þ

where KBH is the Gaussian curvature of the black hole
surface at any given instant of time.

VI. OPPENHEIMER-SNYDER-DATT
COLLAPSE

This is the simplest model of black hole formation from
the dynamical collapse of a massive star [41,42]. The
interior of the spherically symmetric star is considered to be
dustlike and is described by a flat FLRW metric. The
exterior of the star is spherically symmetric vacuum and
hence, by Birkhoff’s theorem, is a static Schwarzschild
spacetime. These two spacetimes are matched using Israel-
Darmois matching conditions (the first and second funda-
mental forms) at the boundary of the collapsing star, which
is described by a comoving radius rB in the interior
spacetime. When the star collapses to the singularity at
the center the spacetime becomes Schwarzschild. Though
this model is a simplified toy model, it is widely accepted
that any realistic massive star would collapse to a black hole
in a similar fashion [11].
From the Einstein’s field equations one can explicitly

derive the dynamics of the trapped region in the spacetime,
which are as follows (see Fig. 1) (see [43–45] for
discussions on the global evolutions of trapped regions):

(i) In the interior spacetime the boundary shell of the
star gets trapped first. This is the instant of time
when the radius of the star becomes equal to the
Schwarzschild radius. The interior of the star is
causally cut off from the exterior spacetime from this
instant. As described in the previous section, at this
instant the gradient of the Gaussian curvature of the
boundary shell (∇aKB ) becomes null. Thus a two-
dimensional initial MOTS is formed which we will
denote as the SMOTS. This initial SMOTS is described
by a point in the ½u; e� plane, which is a bifurcation
point. From this point two separate branches of
3-MOTS develop. The one which is in the exterior
spacetime is called the outer MOTS or OMOTS
while the one which is in the interior of the star is
called the inner MOTS or IMOTS.

To understand geometrically why the two MOTS surfaces
exist, consider the domains where ~Θout is positive and
negative (Fig. 2). The boundary between them is where
~Θout ¼ 0. It is essentially a geometrical necessity that one
cannot have a single starting trapped 2-sphere SMOTS with
only oneMOTS surface emanating from it. A single surface
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where ~Θout ¼ 0 cannot bound a domain where ~Θout < 0:
there have to be two surfaces to make geometrical sense.
To understand physically why ~Θout ¼ 0 on two surfaces,

consider a sphere of radius r round the center of the
collapsing fluid containing a mass of fluid mðrÞ. Close
enough to the center of the collapsing object, for small r,
there is insufficient mass inside to cause refocusing:
mðrÞ < r=2. That is why there is no refocusing close
enough to the center ( ~Θout > 0). The possibility of local
trapping 2-spheres existing arises when r is large enough
that there is sufficient mass inside a sphere to cause
refocusing: mðrÞ > r=2. The inner horizon IMOTS surface
where ~Θout ¼ 0 thus exists at any time t at which there
exists a first radius which includes sufficient matter to cause
refocusing at that time (it is like the refocusing of the past
light cone in a FLRW model that occurs at z ¼ 1.25 in the
Einstein de Sitter case). The outer OMOTS horizon exists
because outside the star there is vacuum, and the mass is
then constant as the radius increases. So going to a
sufficient radius one will eventually again find r > 2m,
and there is no refocusing outside the bounding surface
where this first occurs.

(i) Since the exterior spacetime is vacuum, all the
matter thermodynamic terms are identically zero.
Hence we have α

β ¼ 1. Consequently, the OMOTS is
future outgoing and null. This exactly coincides with
the event horizon of Schwarzschild spacetime.

(ii) The interior spacetime has flat FLRW geometry with
dustlike matter. Hence apart from the energy density
ρ all the other thermodynamic terms vanish and also
the Weyl scalar is zero. Hence we get αβ ¼ −2. Thus
the IMOTS is a future ingoing timelike 3-surface.
This surface reaches the center of the collapsing star
at the singularity.

