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We perform a careful investigation of the problem of physically realistic gravitational collapse of
massive stars in fðRÞ gravity. We show that the extra matching conditions that arise in the modified gravity
impose strong constraints on the stellar structure and thermodynamic properties. In our opinion these
constraints are unphysical. We prove that no homogeneous stars with nonconstant Ricci scalar can be
matched smoothly with a static exterior for any nonlinear function fðRÞ. Therefore, these extra constraints
make classes of physically realistic collapse scenarios in general relativity, nonadmissible in these theories.
We also find an exact solution for an inhomogeneous collapsing star in the Starobinski model that obeys all
the energy and matching conditions. However, we argue that such solutions are fine-tuned and unstable to
matter perturbations. Possible consequences on black hole physics and the cosmic censorship conjecture
are also discussed.
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I. INTRODUCTION

In spite of the success of general relativity (GR), both in
astrophysics and cosmology, alternative theories of gravity
exist. In addition to theoretical considerations, such theories
are motivated by the ambiguous nature of dark energy in
cosmology which is responsible for the observed late time
accelerated expansion of the Universe. The alternative
possibility, in an attempt to do away with the need for dark
energy, is to conjecture that GR is an “effective” theory of a
more general theory on cosmological scales. Among the
modified theories of gravity that provide a late time accel-
eration for the Universe, without the need for the presence of
any exotic fluids, is fðRÞ gravity. This theory is based on a
gravitational action that contains an arbitrary but well-
defined function of the Ricci scalar R [1–5]. Some of these
models naturally admit a phase of accelerated expansion
both in the early universe as an inflationary phase [6], and
also in a late time phase after passing through a matter
dominated decelerating expansion [7]. These theories essen-
tially contain an additional scalar degree of freedomwhich is
commonly interpreted as a scalar field called the scalaron,
with the scalaron potential constructed from the Ricci scalar.
An interesting aspect of this class of theories (contrary to
othermodels that have the square of Ricci or Riemann tensor
in the action) is that the Ostrogradski instability is not
problematic in these theories, despite the equations of
motion being fourth-order in the metric components.
Although fðRÞ gravity has been quite successful in

providing a geometrical origin of the dark sector of the

Universe, it poses considerable problems in the astro-
physical sector which we list below:
(a) It is extremely difficult to find exact solutions of static

or dynamic stellar objects as the field equations are
fourth-order differential equations in the metric com-
ponents. Nevertheless, significant attention has been
dedicated in finding spherically symmetric solutions in
fðRÞ theories [8,9], including the collapsing solutions
[10–12].

(b) The post-Newtonian and parametrized post-
Newtonian expansion of these theories put a strong
constraint on the parameters of the theory which may
not always be compatible with cosmological predic-
tions. Hence the parameters of the function fðRÞ have
to be constrained by both astrophysical and cosmo-
logical observations to get a viable model.

(c) The fourth-order field equations generate extra match-
ing conditions between two spacetimes beyond the
usual Israel-Darmois [13,14] conditions in GR. The
extra conditions arising from the matching of the Ricci
scalar and it’s normal derivative across the matching
surface, heavily constrict the set of useful astrophysi-
cal solutions. For any stellar object, the spacetime of
the interior of the star has to be suitably matched with
the exterior spacetime. Even the bottom-up picture
of the Universe is made up of spherical or almost
spherical stellar objects immersed in vacuum, and this
requires proper spacetime matching. It was recently
shown that a Einstein-Strauss-like construction is not
possible in nonlinear fðRÞ theories [15], and these
extra matching conditions lead to fine-tuning problems
for static star models [16].

In this paper, based on the existence of extra matching
conditions, we derive a general result for all fðRÞ theories
with a nonlinear function f: homogeneous dynamic stars
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with nonconstant Ricci scalar cannot be matched to a static
exterior spacetime. This result, though very interesting, is
also quite heartbreaking in the sense that a theory of gravity
should not determine the structure and thermodynamics of
the star, this should be determined by stellar physics.
Furthermore all homogeneous collapsing stellar models
of GR no longer remain viable models in these theories.
This has serious consequences on black hole physics as the
most important example of black hole formation in GR is
the Oppenheimer-Snyder-Datt [17] collapse which is the
model of a collapsing homogeneous dust ball with an
exterior Schwarzschild spacetime. Such models are no
longer admissible in these fðRÞ theories, and hence we
need to find other examples of physically realistic matter
collapse leading to a black hole. The detailed investigations
on the gravitational collapse of homogeneous matter in
modified gravity [10] also become redundant in this case.
Now the key question is: Is it possible to find an exact or

