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We investigate a quantum mechanical system on a noncommutative space for which the structure
constant is explicitly time dependent. Any autonomous Hamiltonian on such a space acquires a time-
dependent form in terms of the conventional canonical variables. We employ the Lewis-Riesenfeld
method of invariants to construct explicit analytical solutions for the corresponding time-dependent
Schrödinger equation. The eigenfunctions are expressed in terms of the solutions of variants of the
nonlinear Ermakov-Pinney equation and discussed in detail for various types of background fields. We
utilize the solutions to verify a generalized version of Heisenberg’s uncertainty relations for which the
lower bound becomes a time-dependent function of the background fields. We study the variance for
various states, including standard Glauber coherent states with their squeezed versions and Gaussian
Klauder coherent states resembling a quasiclassical behavior. No type of coherent state appears to be
optimal in general with regard to achieving minimal uncertainties, as this feature turns out to be
background field dependent.
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I. INTRODUCTION

The study of quantum mechanics and quantum field
theories on noncommutative space-time structures is moti-
vated by the fact that it achieves gravitational stability [1] in
almost all currently known approaches to quantum gravity,
such as string theory [2–4] or loop quantum gravity [5,6].
In a quantum mechanical setting, the most commonly
studied version of these space-time structures consists of
replacing the standard set of commutation relations for the
canonical coordinates xμ by noncommutative versions,
such as ½xμ; xv� ¼ iθμν, where θμν is taken to be a constant
antisymmetric tensor. More interesting structures, leading
for instance to minimal length and generalized versions of
Heisenberg’s uncertainty relations, are obtained when θμν is
taken to be a function of the momenta and coordinates, e.g.,
[7–11]. In addition, one may of course also introduce an
explicit time dependence in θμν. Although various effective
Lagrangians for such types of noncommutative field
theories have been derived, e.g., [12], little is known about
explicit quantum theories on such types of spaces, one of
the reasons being that they are far more difficult to solve.
Here our aim is to find explicit solutions for a simple

prototype quantum mechanical model on a time-dependent
background and study the physical consequences such a
space will imply. We focus here on the particular two-
dimensional space with nonvanishing commutators for the
coordinates X, Y and momenta Px; Py,

½X; Y� ¼ iθðtÞ; ½Px; Py� ¼ iΩðtÞ;

½X;Px� ¼ ½Y; Py� ¼ iℏþ i
θðtÞΩðtÞ

4ℏ
; ð1:1Þ

where the noncommutative structure constants θðtÞ and
ΩðtÞ are taken to be real valued functions of time t.
Of course a multitude of other possibilities exists.
The specific form presented here allows for an elegant
representation, as we shall see in detail below. When
considering representations for these phase-space variables
one is inevitably lead to time-dependent Hamiltonians
HðX; Y; Px; PyÞ → HðtÞ.
We will employ here the method of invariants, intro-

duced originally by Lewis and Riesenfeld [13], to solve the
time-dependent Schrödinger equation

iℏ∂tjψni ¼ HðtÞjψni; ð1:2Þ

for the time-dependent or dressed states jψni associated to
the Hamiltonian HðtÞ.
Let us briefly describe the key steps of the method for

future reference. The initial step in that approach consists of
constructing a Hermitian time-dependent invariant IðtÞ
from the evolution equation

dIðtÞ
dt

¼ ∂tIðtÞ þ
1

iℏ
½IðtÞ; HðtÞ� ¼ 0: ð1:3Þ

In the next step, one needs to solve the corresponding
eigenvalue system involving the invariant

IðtÞjϕni ¼ λjϕni; ð1:4Þ
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for real and time-independent eigenvalues λ and for
time-dependent states jϕni. It was shown in [13] that the
states

jψni ¼ eiαðtÞjϕni ð1:5Þ

satisfy the time-dependent Schrödinger equation (1.2)
provided that the real function αðtÞ in (1.5) obeys

dαðtÞ
dt

¼ 1

ℏ
hϕnjiℏ∂t −HðtÞjϕni: ð1:6Þ

For more details on the derivation of these key equations
we refer the reader to [13].
Having obtained the explicit solutions for the wave

functions, one is in the position to compute expectation
values for any desired observable. Of special interest is to
investigate the modified version of Heisenberg’s uncer-
tainty relations resulting from nonvanishing commutation
relations (1.1). Following standard arguments, the uncer-
tainty for the simultaneous measurement of the observables
A and B has to obey the inequality

ΔAΔBjψ ≥
1

2
jhψ j½A;B�jψij; ð1:7Þ

with ΔAj2ψ ¼ hψ jA2jψi − hψ jAjψi2 and similarly for B for
any state jψi. Evidently, for instance the first relation in
(1.1) implies that the uncertainty for the simultaneous
measurement of X and Y is greater than the function of
time jθðtÞj=2, rather than simply being greater than a
constant. Of special interest is to see whether the time-
dependent bound can be saturated by the use of various
types of coherent states in (1.7).
Our manuscript is organized as follows: In Sec. II we

construct the time-dependent invariant IðtÞ for the two-
dimensional harmonic oscillator on the background
described by (1.1). We compute its time-dependent eigen-
functions jϕni, and we determine the phase αðtÞ thereafter
and hence, the eigenstates jψni of HðtÞ. As all solutions are
dependent on the solutions of the nonlinear Ermakov-
Pinney equation, we devote Sec. III to a discussion of its
solutions. In Sec. IV we assemble the solutions from Secs. II
and III to investigate the validity and quality of a generalized
version of Heisenberg’s uncertainty relations. Particular
focus is placed on the study of the uncertainty relations
when computed with regard to standard Glauber coherent
states, including their squeezed versions and also Gaussian
Klauder coherent states. In Sec. V we state our conclusions.

II. THE 2D HARMONIC OSCILLATOR IN A
TIME-DEPENDENT BACKGROUND

The main features of models on time-dependent back-
grounds can be explained by considering simple two-
dimensional models. Therefore, we will examine here as

a prototype a two-dimensional model with a harmonic
oscillator of the form

HðX;Y;Px;PyÞ¼
1

2m
ðP2

xþP2
yÞþ

mω2

2
ðX2þY2Þ; ð2:1Þ

on the noncommutative space (1.1). From the many
possibly representations, we choose here a Hermitian
one obtained from standard Bopp shifts in the conventional
canonical variables x, y, px, and py, with nonvanishing
commutators ½x; px� ¼ ½y; py� ¼ iℏ, as

X ¼ x −
θðtÞ
2ℏ

py; Y ¼ yþ θðtÞ
2ℏ

px;

Px ¼ px þ
ΩðtÞ
2ℏ

y; Py ¼ py −
ΩðtÞ
2ℏ

x: ð2:2Þ

As anticipated, when converting the Hamiltonian in (2.1) to
the standard variables it becomes explicitly time dependent:

HðtÞ ¼ 1

2
aðtÞðp2

x þ p2
yÞ þ

1

2
bðtÞðx2 þ y2Þ

þ cðtÞðpxy − xpyÞ; ð2:3Þ
with coefficients

aðtÞ ¼ 1

m
þmω2

4ℏ2
θ2ðtÞ;

bðtÞ ¼ mω2 þ Ω2ðtÞ
4mℏ2

;

cðtÞ ¼ mω2θðtÞ
2ℏ

þ ΩðtÞ
2ℏm

: ð2:4Þ

We notice that for θðtÞ ¼ 0 we can view this Hamiltonian
with an appropriate identification of the remaining func-
tions as describing a particle with mass m moving in an
axially symmetric electromagnetic field; see Sec. IV in
[13]. It should also be noted that with a redefinition of the
time-dependent coefficient, attempts to solve the eigen-
value problem related to (2.3) can be found in the literature
[14,15]. Unfortunately the solutions provided are partly
incorrect or not useful for our purposes, as we shall be
commenting on below in more detail.
The quantum equations of motion for the canonical

variables associated to the Hamiltonian (2.3) are simply

_x ¼ 1

iℏ
½x;H� ¼ aðtÞpx þ cðtÞy;

_y ¼ 1

iℏ
½y;H� ¼ aðtÞpy − cðtÞx; ð2:5Þ

_px ¼
1

iℏ
½px;H� ¼ −bðtÞxþ cðtÞpy;

_py ¼
1

iℏ
½py;H� ¼ −bðtÞy − cðtÞpx; ð2:6Þ
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where we adopt the usual convention for the time deriva-
tive ∂tf ≕ _f.

A. Construction of time-dependent invariants

A non-Hermitian invariant is constructed right away, by
following the argumentation already provided in [13].
Defining the noncanonical variables

Q ≔ ðxþ iyÞei
R

t cðsÞds and P ≔ ðpx þ ipyÞei
R

t cðsÞds;

ð2:7Þ
satisfying ½Q;P� ¼ 0, we find with (2.5) and (2.6) the same
equations of motion for these variables,

_Q ¼ aðtÞP and _P ¼ −bðtÞQ; ð2:8Þ
as for the harmonic oscillator with a time-dependent mass
term [16]. This is all that matters for the identification of a
formal invariant ~IðtÞ in terms of the variables Q and P,

~IðtÞ ¼ 1

2

�
τ

σ2
Q2 þ

�
σP −

_σ

a
Q

�
2
�
≠ ~I†ðtÞ; ð2:9Þ

since we may simply take the expression from the literature
and adapt the relevant quantities appropriately. Here
σ is a new auxiliary quantity that has to satisfy non-
linear Ermakov-Pinney (EP) [17,18] equations including a
dissipative term

σ̈ −
_a
a
_σ þ abσ ¼ τ

a2

σ3
; ð2:10Þ

with integration constant τ. It is well known that variations
of this equation are ubiquitous in this context of solving
time-dependent Hamiltonian systems; see for instance
Eq. (5) in [19], which reduces exactly to (2.10) for
A → a, B → 0, and C → τ, and [20–24] for variations of
this equation. Note that σ ¼ 0 implies that a ¼ 0, which is
impossible according to (2.4), such that we can divide by σ
without any further concern.
In principle, the fact that ~I in (2.9) is an invariant means

~I~I† or ~I†~I constitute Hermitian invariants. However, since
they will be quartic in the canonical variables and not
directly suitable to an operator approach, to find the
corresponding eigensystems we seek an additional one
of lower order in the canonical variables, having however
Eq. (2.10) in common.
The symmetry of the Hamiltonian suggests that we carry

out a quantum canonical transformation using polar coor-
dinates x ¼ r cos θ, y ¼ r sin θ, which indeed turns out to
be very suitable. The canonical coordinates and momenta
are then r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
, θ ¼ arctanðy=xÞ, and pr ¼

ðxpx þ ypyÞ=r − iℏ=ð2rÞ, pθ ¼ xpy − ypx, such that the
canonical commutation relations are ½r; pr� ¼ ½θ; pθ� ¼ iℏ.
The last term in pr is not essential for the canonical

commutation relations, but its inclusion ensures the
Hermiticity of pr and leads to the convenient identity
p2
x þ p2

y ¼ p2
r þ p2

θ=r
2 − ℏ2=ð4r2Þ, allowing us to convert

the Hamiltonian (2.3) into the form

HðtÞ ¼ 1

2
aðtÞ

�
p2
r þ

p2
θ

r2
−

ℏ2

4r2

�
þ 1

2
bðtÞr2 − cðtÞpθ:

ð2:11Þ

Applying now the Lewis-Riesenfeld method of invari-
ants and constructing a Hermitian time-dependent invariant
IðtÞ by using (1.3), we commence with the standard
assumption that the invariant is of the same order and
form in the canonical variables as the original Hamiltonian.
Similarly as the Hamiltonian, we assume here that also the
invariant does not depend explicitly on θ and take it to be of
the general form

IðtÞ ¼ αðtÞp2
r þ βðtÞr2 þ γðtÞfr; prg þ δðtÞp

2
θ

r2

þ εðtÞpθ

r2
þ ϕðtÞ 1

r2
; ð2:12Þ

with unknown time-dependent coefficients αðtÞ, βðtÞ, γðtÞ,
etc. The substitution of (2.12) into (1.3) then yields the
following constraints on these coefficients:

_α ¼ −2aγ; _β ¼ 2bγ; _γ ¼ bα − aβ; ð2:13Þ

_δp2
θ þ _εpθ þ _ϕ ¼ ℏ2aγ − 2aγp2

θ;

ðδ − αÞp2
θ þ εpθ þ ϕþ αℏ2

4
¼ 0: ð2:14Þ

We observe that the equations in (2.13) take on the same
form as the equations underlying the explicit construction
for the time-dependent harmonic oscillator [16]. They can
be solved by parametrizing αðtÞ ¼ σ2ðtÞ and after one
integration we are led exactly to the nonlinear Ermakov-
Pinney equations (2.10) underlying the solution for our
non-Hermitian invariant ~IðtÞ. The remaining equa-
tions (2.14) are consistently solved by

δ ¼ α; ε ¼ 0; and ϕ ¼ −
αℏ2

4
: ð2:15Þ

Assembling everything, the Hermitian invariant IðtÞ for the
time-dependent Hamiltonian (2.3) then acquires the form

IðtÞ ¼ τ

σ2
r2 þ

�
σpr −

_σ

a
r

�
2

þ σ2p2
θ

r2
−
σ2ℏ2

4r2
; ð2:16Þ

with σðtÞ determined by the Ermakov-Pinney equa-
tion (2.10). As argued already in [13], the arbitrary constant
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τmay be scaled away; thus, from now on we simply set it to
1 for convenience without introducing a new quantity.
Next we solve the eigenvalue equation (1.4) by express-

ing the invariant IðtÞ in terms of time-dependent creation
and annihilation operators