The trapping region III and its boundaries separating it from
(nontrapped) regions I and II are shown in Fig. 2. It is clear
from this characterization of the domains where θþ is
greater and less than zero that the MOTS surfaces have to
be created as a pair at the SMOTS 2-sphere.
A Ricci tensor singularity will occur inside the fluid as

the fluid collapses and KBðτÞ → ∞ within a finite proper
time. This may or may not be accompanied by a Weyl
singularity inside the fluid; such a singularity will not occur
for example if the fluid is a Friedmann-Lemaître model, as
the Weyl tensor is then zero inside the fluid.
The Ricci tensor is zero outside the collapsing star;

it is the Weyl tensor that diverges at the spacelike
Schwarzschild singularity in the vacuum domain.
Specifically, the Kretschman scalar is

K ¼ CabcdCabcd ¼ α
M2

r6
; ð47Þ

where α is a constant, so this diverges as r → 0.
It is the spatial inhomogeneity of the matter distribution

(nonzero density inside the fluid, zero outside) that

generates this singularity in the conformal structure of
spacetime.
As seen from the outside, the mass of the star never

alters; it is always equal to the initial value M0:

MBH ¼ M0 ¼ const: ð48Þ
This will of course not be the same if matter falls into the
black hole, thereby increasing its mass; then the horizon is a
dynamic horizon [25] and the laws of black hole thermo-
dynamics [46] come into play to characterize the resulting
changes. We also note that the above picture of the black hole
formation changes drastically if instead of a homogeneous
dust ball we consider an inhomogeneous one with the energy
density decreasing monotonically from the center to the
surface. In that case, the IMOTS at the central singularity is
future outgoing and null [43,44] and hence the central
singularity is locally naked. In such cases the spacetime
will cease to be future asymptotically simple [10] and proofs
of a number of results of black hole thermodynamics will
break down. However, in our analysis here, we only
concentrate on future asymptotically simple spacetimes.

VII. AN ASTROPHYSICAL BLACK HOLE:
THE IDEALIZED PICTURE CHANGES

Let us now consider a gravitational collapse scenario
which is embedded in a expanding cosmology. There
emerge a few crucial differences to the idealized scenario
described in the previous sections. They are as follows:

(i) The Universe is permeated by cosmic blackbody
radiation (CBR), radiation emitted from the hot big
bang era in the early Universe [12,13]. That black-
body background radiation was emitted by the last
scattering surface at the end of the hot big bang era
in the early Universe. It then propagates through the
Universe with a temperature

TCBR ¼ ð1þ zÞTCBRj0; ð49Þ
where z is the redshift characterizing the cosmo-
logical time when the radiation temperature is
measured. It now pervades the Universe as micro-
wave background radiation (CMB) at a temperature

TCBRj0 ¼ 2.7 K: ð50Þ
In effect, this radiation reaches local systems at the
present time fromaneffective“finite infinity” ([47,48])
at about one light year’s distance that emits blackbody
radiation at a temperature TCBRj0. This is the effective
sky for every local systemat present. Itwashotter in the
past, as shown by (49); at very early times TCBR ≃
4000 K and ρCBR ≃ ð1þ zÞ4ρCBRj0 ≃ 1012ρCBRj0.
The CBR radiation has the stress tensor of a perfect
fluid with positive energy density and pressure:

pCBR ¼ ρCBR=3; ρCBR ¼ aT4
CBR: ð51Þ
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It has an entropy density given by

SCBR ¼ 4

3
aT3

CBR þ b; ð52Þ

where b is a constant independent of the energyE and
volume V.

The crucial outcome is that the OMOTS surface becomes
spacelike [5] (see Fig. 3). The infalling (positive density)
CBR radiation (51) increases the interior mass and makes
the OMOTS surface spacelike, therefore enlarging the
trapping region to include domain VI and extending the
spacelike future singularity further out from P1 to P2. This
moves the globally defined event horizon outwards so that
the spacelike OMOTS surface lies inside the event horizon.
In fact most astrophysical black holes have an accretion
disk and the rate of infalling of matter in general is much
larger than the CBR. However the CBR influx rate can be
considered as a lower limit to the net accretion.

