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The possibility to construct inflationary models for the renormalization-group (RG) improved potentials
corresponding to scalar electrodynamics and to SU(2) and SU(5) models is investigated. In all cases, the
tree-level potential, which corresponds to the cosmological constant in the Einstein frame, is seen to be
nonsuitable for inflation. Rather than adding the Hilbert-Einstein term to the action, quantum corrections to
the potential, coming from the RG equation, are included. The inflationary scenario is analyzed with
unstable de Sitter solutions that correspond to positive values of the coupling function, only. We show that,
for the finite SU(2) model and SU(2) gauge model, there are no de Sitter solutions suitable for inflation,
unless exit from it occurs according to some weird, nonstandard scenarios. Inflation is realized both for
scalar electrodynamics and for SU(5) RG-improved potentials, and the corresponding values of the
coupling function are seen to be positive. It is shown that, for quite reasonable values of the parameters, the
inflationary models obtained both from scalar electrodynamics and from the SU(5) RG-improved
potentials are in good agreement with the most recent observational data coming from the Planck

2013 and BICEP2 collaborations.
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I. INTRODUCTION

Precise astronomical data coming from recent obser-
vational missions [1-3] (see also [4]) support the exist-
ence of an extremely short and intense stage of accelerated
expansion in the early universe (inflation), as well as of
a long-lasting accelerated phase at present. These results
set important restrictions on existing inflationary models
[5-20] (see also [21-23] and references therein).

Moreover, these observational data give strong support
to the fact that the postinflationary universe was nearly
homogeneous, isotropic, and spatially flat, at very large
distances or short times. Presently, the evolution of our
Universe can be well described in terms of a spatially flat
Friedmann-Lemaitre-Robertson-Walker background, and
cosmological perturbations and models with scalar fields
are very well suited to describe an evolution of this kind. It
has also been proven that some modified gravity models, as
f(R) gravity, can in a sense be considered as generic
general relativity models with additional scalar fields. This
is the reason why scalar fields play such an essential role in
modern cosmology, in particular, in the current description
of the evolution of the Universe at a very early epoch
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[5-11]. Many inflationary models involve scalar fields
nonminimally coupled to the Ricci curvature scalar
[12,14-20]. Note, however, that predictions of the simplest
inflationary models with minimal couplings to scalar fields,
as the A¢p* model, are actually in sharp disagreement with the
Planck 2013 results [2], and that some of these inflationary
scenarios had to be improved by adding a tiny nonminimal
coupling of the inflaton field to gravity [19,20]. The
conditions for a model to be consistent with the BICEP2
result have been examined in many papers already (see, e.g.,
[24-33]). And it is, in fact, possible to reconstruct models
with minimally coupled scalar fields that realize an inflation
compatible with the Planck and the BICEP2 results, by
using, e.g., the algorithm proposed in [34].

Also a very crucial issue is the possibility to describe
inflation using particle physics models [35,36], as the
Standard Model of elementary particles [17,18] or some
other quantum field theory, as supersymmetric models [37]
or nonsupersymmetric grand unified theories (GUTs)
[10,38]. This is a fundamental step toward the long-standing
and very ambitious program of the unification of physics at
all scales.

As a very important step toward this goal, one should not
forget to take into account quantum effects of quantum field
theories in curved space-time at the inflationary epoch (see
[39] for a general introduction). It is well understood that
quantum GUTs in curved space-time lead also to curvature
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induced phase transitions (for a complete description, see
[39—41]). Note moreover that curvature induced phase
transitions, as discussed in [39,40], may be described with
better accuracy when one considers this phenomena within
renormalization-group (RG) improved effective potentials
(see [41]). Indeed, in this case, the summation of all leading
logs is done and the corresponding RG-improved effective
potential goes far beyond the one-loop approximation.
These phase transitions are very important in early-universe
cosmology. Specifically, some models of the inflationary
universe [9,23] are based on first-order phase transitions,
which took place during the reheating phase of the
Universe in the grand unification epoch [10]. Also, curved
space-time effects in the grand unification epoch cannot be
dismissed, but simply considered to be negligible. Quite on
the contrary, all these theories should be treated as quantum
field theories in curved space-time, as discussed some time
ago in [41]. Indeed, it must be properly emphasized that the
recent results by the BICEP2 Collaboration [3] point
clearly toward the GUT scale, which is a very impressive
hint of a probably deep connection of inflation with the
GUT epoch and a validation of the arguments in Ref. [41].
As was emphasized there, GUTs corresponding to the very
early universe ought to be treated as quantum field theories
in curved space-time, in a proper and rigorous way.
Anyhow, in the lack of a clear prescription for how to
combine quantum field theory at nonzero temperature and
quantum field theory in curved space-time (external tem-
perature and external gravitational field), it is natural to start
by addressing just the second part of this problem. The
renormalization-group improved effective potential for an
arbitrary renormalizable massless gauge theory in curved
space-time was discussed in [41], working in the linear
curvature approximation, because at least these linear
curvature terms ought to be taken into account in the
discussion of the effective potential corresponding to GUTs
in the early universe. Quantum corrections with account to
gravity effects are predicted to be even more important in a
chaotic inflationary model [21]. By generalizing the
Coleman-Weinberg approach corresponding to the case of
the effective potential in flat space-time, the authors found, at
a first instance, the explicit form of the RG improved
effective potential in curved space for scalar electrodynam-
ics, the finite SU(2) model, the SU(2) gauge model, and the
SU(5) GUT model. The possibility of corresponding
curvature-induced phase transitions was also investigated.
By carrying out one-loop calculations in a weak gravi-
tational field it was shown [42,43] that it is necessary to
introduce an induced gravity term proportional to R¢? in
order to renormalize the theory of a scalar field in curved
space-time. Here, we consider different RG-improved effec-
tive potentials for the tree-level potential Ap* — Ep*R. These
potentials were proposed in [41,44]. In the Einstein frame the
tree-level potential corresponds to the cosmological constant
and is not suitable for the construction of an inflationary
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scenario. We will check the possibility to construct infla-
tionary models using the RG-improved effective potentials
and consider inflation based on an unstable de Sitter
solution. We will start by checking the existence of such
solutions. Then we will examine if the inflationary model
with this potential is compatible with the Planck 2013 and
BICEP2 data. To do that, we will use conformal trans-
formation and the slow-roll parameters in the Einstein frame.

