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The possibility to construct inflationary models for the renormalization-group (RG) improved potentials
corresponding to scalar electrodynamics and to SUð2Þ and SUð5Þ models is investigated. In all cases, the
tree-level potential, which corresponds to the cosmological constant in the Einstein frame, is seen to be
nonsuitable for inflation. Rather than adding the Hilbert-Einstein term to the action, quantum corrections to
the potential, coming from the RG equation, are included. The inflationary scenario is analyzed with
unstable de Sitter solutions that correspond to positive values of the coupling function, only. We show that,
for the finite SUð2Þ model and SUð2Þ gauge model, there are no de Sitter solutions suitable for inflation,
unless exit from it occurs according to some weird, nonstandard scenarios. Inflation is realized both for
scalar electrodynamics and for SUð5Þ RG-improved potentials, and the corresponding values of the
coupling function are seen to be positive. It is shown that, for quite reasonable values of the parameters, the
inflationary models obtained both from scalar electrodynamics and from the SUð5Þ RG-improved
potentials are in good agreement with the most recent observational data coming from the Planck
2013 and BICEP2 collaborations.
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I. INTRODUCTION

Precise astronomical data coming from recent obser-
vational missions [1–3] (see also [4]) support the exist-
ence of an extremely short and intense stage of accelerated
expansion in the early universe (inflation), as well as of
a long-lasting accelerated phase at present. These results
set important restrictions on existing inflationary models
[5–20] (see also [21–23] and references therein).
Moreover, these observational data give strong support

to the fact that the postinflationary universe was nearly
homogeneous, isotropic, and spatially flat, at very large
distances or short times. Presently, the evolution of our
Universe can be well described in terms of a spatially flat
Friedmann-Lemaître-Robertson-Walker background, and
cosmological perturbations and models with scalar fields
are very well suited to describe an evolution of this kind. It
has also been proven that some modified gravity models, as
fðRÞ gravity, can in a sense be considered as generic
general relativity models with additional scalar fields. This
is the reason why scalar fields play such an essential role in
modern cosmology, in particular, in the current description
of the evolution of the Universe at a very early epoch

[5–11]. Many inflationary models involve scalar fields
nonminimally coupled to the Ricci curvature scalar
[12,14–20]. Note, however, that predictions of the simplest
inflationary models with minimal couplings to scalar fields,
as the λϕ4 model, are actually in sharp disagreement with the
Planck 2013 results [2], and that some of these inflationary
scenarios had to be improved by adding a tiny nonminimal
coupling of the inflaton field to gravity [19,20]. The
conditions for a model to be consistent with the BICEP2
result have been examined in many papers already (see, e.g.,
[24–33]). And it is, in fact, possible to reconstruct models
with minimally coupled scalar fields that realize an inflation
compatible with the Planck and the BICEP2 results, by
using, e.g., the algorithm proposed in [34].
Also a very crucial issue is the possibility to describe

inflation using particle physics models [35,36], as the
Standard Model of elementary particles [17,18] or some
other quantum field theory, as supersymmetric models [37]
or nonsupersymmetric grand unified theories (GUTs)
[10,38]. This is a fundamental step toward the long-standing
and very ambitious program of the unification of physics at
all scales.
As a very important step toward this goal, one should not

forget to take into account quantum effects of quantum field
theories in curved space-time at the inflationary epoch (see
[39] for a general introduction). It is well understood that
quantum GUTs in curved space-time lead also to curvature
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induced phase transitions (for a complete description, see
[39–41]). Note moreover that curvature induced phase
transitions, as discussed in [39,40], may be described with
better accuracy when one considers this phenomena within
renormalization-group (RG) improved effective potentials
(see [41]). Indeed, in this case, the summation of all leading
logs is done and the corresponding RG-improved effective
potential goes far beyond the one-loop approximation.
These phase transitions are very important in early-universe
cosmology. Specifically, some models of the inflationary
universe [9,23] are based on first-order phase transitions,
which took place during the reheating phase of the
Universe in the grand unification epoch [10]. Also, curved
space-time effects in the grand unification epoch cannot be
dismissed, but simply considered to be negligible. Quite on
the contrary, all these theories should be treated as quantum
field theories in curved space-time, as discussed some time
ago in [41]. Indeed, it must be properly emphasized that the
recent results by the BICEP2 Collaboration [3] point
clearly toward the GUT scale, which is a very impressive
hint of a probably deep connection of inflation with the
GUT epoch and a validation of the arguments in Ref. [41].
As was emphasized there, GUTs corresponding to the very
early universe ought to be treated as quantum field theories
in curved space-time, in a proper and rigorous way.
Anyhow, in the lack of a clear prescription for how to

combine quantum field theory at nonzero temperature and
quantum field theory in curved space-time (external tem-
perature and external gravitational field), it is natural to start
by addressing just the second part of this problem. The
renormalization-group improved effective potential for an
arbitrary renormalizable massless gauge theory in curved
space-time was discussed in [41], working in the linear
curvature approximation, because at least these linear
curvature terms ought to be taken into account in the
discussion of the effective potential corresponding to GUTs
in the early universe. Quantum corrections with account to
gravity effects are predicted to be even more important in a
chaotic inflationary model [21]. By generalizing the
Coleman-Weinberg approach corresponding to the case of
the effective potential in flat space-time, the authors found, at
a first instance, the explicit form of the RG improved
effective potential in curved space for scalar electrodynam-
ics, the finite SUð2Þmodel, the SUð2Þ gauge model, and the
SUð5Þ GUT model. The possibility of corresponding
curvature-induced phase transitions was also investigated.
By carrying out one-loop calculations in a weak gravi-

tational field it was shown [42,43] that it is necessary to
introduce an induced gravity term proportional to Rϕ2 in
order to renormalize the theory of a scalar field in curved
space-time. Here, we consider different RG-improved effec-
tive potentials for the tree-level potential λϕ4 − ξϕ2R. These
potentials were proposed in [41,44]. In the Einstein frame the
tree-level potential corresponds to the cosmological constant
and is not suitable for the construction of an inflationary