numerical solution of a collapsing stellar model in fðRÞ
gravity with physically realistic matter that satisfies all the
matching conditions with a Schwarzschild exterior? Since
this is not possible with a homogeneous star, in this paper
we find an exact inhomogeneous solution in the Starobinski
model with fðRÞ ¼ Rþ αR2, where the collapsing stellar
matter has anisotropic pressure and heat flux. It is quite
interesting to observe that this solution mimics the
Lemaitre-Tolman-Bondi dust solution [18–20] in GR.
Thus we show that the space of such physically interesting
solutions where the collapsing star can be matched to a
static Schwarzschild exterior, is nonempty. Also, in spite of
standard matter obeying all physically realistic energy
conditions, we argue that to find such solutions we need
a considerable fine-tuning of the thermodynamic properties
of the collapsing star. Hence these solutions seem to be
unstable with respect to the matter perturbations.
The paper is organized as follows: In the next section we

give a brief overview of the field equations in fðRÞ gravity,
energy momentum tensor for the collapsing stellar matter
and the energy conditions. In Sec. III, we discuss the
matching conditions in these theories and state the no-go
proposition for homogeneous stars. In Sec. IV, we present
an exact collapsing solution of a spherically symmetric star
in the Starobinski model with fðRÞ ¼ Rþ αR2, that obeys
all the required matching conditions with the vacuum, static
Schwarzschild exterior. In the final section we discuss the
stability and genericity of such solutions.
We use units which fix the speed of light and the

gravitational constant via 8πG ¼ c4 ¼ 1, and throughout
this paper we used the metric signature þ2.

II. FIELD EQUATIONS AND ENERGY
CONDITIONS

In order to study spherically symmetric solutions in
fðRÞ gravity, we begin by modifying the Einstein-Hilbert
action. The modification in fðRÞ gravity, is obtained by

generalizing the Lagrangian in the Einstein-Hilbert action
such that the Ricci scalar R is replaced with a function
fðRÞ, so that

S ¼ 1

2

Z
dV½ ffiffiffiffiffiffi

−g
p

fðRÞ þ 2LMðgab;ψÞ�: ð1Þ

where LM is the Lagrangian density of the matter fields
ψ , g is the determinant of the metric tensor gab
ða; b ¼ 0; 1; 2; 3Þ, R is the scalar curvature and fðRÞ is
the real function defining the theory under consideration.
Varying the action (1) with respect to the metric over a
4-volume yields

Gabf;R −
1

2
gabðf − Rf;RÞ −∇a∇bf;R þ gab□f;R ¼ TM

ab;

ð2Þ

where f;R ¼ dfðRÞ=dR, □≡∇c∇c, Gab is the usual
Einstein tensor and TM

ab is the matter energy momentum
tensor (EMT) defined by [21]

TM
ab ¼ −

2ffiffiffiffiffiffi−gp δLM

δgab
: ð3Þ

It can be seen that for the special case fðRÞ ¼ R, the
field equations (2) reduce to the standard Einstein field
equations. These theories are also known as fourth-order
gravity, since the term ðgab□ −∇a∇bÞf;R has fourth-order
derivatives with respect to the metric.
We now consider a spherically symmetric spacetime

whose geometry is determined by the metric

ds2 ¼ −e2νðt;rÞdt2 þ e2ψðt;rÞdr2 þ C2ðr; tÞdΩ2; ð4Þ
where dΩ2 ¼ dθ2 þ sin2θdϕ2. In terms of its components,
the EMT is defined as

Tab ¼ μuaub þ phab þ 2quðanbÞ − Π
�
nanb −

1

3
hab

�
;