âðtÞ ¼ 1

2
ffiffiffi
ℏ

p
��

σpr −
_σ

a
r

�
− i

�
r
σ
þ σ

r

�
pθ þ

ℏ
2

���
e−iθ;

ð2:17Þ

â†ðtÞ ¼ 1

2
ffiffiffi
ℏ

p eiθ
��

σpr −
_σ

a
r

�
þ i

�
r
σ
þ σ

r

�
pθ þ

ℏ
2

���
;

ð2:18Þ

satisfying ½â; â†� ¼ 1, by means of the identity

ℏ

�
â†âþ 1

2

�
− pθ ¼

1

4
IðtÞ − 1

2
pθ ≕ ÎðtÞ: ð2:19Þ

Clearly ÎðtÞ is also an invariant, where the factor 1=4
simply amounts to a new value for the integration constant
τ, and pθ may be added to IðtÞ since ½HðtÞ; pθ� ¼ 0.

B. Eigensystem for the time-dependent invariant

We can now employ the standard argumentation from
[13] to construct the eigenstates and eigenfunctions for the
invariant ÎðtÞ. Noting first that ½ÎðtÞ; pθ� ¼ 0, one con-
cludes that ÎðtÞ and pθ possess simultaneous eigenvectors,
say jn;li, with

Îjn;li ¼ ℏ

�
nþ 1

2

�
jn;li;

pθjn;li ¼ ℏljn;li;
hn;ljn;li ¼ 1: ð2:20Þ

Computing therefore hn;ljâ†âjn;li ¼ nþ l ≥ 0 implies
that for given n we have l ∈ f−n;…; 0; 1; 2;…g. The
eigenstates of this sequence therefore obey

âjn;−ni ¼ 0;

jn;m − ni ¼ 1ffiffiffiffiffiffi
m!

p ðâ†Þmjn;−ni;

with n;m ∈ N0: ð2:21Þ
For all observables that can be expressed in terms of the
time-dependent creation and annihilation operators â† and
â, we can simply use operator techniques to compute their
expectation values. However, the former is not possible for
our observables X, Y, Px, and Py. We therefore use the
explicit representations in coordinate space pθ ¼ −iℏ∂θ

and pr ¼ −iℏ½∂r þ 1=ð2rÞ� to compute the eigenstates.
Assuming now hr; θjn;li ¼ ψn;lðr; θÞ ¼ φnðrÞeilθ we
have the desired property pθψn;lðr; θÞ ¼ ℏlψn;lðr; θÞ.

For given n, the lowest states are then found from solving
the differential equation âψn;−nðr; θÞ ¼ 0, that is

ie−iθ−iθn

2arσ
ffiffiffi
ℏ

p ½ðaℏnσ2 − ar2 þ ir2σ _σÞφðrÞ− aℏrσ2∂rφðrÞ� ¼ 0:

ð2:22Þ

The solution to (2.22) is then easily found to be

ψn;−nðr; θÞ ¼ λnrne
−r2ða−iσ _σÞ

2aℏσ2 e−iθn; λ2n ¼
1

πn!ðℏσ2Þð1þnÞ :

ð2:23Þ

We have fixed here the constant of integration by demand-
ing that the ground state be normalized. Subsequently we
construct the normalized excited states from the second
relation in (2.21) to

ψn;m−nðr; θÞ ¼ λn
ðiℏ1=2σÞmffiffiffiffiffiffi

m!
p rn−meiθðm−nÞ−a−iσ _σ

2aℏσ2
r2

×U

�
−m; 1 −mþ n;

r2

ℏσ2

�
; ð2:24Þ

with Uða; b; zÞ denoting the confluent hypergeo-
metric function. The orthonormality relationR
2π
0 dθ

R∞
0 drrψ�

n;m−nðr; θÞψn0;m0−n0 ðr; θÞ ¼ δnn0δmm0 is veri-
fied by using the standard properties of the latter function.
It should be noted here that our solution differs from

those found in the literature [14,15]. As was pointed out in
[15], the solutions provided in [14] are incorrect as they
lead to time-dependent eigenvalues and thus contradict the
basic foundations of the Lewis-Riesenfeld theory, i.e.,
Eq. (1.4). Our solution differs also slightly from those in
[15]. Moreover, in [15] the normalization constant was left
undetermined, which is, however, crucial in concrete
computations following below.

C. Eigensystem for the Hamiltonian

The last step in the Lewis-Riesenfeld procedure consists
of computing the phase αðtÞ in (1.5) by solving the
equation

_αn;l ¼ 1

ℏ
hn;ljiℏ∂t −Hjn;li: ð2:25Þ

As already argued in [13], this may be achieved by
constructing a recursive equation for the right-hand side
of (2.25), computing some explicit expectation values,
using the freedom to choose the phase for the vacuum
state and a subsequent integration.
We commence by simply replacing jn;li ¼

â†=
ffiffiffiffiffiffiffiffiffiffiffiffi
nþ l

p jn;l − 1i in (2.25), obtaining
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hn;ljiℏ∂t −Hjn;li
¼ hn;l − 1jiℏ∂t −Hjn;l − 1i

þ 1

nþ l
hn;l − 1j½â; iℏ∂t −H�â†jn;l − 1i: ð2:26Þ

Using next the expression (2.17) for the annihilation
operator and the Hamiltonian in polar coordinates (2.11),
we compute

½â; iℏ∂t −H� ¼ ℏ

�
cðtÞ − aðtÞ

σ2ðtÞ
�
â; ð2:27Þ

upon replacing σ̈ by means of the EP equation in the form
(2.10). Substitution of (2.27) into (2.26) allows for the
computation of the expectation value, thus leading to the
recursive equation

hn;ljiℏ∂t −Hjn;li

¼ hn;l − 1jiℏ∂t −Hjn;l − 1i þ ℏ

�
cðtÞ − aðtÞ

σ2ðtÞ
�
:

ð2:28Þ

We may now iterate this equation until we reach the
expectation values for vacuum state hn;−njiℏ∂t−
Hjn;−ni. As argued in [13], the matrix element
hn;−nj∂tjn;−ni involves an arbitrary constant, which
we conveniently choose to set to hn;−nj∂tjn;−ni ¼
hn;−njHjn;−ni. Therefore, we obtain the expectation
value

hn;ljiℏ∂t −Hjn;li ¼ ðnþ lÞℏ
�
cðtÞ − aðtÞ

σ2ðtÞ
�
; ð2:29Þ

allowing us to compute the phase to

αn;lðtÞ ¼ ðnþ lÞ
Z

t
�
cðsÞ − aðsÞ

σ2ðsÞ
�
ds: ð2:30Þ

Our result for αn;lðtÞ differs from the phase computed in
[15], where the cðsÞ-term is absent.
We have now obtained explicit eigenfunctions for the

Hamiltonian (2.1) for any time-dependent background field
in terms of the solutions of the EP equation. Mostly in the
literature the analysis is abandoned at this stage and the
invariants and wave functions are simply expressed in
terms of the yet-to-be-determined solution to the EP
equation. However, for concrete computations of measur-
able quantities one needs to address the auxiliary problem
and solve the equations explicitly for the time-dependent
functions appearing in the Hamiltonian. Surprisingly little
attention has been paid to this problem in the context
of solving time-dependent Hamiltonian systems and there-
fore we will discuss the solutions of our auxiliary equa-
tion (2.10) in the next subsection.