scenario. We will check the possibility to construct infla-
tionary models using the RG-improved effective potentials
and consider inflation based on an unstable de Sitter
solution. We will start by checking the existence of such
solutions. Then we will examine if the inflationary model
with this potential is compatible with the Planck 2013 and
BICEP2 data. To do that, we will use conformal trans-
formation and the slow-roll parameters in the Einstein frame.
The paper is organized as follows. In Sec. II, we consider

the action with a nonminimally coupled scalar field and the
corresponding equations of motion. In Sec. III we summa-
rize the standard theory of Lyapunov’s stability, as applied to
de Sitter solutions in these models. In Sec. IV, we discuss the
general procedure for the construction of RG-improved
effective potentials. The existence and stability of de
Sitter solutions in scalar electrodynamics is considered in
Sec. V. Sections VI and VII are devoted to RG-improved
effective potentials for the cases of the finite SUð2Þ and of
the SUð2Þ models, respectively. Unstable de Sitter solutions
for the SUð5Þ model are dealt with in Sec. VIII. In Sec. IX,
cosmological parameters from the inflationary models con-
sidered are extracted, and it is shown that, for some specific
models, they are compatible with the Planck 13 and BICEP2
results. The last section is devoted to conclusions.

II. MODELS WITH NONMINIMALLY
COUPLED SCALAR FIELDS

Different models with the Ricci scalar multiplied by a
function of the scalar field are being intensively studied in
cosmology [12,16,17,45–54] (see also [55–57] and refer-
ences therein). Generically, these models are described by

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
UðϕÞR −

1

2
gμνϕ;μϕ;ν − VðϕÞ

�
; ð1Þ

where UðϕÞ and VðϕÞ are differentiable functions of the
scalar field ϕ, g is the determinant of the metric tensor gμν,
and R is the scalar curvature. We will use the signature
ð−;þ;þ;þÞ throughout.
Let us consider a spatially flat Friedmann-Lemaître-

Robertson-Walker universe with metric interval

ds2 ¼ −dt2 þ a2ðtÞðdx21 þ dx22 þ dx23Þ:
The Friedmann equations, derived by variation of action
(1), have the following form [52]:

6UH2 þ 6 _UH ¼ 1

2
_ϕ2 þ V; ð2Þ

2Uð2 _H þ 3H2Þ þ 4 _UH þ 2Ü ¼ −
1

2
_ϕ2 þ V; ð3Þ

where the Hubble parameter is the logarithmic derivative of
the scale factor: H ¼ _a=a and differentiation with respect
to time t is denoted by a dot. Variation of the action (1) with
respect to ϕ yields
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ϕ̈þ 3H _ϕþ V 0 ¼ 6ð _H þ 2H2ÞU0; ð4Þ

where the prime denotes derivation with respect to the
argument of the functions, that is, the scalar field ϕ.
Combining Eqs. (2) and (3), we obtain

4U _H − 2 _UH þ 2Ü þ _ϕ2 ¼ 0: ð5Þ

From Eqs. (2)–(5), one can get the following system of first
order differential equations [54]:

_ϕ ¼ ψ ;

_ψ ¼ −3Hψ −
½ð6U00 þ 1Þψ2 − 4V�U0 þ 2UV 0

2ð3U02 þUÞ ;

_H ¼ −
2U00 þ 1

4ð3U02 þUÞψ
2 þ 2U0

3U02 þU
Hψ

−
6U02

3U02 þU
H2 þ U0V 0

2ð3U02 þUÞ : ð6Þ

Note that Eq. (2) is not a consequence of the system (6).
On the other hand, if Eq. (2) is satisfied for an initial time,
then it follows from the system (6) that Eq. (2) is also
satisfied for any value of time. In other words, it turns out
that the system (6) is equivalent to the initial system of
equations, (2)–(4), if and only if one chooses the initial data
so that Eq. (2) is fulfilled.

III. LYAPUNOV STABILITY OF THE DE
SITTER SOLUTIONS

We are here considering the possibility of inflationary
scenarios in models with RG-improved potentials. Our first
goal, therefore, is to find unstable de Sitter solutions. The
standard way to explore an inflationary model is to
formulate it in the Einstein frame. This is actually very
convenient when U is a simple function, for instance, for
induced gravity models [46]. However, in our case the
Jordan frame is more suitable to perform an analysis of the
stability of the de Sitter solutions, because the potential can
be expressed in terms of elementary functions in this frame
only. We will consider de Sitter solutions that correspond to
a constant ϕ only. In other words, we consider a fixed point
of Eqs. (6), with the additional condition (2).
Substituting constant values for H ¼ Hf and ϕ ¼ ϕf

into Eqs. (2) and (4), we get

H2
f ¼ VðϕfÞ

6UðϕfÞ
; ð7Þ

V 0ðϕfÞ ¼ 12H2
fU

0ðϕfÞ: ð8Þ

Therefore, we come up with the following simple
condition:

2
U0ðϕfÞ
UðϕfÞ

¼ V 0ðϕfÞ
VðϕfÞ

: ð9Þ

We consider the stability with respect to homogeneous
isotropic perturbations. In other words, we use (6) and
analyze the Lyapunov stability of the de Sitter solutions
derived from it. For this we apply Lyapunov’s theorem
[58,59] and study the corresponding linearized system. We
expand around the fixed point, in the way

ϕðtÞ ¼ ϕf þ εϕ1ðtÞ;
ψðtÞ ¼ εψ1ðtÞ;
HðtÞ ¼ Hf þ εH1ðtÞ; ð10Þ

where ε is a small parameter. Substituting (10) into (6), to
first order in ε we obtain the following linear system [60]:

_ϕ1 ¼ ψ1;

_ψ1 ¼
V 0
fU

0
f þ 2VfU00

f −UfV 00
f

3ðU0
fÞ2 þUf

ϕ1 − 3Hfψ1;