(i) The late Universe is dominated by dark energy that
is consistent with existence of a small positive
cosmological constant Λ. As the cosmological con-
stant does not decay away, the late time evolution of
the Universe is de Sitter, and future infinity is
spacelike [10,15] (see Fig. 4).

This means that, unlike the asymptotically flat case, there is
no single event horizon for observers outside a black hole.
Different cosmological event horizons (which are in the far
future) occur for different observer motions that end up at

different places pi on future infinity, because the event
horizon for an observer ending up at pi is, by definition, the
past light cone of pi [10,15]. The first event horizon is the
past light cone of P2 (the past light cone of P1 is no longer
an event horizon as it is trapped), but it is irrelevant to most
observers, such as those that end up at P3.
Since these cosmological effects are much smaller than

the thermodynamical and gravitational effects of a massive
collapsing star locally, we can treat these effects as
perturbations of the idealized scenario. Let us consider
that the thermodynamical variables of the CBR are
ðρCBR; pCBR; QCBR;ΠCBRÞ and these are much smaller than
the local gravitational tidal effects (E) outside a collapsing
star. In this perturbed case the ratio α

β for the OMOTS
outside the collapsing star is given as

α

β
¼ 1þ 2

3
ρCBRþΛ

E þ 1
2
ΠCBR
E − QCBR

E

1 − 1
3
ρCBRþΛ

E − pCBR−Λ
E − 1

2
ΠCBR
E þ QCBR

E

: ð53Þ

Here we note that the CBR is falling into the black hole and
hence we have Q < 0. Furthermore in the background
Schwarzschild spacetime E < 0. Using this, we find the
condition for a spacelike OMOTS (α

2

β2
< 1) is given by

ðρCBR þ pCBR þ 2jQCBRj þ ΠCBRÞ > 0: ð54Þ
The above condition is generally satisfied for CBR and
hence we can easily conclude that in the presence of CBR
falling in the black hole, the OMOTS is locally spacelike
(see Fig. 3 for the compact description).

FIG. 3 (color online). Domains when CBR effects are taken
into account: Domains and the signs of the outward null
divergence θþ when CBR is taken into account, represented as
radiation streaming in from infinity. The null event horizon now
lies outside the spacelike OMOTS surface.

FIG. 4 (color online). Domains when CBR effects and cos-
mological constant are taken into account: Effect of CBR and
cosmological constant together. The CBR is emitted from the last
scattering surface (LSS). Future infinity (blue) is now spacelike
(as the universe is asymptotically de Sitter). Consequently the
event horizon of a generic observer (the past null cone of P3) is
unrelated to the black hole singularity (red at top) and its OMOTS
surface.
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Since the OMOTS is spacelike, there always exists an
open set U in the vicinity of the OMOTS from which no
timelike or null trajectories can escape to infinity. To
illustrate this by an example, let the instant of time for
the SMOTS to appear in the spacetime be denoted by τ0. Let
us now consider the open set U in the ½u; e� plane with the
following closure: the curves Ψ ¼ 0, t ¼ τ0 and the out-
going null curve ν from t ¼ τ0 intersecting the curveΨ ¼ 0
at some later time t ¼ τ1 (this is possible as Ψ ¼ 0 is
spacelike between τ0 and τ1). One can easily see that any
nonspacelike trajectory from U cannot escape to infinity,
the trajectories will fall back to the singularity. By con-
struction this open set U extends to spacelike future infinity
for a lambda cold dark matter (LCDM) universe.
Now let us consider a realistic astrophysical black hole

immersed in an environment containing matter. In that case
there will be continuous infalling matter into the black hole
and the black hole mass will vary continuously. Now the
variation of Misner-Sharp mass along ua and the preferred
spatial direction ea can be calculated using the field
equations together with (44) as

