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The modified holographic Ricci dark energy coupled to interacting relativistic and non-relativistic dark
matter is considered in the nonflat Friedmann-Robertson-Walker universe. Through examining the
deceleration parameter, one can find that the transition time of the Universe from decelerating to
accelerating phase in the interacting holographic Ricci dark energy model is close to that in the A cold dark
matter model. The evolution of modified holographic Ricci dark energy’s state parameter and the evolution
of dark matter and dark energy’s densities shows that the dark energy holds the dominant position from the
near past to the future. By studying the statefinder diagnostic and the evolution of the total pressure, one can
find that this model could explain the Universe’s transition from the radiation to accelerating expansion
stage through the dust stage. According to the Om diagnostic, it is easy to find that when the interaction is
weak and the proportion of relativistic dark matter in total dark matter is small, this model is phantom-like.
Through our studying, we find the interaction and the relativistic dark matter’s proportion all have great

influence on the evolution of the Universe.
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I. INTRODUCTION

It is widely accepted that our Universe is undergoing an
accelerating expansion. Observations from type la super-
novae [1,2], cosmic microwave background radiation [3,4],
and Sloan Digital Sky Survey [5,6], have given supports to
the present accelerating cosmic expansion. Data from these
observations have suggested that nearly 25% of the total
matter energy in the Universe is referred to as dark matter
(DM), and more than 70% of the total matter energy is
referred to as dark energy (DE) [7-9]. The mysterious DM
is helpful in explaining the galactic curves and structure
formation in the Universe [10]. A common assumption of
DM is generically referred to as cold dark matter (CDM) or
non-relativistic DM, which moves at a so small speed
compared to the light speed that it has no relativistic effects
[11,12]. Although the ACDM model of cosmology is found
to be an indisputable success on large scale, it still has
several significant indications of possible shortcomings on
a smaller scale [13—16]. Nowadays, observations show that
the CDM galaxy haloes contain many more satellites
around the Milky Way and M31 than the observed satellites
[17,18]; the inner density profiles used to fit simulated
CDM halos are denser than that inferred from the rotation
curves of real galaxies [19,20]; the expected number of
galaxies in CDM is bigger than the observed [21,22]. By
now, a lot of efforts have been dedicated to solve these
problems [23-27], and the type of non-relativistic DM
mixed with relativistic DM has attracted a lot of attention
[28-31]. Some observations also suggested that the total
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DM does not only have a non-relativistic component but
also has a relativistic component [32-35]. Then, in the
present paper, we would like to take the mixed dark matter
into consideration.

DE is another important component of the Universe’s
total matter energy, whose pressure is negative, pushing the
Universe into accelerating expansion [36-39]. As is well
known, the cosmological constant is the simplest explan-
ation for the DE phenomenon [40-44]. However, the “fine-
tuning problem” and the “cosmic coincidence” problems
arise from the cosmological constant scenario [45]. In order
to solve these two problems, so many other DE models
have been put forward, such as quintessence [46—48],
phantom [49-51], quintom [52-54], Chaplygin gas
[55-57], and so forth. More detailed information about
the DE models can be found in the works of [58,59]. Apart
from these models, another popular DE model referred to as
“holographic dark energy,” which arises from the holo-
graphic principle [60], was proposed in works like [61-63].
Holographic dark energy models provide a more simple
and reasonable frame to investigate the problem of DE
[64,65]. The energy density of holographic dark energy is
given by py. = 3¢*M3 L2, where L indicates the infrared

(IR) cutoff radius, M) = 1/v/8xG is the Planck mass, and
c is a numerical constant [66]. The IR cutoff has been
considered as the Hubble radius [61,62,67], the particle
horizon [68,69], the future event horizon [66,70], the
cosmological conformal time [71,72], or other generalized
IR cutoff [73-81]. Among them, Gao et al. [74] raised a
holographic Ricci DE model, whose length scale is the
inverse of the Ricci curvature scalar, ie., L ~|R|7"/2.
Granda and Oliveros [75,76] suggested a new holographic
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Ricci DE model with the density of DE as pg. =
3M12,1((1H2 + pH). In the same year, Chen and Jing [77]
modified this model as pg. = 3M? (aH* + BH +yHH™).
Moreover, the holographic dark energy models have been
tested by various cosmic observations [82-86].