_H1 ¼
ðU0

fV
00
f − V 0

fU
00
fÞ

2ð3ðU0
fÞ2 þUfÞ

ϕ1 þ
2HfU0

f

3ðU0
fÞ2 þ Uf

ψ1

−
12HfðU0

fÞ2
3ðU0

fÞ2 þ Uf
H1: ð11Þ

The following matrix, A, corresponds to (11),

A ¼∥ 0 1 0
V 0
fU

0
fþ2VfU00

f−UfV 00
f

3ðU0
fÞ2þUf

−3Hf 0

U0
fV

00
f−V

0
fU

00
f

2ð3ðU0
fÞ2þUfÞ

2HfU0
f

3ðU0
fÞ2þUf

−
12HfðU0

fÞ2
3ðU0

fÞ2þUf
∥: ð12Þ

Its associated characteristic equation,

detðA− ~λIÞ ¼
�

12HfU0
f

3ðU0
fÞ2 þUf

þ ~λ

�

×

�
~λð3Hf þ ~λÞ− V 0

fU
0
f þ 2VfU00

f −UfV00
f

3ðU0
fÞ2 þUf

�

¼ 0; ð13Þ

has the following roots:

~λ� ¼ −
3Hf

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9H2

f

4
þ V 0

fU
0
f þ 2VfU00

f −UfV 00
f

3ðU0
fÞ2 þ Uf

s
;

~λ3 ¼ −
12HfU0

f

3ðU0
fÞ2 þ Uf

:

ð14Þ
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Lyapunov’s theorem [58,59] states that in order to prove
the stability of a fixed point of a nonlinear system it is
sufficient to prove the stability of this fixed point for the
corresponding linearized system. Stability of the linear
system relies, on its turn, on the real parts of the roots ~λk of
the characteristic equation (13), which must all be negative.
If at least one of them is positive, then the fixed point is
unstable.
To describe inflation we are interested in finding

unstable de Sitter solutions with Hf > 0. Note that the
perturbation H1ðtÞ is not independent, because it is con-
nected with ϕ1 and ψ1 due to Eq. (2). So, the de Sitter
solution is stable if the real parts of ~λ� < 0. The real part of
~λ− is always negative; hence, just ~λþ defines the stability.
Introducing

Kf ≡
V 0
fU

0
f þ 2VfU00

f − UfV 00
f

3ðU0
fÞ2 þ Uf

¼
2
�
U0

f

Uf

�0
−
�
V 0
f

Vf

�0

3
4

�
V 0
f

Vf

�
2 Uf

Vf
þ 1

Vf

; ð15Þ

we can then formulate a sufficient stability condition as
follows: the de Sitter solution (Hf > 0) is stable at Kf < 0
and unstable at Kf > 0.

IV. RENORMALIZATION-GROUP IMPROVED
EFFECTIVE POTENTIAL

The renormalization-group improved effective potential
for an arbitrary renormalizable massless gauge theory in
curved space-time was discussed in detail in [41]. In this
section we will just remind the reader of the basic steps for
the construction of the renormalization-group improved
effective potential.
The tree-level potential reads as follows [41]:

Wð0ÞðϕÞ ¼ aλϕ4 − bξϕ2R ¼ V0 − U0R; ð16Þ

where a and b are positive constants and ξ is the conformal
coupling. The potentialWð0Þ includes both the potential V0

and the function U0 multiplied by the scalar curvature.
As is known (see [39,41]), the renormalization-group

equation for the effective potential in curved space-time has
the form

�
μ
∂
∂μþ β ~g

∂
∂ ~gþ δ

∂
∂αþ βξ

∂
∂ξ − γϕ

∂
∂ϕ

�
W ¼ 0; ð17Þ

where α is the gauge parameter and ~g is the set of all
coupling constants of the theory (Higgs, gauge, and
Yukawa ones). The standard flat-space renormalization-
group equation [62,63] is modified in curved space-time;
for instance, it has an additional term related with the
contribution from the nonminimal coupling constant ξ and
the corresponding βξ function [64].

It is natural to split W into two parts, namely

W ≡ V −UR≡ af1ðp;ϕ; μÞϕ4 − bf2ðp;ϕ; μÞϕ2R;

ð18Þ

where f1 and f2 are some unknown functions, and
p ¼ f~g; α; ξg. Actually, in [41] the authors imposed the
additional restriction that not only does the function W
satisfy (17) but also the functions V and U satisfy it,
separately.
It is easy to see [52] that for

V0ðϕÞ ¼ CU2
0ðϕÞ; ð19Þ

where C is a constant and the model considered has a de
Sitter solution, with an arbitrary constant ϕ ¼ ϕf.
Therefore, for the tree-level potential Wð0Þ, de Sitter
solutions do exist, for any value of ϕf, and the correspond-
ing Hubble parameter reads

H0f ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffi
−

aλ
6bξ

s
ϕf:

One aim of this paper is to consider de Sitter solutions in
cosmological models with different RG-improved W
potentials and the possibility of inflationary scenarios in
such models, too.

V. EFFECTIVE POTENTIALS FOR SCALAR
ELECTRODYNAMICS

Let us now consider the de Sitter solution for the case
of the following effective potentials for scalar electrody-
namics:

V ¼ λϕ4

4!
þ 3e4ϕ4

ð8πÞ2 ln
ϕ2

μ2
; U ¼ ξϕ2

2
þ e2ϕ2

ð8πÞ2 ln
ϕ2

μ2
;

ð20Þ

where e is a constant. Using

U0

U
¼ 2

ϕ

�
1þ e2

32ξþ e2 ln ϕ2

μ2

�
;

V 0

V
¼ 2

ϕ

�
2þ 9e4

8λπ2 þ 9e4 ln ϕ2

μ2

�
;

and the condition (9), we get

ϕf ¼ �μ exp
�
8π2

9e4
ð18e2ξ − λÞ

�
: ð21Þ

From (7), we obtain
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H2
f ¼

μ2e2

4
exp

�
16π2

9e4
ð18ξe2 − λÞ

�
¼ e2ϕ2

f

4
: ð22Þ

For the de Sitter solutions obtained, we then get

Vf ¼
36e2ξ − λ

24
ϕ4
f; Uf ¼ 36e2ξ − λ

36e2
ϕ2
f: ð23Þ

Let us now consider the stability of the above solutions.
Using

2

�
U0

U

�0
jϕ¼ϕf

−
�
V 0

V

�0
jϕ¼ϕf

¼ 81e8

32π4ð36e2ξ − λÞ2ϕ2
f

> 0;

and (15), we get that Kf > 0 at Uf > 0. This means that
~λþ > 0 and that the corresponding de Sitter solution is
unstable. Thus, we get in the end an unstable de Sitter
solution with Hf > 0 and Uf > 0. Note that the variation
of the Hubble parameter is considered as a function of the
variations of both the scalar field and its first derivative.