The paper is organized as follows. In Sec. II, we consider
the action with a nonminimally coupled scalar field and the
corresponding equations of motion. In Sec. III we summa-
rize the standard theory of Lyapunov’s stability, as applied to
de Sitter solutions in these models. In Sec. I'V, we discuss the
general procedure for the construction of RG-improved
effective potentials. The existence and stability of de
Sitter solutions in scalar electrodynamics is considered in
Sec. V. Sections VI and VII are devoted to RG-improved
effective potentials for the cases of the finite SU(2) and of
the SU(2) models, respectively. Unstable de Sitter solutions
for the SU(5) model are dealt with in Sec. VIIL In Sec. IX,
cosmological parameters from the inflationary models con-
sidered are extracted, and it is shown that, for some specific
models, they are compatible with the Planck 13 and BICEP2
results. The last section is devoted to conclusions.

II. MODELS WITH NONMINIMALLY
COUPLED SCALAR FIELDS

Different models with the Ricci scalar multiplied by a
function of the scalar field are being intensively studied in
cosmology [12,16,17,45-54] (see also [55-57] and refer-
ences therein). Generically, these models are described by

S = / d4x\/—_g{U(¢)R —%g””rzﬁ,,,cb,y -Vig)|. (1)

where U(¢) and V(¢) are differentiable functions of the
scalar field ¢, g is the determinant of the metric tensor g,,,,
and R is the scalar curvature. We will use the signature
(=, +,+, +) throughout.

Let us consider a spatially flat Friedmann-Lemaitre-
Robertson-Walker universe with metric interval

ds* = —dr* + a*(1)(dx} + dx3 + dx3).
The Friedmann equations, derived by variation of action

(1), have the following form [52]:

. 1.
6UH? + 6UH = §¢>2 +Vv. (2

. . .. 1-
2U(2H + 3H?) + 4UH + 20U = —Eqsz +V, (3)

where the Hubble parameter is the logarithmic derivative of
the scale factor: H = a/a and differentiation with respect
to time ¢ is denoted by a dot. Variation of the action (1) with
respect to ¢ yields
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d+3Hp+V =6(H+2H)U', (4)
where the prime denotes derivation with respect to the
argument of the functions, that is, the scalar field ¢.
Combining Egs. (2) and (3), we obtain

4UH = 2UH +2U + ¢* = 0. (5)

From Egs. (2)—(5), one can get the following system of first
order differential equations [54]:

éﬁ =V,
C_ _apgy  LOU"+ y? —4V]U' 420V
v R 2307 + U) ’
. 2+ 1, 2U'
B==Gur o) Taor o™
6U/2 U/vl
- H? . 6
sveyot * 23U 4+ U) (6)

Note that Eq. (2) is not a consequence of the system (6).
On the other hand, if Eq. (2) is satisfied for an initial time,
then it follows from the system (6) that Eq. (2) is also
satisfied for any value of time. In other words, it turns out
that the system (6) is equivalent to the initial system of
equations, (2)—(4), if and only if one chooses the initial data
so that Eq. (2) is fulfilled.