M̂ ¼ 1

4K3=2

�
ϕðρCBR þ ΛÞ −

�
Σ −

2

3
Θ
�
QCBR

�
; ð55Þ

_M ¼ −1
4K3=2

��
2

3
Θ − Σ

�
ðpCBR − ΛÞ þQCBRϕ

�
: ð56Þ

Using the above equations along with the equation of
horizon, we can find the evolution equation governing
the mass of a black hole enclosed within the dynamical
horizon as

_MBH ¼ 1

4K3=2
BH

ϕBH½ðpCBR − ΛÞ þ jQCBRj�; ð57Þ

where KBH and ϕBH are evaluated on the MOTS locally.
For infalling CBR we have pCBR > 0. Also as already
stated earlier, in the interior and exterior spacetime we have
ϕ ≥ 0 . Hence we see as the CBR falls in the black hole, its
mass MBH increases monotonically. As the CBR becomes
weaker and weaker in far future the thermodynamic terms
will be less than the cosmological constant Λ. When Λ
dominates, the solution tends to a Schwarzschild de
Sitter solution where we have α

β ¼ 1 and the OMOTS
continuously tends to a null surface from a spacelike one,
with ϕBH → 0 until the future spacelike infinity. Hence
during this phase near the future spacelike infinity
_MBH → 0 and the black hole mass will asymptotically
reach a constant value.

VIII. DISCUSSIONS: CONSEQUENCES FOR
HAWKING RADIATION

The results obtained in the previous section for location
of horizons of realistic astrophysical black holes immersed
in a LCDM cosmology with CBR may have important

consequences on the Hawking radiations from these black
holes. We return now to the key questions raised in the
introductory section.

A. Local or global

As Fig. 4 depicts, we would like to emphasize that there
are no global event horizons in an asymptotically de Sitter
universe. The event horizon for each particle is different,
being the past null cone of its worldline at future spacelike
infinity. Even the particle P1, whose worldline ends at a
singularity, has every right to refer to its past light cone also
as a future event horizon. In the context of string theory
these null boundaries are sometimes referred to as observer
horizons. Hence there exist an infinite number of world-
lines that will never see Hawking radiation from a black
hole, as this radiation (if any) will lie outside their
cosmological event horizon. Therefore it makes no sense
to talk about Hawking radiation from a global event
horizon in this context. Although there is a notion of this
happening in the Gibbons-Hawking vacuum, each observer
sees radiation coming from their own personal event
horizon. But the relation of such radiation to a black hole
horizon (which may lie entirely outside the observer’s event
horizon) is yet to be deciphered properly.
We can argue that there is an inmost event horizon

associated with the black hole, so one might propose
radiation is associated with this nonlocally determined
surface. We would like to clarify here that this inmost
horizon is the part of the event horizon that forms before the
incoming CBR shell crosses the horizon. However from
Fig. 1, it can be seen that this event horizon forms even
before parts of the spacetime become trapped. It seems
unlikely that the event horizon in such a regular and
untrapped epoch will start radiating as there is no local
occurrence there that could lead to this happening. Hence, it
is probable the radiation must come from the vicinity of the
boundary of the trapped region, that is, from near an
apparent horizons (a MOTS).

B. Timelike or spacelike

If the radiation is locally emitted [16], it will be
associated with either the IMOTS surface or the OMOTs
surface. As was suggested in the Introduction, if the
calculation for Hawking radiation is based on the idea of
tunneling [19], then it will only be applicable if the MOTS
surface is timelike or null. If it is spacelike, then a tunneling
viewpoint is simply not applicable. Hence, in the scenario
discussed in this paper only the timelike IMOTS could
radiate; and any such radiation emitted near the IMOTS
will necessarily fall into the singularity and so be shielded
from outside observers [5].
However that conclusion depends on the particle picture,