VI. FINITE SUð2Þ MODELS

A number of GUTs turn out to yield finite models. Some
of them, as for instance the finite supersymmetric SUð5Þ
GUT [65], may lead to reasonable phenomenological
consequences and deserve attention as realistic models
of grand unification. Asymptotically finite GUTs, which
are generalizations of the concept of a finite theory, have
been proposed in [66]. In these theories, the zero charge
problem is absent, both in the UV and in the IR limits,
since in these limits the effective coupling constants tend to
some constant values (corresponding to finite phases).
When we consider flat space-time, there is not much

sense in discussing quantum corrections to the classical
potential, in a massless finite or massless asymptotically
finite GUT, since they are either simply absent or highly
suppressed asymptotically. However, when we study finite
theories in curved space-time [67] (for a general review, see
[39]) the situation changes drastically [44].
In the following, we will study de Sitter solutions in

cosmological models with renormalization-group improved
effective SUð2Þ potentials for the two finite theories in
curved space-time constructed in [44]. In those models the
coupling parameter corresponding to the nonminimal scalar-
gravitational interaction ξ depends on ϑ, where ϑ ¼
1
2
lnðϕ2=μ2Þ.
The general structure of the one-loop effective coupling

constant ξðϑÞ for “finite” theories in curved space-time has
been obtained in [67]

ξðϑÞ ¼ 1

6
þ
�
ξ0 −

1

6

�
expðCg2ϑÞ; ð24Þ

with constant ξ0 and C ≠ 0.

In particular, for the SUð2Þ finite gauge model [68], it
was obtained that C ¼ 6 or C≃ 28 [67]. Hence, in such
theories we have jξðϑÞj → ∞ (nonasymptotical conformal
invariance) in the UV limit (t → ∞). In the models that
have C < 0 one gets ξðϑÞ → 1=6 (asymptotical conformal
invariance).
The tree-level potential is taken to be of the form (16)

and the RG-improved potential reads as follows (see [44]
for details):

W ¼ aλðϑÞf4ðϑÞϕ4 − bξðϑÞf2ðϑÞϕ2R: ð25Þ
Notice that this potential is actually obtained in the linear
curvature approximation, which is good enough for GUTs
corresponding to the curved space-time corresponding to
the early universe [44].
The function fðϑÞ is defined as [44]

fðϑÞ ¼ exp

�
−
Z

ϑ

0

dϑ0γ̄ð~gðϑ0Þ; αðϑ0ÞÞ
�
: ð26Þ

Therefore, the form of the RG-improved effective potential
is determined by the γ̄ function of the scalar field in (26). At
the one-loop level, γ̄ðϑÞ ∼ a1g2ðϑÞ þ a2h2ðϑÞ, where a1
and a2 are constants, with values that depend on the choice
of gauge and on other features of the theory. As h2 ¼ κ1g2,
it turns out that γ̄ðϑÞ ∼ ða1 þ κ1a2Þg2ðϑÞ. Through the
choice of the gauge parameter, one can obtain different
values for γ̄. To reach as much “finiteness” in our theory as
possible, we can choose a gauge such that the one-loop γ̄
function is equal to zero. This choice is always possible;
moreover, in supersymmetric finite theories it does appear
in a very natural way (especially if the superfield technique
is used).
After having done all this, it turns out that the RG-

improved effective potential (in the linear-curvature and
leading-log approximation) for a finite theory in curved
space-time is given by

W ¼ aκ1g2ϕ4 − bξðϑÞϕ2R: ð27Þ
Straightforward calculations show that a de Sitter solution
exists when C ¼ 0 only. It corresponds to ξðϑÞ ¼ ξ0, and it
is not interesting, because it leads to Wð0ÞðϕÞ, given
by (16).
Another possibility is to keep the gauge arbitrary; then

we cannot demand that γ̄ vanishes. We get in this case

W ¼ aκ1g2f4ðϑÞϕ4 − bξðϑÞf2ðϑÞϕ2R ð28Þ
and γ̄ ¼ C1g2, C1 being some constant that depends on the
gauge parameter and on the features of the theory,
fðϑÞ ¼ expð−C1g2ϑÞ, and ξðϑÞ is given by (24).
From

V ¼ aκ1g2f4ðϑÞϕ4; U ¼ bξðϑÞf2ðϑÞϕ2; ð29Þ
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where

fðϑÞ ¼
�
ϕ

μ

�
−C1g2

; ξðϑÞ ¼ 1

6
þ
�
ξ0 −

1

6

��
ϕ

μ

�
Cg2

;

we get

V ¼ ak1g2
�
ϕ

μ

�
−4C1g2

ϕ4;

U ¼ b

�
1

6
þ
�
ξ0 −

1

6

��
ϕ

μ

�
Cg2

��
ϕ

μ

�
−2C1g2

ϕ2; ð30Þ

and

U0

U
¼ 2ð1 − C1g2Þ

ϕ
þ

ð6ξ0 − 1ÞCg2ðϕ2

μ2
ÞCg2=2

½1þ ð6ξ0 − 1Þðϕ2

μ2
ÞCg2=2�ϕ

;

V 0

V
¼ 4ð1 − C1g2Þ

ϕ
: ð31Þ

Now, we use the de Sitter condition (9) and conclude that
this equation has as its only solution C ¼ 0.
Summing up, in both cases there is no de Sitter solution

for a nonconstant ξ. In the case of a constant ξ, we get a
model with a power-law potential V and power-law
coupling function U, which satisfies the condition (19).
Thus, if the signs of the constants are such that

H2
f ¼

k1g2

6bξ0
ϕ2
f

�
ϕ2
f

μ2

�−C1g2

> 0; ð32Þ

then de Sitter solutions do exist for any constant value of
ϕf. Note that, after conformal transformation to the
Einstein frame, one gets a model with a minimally coupled
scalar field, whose potential is a constant. Namely, in the
case C ¼ 0 we get ξ ¼ ξ0 and, using (29),

VE ¼ aκ1g2

4ξ20κ
4b2

:

See formula (50) in Sec. IX. Note that the above property
holds in the presence of quantum corrections as we take
them into account via the effective potential.