III. LYAPUNOYV STABILITY OF THE DE
SITTER SOLUTIONS

We are here considering the possibility of inflationary
scenarios in models with RG-improved potentials. Our first
goal, therefore, is to find unstable de Sitter solutions. The
standard way to explore an inflationary model is to
formulate it in the Einstein frame. This is actually very
convenient when U is a simple function, for instance, for
induced gravity models [46]. However, in our case the
Jordan frame is more suitable to perform an analysis of the
stability of the de Sitter solutions, because the potential can
be expressed in terms of elementary functions in this frame
only. We will consider de Sitter solutions that correspond to
a constant ¢ only. In other words, we consider a fixed point
of Egs. (6), with the additional condition (2).

Substituting constant values for H = H; and ¢ = ¢
into Egs. (2) and (4), we get

V(g
= ot )
V(¢y) = 12HU' (¢y). (8)

Therefore, we come up with the following simple
condition:
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Uldy)  V'y)

Uldy) ~ Vidy) ®)

We consider the stability with respect to homogeneous
isotropic perturbations. In other words, we use (6) and
analyze the Lyapunov stability of the de Sitter solutions
derived from it. For this we apply Lyapunov’s theorem
[58,59] and study the corresponding linearized system. We
expand around the fixed point, in the way

(t) = ¢y + edy (1),
w(t) = ew (1),
H(r) = H, + eH,\ (1), (10)

where ¢ is a small parameter. Substituting (10) into (6), to
first order in & we obtain the following linear system [60]:

¢1 =Y,
VLU, + 2V, U" — U, V"
. i f~r frr
_ —3H .
Vi 3(UL2 + U, $1 = 3Hpy
AR 2H U,

= +
TR (VAN T(VACEN TS
12H (U})?

S ———— (11)
3+ U

The following matrix, A, corresponds to (11),

0 1 0
! ! " "
V/U/-»-ZV/U/—UfV‘[ 3y 0
A=l 3UHY, f (12)
1y 1y ! 1\2
uvi-viuy 2Hfo _ 12Hf(Uf)
2(3(U})*+Uy) 3(UL)*+U; 3(UL)+Uy

Its associated characteristic equation,

12H,U), )

det(A — A1) = <3(U})TU,«

- - VUL 2V, UL U, V)
x</1(3HfH)— RS A f)

3(U’f)2 + Uy
=0, (13)

has the following roots:

~ 3H; 9H}
A, =— +
* 2 \/4 +

- 12HU;
3(Uy)*+ Uy

ViU, +2V, U} = UV
33Uy + Uy

(14)

Az = —
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Lyapunov’s theorem [58,59] states that in order to prove
the stability of a fixed point of a nonlinear system it is
sufficient to prove the stability of this fixed point for the
corresponding linearized system. Stability of the linear
system relies, on its turn, on the real parts of the roots 4; of
the characteristic equation (13), which must all be negative.
If at least one of them is positive, then the fixed point is
unstable.

To describe inflation we are interested in finding
unstable de Sitter solutions with H; > 0. Note that the
perturbation H,(z) is not independent, because it is con-
nected with ¢, and y, due to Eq. (2). So, the de Sitter
solution is stable if the real parts of A, < 0. The real part of
A_ is always negative; hence, just A, defines the stability.

Introducing

17 " " Q(U_/f>/ — (V_})/

= ViU, +2V, U = UV “\7, W)
B 3(UL)+U AR ’
e @) e

we can then formulate a sufficient stability condition as
follows: the de Sitter solution (H; > 0) is stable at Ky < 0
and unstable at K, > 0.

IV. RENORMALIZATION-GROUP IMPROVED
EFFECTIVE POTENTIAL

The renormalization-group improved effective potential
for an arbitrary renormalizable massless gauge theory in
curved space-time was discussed in detail in [41]. In this
section we will just remind the reader of the basic steps for
the construction of the renormalization-group improved
effective potential.

The tree-level potential reads as follows [41]:

WO () = aig* — béP*R = Vo — UpR,  (16)

where a and b are positive constants and & is the conformal
coupling. The potential W(©) includes both the potential V,
and the function U, multiplied by the scalar curvature.

As is known (see [39,41]), the renormalization-group
equation for the effective potential in curved space-time has
the form

9

8¢>W: 0, (17)

0 0 0 0

<ﬂ6ﬂ+ﬂga§+5aa+ﬁ585 re
where «a is the gauge parameter and g is the set of all
coupling constants of the theory (Higgs, gauge, and
Yukawa ones). The standard flat-space renormalization-
group equation [62,63] is modified in curved space-time;
for instance, it has an additional term related with the
contribution from the nonminimal coupling constant £ and
the corresponding f; function [64].
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It is natural to split W into two parts, namely

W=V -UR= afl(pv¢’ﬂ)¢4 - bfz(p,¢,ﬂ)¢2R,
(18)

where f; and f, are some unknown functions, and
p =17, a,&}. Actually, in [41] the authors imposed the
additional restriction that not only does the function W
satisfy (17) but also the functions V and U satisfy it,
separately.