ð5Þ
where μ is the energy density, ua is the four-velocity of the
fluid satisfying uaua ¼ −1, the pressure term p is given by

p ¼ pr þ 2pt

3
; ð6Þ

where pr and pt are, respectively, the radial and tangential
components of the pressure, hab is the spatial projection
tensor defined as

hab ¼ uaub þ gab; ð7Þ
na is the spatial unit vector in the radial direction with the
properties nana ¼ 1; naua ¼ 0, the term q ¼ qana is the
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component along na of radial energy flux vector qa, and
Π ¼ pt − pr measures the amount of anisotropy (pr ¼ pt
corresponds to isotropic pressure and pr ≠ pt for aniso-
tropic pressure). We wish to find the general solution of the
modified Einstein field equations (2) with the metric (4),
which contains three arbitrary functions.
In order for the matter field to be physically realistic it

must obey one or all of the energy conditions [22]. For a
spherically symmetric fluid with the EMT (5), for the
energy conditions to be satisfied we must satisfy the
following inequalities [23,24]:

jμþ prj − 2jqj ≥ 0; ð8Þ

μ − pr þ 2pt þ ▵ ≥ 0; ð9Þ

together with
(a) weak energy conditions (WEC)

μ − pr þ ▵ ≥ 0; ð10Þ

(b) dominant energy conditions (DEC)

μ − pr ≥ 0; ð11Þ

μ − pr − 2pt þ ▵ ≥ 0; ð12Þ

(c) strong energy conditions (SEC)

2pt þ ▵ ≥ 0; ð13Þ

where ▵ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμþ prÞ2 − 4q2

p
.

We can write the components of the Gab tensor, for
which the metric (4) satisfies the field equations (2), as
follows:

G0
0 ¼ −

1

C2
½1þ e−2νð _C2 þ 2 _ψC _CÞ

−e−2ψðC02 þ 2CC00 − 2ψ 0CC0Þ�; ð14Þ

G1
1 ¼ −

1

C2
½1 − e−2ψðC02 þ 2ν0CC0Þ

þe−2νð _C2 þ 2CC̈ − 2_νC _CÞ�; ð15Þ

G2
2 ¼ G3

3

¼ −
1

C
½e−2νð _ψ _C−_ν _Cþ _ψ2Cþ C̈

þψ̈C − _ν _ψ CÞ þ e−2ψðψ 0C0 − ν0C0 − ν02C

−C00 − ν00Cþ ν0ψ 0CÞ�; ð16Þ

G0
1 ¼

2

e2νC
½ _C0 − ν0 _C − _ψC0�; ð17Þ

where (_) and ( 0) denote the partial derivative with respect to
t and r, respectively. The Ricci scalar for the metric is

R ¼ 2

C2
½1 − e−2ψ ð2ν0CC0 − ν0ψ 0C2 þ ν00C2 þ ν02C2

−2ψ 0CC0 þ 2CC00 þ C02Þ
−e−2νð2_νC _Cþ _ν _ψ C2 − ψ̈C2 − _ψ2C2

−2 _ψC _C − 2CC̈ − _C2Þ�: ð18Þ

III. JUNCTION CONDITIONS:
A NO-GO PROPOSITION

In order to study gravitational collapse, it is necessary to
describe adequately the geometry of the interior and
exterior regions and to give the conditions which allow
matching of these regions. Any astrophysical object is
immersed in vacuum or almost vacuum spacetime (like any
star within the stellar system), and hence the exterior
spacetime around a spherically symmetric star is well
described by the Schwarzschild geometry. Therefore any
physically realistic star should be matched with a static
vacuum solution which in the case of spherical symmetry is
the Schwarzschild geometry in GR.
We consider matching two spacetimes V� with the

boundary surface denoted by Σ. The junction surface must
be the same in Vþ and V−, which implies continuity of both
the metric and the extrinsic curvature of Σ as in GR [13,14].
Moreover, in fðRÞ theories of gravity, continuity of the
Ricci scalar across the boundary surface and continuity of
its normal derivative are also required [15,25,26].
To understand the above in some detail let us write the

metric of the interior and exterior spacetime locally (near
the matching surface) in terms of the Gaussian coordinates

ds2 ¼ gabdξadξb ¼ dτ2 þ γijdξidξj; ð19Þ

where ξi; i ¼ 1; 2; 3 are the intrinsic coordinates to Σ, γij is
the intrinsic metric (first fundamental form) of Σ and the
boundary is located at τ ¼ 0. Given (19), together with
the extrinsic curvature (second fundamental form) of the
boundary surface defined by