III. THE ERMAKOV-PINNEY EQUATION

The simplest special solution arises when taking
θðtÞ ¼ const, such that _a ¼ 0 and consequently the dis-
sipative term vanishes. For this case particular solutions
were already found by Pinney [18],

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u21 þ τa2

u22
W2

s
; ð3:1Þ

where u1, u2 are the two linearly independent solutions of
the equation

üþ abðtÞu ¼ 0; ð3:2Þ
and W ¼ u1 _u2 − _u1u2 is the corresponding Wronskian.
When _a ≠ 0 no general solution to (2.10) is known,

although one can construct a variety of explicit solutions
following the procedure proposed in [25,26]. We briefly
outline the method and use it to construct some new
solutions, which we employ later on. We start by consid-
ering the ordinary differential equation of the general form

d2σ
dt2

þ gðσÞ dσ
dt

þ hðσÞ ¼ 0; ð3:3Þ

for which the EP equation can be seen as a special case with
the appropriate choices for gðσÞ and hðσÞ. Introducing the
new quantity ηðσÞ ≔ dσ=dt, Eq. (3.3) is easily converted
into the first order differential equation

η
dη
dσ

þ gðσÞηþ hðσÞ ¼ 0: ð3:4Þ

This implies that after having solved (3.4), a solution to
the original equation (3.3) can be obtained simply from
inverting

R
σ η−1ðsÞds ¼ t. It can be shown by direct

substitution that (3.4) admits the solution

ηðσÞ ¼ λκ
hðσÞ
gðσÞ with λ�κ ¼ −1� ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 4κ
p

2κ
; ð3:5Þ

if the Chiellini integrability condition [27],

d
dσ

�
hðσÞ
gðσÞ

�
¼ κgðσÞ; ð3:6Þ

with κ ∈ R holds. Based on this we may then find exact
analytical solutions for instance by starting with a given
gðσÞ and subsequently computing

ηðσÞ ¼ κλκ

Z
σ
gðsÞds and hðσÞ ¼ κgðσÞ

Z
σ
gðsÞds;

ð3:7Þ
or by starting with a given hðσÞ and subsequently
evaluating
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ηðσÞ ¼ �λκ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2κ

Z
σ
hðsÞds

s

and gðσÞ ¼ hðσÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2κ

R
σ hðsÞdsp : ð3:8Þ

Following this solution procedure means of course that we
are not preselecting our background fields θðtÞ and ΩðtÞ,
but instead we determine them by primarily insisting on the
integrability of the EP equation. Comparing (3.4) with the
EP equation (2.10), we identify

gðσÞ ¼ −
_a
a
¼ −∂t ln a ¼ −

2m2ω2θ _θ

4ℏ2 þm2ω2θ2
; ð3:9Þ

hðσÞ¼abσ−τ
a2

σ3

¼ð4ℏ2þm2ω2θ2Þ½m2ω2ð4ℏ2σ4−τθ2Þ−4ℏ2τþσ4Ω2�
16ℏ4m2σ3

:

ð3:10Þ
The virtue of this method is that it leads to exact solutions.
Nonetheless, one might also be interested in concrete types
of background fields for which the integrability condition
(3.6) does not hold, in which case we will resort to a
numerical analysis.

A. Nondissipative solutions

For the special case θðtÞ ¼ const, i.e., _a ¼ 0, we can
simply preselect any explicit form for ΩðtÞ, and thereby
bðtÞ, to construct the solutions from the general formula
(3.1). For instance for aðtÞ ¼ α and bðtÞ ¼ βeγt,
α; β; γ ∈ R, i.e., θðtÞ ¼ �2ℏ=mω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mα − 1

p
and ΩðtÞ ¼

�2ℏ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mβeγt −m2ω2

p
, we solve (3.2) in terms of Bessel

functions and subsequently obtain the particular solution by
means of (3.1)

σðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2α2τ

γ2c21
Y2
0

�
2

ffiffiffiffiffiffi
αβ

p
eγt=2

γ

�
þ c21J

2
0

�
2

ffiffiffiffiffiffi
αβ

p
eγt=2

γ

�s
;

ð3:11Þ
with integration constant c1 ∈ R and J0, Y0 denoting the
Bessel functions of the first and second kinds, respectively.
Similarly different solutions are easily constructed for any
other explicit choice of bðtÞ for which (3.2) admits a
solution.

B. Exponentially decaying solutions

Let us now switch on the dissipative term and take _a ≠ 0
by making the additional assumption gðσÞ ¼ γ ∈ R. Then
the second equation in (3.7) together with the explicit form
of hðσÞ from (2.10) yields the consistency equation

κγ2σ ¼ abσ − τ
a2

σ3
; ð3:12Þ

from which we deduce that ab ¼ const and a ∼ σ2. Since
we may find aðtÞ simply from − _a=a ¼ γ, all other
functions follow from the proportionality relations. We
find exponentially decaying and increasing background
fields θðtÞ ¼ �2ℏ=mω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mαe−γt − 1

p
and ΩðtÞ ¼

�2ℏ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mβeγt −m2ω2

p
, corresponding to exponentially

decaying solutions of the EP equation

aðtÞ ¼ αe−γt; bðtÞ ¼ βeγt; and σðtÞ ¼ μe−γt=2;

ð3:13Þ

with α, β, γ ∈ R, together with the constraint μ4 ¼
τα2=ðαβ − κγ2Þ resulting from (3.12). The Chiellini con-
stant κ is not fixed at this point, but simply determined by
substituting the expressions from (3.13) into (2.10), leading
to κ ¼ 1=4. A special case of our solution corresponds to
the one reported in [19], where the EP equation of the type
(2.10) appears as an auxiliary equation in the solution
procedure for the Caldirola-Kanai Hamiltonian [28,29].
Notice that for our background fields the requirement

that θðtÞ;ΩðtÞ ∈ R implies that this solution leads to cutoff
times tc after which the background field needs to be
vanishing, that is, t < tc ¼ lnðmαÞ=γ for α; γ > 0. It should
also be noted that the constraint on the constants is quite
severe and one might change the overall qualitative
behavior of the solution from a decaying solution to an
oscillatory behavior when relaxing the integrability
condition.