VII. THE SUð2Þ GAUGE MODEL

Let us consider the cosmological model with

V ¼ k1ϕ4f4ðϑÞg2ðϑÞ
24

;

U ¼ ϕ2f2ðϑÞ
12

½1þ ð6ξ − 1Þ ~Θ−k3 �; ð33Þ

where we use k3 ¼ ð12 − 5k1=3 − 8k2Þ= ~a2 to simplify
notations. ki and ~a are constant. Also,

~Θ ¼ 1þ ~a2g2ϑ
ð4πÞ2 ; fðϑÞ ¼ ~Θð6−4k2Þ= ~a2 ; g2ðϑÞ ¼ g2

~Θ
:

By straightforward calculation, we obtain

V 0

V
¼ 4

ϕ
þ
	
4ð6 − 4k2Þ

~a2
− 1



1

~Θ
d ~Θ
dϕ

;

U0

U
¼ 2

ϕ
þ
	
2ð6 − 4k2Þ

~a2
−

ð6ξ − 1Þk3
~Θk3 þ 6ξ − 1



1

~Θ
d ~Θ
dϕ

:

Then, using (9) and the conditions ~Θk3
f ≠ −6ξþ 1, d ~Θdϕ ≠ 0,

we get

~Θk3
f ¼ ð2k3 − 1Þð6ξ − 1Þ: ð34Þ

Therefore, there is no de Sitter solution for ξ ¼ 1=6. For
other values of ξ, we get

~Θf ¼ ½ð6ξ − 1Þð2k3 − 1Þ�1=k3 and

ϕf ¼ �μ exp

�ð4πÞ2
~a2g2

½½ð6ξ − 1Þð2k3 − 1Þ�1=k3 − 1�
�
: ð35Þ

Note that ~Θf ≠ 0; hence k3 ≠ 1=2. Using (7), we
calculate the Hubble parameter H for the de Sitter solution

H2
f ¼ g2k1ð2k3 − 1Þ

24k3
ϕ2
f
~Θ

2ð6−4k2Þ
~a2

−1
f : ð36Þ

In [69] the authors show that asymptotically free models
exist only when f2ðϑÞ ∼ g4ðϑÞ, which corresponds to
~a2 ¼ 4k2 − 6. For this choice of the parameter ~a2, we
obtain

Vf ¼ g2k1ϕ4
f

24
~Θ−5
f ;

Uf ¼ ϕ2
f

12
~Θ−2
f ½1þ ð6ξ − 1Þ ~Θ−k3

f � ¼ ϕ2
fk3

6ð2k3 − 1Þ ~Θ2
f

:

Note that k3 ¼ −2 − 5k1=ð3ð4k2 − 6ÞÞ ¼ −2 − 5k1=ð3~a2Þ.
Therefore,

H2
f ¼ −

g2k1ð1 − 2k3Þ
24k3

ϕ2
f
~Θ−3
f

¼ 5k1ð2k1 þ 3~a2Þ
24ð5k1 þ 6~a2Þ g

2ϕ2
f½ð2k3 − 1Þð6ξ − 1Þ�−3=k3 :

ð37Þ

From here, we get that H2
f > 0 provided either −3~a2=2 <

k1 < −6~a2=5 that is equivalent to 0 < k3 < 1=2 or 0 <
k1 < ∞ that corresponds to −∞ < k3 < 0.

ELIZALDE et al. PHYSICAL REVIEW D 90, 084001 (2014)

084001-6



Let us consider the stability of the de Sitter solutions in
the case Vf > 0 and Uf > 0. In this case, the sign of Kf
coincides with the sign of

2

�
U0

U

�0
jϕ¼ϕf

−
�
V 0

V

�0
jϕ¼ϕf

¼ ~a4g4ð2k3 − 1Þ
512π4ϕ2

f
~Θ2
f

:

The de Sitter solutions exist only for k3 < 1=2. The
additional condition Uf > 0 gives k3 < 0. We can see that
Kf < 0 at any k3 < 0. Thus, for this model withUf > 0 we
have stable de Sitter solutions only.

VIII. THE SUð5Þ RG-IMPROVED POTENTIAL

Now we study the RG-improved potential for the SUð5Þ
GUT [70]. In flat space this theory has been used for the
discussion of inflationary cosmology [9,21]. We assume
that the breaking SUð5Þ → SUð3Þ × SUð2Þ ×Uð1Þ has
taken place.
The RG-improved effective potential has the following

form:

V ¼ 3375

512

�
g2 −

g2

f16=95

�
ϕ4f45;

U ¼ 15

4

�
1

6
þ
�
ξ −

1

6

�
Θ̆−9=8

�
ϕ2f25; ð38Þ

where Θ̆ ¼ 1þ 5g2ϑ
3π2

, f5 ¼ Θ̆9=16, and g is a nonzero
constant.
To get the de Sitter solution, we use Eq. (9), which for the

model at hand reads

Θ̆0 ð9Θ̆ − 5Þð6ξ − 1Þ þ 4Θ̆9=8

Θ̆ðΘ̆ − 1ÞðΘ̆9=8 þ 6ξ − 1Þ ¼ 0: ð39Þ

Thus, Θ̆ ≠ 0 and Θ̆ ≠ 1. Note that

Θ̆0 ¼ 5g2

3πϕ
≠ 0: ð40Þ

It is easy to see that, for ξ ¼ 1=6, there is no de Sitter
solution. For other values of ξ, the de Sitter solutions are
defined by