Kij ¼ −
1

2
∂τγij; ð20Þ

the Ricci scalar can be written as

R ¼ 2∂τK − ~Kij
~Kij −

4

3
K2 þR; ð21Þ

where R is the Ricci curvature constructed from the
3-metric γij, K is the trace part of the extrinsic curvature
and ~Kij is the trace-free part.
The continuity requirements at the boundary lead to the

following junction conditions in fðRÞ theories,
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½γij�þ− ¼ 0; ð22Þ

f;RR½∂τR�þ− ¼ 0; ð23Þ

f;R½ ~Kij�þ− ¼ 0; ð24Þ

½K�þ− ¼ 0; ð25Þ

½R�þ− ¼ 0; ð26Þ

provided f;RR ≠ 0. For further details, we refer the reader to
[25,26]. It is worth noting that the conditions (23) and (26)
are the extra conditions that arise in fðRÞ theories with
nonlinear function f. These extra conditions are necessary
for the continuity of the field equations across the matching
surface, and indeed impose some considerable constraints
on viable spacetimes which we describe below in the
proposition.
Proposition 1. For any fðRÞ gravity with a nonlinear

function f, a dynamic homogeneous spacetime with non-
constant Ricci scalar cannot be matched with a static
spacetime across a fixed boundary.
Proof. If the dynamic homogeneous spacetime has a

nonconstant Ricci scalar then the Ricci scalar will evolve
with time on one side of the boundary, whereas on the other
side of the boundary the Ricci scalar remains constant as
the spacetime is static. Hence the junction condition (26)
can never be satisfied for all epochs. □

The above proposition immediately nullifies the exist-
ence of homogeneous dynamic stars with a nonconstant
Ricci scalar, for example, collapsing dustlike matter as in
the Oppenheimer-Snyder-Datt model [17], which is
smoothly matched to the exterior Schwarzschild spacetime,
in these theories. On the same note the Einstein-Strauss
construction is not possible. The only homogeneous
collapsing stars that can be matched to a static exterior
are those which have a constant Ricci scalar in the interior
(examples are Vaidya, dS/AdS Vaidya, charged Vaidya or
collapsing perfect fluids with a null equation of state). Thus
the modification in the theory of gravity heavily constrains
and dictates the structure and the thermodynamic properties
of the collapsing star. This is surely unphysical as the stellar
properties should be the outcome of the stellar physics as
the gravitational collapse of the star commences.
Another important question that may arise here is: what

happens if the exterior is nonstatic? The solar system
experiments constrain heavily such a scenario, and the time
variation must be in the cosmological time scale. However,
the important point is, the time scale of gravitational
collapse of massive stars is much smaller than the cosmo-
logical time scales. Hence if the exterior is nonstatic, the
matching of the Ricci scalar and the normal derivative at the
surface of a homogeneous star is still not possible. One
possible way to avoid such a scenario arises if we allow a
“jump” in the curvature terms in the field equations. In

other words we do not match both the Ricci scalar and its
normal derivative simultaneously. This will result in surface
stress energy terms, that are purely generated by the
dynamic curvature. However such surface stresses on
realistic collapsing stars must have observational signatures
and can be established via experimental evidences.
Furthermore, we have to find a suitable model explain-

ing the dynamical black hole formations in these theories.
Although a toy model, the Oppenheimer-Snyder-Datt
collapse is widely believed to be a general model of
black hole formation [27]. The geometry of the trapped
surfaces changes considerably when the collapsing matter
is inhomogeneous (like in the case of Lemaitre-Toman-
Bondi collapse in GR [28,29]) and in many other cases
where a locally naked central singularity develops (as in
the solution of the next section). The existence of a
Cauchy horizon due to a naked singularity can prevent
the spacetime from being future asymptotically simple,
and hence the general global proofs in most of the
theorems of black hole dynamics and thermodynamics
have to be reanalyzed [22].

IV. AN EXACT COLLAPSING SOLUTION
IN f ðRÞ ¼ Rþ αR2 GRAVITY

Having established that no homogeneous collapsing
star can be matched to a static exterior, the key question
here is whether it is possible to find a physically realistic
inhomogeneous collapsing stellar solution in fðRÞ gravity.
In this section we address this question in the case of
fðRÞ ¼ Rþ αR2. By the phrase “physically realistic,” we
mean the following:

(i) The collapsing stellar matter should obey all the
energy conditions.