It is easy to see [52] that for

Vo($) = CUG(¢). (19)

where C is a constant and the model considered has a de
Sitter solution, with an arbitrary constant ¢ = ¢;.
Therefore, for the tree-level potential W<0), de Sitter
solutions do exist, for any value of ¢ ¢, and the correspond-

ing Hubble parameter reads

aA

“obelr

H Of == :l:
One aim of this paper is to consider de Sitter solutions in
cosmological models with different RG-improved W
potentials and the possibility of inflationary scenarios in
such models, too.

V. EFFECTIVE POTENTIALS FOR SCALAR
ELECTRODYNAMICS

Let us now consider the de Sitter solution for the case
of the following effective potentials for scalar electrody-
namics:

/“54 364 754 752 flﬁz 62 ]52 752
V= K ,[)zln_z’ U—TWLWIHT’
(20)

where e is a constant. Using
2
<1 +— )
328 + 2 1n;/;—2

C oreoeme)
8/17r2+9e41n%§ ’

and the condition (9), we get

2
U ¢
vi_2
Voo

8 2
¢ = tuexp [9—;(18(325—1)] (21)

From (7), we obtain
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2,2 2 242
u-e 167 e
Hj == —exp { (1868 —,1)] =7 (22
For the de Sitter solutions obtained, we then get
V. 3628 — 4 U _36625—/1452 (23)
A Y A I 3602 T

Let us now consider the stability of the above solutions.
Using

U// V// 8188
20 ) lo=p, =\ ) lo=g, = o
(@) 100 (7) bo - et~

and (15), we get that K; > 0 at Uy > 0. This means that
A, > 0 and that the corresponding de Sitter solution is
unstable. Thus, we get in the end an unstable de Sitter
solution with Hy > 0 and U; > 0. Note that the variation
of the Hubble parameter is considered as a function of the
variations of both the scalar field and its first derivative.

VI. FINITE SU(2) MODELS

A number of GUTSs turn out to yield finite models. Some
of them, as for instance the finite supersymmetric SU(5)
GUT [65], may lead to reasonable phenomenological
consequences and deserve attention as realistic models
of grand unification. Asymptotically finite GUTs, which
are generalizations of the concept of a finite theory, have
been proposed in [66]. In these theories, the zero charge
problem is absent, both in the UV and in the IR limits,
since in these limits the effective coupling constants tend to
some constant values (corresponding to finite phases).

When we consider flat space-time, there is not much
sense in discussing quantum corrections to the classical
potential, in a massless finite or massless asymptotically
finite GUT, since they are either simply absent or highly
suppressed asymptotically. However, when we study finite
theories in curved space-time [67] (for a general review, see
[39]) the situation changes drastically [44].

In the following, we will study de Sitter solutions in
cosmological models with renormalization-group improved
effective SU(2) potentials for the two finite theories in
curved space-time constructed in [44]. In those models the
coupling parameter corresponding to the nonminimal scalar-
gravitational interaction £ depends on 9, where 8§ =
1In(p?/4?).

The general structure of the one-loop effective coupling
constant £(9) for “finite” theories in curved space-time has
been obtained in [67]

{0 =g+ (q0-g)emicro. ey

with constant £, and C # 0.

PHYSICAL REVIEW D 90, 084001 (2014)

In particular, for the SU(2) finite gauge model [68], it
was obtained that C = 6 or C = 28 [67]. Hence, in such
theories we have |£(9)| — oo (nonasymptotical conformal
invariance) in the UV limit (+ - o). In the models that
have C < 0 one gets £(9) — 1/6 (asymptotical conformal
invariance).

The tree-level potential is taken to be of the form (16)
and the RG-improved potential reads as follows (see [44]
for details):

W = al(9)f*(9)¢* — bEO)*(9)$*R.  (25)

Notice that this potential is actually obtained in the linear
curvature approximation, which is good enough for GUTs
corresponding to the curved space-time corresponding to
the early universe [44].

The function f(9) is defined as [44]

£(9) = exp [— ["arra.am|. e

Therefore, the form of the RG-improved effective potential
is determined by the ¥ function of the scalar field in (26). At
the one-loop level, 7(89) ~ a;¢*(9) + a,h*(9), where a,
and a, are constants, with values that depend on the choice
of gauge and on other features of the theory. As h> = k,¢°,
it turns out that 7(9) ~ (a; +kyay)g*(9). Through the
choice of the gauge parameter, one can obtain different
values for 7. To reach as much “finiteness” in our theory as
possible, we can choose a gauge such that the one-loop 7
function is equal to zero. This choice is always possible;
moreover, in supersymmetric finite theories it does appear
in a very natural way (especially if the superfield technique
is used).

After having done all this, it turns out that the RG-
improved effective potential (in the linear-curvature and
leading-log approximation) for a finite theory in curved
space-time is given by

W = axy ¢ — bE(9) 2R, (27)

Straightforward calculations show that a de Sitter solution
exists when C = 0 only. It corresponds to £(9) = &, and it
is not interesting, because it leads to W% (¢), given
by (16).