H2
ds ¼

225ϕ2
fΘ̆

5=4
f g2ðΘ̆f − 1Þ

128ðΘ̆9=8
f þ 6ξ − 1Þ

: ð41Þ

The number Θ̆f is a root of Eq. (39), which can be rewritten
as follows:

ξ ¼ 1

6
−

2Θ̆9=8
f

3ð9Θ̆f − 5Þ : ð42Þ

We can eliminate ξ and express H2
dS as

H2
dS ¼

225g2ϕ2ðΘ̆f − 1ÞΘ̆f
5=4

128ðΘ̆f
9=8 − ð−9Θ̆fþ5þ4Θ̆f

9=8Þ
ð9Θ̆f−5Þ − 1Þ

¼ 25

128
Θ̆1=8

f ð9Θ̆f − 5Þϕ2
fg

2: ð43Þ

Therefore, the Hubble parameter H is real if and only if
Θ̆f ≥ 5=9, and this is possible for ξ < 1=6 only. Using (42),
we get

Vf ¼ 3375

512
g2ð1 − Θ̆−1

f Þϕ4
fΘ̆

9=4
f and

Uf ¼ 15

4

�
1

6
−

2

3ð9Θ̆f − 5Þ

�
ϕ2
fΘ̆

9=8
f : ð44Þ

We see that Uf < 0 at 5=9 < Θ̆f < 1 and Uf > 0 for
1 < Θ̆f. Let us consider the stability of the de Sitter
solutions here obtained. For 1 < Θ̆f, Uf > 0 and
Vf > 0, so the denominator of Kf calculated by (15) is
positive, and thus the sign of Kf coincides with the sign of
its numerator:

2

�
U0

U

�0
jϕ¼ϕf

−
�
V 0

V

�0
jϕ¼ϕf

¼ ð5 − Θ̆fÞðΘ̆0
fÞ2

8ðΘ̆f − 1Þ2Θ̆2
f

: ð45Þ

Note that we used the conditions Θ̆f ≠ 1. We come to the
conclusion that Kf > 0, for 1 < Θ̆f < 5, and Kf < 0,
for 5 < Θ̆f.

Using (40), we get

Kf ¼ 9375g6ð5 − Θ̆fÞΘ̆f
1
8ϕ2

fð9Θ̆f − 5Þ
32½128Θ̆f

7
8π4ðΘ̆f − 1Þð9Θ̆f − 5Þ þ 30375ð16

15
Θ̆fπ

2ðΘ̆f − 1Þ þ g2

9
ð9Θ̆f − 5ÞÞ2�

: ð46Þ

Let us now return to the interval 5=9 < Θ̆f < 1. In this interval the numerator of Kf is positive. The sign of Kf is
determined by the sign of its denominator
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S ¼ 128Θ̆f
7
8π4ðΘ̆f − 1Þð9Θ̆f − 5Þ

þ 30375

�
16

15
Θ̆fπ

2ðΘ̆f − 1Þ þ g2

9
ð9Θ̆f − 5Þ

�
2

: ð47Þ

The denominator of Kf (the function S) is plotted in Fig. 1
for different values of g. One can see that the sign of this
denominator depends on the value of Θ̆f. So, for Uf < 0
unstable de Sitter solutions can exist.

IX. INFLATIONARY MODEL CONSISTENT WITH
OBSERVATIONAL RESULTS

A. Parameters of an inflationary model

Our goal is to construct an inflationary model using the
RG-improved potentials and to examine if the inflationary
model with this potential is compatible with the Planck 13
and BICEP2 data.
Much of the formalism developed for calculating the

parameters of inflation, for example, the primordial spectral
index ns, assume general relativity models with minimally
coupled scalar fields. The standard way to use this
formalism is to perform a conformal transformation and
to consider the model in the Einstein frame (see, for
example, Ref. [18]). It has been shown [46] that in the
case of quasi–de Sitter expansion there is no difference
between spectral indexes calculated either in the Jordan
frame directly or in the Einstein frame after conformal
transformation.
Let us make the conformal transformation of the metric

~gμν ¼ 2κ2UðϕÞgμν;

where quantities in the new frame are marked with a tilde,
and the quantity κ2 ¼ 8πM−2

pl , where Mpl is the Planck
mass. We also introduce a new scalar field φ, such that

dφ
dϕ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U þ 3U02p

ffiffiffi
2

p
κU

⇒ φ ¼ 1ffiffiffi
2

p
κ

Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U þ 3U02p

U
dϕ: ð48Þ

We thus get a model for a minimally coupled scalar field,
described by the following action:

S ¼
Z

d4x
ffiffiffiffiffiffi
−~g

p �
1

2κ2
Rð~gÞ − 1

2
~gμνφ;μφ;ν þ VEðφÞ

�
; ð49Þ

where

VEðφÞ ¼
VðϕðφÞÞ

4κ4U2ðϕðφÞÞ : ð50Þ

Inflationary universe models are based upon the possibility
of a slow evolution of some scalar field φ in the potential
VðφÞ. The slow-roll approximation, which neglects the
most slowly changing terms in the equations of motion, is
used. To calculate parameters of inflation that can be tested
via observations, we use the slow-roll approximation
parameters.
As known [13,71] (see also [34,46]), the slow-roll

parameters ϵ, η, and ζ are connected with the potential
in the Einstein frame as follows [72]:

ϵ≡ 1

2κ2

�
V 0
E;φðφÞ
VEðφÞ

�
2

; η≡ 1

κ2
V 00
E;φðφÞ
VEðφÞ

;

ζ2 ≡ 1

κ4
V 0
EðφÞV 000

E;φðφÞ
VEðφÞ2

: ð51Þ

Note that the prime denotes the derivative with respect
to the argument of the functions, that is φ, so