(ii) At the comoving boundary of the collapsing star, the
interior spacetime should matched smoothly with a
Schwarzschild spacetime as all experimental tests in
the solar system indicate that the spacetime outside
the Sun is well described by the Schwarzschild
geometry.

In order to satisfy the second condition above, we must
choose a nonlinear function f that has Schwarzschild
spacetime as a vacuum solution. For this, we recall the
extension of Birkhoff’s theorem for fðRÞ gravity [9] which
states that
Theorem 1. For all functions fðRÞwhich are of classC3

at R ¼ 0 and fð0Þ ¼ 0 while f0ð0Þ ≠ 0, the Schwarzschild
solution is the only static spherically symmetric vacuum
solution with vanishing Ricci scalar.
As the simplest higher order extension to GR which

satisfies all the requirements of the theorem above, we
consider the gravitational action proposed by Starobinski
[6], where fðRÞ ¼ Rþ αR2. This model naturally produces
a early time inflationary expansion in cosmology and it is
not ruled out by the recent Plank data. At late times, this
model gives a geometrical origin of dark energy and it can
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be shown that the cosmological solution tends to a deSitter
solution in the far future and thus mimics the Λ-CDM
cosmology without the fine-tuning problem of the cosmo-
logical constant Λ. In what follows, we give an exact

solution for a collapsing star, with anisotropic pressure and
heat flux in the interior, in fðRÞ ¼ Rþ αR2 theory. The
matter in the interior of the cloud is described by the
following EMT distribution (5) with components

μ ¼ −
1

2C05C4
½4αC2ðF000C02 þ 2F0CC00 þ F0C2 _C02Þ − αC03ð3F02 þ 8F00Cþ 4 _F0C2 _C0 − 16F0C _C _C0Þ

þ2C04ð4αF0 − F0C2 − 4α _F0C _Cþ 8αF0 _C2Þ þ 12αF0C2C002 − 12αF00C2C0C00 − 4αF0C2C0C000�; ð27Þ

pr ¼ −
α

2C03C4
½−C0ð8F00Cþ F02C0 þ 8 _F0C2 _C0 − 8F0C _C _C0 þ 4F0C2C̈0Þ

þ4C02ðF̈0C2 − 2 _F0C _Cþ 2F0 _C2 − 2F0CC̈Þ þ 16F0C02 þ 8F0C00Cþ 8F0 _C02C2�; ð28Þ

pt ¼ −
α

2C05C4
½4C0ð3F00C2C00 þ F0C2C000Þ − 4C02ð3F0C2 þ F000C2 þ 3F0CC00 − F0C2 _C02Þ

−C03ðF02 − 12F00Cþ 4 _F0C2 _C0 − 4F0C _C _C0 þ 4F0C2C̈0Þ − 4C04ð4F0 − F̈0C2 þ 3 _F0C _C − 4F0 _C2 þ 2F0CC̈Þ�; ð29Þ

q ¼ −
2α

C04C4
½−C0ð _F0C2C00 − 2F0CC00 _Cþ F0C2 _C00 þ 2F00C2 _C0ÞC02ð _F00C2 − 2F00C _Cþ 2F0C _C0Þ

−C03ð2 _F0C − 6F0 _CÞ þ 3F0C2C00 _C0�; ð30Þ

where we define the function F ¼ FðrÞ by

F≡ r3MðrÞ: ð31Þ

The quantityMðrÞ is an arbitrary function and the function
C ¼ Cðr; tÞ has the form

C ¼ r

�
1 −

3

2

ffiffiffiffiffiffiffiffiffiffiffi
MðrÞ

p
t

�2
3

: ð32Þ

We can write (32) as Cðt; rÞ ¼ raðt; rÞ with

aðr; tÞ ¼
�
1 −

3

2

ffiffiffiffiffiffiffiffiffiffiffi
MðrÞ

p
t

�2
3

; ð33Þ

representing the inhomogeneous scale factor. We see from
this that the scale factor behaves as a ¼ 1 at initial epoch
t ¼ ti. It is also clear that _a < 0 in accordance with
gravitational collapse.
The metric

ds2 ¼ −dt2 þ C02ðr; tÞdr2 þ C2ðr; tÞdΩ2; ð34Þ

gives the geometry as realized in the spacetime that
corresponds to the structure of the EMT (5) with
components (27)–(30). The Ricci scalar for this metric is
evaluated as