Another possibility is to keep the gauge arbitrary; then
we cannot demand that 7 vanishes. We get in this case

W = ax 2 F4(9)p* — bEO) AR (28)

and 7 = C,¢%, C, being some constant that depends on the
gauge parameter and on the features of the theory,
f(9) = exp(—=C,4*9), and &(9) is given by (24).

From

V=aqg@ff @)t U=0b59)0)4*  (29)
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where

- =i (o))"

we get

V= akng <¢>—4C1g2¢4’
H
7 1 1 ¢ Cq ¢ -2C, ¢
v=fer(amg) () ) () e @

and

U _20-C) | (650- Neg (&)

v ¢ [1+ (65 - (&) )p

V' 4(1-Cig

7_%. (31)

Now, we use the de Sitter condition (9) and conclude that
this equation has as its only solution C = 0.

Summing up, in both cases there is no de Sitter solution
for a nonconstant £. In the case of a constant £, we get a
model with a power-law potential V and power-law
coupling function U, which satisfies the condition (19).
Thus, if the signs of the constants are such that

kig? ‘/J’2 G
0= 452( > >0, (32)

then de Sitter solutions do exist for any constant value of
gbf. Note that, after conformal transformation to the
Einstein frame, one gets a model with a minimally coupled
scalar field, whose potential is a constant. Namely, in the
case C =0 we get £ = &, and, using (29),

ak g
B 4adp

See formula (50) in Sec. IX. Note that the above property
holds in the presence of quantum corrections as we take
them into account via the effective potential.

VII. THE SU(2) GAUGE MODEL

Let us consider the cosmological model with

Lk )2)
24 :
v=PL00 et @)

where we use k3 = (12 —5k;/3 — 8k,)/a* to simplify
notations. k; and a are constant. Also,

PHYSICAL REVIEW D 90, 084001 (2014)

~2 9 ~ 5 2
i f(19) _ @(6—4k2)/a2 92(19) g

O=1 , , .
T @y B

By straightforward calculation, we obtain

Vi_4 . [H6-4k) 1146
) { a }édrf)’
g’_g+{2(6—4k2>_ (6¢ = 1)ks }1@
U ¢ a2 Ok +6:6—1) Odp’

Then, using (9) and the conditions G) #—6+1,4 @ 7& 0,
we get

~k

0; = (2k; — 1)(6& —1). (34)

Therefore, there is no de Sitter solution for £ = 1/6. For
other values of &, we get

O, = [(6 - 1)(2k; — 1)]'/%  and

by = e (S (6= D)2k = 1) - 1)) 69

Note that éf #0; hence k3 # 1/2. Using (7), we
calculate the Hubble parameter H for the de Sitter solution

7k (2ks — 1) 0l
g2 =250 2@ 36
f 24k, i (36)
In [69] the authors show that asymptotically free models
exist only when f2(89)~ ¢g*(9), which corresponds to
a*> = 4k, — 6. For this choice of the parameter a2, we

obtain

g k1¢f
Vi=", 0
d)f &k diks
U +(6:-1)0) = —~L— .
=10 I+ (66 - 165 6(2k; — 1)07

Note that k3 = —2 — 5k /(3(4k, — 6)) = =2 — Skl/(3212).
Therefore,

2
gki(1—2k3) 5= 3
H} = —=—————2¢10
! 24k, 979;

_ 5ki(2k, +3a%) "
= a0k 1 oa) ¢ Yl = Dieg - NI,
(37)

From here, we get that H; > 0 provided either —3a%/2 <
< —6a*/5 that is equivalent to 0 < k3 < 1/2 or 0 <
k| < oo that corresponds to —co < k3 < O.
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Let us consider the stability of the de Sitter solutions in
the case V; > 0 and Uy > 0. In this case, the sign of K
coincides with the sign of

U/ v\’
2( >|¢¢f <>|¢¢f

The de Sitter solutions exist only for k3 < 1/2. The
additional condition Uy > 0 gives k3 < 0. We can see that
K; < Oatany k3 < 0. Thus, for this model with U, > 0 we
have stable de Sitter solutions only.

a‘g*(2ks — 1)
S12r0;

VIII. THE SU(5) RG-IMPROVED POTENTIAL

Now we study the RG-improved potential for the SU(5)
GUT [70]. In flat space this theory has been used for the
discussion of inflationary cosmology [9,21]. We assume
that the breaking SU(5) — SU(3) x SU(2) x U(1) has
taken place.

The RG-improved effective potential has the following
form:

U35 (,_ & 404
51—2<9 _JW>¢JCS’

_El _l 2-9/8| 12 2
TR A PO

§°/16

(38)

where © =1 +53g27§9, fs=
constant.