C. Rationally decaying solutions

Next we assume gðσÞ ¼ γσn with n ∈ N. The consis-
tency equation then reads

κγ2
σ2nþ1

nþ 1
¼ abσ − τ

a2

σ3
; ð3:14Þ

which implies that ab ∼ σ2n and a ∼ σnþ2. Determining
aðtÞ simply from − _a=a ¼ γσn, we compute all other
functions from the proportionality relations. We find
rational solutions to the background fields and the EP
equation

aðtÞ ¼ αðnþ2
n Þnþ2

n

ðγt − μÞðnþ2Þ=n ;

bðtÞ ¼ βð n
nþ2

Þ2n−1
ðγt − μÞ1−2

n

;

and σðtÞ ¼ ðnþ2
n Þ1n

ðγt − μÞ1=n ; ð3:15Þ
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with constraint γ2 ¼ ðnþ 1Þðαβ − τα2Þ=κ. The Chiellini
constant is subsequently fixed to κ ¼ ðnþ 1Þ=ðnþ 2Þ2.
To maintain real solutions requires here a cutoff time
t < tc ¼ μ=γ for γ; μ > 0.

D. Non-Chiellini integrable solutions with
preselected background

As pointed out, the solutions constructed in the
previous subsections are special in the sense that the
Chiellini integrability has been superimposed onto them.
Nonetheless, given a specific background we may always
find numerical solutions. In Fig. 1 we depict some solutions
for exponential and sinusoidal background fields which we
shall employ below in our solutions for the time-dependent
wave functions.

IV. THE GENERALIZED UNCERTAINTY
RELATIONS

A. The generalized uncertainty relations for eigenstates

We have assembled now all the necessary ingredients for
the explicit computation of expectation values. We are
therefore in the position to test the generalized uncertainty
relations (1.7). Having obtained explicit expressions for the
wave functions in coordinate space, we simply use the
representation in polar coordinates x ¼ r cos θ, y ¼ r sin θ,
px ¼ −iℏ cos θ∂r þ iℏ=r sin θ∂θ, py ¼ −iℏ sin θ∂r − iℏ=
r cos θ∂θ and the corresponding relations for the operators
in (2.2) to compute the relevant matrix elements. We
commence with the verification of the standard uncertainty
relations for the auxiliary variables x; y,px,py. By evaluating
the explicit integrals we obtain their matrix elements

hn;m − njxjn;m0 − ni ¼ i

ffiffiffi
ℏ

p

2
σð

ffiffiffiffiffi
m0p

eiα0;1δm0;mþ1 −
ffiffiffiffi
m

p
e−iα0;1δm;m0þ1Þ; ð4:1Þ

hn;m − njyjn;m0 − ni ¼ −
ffiffiffi
ℏ

p

2
σð

ffiffiffiffiffi
m0p

eiα0;1δm0;mþ1 þ
ffiffiffiffi
m

p
e−iα0;1δm;m0þ1Þ; ð4:2Þ

hn;m − njpxjn;m0 − ni ¼
ffiffiffi
ℏ

p

2
½χþ

ffiffiffiffiffi
m0p

eiα0;1δm0;mþ1 þ χ−
ffiffiffiffi
m

p
e−iα0;1δm;m0þ1�; ð4:3Þ

hn;m − njpyjn;m0 − ni ¼ i

ffiffiffi
ℏ

p

2
½χþ

ffiffiffiffiffi
m0p

eiα0;1δm0;mþ1 − χ−
ffiffiffiffi
m

p
e−iα0;1δm;m0þ1�; ð4:4Þ

and

hn;m − njx2; y2jn;m0 − ni ¼ ℏ
2
ðnþmþ 1Þσ2δm;m0 ∓ ℏσ2

2
ffiffiffi
2

p μðm;m0Þeiα0;2δm0;mþ2 ∓ ℏσ2

2
ffiffiffi
2

p μðm0; mÞe−iα0;2δm;m0þ2; ð4:5Þ

(a) (b)

FIG. 1 (color online). (a) Exactly integrable solution (3.13) (red, dashed) versus a non-Chiellini integrable solution for preselected
exponential backgrounds θðtÞ ¼ αe−γt and ΩðtÞ ¼ βeγt (black, solid). (b) Non-Chiellini integrable solution for preselected sinusoidal
background θðtÞ ¼ α sinðγtÞ and ΩðtÞ ¼ β sinðγt=2Þ. In both panels, the constants are α ¼ 5, β ¼ 2, γ ¼ 2, m ¼ ℏ ¼ τ ¼ ω ¼ 1,
κ ¼ 1=4, and μ ¼ ffiffiffiffiffiffiffiffi

5=3
p

.
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hn;m − njp2
x; p2

yjn;m0 − ni ¼ ℏ
2
ðnþmþ 1Þχþχ−δm;m0 � ℏχ2þ

2
ffiffiffi
2

p μðm;m0Þeiα0;2δm0;mþ2 �
ℏχ2−
2

ffiffiffi
2

p μðm0; mÞe−iα0;2δm;m0þ2; ð4:6Þ

hn;m − njxpyjn;m0 − ni ¼ ℏ
2
ðm − nÞδm;m0 −

ℏσχþ
2

ffiffiffi
2

p μðm;m0Þeiα0;2δm0;mþ2 −
ℏσχ−
2

ffiffiffi
2

p μðm0; mÞe−iα0;2δm;m0þ2; ð4:7Þ

hn;m − njypxjn;m0 − ni ¼ ℏ
2
ðn −mÞδm;m0 −

ℏσχþ
2

ffiffiffi
2

p μðm;m0Þeiα0;2δm0;mþ2 −
ℏσχ−
2

ffiffiffi
2

p μðm0; mÞe−iα0;2δm;m0þ2; ð4:8Þ

where we abbreviated χ� ≔ 1
σ � i _σ

a and μðx; yÞ ≔ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðx
2
þ 1Þðy − 1Þp

.
Using the above expressions, we compute the relevant

variances to

Δxj2ψn;m−n
¼ Δyj2ψn;m−n

¼ ℏ
2
ðnþmþ 1Þσ2; ð4:9Þ

Δpxj2ψn;m−n
¼Δpyj2ψn;m−n

¼ℏ
2
ðnþmþ1Þ

�
1

σ2
þ _σ2

a2

�
: ð4:10Þ

It is then easy to verify that the standard uncertainty
relations indeed hold:

ΔxΔpxjψn;m−n
¼ ΔyΔpyjψn;m−n

¼ ℏ
2
ðnþmþ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ σ2 _σ2

a2

s
≥
ℏ
2
; ð4:11Þ

ΔxΔyjψn;m−n
¼ ℏ

2
ðnþmþ 1Þσ2 ≥ 0; ð4:12Þ

ΔpxΔpyjψn;m−n
¼ ℏ

2
ðnþmþ 1Þ

�
1

σ2
þ _σ2

a2

�
≥ 0: ð4:13Þ

However, for our model (2.1) these quantities are mere
auxiliary objects. Therefore, we need to compute the
corresponding relations for the noncommutative quantities
in our original system (2.1) on the time-dependent
background. In the light of (1.1) and (1.7), they should
produce a generalized version of the uncertainty relations
with a time-dependent lower bound. We find hn;m−
njOjn;m − ni ¼ 0 for O ¼ X; Y, Px, Py, not reported
here, and afterwards

ΔXj2ψn;m−n
¼ ΔYj2ψn;m−n

¼ Δxj2ψn;m−n
þ n −m

2
θðtÞ

þ nþmþ 1

8ℏ

�
1

σ2
þ _σ2

a2

�
θ2ðtÞ; ð4:14Þ

ΔPxj2ψn;m−n
¼ ΔPyj2ψn;m−n

¼ Δpxj2ψn;m−n
þ n−m

2
ΩðtÞþ nþmþ 1

8ℏ
σ2Ω2ðtÞ;

ð4:15Þ

from which we deduce the generalized version of the
uncertainty relations

ΔXΔYjψn;m−n
¼ n −m

2
θðtÞ þ nþmþ 1

8ℏ

×

�
4ℏσ2 þ

�
1

σ2
þ _σ2

a2

�
θ2ðtÞ

�
≥
θðtÞ
2

;

ð4:16Þ

ΔPxΔPyjψn;m−n
¼ ℏ

2
ðnþmþ 1Þ

�
σ2Ω2ðtÞ

4
þ
�
1

σ2
þ _σ2

a2

��

þ n −m
2

ΩðtÞ ≥ ΩðtÞ
2

; ð4:17Þ

ΔXΔPxjψn;m−n
¼ ΔYΔPyjψn;m−n

≥
ℏ
2
þ θðtÞΩðtÞ

8ℏ
: ð4:18Þ

To prove the validity of these inequalities we note for
instance that the smallest value for the left-hand side of
(4.16) results from ΔXΔYjψ0;0

. Therefore, demonstrating
that the quantity f½θðtÞ� ≔ ΔXΔYjψ0;0

− θðtÞ=2 is always
non-negative will establish (4.16). Noting for this purpose
that f½0� ¼ ℏσ2=2, limθðtÞ→∞f½θðtÞ� → ∞ and that the local
minimum at θminðtÞ ¼ 2ℏσ2a2=ða2 þ σ2 _σ2Þ acquires the
value f½θminðtÞ� ¼ ℏσ4 _σ2=ð2a2 þ 2σ2 _σ2Þ ≥ 0 guarantees
that f½θðtÞ� ≥ 0 and therefore the validity of (4.16). One
may argue similarly for (4.17) and (4.18), which we will
not present here.
In order to display the deviation from the lower bound

we depict in Figs. 2–4 the uncertainty for backgrounds
corresponding to the solutions of the EP equation displayed
in Fig. 1. As expected from our analytical expressions in
(4.16) and previous results, the smallest uncertainties are
observed for the smaller quantum numbers.

B. The generalized uncertainty relation
for coherent states

As is well known coherent states are convenient to use in
a number of fields of quantum theory, especially in
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(a) (b)

FIG. 3 (color online). Uncertainties ΔPxΔPyjψn;m−n
versus the generalized lower bound (a) for background fields θðtÞ ¼ αe−γt and

ΩðtÞ ¼ βeγt and (b) for background fields θðtÞ ¼ α sinðγtÞ and ΩðtÞ ¼ β sinðγt=2Þ. In both panels, the constants are α ¼ 5, β ¼ 2,
γ ¼ 2, m ¼ ℏ ¼ τ ¼ ω ¼ 1, κ ¼ 1=4, and μ ¼ ffiffiffiffiffiffiffiffi

5=3
p

.

(a) (b)

FIG. 2 (color online). Uncertainties ΔXΔYjψn;m−n
versus the generalized lower bound (a) for background fields θðtÞ ¼ αe−γt and

ΩðtÞ ¼ βeγt and (b) for background fields θðtÞ ¼ α sinðγtÞ and ΩðtÞ ¼ β sinðγt=2Þ. In both panels, the constants are α ¼ 5, β ¼ 2,
γ ¼ 2, m ¼ ℏ ¼ τ ¼ ω ¼ 1, κ ¼ 1=4, and μ ¼ ffiffiffiffiffiffiffiffi

5=3
p

.

(a) (b)

FIG. 4 (color online). Uncertainties ΔXΔPxjψn;m−n
versus the generalized lower bound (a) for background fields θðtÞ ¼ αe−γt and

ΩðtÞ ¼ βeγt and (b) for background fields θðtÞ ¼ α sinðγtÞ and ΩðtÞ ¼ β sinðγt=2Þ. In both panels, the constants are α ¼ 5, β ¼ 2,
γ ¼ 2, m ¼ ℏ ¼ τ ¼ ω ¼ 1, κ ¼ 1=4, and μ ¼ ffiffiffiffiffiffiffiffi

5=3
p

.
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quantum optics, because of the fact that by definition they
constitute the transition from a classical to a quantum
mechanical formulation of a given system. Starting with
Schrödinger’s investigations [30], the first systematic and
formalwaywas developed byGlauber [31], who also coined
the term coherent states. Since some of the properties are
very specific to the harmonic oscillator, several types and
generalizations of coherent states have been proposed
thereafter to accommodate different types of situations;
see for instance [32] for a review on the developments up
to 2001. For instance, so-called Klauder [33,34] and
Gazeau-Klauder [35] coherent states, for which the quantum
classical correspondence was recently investigated in
[36,37], are extremely useful.
Even though the model under consideration here is of

course not the harmonic oscillator, we still have the
invariant IðtÞ expressed in terms of the time-dependent
creation and annihilation operators. This enables us to
employ techniques used for the construction of Glauber
coherent states [31]. Defining therefore the coherent states
by means of the time-dependent displacement operator
Dðα; tÞ as

jα; ti ≔ Dðα; tÞj0; 0i; with Dðα; tÞ ≔ eαâ
†ðtÞ−α�âðtÞ;