R ¼ F0

C2C0 ¼
3M þ rM0

a2ðaþ ra0Þ : ð35Þ

It is apparent that (34) takes the same form as the Lemaitre-
Tolman-Bondi (LTB) dust model of general relativity.
In order to match a spherically symmetric collapsing

cloud at the boundary to an exterior spacetime, the junction
conditions (22), (26) have to be considered. We describe
the interior spacetime V− of the collapsing cloud by
the metric (34) and the exterior spacetime Vþ by the
Schwarzschild vacuum. These two spacetimes are matched
at the surface of the star Σ which is denoted by the
comoving shell labelling coordinate r ¼ rb. Now the
metric of the exterior spacetime is

ds2 ¼ −
�
1 −

2m
rs

�
dt2 þ dr2

ð1 − 2m
rs
Þ þ r2sdΩ2; ð36Þ

where rs is the Schwarzschild radius. The junction
conditions (24) and (25) then imply that on the surface

G1
1jΣ ¼ 0: ð37Þ

Since the solution is exactly same as the LTB dust solution
in GR, we can easily check that throughout the interior
spacetime G1

1 ¼ 0, and hence these two matching con-
ditions are automatically satisfied. The extra junction
conditions (23) and (26) imply that R−jΣ ¼ R0

−jΣ ¼ 0,
and from these we can deduce that the Ricci scalar should
have the form

R≡ ðrb − r2Þ2gðr; aÞ; ð38Þ

where gðr; aÞ is a well-defined and at least C4 function of r
and a. Then from (35) and (38) we conclude that
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3M þ rM0 ≡ ðr2b − r2Þ2hðrÞ; ð39Þ

where hðrÞ is a well-defined and at least C4 function of r.
The functionMðrÞ can be Taylor expanded in even powers
of r such that

M ¼ M0 þ r2M2 þ r4M4 þ r6M6; ð40Þ

and upon substituting this expression into (35), we see that
there exists values of the coefficients Mn for which the
junction conditions for the Ricci scalar R are fulfilled. This
choice forMðrÞ also ensures smoothness of the initial data.
For our model, without any loss of generality, we may

choose rb ¼ 1. To transparently show that there exists
values ofMn for which the junction conditions are satisfied,
let us choose hðrÞ ¼ ðaþ br2Þ so that

M0 ¼
a
3
; M2 ¼

ðb − 2aÞ
5

;

M4 ¼
ða − 2bÞ

7
; M6 ¼

b
9
: ð41Þ

We can easily see that the above values of the coefficients
will ensure that the Ricci scalar is of the form (38). Thus the
extra matching conditions impose strong constraints on the
otherwise free function in GR. This means that (unlike GR)
any smooth function MðrÞ is not a physically realistic
function in the Starobinski model. We can easily check that
MðrÞ is closely related to the initial density, pressures and
heat flux profiles of the star. We see that only those initial
data profiles that satisfy the constraints on MðrÞ are
admissible, and hence we may conclude that we need
some fine-tuning of the otherwise free parameters to get a
solution in fðRÞ theories. In this regard it is expected that
any form of matter perturbation in the interior of the star
will disturb this fine-tuning and make the solution unstable.
To check, whether the collapsing matter obeys all the

physically reasonable energy conditions with values
a ¼ 3; b ¼ −3, we plot the radial profile of M in Fig. 1
and the Ricci scalar in Fig. 2 over the radial range of 0 to 1.
Taking α ¼ 10−10, we plot the variation of these thermo-

dynamic terms against the radius of the star. We see in
Fig. 3 that the energy density is non-negative in the interior
of the star, with a finite value at the centre and decreases
with the radial distance with zero value at the boundary.
Figure 4 shows that the radial pressure takes on negative

values. It is finite at the star’s centre and vanishes at the
boundary.On the other hand, in Fig. 5 the tangential pressure
has a negative finite value at the centre which increases as a
function of the radius, becomes positive and, after reaching a
maximum, decreases and vanishes at the boundary.
The variation of pressure anisotropy Π ¼ pt − pr with

respect to the radius of the star is shown Fig. 6. The
pressure anisotropy is positive in nature (pt > pr), vanish-
ing at both the centre and boundary. The former being a

FIG. 1 (color online). The radial profile of the function M.