To get the de Sitter solution, we use Eq. (9), which for the
model at hand reads

, and ¢ is a nonzero

(90 —5)(6 — 1) +40°%

o = 39
OO - 1)(O78 +6£-1) (39)
Thus, © # 0 and © # 1. Note that
y 597
O =""+0. 40
3nd # (40)

It is easy to see that, for £ = 1/6, there is no de Sitter
solution. For other values of &, the de Sitter solutions are
defined by

Using (40), we get

9375¢°(5 — )0 5¢3(90; — 5)

PHYSICAL REVIEW D 90, 084001 (2014)
sa
22503607 (O, - 1)

H? = . .
128(67° + 62 — 1)

ds —

(41)

The number @ s aroot of Eq. (39), which can be rewritten
as follows:

%9/8
1 ZG)f

"6 3(90,-5) “2)

We can eliminate & and express H2g as
225422 (O, — 1)0,°/*

v _ (-98,+5+46,%) )
! (96,-5)

25 .
— 25l

=250 (90, - 5)¢% . (43)

_ Therefore, the Hubble parameter H is real if and only if
O > 5/9, and this is possible for £ < 1/6 only. Using (42),
we get

3375

_ 2 -1\ 14 )0/4

15 (1 2 o8
Ur=—|(-——" 420"
/ 4(6 3(9@,~—5)>¢f f

We see that Uy <0 at 5/9<® <1 and Uy >0 for
1< ®f Let us consider the stablhty of the de Sitter
solutions here obtained. For 1 < @ Us>0 and
V>0, so the denominator of K calculated by (15) is
positive, and thus the sign of K coincides with the sign of
its numerator:

Uy’ A%
() = (3o =

Note that we used the conditions ®f # 1. We come to the
conclusion that Ky >0, for 1 < ®f <35, and Ky <0,
for 5 < ®f

(44)

(5-6,)(6))?

5@, -6 P

Kf:

32[1280 47 (O, — 1)(90, — 5) + 30375260 22(O; — 1) + £ (90, - 5))"]

(46)

Let us now return to the interval 5/9 < @f < 1. In this interval the numerator of K is positive. The sign of K is

determined by the sign of its denominator
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FIG. 1 (color online).
of g.

The function S(©) for different values

S = 1280 4740, — 1)(98, - 5)

\o|©[\,

+30375 (lg(afn ©, - 1)+ (98, - 5)>2. (47)

The denominator of K (the function S) is plotted in Fig. 1
for different values of g. One can see that the sign of this
denominator depends on the value of éf. So, for U ;< 0
unstable de Sitter solutions can exist.

IX. INFLATIONARY MODEL CONSISTENT WITH
OBSERVATIONAL RESULTS

A. Parameters of an inflationary model

Our goal is to construct an inflationary model using the
RG-improved potentials and to examine if the inflationary
model with this potential is compatible with the Planck 13
and BICEP2 data.

Much of the formalism developed for calculating the
parameters of inflation, for example, the primordial spectral
index ng, assume general relativity models with minimally
coupled scalar fields. The standard way to use this
formalism is to perform a conformal transformation and
to consider the model in the Einstein frame (see, for
example, Ref. [18]). It has been shown [46] that in the
case of quasi—de Sitter expansion there is no difference
between spectral indexes calculated either in the Jordan
frame directly or in the Einstein frame after conformal
transformation.

Let us make the conformal transformation of the metric

uw = 2K2U(¢)gﬂw

where quantities in the new frame are marked with a tilde,
and the quantity k* = 8zM 7, where M, is the Planck
mass. We also introduce a new scalar field ¢, such that

dp U307 VU +307
ﬁz—\/;u - / U g, (48)

PHYSICAL REVIEW D 90, 084001 (2014)

We thus get a model for a minimally coupled scalar field,
described by the following action:

gﬂ(pﬂ(py+vE( ) ’ (49)

o il
where

V(g(e)

Vel?) = 2oy

(50)

Inflationary universe models are based upon the possibility
of a slow evolution of some scalar field ¢ in the potential
V(g). The slow-roll approximation, which neglects the
most slowly changing terms in the equations of motion, is
used. To calculate parameters of inflation that can be tested
via observations, we use the slow-roll approximation
parameters.

As known [13,71] (see also [34,46]), the slow-roll
parameters €, 1, and ¢ are connected with the potential
in the Einstein frame as follows [72]:

ezi(vg@(m)z 1 VE, @)

22\ Vele) ) TR Ve(e)

s L VE@)VE,(9)

&= 4 VE(€0)2 (51)

Note that the prime denotes the derivative with respect
to the argument of the functions, that is ¢, so
Vi, (0) = dvE( ) We add the additional subscript »
denote derlvatlves with respect to ¢. During inflation, each
of these parameters should remain to be less than one.