which can be called into question. Consider then possible
emission near the OMOTS surface. As we proved in the
previous sections, the CBR makes the OMOTS spacelike,
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which ensures the existence of an open set in the vicinity of
the OMOTS from which no timelike or null trajectories can
escape to infinity. Hence, if any Hawking radiation is
generated from this open set it is bound to fall back into the
black hole rather than escaping to infinity. This suggests
that there may be a remnant mass of any black hole at future
infinity, and the black hole will not evaporate entirely away.
Quantum field theory calculations suggest radiation is
emitted from the vicinity of the OMOTS surface, rather
than just from the surface itself, so on this picture a small
amount of radiation that is emitted from outside the open
set described above can in principle escape to infinity.
However, existence of such an open set would necessarily
imply a part of the radiation would fall back to the black
hole and therefore the entire black hole will not totally
evaporate away.
This conclusion would however be wrong if the back-

reaction from ingoing negative density Hawking radiation
overcame the CBR effect and made the OMOTS surface
timelike. Can this occur? If we consider the usual particle
picture of Hawking radiation from an open set U described
above between two closely spaced intervals τ1 and τ2, we can
easily see that both the positive energy particle and the
negative energy particle will enter the subset of the trapped
region between τ1 and τ2. Hence, therewill be no net change
in the average energy (mass) of the black hole due to
Hawking radiation from this open set. This can be better
understood in the context of local black hole mass. As we
have seen, infalling cosmic microwave backround radiation
increases the black hole mass monotonically, and that
implies the temperature of the horizon decreasing mono-
tonically. We know at the present epoch the temperature of
CBRismuchgreater than theHawking temperatureof a solar
mass black hole. From Eq. (57) we can easily see that the
mass of the black hole will go on increasing (and hence the
Hawking temperaturewill go on decreasing) untilpCMB and
jQCMBj becomes smaller than the cosmological constant.
Fromthispoint in the far future to the future spacelike infinity
the black hole mass asymptotically tends to a constant value
with the OMOTS asymptotically becoming null from a
spacelike surface but never actually being null: it is always
spacelike. Hence, much of the emitted Hawking radiation
will be trapped, as theOMOTS surfacewill remain inside the
black hole event horizon. In the thermodynamic context,
black holes not radiating to a hotter background makes
perfect sense.
This argument is suggestive but not conclusive: to obtain

a definitive result, we must calculate the expectation value
of the stress tensor in the present context (work under way).
However insofar as the particle picture is valid, the above
conclusion seems inevitable.
We would like to clarify here that our conclusion is

different from that in Bardeen’s paper [8] inter alia

because his picture of the horizon geometry is different
from ours. In that paper he used as a classical background
a somewhat artificial construction of a singularity free
black hole [20,49] leading to the existence of a particle
creation surface outside the black hole with zero energy
density but nonzero surface stress. The existence of such a
surface is unphysical, and we argue that it cannot develop
for a realistic astrophysical black hole. It is the use of this
unphysical equation of state that leads to an understanding
of the inner horizon (see Fig. 2 in [8]) different than that
presented here.

C. Vacuum or fluid

It is quite interesting that most of the existing literature
on Hawking radiation from a black hole talks about vacuum
excitations near the event horizon. Very few papers discuss
the effect of a time varying collapsing matter field on the
particle creation; however there may well be particle
emission there too [1,23,24].
In [1] it is argued that if particles created by vacuum

excitation in the exterior of an collapsing star travel through
the star, then the difference in blueshift of a particle falling
in from the redshift of the same particle coming out
becomes important in the vicinity of the horizon. This
difference in particle energy manifests in a diminishing
energy of the collapsing star, which might stop the
formation of singularities and trapped surface [9]. In that
case all the above arguments are called into question.
Whether such effects can still occur in the cosmological

context discussed here, where a spacelike OMOTS surface
occurs inside the event horizon, is an open question, and is
worthy of future investigation.
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