V 0
E;φðφÞ≡ dVEðφÞ

dφ . We add the additional subscript ;φ to
denote derivatives with respect to φ. During inflation, each
of these parameters should remain to be less than one.
It is suitable to calculate the slow-roll parameters as

functions of the initial scalar field ϕ. It is easy to see [18]
that

ϵðϕÞ ¼ 1

2κ2

�
V 0
E

VE

�
2
�
dφ
dϕ

�
−2
;

ηðϕÞ ¼ 1

κ2

�
V 00
E

VE

�
dφ
dϕ

�
−2

−
V 0
E

VE

�
dφ
dϕ

�
−3 d2φ

dϕ2

�
; ð52Þ

where the prime denotes a new derivative with respect to ϕ.
We get

ϵðϕÞ ¼ 1

2κ2
ðV 0

EÞ2
V2
EQ

; ηðϕÞ ¼ 1

κ2VEQ

�
V 00
E −

V 0
EQ

0

2Q

�
;

where Q ¼ U þ 3U02

2κ2U2
: ð53Þ

Similar calculations yield

0.7 0.8 0.9 1.0

50 000

100 000

150 000

200 000

g 3.5

g 2.5

g 1.5

g 0.0001

g 7

FIG. 1 (color online). The function SðΘ̆fÞ for different values
of g.
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ζ2 ¼ V 0
E

κ4V2
EQ

2

�
V 000
E −

3V 00
EQ

0

2Q
−
V 0
EQ

00

2Q
þ V 0

EðQ0Þ2
Q2

�
: ð54Þ

The number of e-foldings of a slow-roll inflation is given
by the following integral [18]:

NeðϕÞ ¼ κ2
Z

φ

φend

���� VEð ~φÞ
V 0
E;φð ~φÞ

����d ~φ ¼ κ2
Z

ϕ

ϕend

����VE

V 0
E

����Qd ~ϕ

¼ κffiffiffi
2

p
Z

ϕ

ϕend

�
dφ

d ~ϕ

�
d ~ϕffiffiffiffiffiffiffiffiffi
ϵð ~ϕÞ

q ; ð55Þ

where ϕend is the value of the field at the end of inflation,
defined by ϵ ¼ 1. The number of e-foldings must be
matched with the appropriate normalization of the data set
and the cosmic history, a typical value being 50 ≤ Ne ≤ 65.
The tensor-to-scalar ratio r, the scalar spectral index of

the primordial curvature fluctuations ns, and the associated

running of the spectral index αs, are given, to very good
approximation, by

r ¼ 16ϵ; ns − 1≃ −6ϵþ 2η;

αs ≡ dns
d ln k

≃ 16ϵη − 24ϵ2 − 2ζ2: ð56Þ

Planck 2013 temperature anisotropy measurements [2]
combined with theWMAP large-angle polarization constrain
the scalar spectral index to ns ¼ 0.9603� 0.0073. Our goal
is to check the possibility to get a value of ns in the models
investigated here. We describe the inflationary dynamics for
two considered models that have unstable de Sitter solutions
with Uf > 0. Observe that the existence of an unstable de
Sitter solution may not be a necessary condition for inflation.
Stable de Sitter solutions may be the basis for eternal
inflation. From another side, stable de Sitter solutions may
appear to be true inflationary solutions subject to the
condition that the exit from inflation occurs due to some

FIG. 2 (color online). The potential VEðσÞ multiplied by κ4 in
the scalar electrodynamics model. In the picture λ ¼ 18e2ξ. This
means that σf ¼ 1. The parameter values are e ¼ 10, ξ ¼ 10 (red
dashed line) and e ¼ 10, ξ ¼ 5 (blue solid line). Note that the
potential VE with such choice of λ depends on the combination
ξ=e2 only.

TABLE I. Parameter values for the scalar electrodynamics
inflationary scenario.

ξ e σend (ϵ ¼ 1) Ne σN ns r αs

5 10 0.02415237908 50 0.20044 0.962 0.013 0.0013
5 10 0.02415237908 55 0.21544 0.965 0.011 0.0011
5 10 0.02415237908 60 0.23023 0.967 0.009 0.0009
5 10 0.02415237908 65 0.24485 0.969 0.008 0.0008
10 10 0.0004788703192 50 0.007189 0.967 0.028 0.0036
10 10 0.0004788703192 55 0.007974 0.965 0.024 0.0032
10 10 0.0004788703192 60 0.008848 0.967 0.022 0.0026
10 10 0.0004788703192 65 0.009756 0.974 0.019 0.0025

FIG. 3 (color online). The potential VEðΘ̆Þ multiplied by κ4 in
the SUð5Þ model at ξ ¼ 0.04, g ¼ 0.15 (blue dashed line) and at
ξ ¼ 0.045, g ¼ 0.2 (red solid line).

TABLE II. Parameter values for the SUð5Þ inflationary
scenario.

ξ g Ne Θ̆endðϵ ¼ 1Þ Θ̆N ns r αs

0.04 0.15 50 1.000868906 1.0121 0.963 0.070 0.00731
0.04 0.15 55 1.000868906 1.0126 0.965 0.063 0.00643
0.04 0.15 60 1.000868906 1.0132 0.968 0.058 0.00660
0.04 0.15 65 1.000868906 1.0137 0.969 0.0535 0.00540
0.045 0.2 50 1.001564816 1.02152 0.958 0.066 0.00699
0.045 0.2 55 1.001564816 1.02252 0.960 0.0595 0.00638
0.045 0.2 60 1.001564816 1.023475 0.963 0.054 0.00579
0.045 0.2 65 1.001564816 1.024388 0.965 0.0495 0.00548
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other scenario. We do not consider such inflationary scenar-
ios that can be suitable for the SUð2Þ model, in this paper.
Note that for the SUð5Þ model, the de Sitter solutions

obtained exist for Uf < 0 as well. In this case one cannot
use the conformal transformation to formulate the model
in the Einstein frame. Also, stability conditions can be
violated [48]. The possibility to develop the inflationary

scenario without pathologies in this case demands a more
detailed analysis, which will be carried out in future works.