It is suitable to calculate the slow-roll parameters as
functions of the initial scalar field ¢. It is easy to see [18]

that
b (2(5)

w-A[EE) B

where the prime denotes a new derivative with respect to ¢.
We get

to

1 (V/ )2 1 Y V/ Q/
€(¢):27K2V]2§Q’ n(d)):KZVEQ[V - 2EQ}
U+ 30"
where Q = 72—:2 2 (53)

Similar calculations yield
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4
VEk

FIG. 2 (color online). The potential V(o) multiplied by x* in
the scalar electrodynamics model. In the picture 4 = 18¢2£. This
means that 6, = 1. The parameter values are e = 10, & = 10 (red
dashed line) and e = 10, £ = 5 (blue solid line). Note that the
potential Vg with such choice of 1 depends on the combination
&/e? only.

§2 — V;Z |: " __ 3V%Q/ _ ViEQ// + V%(Q/)Z

CEVi P 20 20 T @ ] oY

The number of e-foldings of a slow-roll inflation is given
by the following integral [18]:

o [Y VE((Z))’cf— > 7| Ve J
n) =2 [ | Glan == | |viload
_r ’ <d_gf)i (55)
V2 Jpou \dgp ,/6((;5)’

where ¢4 is the value of the field at the end of inflation,
defined by € = 1. The number of e-foldings must be
matched with the appropriate normalization of the data set
and the cosmic history, a typical value being 50 < N, < 65.

The tensor-to-scalar ratio r, the scalar spectral index of
the primordial curvature fluctuations n, and the associated

PHYSICAL REVIEW D 90, 084001 (2014)

4
VEk

0,209
0,154
0,104
0,054

0 T T T 1

0 1 2 3 4 5

FIG. 3 (color online). The potential V(®) multiplied by x* in
the SU(5) model at £ = 0.04, g = 0.15 (blue dashed line) and at
£ =0.045, g = 0.2 (red solid line).

running of the spectral index aj, are given, to very good
approximation, by

r = 16¢, ng — 1 = —6e + 27,
_ dng _ 2 2
a == 16en — 24e* — 2¢°. (56)

Planck 2013 temperature anisotropy measurements [2]
combined with the WMAP large-angle polarization constrain
the scalar spectral index to n, = 0.9603 4 0.0073. Our goal
is to check the possibility to get a value of n, in the models
investigated here. We describe the inflationary dynamics for
two considered models that have unstable de Sitter solutions
with Uy > 0. Observe that the existence of an unstable de
Sitter solution may not be a necessary condition for inflation.
Stable de Sitter solutions may be the basis for eternal
inflation. From another side, stable de Sitter solutions may
appear to be true inflationary solutions subject to the
condition that the exit from inflation occurs due to some

TABLE 1. Parameter values for the scalar electrodynamics TABLE II. Parameter values for the SU(5) inflationary
inflationary scenario. scenario.
e Cena (€=1) N, ON UD r 8 ¢ g N, éend(e = 1) éN un r A

0.962 0.013 0.0013
10 0.02415237908 55 0.21544 0.965 0.011 0.0011

10 0.02415237908 60 0.23023 0.967 0.009 0.0009
5 10 0.02415237908 65 0.24485 0.969 0.008 0.0008
10 10 0.0004788703192 50 0.007189 0.967 0.028 0.0036
10 10 0.0004788703192 55 0.007974 0.965 0.024 0.0032
10 10 0.0004788703192 60 0.008848 0.967 0.022 0.0026

10 10 0.0004788703192 65 0.009756 0.974 0.019 0.0025

¢
5 10 0.02415237908 50 0.20044
5
5

0.04 0.15 50 1.000868906 1.0121
0.04 0.15 55 1.000868906 1.0126
0.04 0.15 60 1.000868906 1.0132
0.04 0.15 65 1.000868906 1.0137
0.045 0.2 50 1.001564816 1.02152 0.958 0.066 0.00699
0.045 0.2 55 1.001564816 1.02252 0.960 0.0595 0.00638
0.045 0.2 60 1.001564816 1.023475 0.963 0.054 0.00579
0.045 0.2 65 1.001564816 1.024388 0.965 0.0495 0.00548

0.963 0.070 0.00731
0.965 0.063 0.00643
0.968 0.058 0.00660
0.969 0.0535 0.00540
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other scenario. We do not consider such inflationary scenar-
ios that can be suitable for the SU(2) model, in this paper.

Note that for the SU(5) model, the de Sitter solutions
obtained exist for Uy < 0 as well. In this case one cannot
use the conformal transformation to formulate the model
in the Einstein frame. Also, stability conditions can be
violated [48]. The possibility to develop the inflationary

PHYSICAL REVIEW D 90, 084001 (2014)

scenario without pathologies in this case demands a more
detailed analysis, which will be carried out in future works.

B. Scalar electrodynamics

For scalar electrodynamics, the functions V and U are
given by (20); therefore,

_ 167%(87%4 + 9¢* In(c?))
2

V - ’
P 3k (326n% + €2 In(6?))