FIG. 2 (color online). The radial profile of the Ricci scalar.

FIG. 3 (color online). The radial profile of the energy density at
different times.
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requirement for regularity at the centre of the star and the
latter is required for the collapsing interior to be matched to
(36). The radial profile of the heat flux plot is positive and
exhibits behaviour similar to that of the pressure anisotropy
as shown in Fig. 7.
We confirm that the energy conditions (8)–(13) are

satisfied in Figs. 8. We have considered the two inequalities
of the general energy conditions (EC), the extra inequality
of weak energy conditions (WEC), strong energy condi-
tions (SEC) and the two extra inequalities of dominant
energy conditions (DEC) separately. It is interesting to
observe that in spite of negative pressure conditions the
energy conditions are satisfied in this model.

V. CONCLUDING REMARKS

In this paper we studied the possibility of the existence of
spherically symmetric and astrophysically realistic

collapsing stellar solutions in fðRÞ gravity. The key results
that emerged from our analysis are as follows:
(a) We showed transparently that the extra matching

conditions in fðRÞ gravity impose strong constraints
on the stellar structure and thermodynamic properties
which, in our opinion, are unphysical. These con-
straints make classes of physically realistic collapse
scenarios in GR nonadmissible in these theories.
We showed that apart from a few special types
of collapsing matter, these theories demand the
collapsing matter to be inhomogeneous in order to
smoothly match the interior spacetime with a static
vacuum exterior as demanded by the astrophysical
observations. Therefore, contrary to the belief that a

FIG. 5 (color online). The radial profile of the tangential
pressure at different times.

FIG. 6 (color online). The radial profile of the anisotropy
parameter at different times.

FIG. 4 (color online). The radial profile of the radial pressure at
different times.

FIG. 7 (color online). The radial profile of the heat flux at
different times.
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higher-order theory will expand a set of admissible
solutions, we find that the extra matching conditions
are in fact contracting the set of physical models.

(b) To show that the set of physically realistic collapsing
solutions in fðRÞ gravity is nonempty, we explicitly
found an analytic solution of a collapsing star with
anisotropic pressure and heat flux in the interior for the
Starobinski model. The matter in the interior of the star
obeys all physically reasonable energy conditions and

the interior of the star can be smoothly matched to a
Schwarzschild exterior at the boundary. However, we
demonstrated that the extra matching conditions in
these theories strongly restrict the otherwise free
functions of integration in the system. Hence we
may conclude that these solutions are unstable to
any matter perturbation in the stellar interior and
consequently cannot describe a stable astrophysical
collapse scenario.

(a) (b)

(c) (d)

(e) (f)

FIG. 8 (color online). Energy conditions (8)–(13) at different times. (a) ECI. (b) ECII. (c) WEC. (d) DECI. (e) DECII. (f) SEC.
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(c) It is interesting to note that our claim on the fine-
tuning of stellar thermodynamics in fðRÞ gravity is
supported by [30]. This paper investigates stellar
structures for a broader class of scalar tensor theories.
The authors found that the presence of a global
potential for the scalar field (which in the context
of our paper corresponds to a given theory of gravity)
heavily constrains the allowed matter configuration of
the star.

(d) The Openheimer-Snyder-Datt model, a widely
accepted collapse model for black hole formation
via dynamical collapse, is no longer a viable model
in the modified theories. Thus to establish the exist-
ence of a black hole via stellar collapse, we need to
find new physically reasonable solutions. This may not
be a simple task. For example, in the inhomogeneous
solution which we found in this paper, it can be easily
shown that the apparent horizon, which is the boun-
dary of the trapped region in the spacetime, does not
form early enough to shield the central singularity at

r ¼ 0 from the external observers [31] and will
produce a naked singularity as the end state of
gravitational collapse. It is quite interesting that
investigating the cosmic censorship hypothesis [27]
(which states that naked singularities are not possible
in a physically realistic collapse scenario) in modified
theories of gravity may be far more difficult than in GR
as it is well established that inhomogeneity is closely
related to spacetime shear and the Weyl curvature of
the collapsing matter [32,33] which are the geomet-
rical factors that produce a naked singularity.
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