ð4:19Þ

it is immediately verified that they constitute eigenstates of
the annihilation operator âðtÞ, i.e., âðtÞjα; ti ¼ αjα; ti.
Using the matrix elements for the expectation values with
respect to the eigenfunction (4.1)–(4.8), we compute the
expectation values with respect to the Glauber coherent
states,

hα; tjxjα; ti ¼ −
ffiffiffi
ℏ

p
σImα;

hα; tjx2jα; ti ¼ ℏσ2
�
1

2
þ Im2α

�
; ð4:20Þ

hα; tjyjα; ti ¼ −
ffiffiffi
ℏ

p
σReα;

hα; tjy2jα; ti ¼ ℏσ2
�
1

2
þ Re2α

�
;

hα; tjpxjα; ti ¼
ffiffiffi
ℏ

p �
Reα
σ

−
_σImα

a

�
;

hα; tjp2
xjα; ti ¼

ℏ
2

�
1

σ2
þ _σ2

a2

�
þ hα; tjpxjα; ti2;

hα; tjpyjα; ti ¼ −
ffiffiffi
ℏ

p �
Imα

σ
þ _σReα

a

�
;

hα; tjp2
yjα; ti ¼

ℏ
2

�
1

σ2
þ _σ2

a2

�
þ hα; tjpyjα; ti2; ð4:21Þ

such that

Δxj2jα;ti ¼ Δyj2jα;ti ¼
ℏσ2

2
;

Δpxj2jα;ti ¼ Δpyj2jα;ti ¼
ℏ
2

�
1

σ2
þ _σ2

a2

�
: ð4:22Þ

Notice that the uncertainties are the same as those com-
puted with respect to the ground state ψ0;0. Likewise we
compute

ΔXj2jα;ti ¼ ΔYj2jα;ti ¼ ΔXj2ψ0;0
;

ΔPxj2jα;ti ¼ ΔPyj2jα;ti ¼ ΔPxj2ψ0;0
; ð4:23Þ

such that the uncertainty relations are identical to those in
(4.16)–(4.18), with ψ0;0 replaced by jα; ti. The crucial
difference is of course that ψ0;0 is annihilated by aðtÞ,
whereas jα; ti constitutes an eigenstate for âðtÞ.
Having creation and annihilation operators at our dis-

posal, we can use standard techniques from quantum optics
to construct squeezed states [38] and improve on the
uncertainties obtained so far. Employing for this purpose
the so-called squeezing operator Sðβ; tÞ by defining

jα; β; ti ≔ Sðβ; tÞDðα; tÞj0; 0i;
with Sðβ; tÞ ≔ e

β
2
½â2ðtÞ−â†2ðtÞ�; ð4:24Þ

we may compute the relevant matrix elements for these
states, not reported here. Using those we may subsequently
deduce the uncertainties for the auxiliary variables to

Δxj2jα;β;ti ¼ Δyj2jα;−β;ti ¼
ℏ
2
σ2eβ cosh β; ð4:25Þ

Δpxj2jα;β;ti ¼ Δpyj2jα;−β;ti ¼
ℏ
2

�
1

σ2
e−β þ _σ2

a2
eβ
�
cosh β;

ð4:26Þ

and for our noncommutative variables to

ΔXj2jα;β;ti ¼ ΔYj2jα;−β;ti
¼ ℏ

2

�
σ2eβ þ θ2ðtÞ

4ℏ2

�
1

σ2
eβ þ _σ2

a2
e−β

��
cosh β

þ θðtÞ
4

ð1 − e2βÞ;
ΔPxj2jα;β;ti ¼ ΔPyj2jα;−β;ti

¼ ℏ
2

�
1

σ2
e−β þ _σ2

a2
eβ þΩ2ðtÞ

4ℏ2
σ2e−β

�
cosh β

þ ΩðtÞ
4

ð1 − e2βÞ:

As expected these expressions reduce to (4.22) and (4.23)
when β → 0.
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We can now use the freedom to choose the function
βðtÞ to minimize the uncertainties further. For instance,
it is easily found that the uncertainty ΔxΔpxjjα;β;ti is

minimal for βðtÞ¼βminðtÞ¼1=2ln½ða
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2þ8σ2 _σ2

p
−a2Þ=

ð4σ2 _σ2Þ�. Thus, taking this value we should find
ΔxΔpxjjα;βmin;ti <ΔxΔpxjjα;ti, which is indeed confirmed
in Fig. 5, where we observe that squeezing leads to a
considerable reduction in the uncertainties.
The minimization for the uncertainties involving our

noncommutative variables is less obvious. Due to the
complexity of the expressions we cannot perform this task
for generic βðtÞ, but only for specific instances in time.
For instance, we find numerically the minimum for
ΔXΔPxjjα;β;t¼4i at β ¼ −1.88203. Indeed, as seen in
Fig. 6(a), at t ¼ 4 this value leads to a reduction in the
uncertainties when compared to ΔXΔPxjjα;t¼4i.

However, for different values of time, the uncertainties
have grown considerably. It appears that the squeezing
works well only for momentum-coordinate uncertainties,
as for instance ΔXΔYjjα;β;ti is always minimal at
βðtÞ ¼ 0, such that the squeezing does not lead to any
reduction in these uncertainties. Figure 6(b) exhibits these
findings.
Let us next compare our findings with the uncertainties

computed with respect to Gaussian Klauder coherent states
defined as [39–41]

jGKi ¼ jn;m0;ϕ0; si

≔
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

Nðm0Þ
p X∞

m¼0

exp

�
−
ðm −m0Þ2

4s2

�
eimϕ0 jn;m − ni;

ð4:27Þ

(a) (b)

FIG. 5 (color online). Uncertainties with respect to Glauber coherent states versus squeezed Glauber coherent states and Gaussian
Klauder coherent states for the auxiliary variables x; px, ΔxΔpxjjα;ti versus ΔxΔpxjjα;β;ti versus ΔxΔpxjjGKi (a) for background fields
θðtÞ ¼ αe−γt and ΩðtÞ ¼ βeγt and (b) for background fields θðtÞ ¼ α sinðγtÞ and ΩðtÞ ¼ β sinðγt=2Þ. In both panels, the constants are
α ¼ 5, β ¼ 2, γ ¼ 2, m ¼ ℏ ¼ τ ¼ ω ¼ 1, κ ¼ 1=4, and μ ¼ ffiffiffiffiffiffiffiffi

5=3
p

.