(57)

_ 6e*In (62)? + 4[3¢* + 87%(1 + 128)]e? In(c?) + 6e* + 38472 ¢ + 10247*E(1 + 6¢) sg
Q= K*p’e?[327%E + e In(o?))? ' (58)
where we use the dimensionless quantity 6 = ¢p/u. Note that the slow-roll parameters ¢ and # do not depend on the
dimensionless combination ku. We choose the parameters so that U > 0, which means 1 < 36¢%&. Note that the de Sitter
solutions correspond to the condition Vi (¢;) = 0. Solutions are unstable; so, in this point the potential Vi has a maximum.
In Fig. 2 we see that the potential is very flat near the maximum and decreases more rapidly than ¢, when it tends to zero.

In our calculations, we put 1 = 18¢%&, which gives ¢r = tu (6y = £1). At the de Sitter point ¢, the value of the
RG-improved potential coincides with the value of the tree-level one. We consider positive values for ¢ and for the
parameters in the action. The corresponding inflationary parameters are listed in Table I.

One can see that, for the values of the parameters e and £ presented in Table I, the corresponding values of n, and r are in
good agreement with the observational data [2,4]. The potential V(o) with these values of parameters is presented in Fig. 2.

C. The SU(5) model
In the case of a SU(5) RG-improved potential,
13542(0 — 1)0°/*

Vi = / , 59
B30 4 66— 1)2 (59)

0 4078 + 6 — 1) + 225 (15408 + 16720/ + 6£ - 1))?

5(@9/8 + 65 _ 1)2K2¢2 (60)

For the SU(5) RG-improved potential (38), the function ¢(¢) cannot be written in closed form. Because of this reason,
we write the slow-roll parameters as functions of the Jordan-frame scalar field ¢. The slow-roll parameter ¢ and the number
of e-foldings read as follows:

125¢* (4078 —5(6& — 1) +90(6£ — 1))*

€ = = = = = = s
28874(0 — 120 [4(0”® + 6¢ — 1) + 112, (15¢°0/% + 167(0%/F + 6£ - 1)7)]

and

o g v % 9% ’
v 36 [or (O DOM® 62— 1)+ 5 (0T 4 166 +6c-1))) (61)
©T125 s, H(OF + 66— 1)((90 - 5)(6¢ — 1) + 46¥) '

Note that the slow-roll parameters and N, depend on the dimensionless function 0.

The potential Vg for £ = 0.04 and £ = 0.045 is plotted in Fig. 3. The corresponding inflationary parameters are listed
in Table II.

The resulting joint BICEP2 + Planck 2013 analysis yields that the upper limit of the tensor-to-scalar ratio is r < 0.11,
a slight improvement relative to the Planck analysis alone, which gives r < 0.13 (95% C.L.) [4]. We do see that the
inflationary parameters of the model considered are in very good agreement with the observational data.
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X. CONCLUSIONS

In this paper we have considered the possibility to
construct inflationary models for the renormalization-group
improved potentials corresponding to scalar electrodynam-
ics and to the SU(2) and SU(5) models. In all cases, the
tree-level potential is A¢* — £¢*R, which corresponds to
the cosmological constant in the Einstein frame, and is in
no case suitable for inflation. The standard way to get an
inflationary model is to add the Hilbert-Einstein term to the
action [17,18]. Actually we did not add this term here, but
included instead the quantum corrections to the potential
coming from to the RG equation. We then analyzed the
corresponding inflationary scenario with unstable de Sitter
solutions only. This means that the corresponding potential
in the Einstein frame should have a maximum. We have
found that, for some reasonable values of the parameters,
this is indeed the case, both for scalar electrodynamics and
for the SU(5) model, and that the corresponding values of
the coupling function are indeed positive, Uy > 0. For the
finite SU(2) model de Sitter solutions exist, if it corre-
sponds to the model with a minimally coupled scalar field
and a cosmological constant; thus, this case is not suitable
for inflation. In the SU(2) gauge model there exist stable de
Sitter solutions for U, > 0 only. Note also that a stable de
Sitter solution may appear to be a true inflationary solution,
but only under the condition that the exit from inflation

PHYSICAL REVIEW D 90, 084001 (2014)

occurs according to some other particular scenarios; but we
did not consider such inflationary scenarios in this paper.

In the inflationary models, for both scalar electrody-
namics and the SU(5) RG-improved potentials, we have
found that these models are in good agreement with the
most recent observational data [2,4] provided some rea-
sonable values are taken for the parameters.

Our study indicates that inflation could well be caused by
quantum effects of the scalar sector of some convenient
GUT theory. We believe this is quite a remarkable result.
In this respect, it would be of interest to investigate the
possibility of inflation in GUTSs with other gauge groups,
as the exceptional E8 group, or GUTs that proceed from
the string framework. From another side, adding a RG-
improved effective potential to the classical GR action may
lead to a qualitative change of the inflationary dynamics
that occur in such models. This issue will be discussed
elsewhere.
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