B. Scalar electrodynamics

For scalar electrodynamics, the functions V and U are
given by (20); therefore,

VE ¼ 16π2ð8π2λþ 9e4 lnðσ2ÞÞ
3κ4ð32ξπ2 þ e2 lnðσ2ÞÞ2 ; ð57Þ

Q ¼ 6e4 ln ðσ2Þ2 þ 4½3e2 þ 8π2ð1þ 12ξÞ�e2 lnðσ2Þ þ 6e4 þ 384π2e2ξþ 1024π4ξð1þ 6ξÞ
κ2μ2σ2½32π2ξþ e2 lnðσ2Þ�2 ; ð58Þ

where we use the dimensionless quantity σ ≡ ϕ=μ. Note that the slow-roll parameters ϵ and η do not depend on the
dimensionless combination κμ. We choose the parameters so that Uf > 0, which means λ < 36e2ξ. Note that the de Sitter
solutions correspond to the condition V 0

EðϕfÞ ¼ 0. Solutions are unstable; so, in this point the potential VE has a maximum.
In Fig. 2 we see that the potential is very flat near the maximum and decreases more rapidly than σ, when it tends to zero.
In our calculations, we put λ ¼ 18e2ξ, which gives ϕf ¼ �μ (σf ¼ �1). At the de Sitter point ϕf the value of the

RG-improved potential coincides with the value of the tree-level one. We consider positive values for σ and for the
parameters in the action. The corresponding inflationary parameters are listed in Table I.
One can see that, for the values of the parameters e and ξ presented in Table I, the corresponding values of ns and r are in

good agreement with the observational data [2,4]. The potential VEðσÞwith these values of parameters is presented in Fig. 2.

C. The SUð5Þ model

In the case of a SUð5Þ RG-improved potential,

VE ¼ 135g2ðΘ̆ − 1ÞΘ̆5=4

32κ4ðΘ̆9=8 þ 6ξ − 1Þ2 ; ð59Þ

Q ¼ 4ðΘ̆9=8 þ 6ξ − 1Þ þ 15
128π2

ð15g2Θ̆1=8 þ 16π2ðΘ̆9=8 þ 6ξ − 1ÞÞ2
5ðΘ̆9=8 þ 6ξ − 1Þ2κ2ϕ2

: ð60Þ

For the SUð5Þ RG-improved potential (38), the function φðϕÞ cannot be written in closed form. Because of this reason,
we write the slow-roll parameters as functions of the Jordan-frame scalar field ϕ. The slow-roll parameter ϵ and the number
of e-foldings read as follows:

ϵ ¼ 125g4ð4Θ̆9=8 − 5ð6ξ − 1Þ þ 9Θ̆ð6ξ − 1ÞÞ2
288π4ðΘ̆ − 1Þ2Θ̆2½4ðΘ̆9=8 þ 6ξ − 1Þ þ 15

128π2
ð15g2Θ̆9=8 þ 16π2ðΘ̆9=8 þ 6ξ − 1Þ2Þ� ;

and

Ne ¼
36

125

Z
Θ̆N

Θ̆end

π4ðΘ̆ − 1ÞΘ̆ð4ðΘ̆9
8 þ 6ξ − 1Þ þ 15

128
ð15Θ̆

1
8g2

π2
þ 16ðΘ̆9

8 þ 6ξ − 1ÞÞ2Þ
g4ðΘ̆9

8 þ 6ξ − 1Þðð9Θ̆ − 5Þð6ξ − 1Þ þ 4Θ̆
9
8Þ

dΘ̆: ð61Þ

Note that the slow-roll parameters and Ne depend on the dimensionless function Θ̆.
The potential VE for ξ ¼ 0.04 and ξ ¼ 0.045 is plotted in Fig. 3. The corresponding inflationary parameters are listed

in Table II.
The resulting joint BICEP2þ Planck 2013 analysis yields that the upper limit of the tensor-to-scalar ratio is r < 0.11,

a slight improvement relative to the Planck analysis alone, which gives r < 0.13 (95% C.L.) [4]. We do see that the
inflationary parameters of the model considered are in very good agreement with the observational data.
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X. CONCLUSIONS

In this paper we have considered the possibility to
construct inflationary models for the renormalization-group
improved potentials corresponding to scalar electrodynam-
ics and to the SUð2Þ and SUð5Þ models. In all cases, the
tree-level potential is λϕ4 − ξϕ2R, which corresponds to
the cosmological constant in the Einstein frame, and is in
no case suitable for inflation. The standard way to get an
inflationary model is to add the Hilbert-Einstein term to the
action [17,18]. Actually we did not add this term here, but
included instead the quantum corrections to the potential
coming from to the RG equation. We then analyzed the
corresponding inflationary scenario with unstable de Sitter
solutions only. This means that the corresponding potential
in the Einstein frame should have a maximum. We have
found that, for some reasonable values of the parameters,
this is indeed the case, both for scalar electrodynamics and
for the SUð5Þ model, and that the corresponding values of
the coupling function are indeed positive, Uf > 0. For the
finite SUð2Þ model de Sitter solutions exist, if it corre-
sponds to the model with a minimally coupled scalar field
and a cosmological constant; thus, this case is not suitable
for inflation. In the SUð2Þ gauge model there exist stable de
Sitter solutions for Uf > 0 only. Note also that a stable de
Sitter solution may appear to be a true inflationary solution,
but only under the condition that the exit from inflation

occurs according to some other particular scenarios; but we
did not consider such inflationary scenarios in this paper.
In the inflationary models, for both scalar electrody-

namics and the SUð5Þ RG-improved potentials, we have
found that these models are in good agreement with the
most recent observational data [2,4] provided some rea-
sonable values are taken for the parameters.
Our study indicates that inflation could well be caused by

quantum effects of the scalar sector of some convenient
GUT theory. We believe this is quite a remarkable result.
In this respect, it would be of interest to investigate the
possibility of inflation in GUTs with other gauge groups,
as the exceptional E8 group, or GUTs that proceed from
the string framework. From another side, adding a RG-
improved effective potential to the classical GR action may
lead to a qualitative change of the inflationary dynamics
that occur in such models. This issue will be discussed
elsewhere.
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