(a) (b)

FIG. 6 (color online). Uncertainties with respect to Glauber coherent states versus squeezed Glauber coherent states for the
noncommutative variables X; Y; Px for background fields θðtÞ ¼ α sinðγtÞ and ΩðtÞ ¼ β sinðγt=2Þ. In both panels, the constants are
α ¼ 5, β ¼ 2, γ ¼ 2, m ¼ ℏ ¼ τ ¼ ω ¼ 1, κ ¼ 1=4, and μ ¼ ffiffiffiffiffiffiffiffi

5=3
p

.
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with normalization factor Nðm0Þ ≔
P∞

m¼0 exp ½−ðm −m0Þ2=ð2s2Þ�, initial phase factor ϕ0, and Gaussian standard
deviation s. Using the matrix elements (4.1)–(4.8) we readily compute the expectation values with respect to these states:

hGKjxjGKi ¼ −
ffiffiffi
ℏ

p

Nðm0Þ
σ sinðϕ0 þ α01ÞS1ðm0Þ; ð4:28Þ

hGKjyjGKi ¼ −
ffiffiffi
ℏ

p

Nðm0Þ
σ cosðϕ0 þ α01ÞS1ðm0Þ; ð4:29Þ

hGKjpxjGKi ¼
ffiffiffi
ℏ

p

Nðm0Þ
�
1

σ
cosðϕ0 þ α01Þ −

_σ

a
sinðϕ0 þ α01Þ

�
S1ðm0Þ; ð4:30Þ

hGKjpyjGKi ¼ −
ffiffiffi
ℏ

p

Nðm0Þ
�
1

σ
sinðϕ0 þ α01Þ þ

_σ

a
cosðϕ0 þ α01Þ

�
S1ðm0Þ; ð4:31Þ

and

hGKjx2; y2jGKi ¼ ℏσ2

2Nðm0Þ
½S2ðnþ 1; m0Þ ∓

ffiffiffi
2

p
cosð2ϕ0 þ α02ÞS3ðm0Þ�; ð4:32Þ

hGKjp2
x;p2

yjGKi ¼
ℏ

2Nðm0Þ
��

1

σ2
þ _σ2

a2

�
S2ðnþ 1;m0Þ�

ffiffiffi
2

p ��
1

σ2
−
_σ2

a2

�
cosð2ϕ0 þ α02Þ− 2

_σ

aσ
sinð2ϕ0 þ α02Þ

�
S3ðm0Þ

�
;

ð4:33Þ

hGKjxpy; ypxjGKi ¼ ℏ
2Nðm0Þ

� ffiffiffi
2

p �
_σσ

a
sinð2ϕ0 þ α02Þ − cosð2ϕ0 þ α02Þ

�
S3ðm0Þ � S2ð−n;m0Þ

�
: ð4:34Þ

We abbreviated Gðm;m0Þ ≔ exp ½−ðm −m0Þ2=ð4s2Þ� and
the sums

S1ðyÞ ≔
X∞
k¼0

ffiffiffiffiffiffiffiffiffiffiffi
kþ 1

p
Gðk; yÞGðkþ 1; yÞ; ð4:35Þ

S2ðx; yÞ ≔
X∞
k¼0

ðkþ xÞG2ðk; yÞ; ð4:36Þ

S3ðyÞ ≔
X∞
k¼0

μðk; kþ 2ÞGðk; yÞGðkþ 2; yÞ: ð4:37Þ

One could make some approximations here for the sums by
replacing them with Gaussian integrals, as for instance in
[40,42]. However, these sums converge very fast with only
some of the initial terms taken into account and therefore it
suffices here for our purposes to present numerical values.
When the Gaussian enveloping function is very sharp, we
notice that the main contribution simply results from the
center of the Gaussian. For instance, for s ¼ 0.1, we
compute S1ð0Þ < 10−10, S2ðn; 0Þ ¼ n, S3ð0Þ < 10−10,
and Nð0Þ ¼ 1, such that

Δoj2ψ0;0
¼ Δoj2jα;ti ¼ Δoj2jGKi for o ¼ x; y; px; py:

ð4:38Þ
This behavior is clearly observable in Fig. 5. For a

broader Gaussian enveloping function, other modes start
to contribute. For instance, for s ¼ 0.5 we compute
S1ð0Þ ¼ 0.3774, S2ð0; 0Þ ¼ 0.1360, S2ð1; 0Þ ¼ 1.2717,
S3ð0Þ ¼ 0.0184, and Nð0Þ ¼ 1.1357 and for s ¼ 0.75
we find S1ð0Þ ¼ 0.7998, S2ð0; 0Þ ¼ 1.9092, S2ð1; 0Þ ¼
0.4693, S3ð0Þ ¼ 0.1897, and Nð0Þ ¼ 1.4400. For these
values the uncertainties for the auxiliary variables are
depicted in Fig. 5 for two different types of background
fields. We observe that depending on the instance of time
the uncertainties might be lowered or increased.
When comparing with the uncertainties for the squeezed

coherent states, it appears that the optimal minimum is
dependent on the type of background field. We observe in
Fig. 5 that for sinusoidal background fields the squeezed
Glauber coherent states lead to minimal uncertainties which
cannot be undercut when using Gaussian Klauder coherent
states instead, whereas for exponential backgrounds
Gaussian Klauder coherent states allow for a further
minimization.
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V. CONCLUSIONS

We have formulated and investigated a prototype model
on a time-dependent background. For an explicit repre-
sentation of the underlying noncommutative algebra, the
Hamiltonian naturally acquires a time-dependent form.
Using the Lewis-Riesenfeld method of invariants, we
constructed the time-dependent invariants together with
their eigensystem. Following the standard procedure
allowed us to compute the eigenfunctions for the original
Hamiltonian. As is common in the context of the invariant
method, all solutions are expressed in terms the solutions of
the nonlinear Ermakov-Pinney equation and variations
thereof. In general this auxiliary problem is not dealt with
in this context and all expressions are left as still dependent
on an unknown function, σðtÞ in our case. In order to make
the solutions more explicit and to allow also for numerical
studies thereafter, we have included here a detailed dis-
cussion of some solutions.
Our explicit solutions then allow for an analysis of the

generalized uncertainty relations for which the lower
bounds become time-dependent functions. Since our invar-
iants are expressed in terms of time-dependent creation and
annihilation operators, standard Glauber coherent states
were constructed by means of the displacement operator in
a straightforward manner. We found that the uncertainties
for these states are identical to those of the ground state
annihilated by aðtÞ. By constructing the so-called squeez-
ing operator we demonstrated that these uncertainties can
be further minimized for momentum-coordinate uncertain-
ties, where the absolute lower bound was only reached for
certain instances in time. For coordinate-coordinate

uncertainties, the minimal uncertainties were already
reached by the Glauber coherent states and squeezing does
not lead to any further improvement. We compared these
findings with an analysis for so-called Gaussian Klauder
coherent states. A major difference towards the foregoing
computations is that the phase αn;lðtÞ becomes a relevant
quantity. While in the computation of expectation values
for eigenstates the phase always cancels due to the sum in
jGKi, it leads here to interferences. We observe that also for
the Gaussian Klauder coherent states the uncertainties
resulting from the computations for the ground state and
the nonsqueezed Glauber coherent state can be undercut.
The answer to the question of which type of the coherent
states is optimal appears to be background field dependent.
The time-dependent lowest bounds are well respected for
all investigated scenarios.
There remains a multitude of challenges. First of all, it

would be highly desirable to investigate models on different
types of time-dependent backgrounds rather than (1.1),
possibly even those leading to minimal length. As always
the study of different types of models will complete and
enrich the understanding. The interesting question in all
these different types of scenarios is whether they still allow
for explicit solvability, which is one of the main virtues of
our investigations, or if one needs to resort to additional
approximations.
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