Since DM and DE are both the mysterious elements in
the Universe, the physics behind the dark sector has
become an interesting research field in modern cosmology,
and the models with the interaction between DM and DE
have gained great attention [87-92]. Especially, at the
present time, there are many works that have been done in
discriminating the behaviors of different holographic dark
energy models and interacting holographic dark energy
models [93-96]. Recently, Chimento et al. have done some
excellent works with regard to the modified holographic
Ricci dark energy (MHRDE), and they find that the
MHRDE coupled to the interacting DM can induce a
relaxed Chaplygin gas [81]. Using the y?> method to the
observational Hubble data, Chimento et al. find it is
consistent with the bound Q. (z = 1100) < 0.1 reported
for the behavior of DE at an early stage [91], and more of
their work about the interacting modified holographic Ricci
dark energy (IMHRDE) model can be found in [97,98].
The MHRDE interacting with pressureless non-relativistic
DM in a flat Friedmann-Robertson-Walker (FRW) universe
has been studied by Chattopadhyay et al. [99], and they
found that this model is able to attain the ACDM phase of
the Universe. In addition, current observations from type Ia
supernovae and cosmic microwave background radiation,
etc., also support the proposal of a possible interaction
between DM and DE [100]. Moreover, some experimental
data and recent papers have implied that our Universe is
not a perfectly flat universe, but with spatial curvature
[3-5,101,102]. Then, in the present paper, we would like
to investigate a nonflat universe composed of interacting
relativistic and non-relativistic DM and MHRDE. The
difference between the relativistic DM and the non-
relativistic DM is whether there are obvious relativistic
effects. The model of MHRDE considered in the present
paper is introduced by Granda and Oliveros [76]. The
energy density of the MHRDE with an IR cut off is given
by [76,81]

2 . 3
Pde—a_ﬂ<H+§0‘H2)7 (1)

where a and f are two constants, H = a/a is the Hubble
parameter, and " represents d/dt. In the present paper we
choose 872G = ¢ = 1.

The present article is outlined as follows. In Sec. II, we
give the basic equations and solutions for the IMHRDE
model. In Sec. III, we would like to examine the evolution
of the Universe with the IMHRDE model. We will study the
evolution of the equation of state (EOS) parameter for
MHRDE and the deceleration parameter. The diagnostic of
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statefinder parameters {r, s} [94,103,104] and Om param-
eter [105] of the IMHRDE model are also studied. In
Sec. IV, we give our conclusions.

I1. BASIC EQUATIONS AND SOLUTIONS
OF THE IMHRDE MODEL

The line element of the nonflat FRW universe is given by

ds* = —dr* + a*(t) + r2(dr? +sin*0dg?)|, (2)

1 — kr?

where a(t) represents the dimensionless scale factor, k
denotes the curvature of space, and k =0,1,—1 corre-
sponds to flat, closed, and open FRW universe,
respectively.

Now, consider the Universe filled with DM and
MHRDE, and the total DM has two components: the
pressure relativistic one and the pressureless non-
relativistic one. In such conditions, the evolution of the
Universe described by the Friedmann equation can be
written as

1
(pdm + pde) =3 (prdm ~+ Pordm + pde)’ (3)
3

W | =

k
H2+?:

where pgm = Prdm + Poram and pg. are the energy densities
for total DM and MHRDE, p, 4., is the density of relativistic
DM, and p, 4, 1s the density of non-relativistic DM. Here,
in this paper, we assume that the ratio between the density
of relativistic DM and non-relativistic DM is a fixed value.
Suppose that Prdm = 7Pdm> then Prordm = (1 - y)pdnv where
y is a constant. In order to preserve the local energy-
momentum conservation law, i.e., VMT”'“ = 0, the follow-
ing equation must be satisfied:

Prot + 3H(ptot + ptot) =0, (4)

where  pot = pam +Pae AN Pio = Pam + Pae are  the
total energy density and pressure, prim = WidmPrdm =
YWidmPdm = Pdm and pge = WgePqe are the pressure of
relativistic DM and MHRDE, and w4, and wgy, are EOS
parameters for relativistic DM and MHRDE, respectively.
Considering Eq. (4), the continuity equations of energy
densities with Q as the interaction are given by

Pae + 3H(pge + Pac) = =0, (5)

/}dm + 3H(pdm + Wrdmprdm) = Qv (6)

where Q denotes the interaction between DM and
MHRDE. In the present paper, we take the interaction
form as Q = 3bH(pye + pam) = 9bH(H* + %) with the
coupling constant b [106]. For the total DM is constituted
of relativistic DM and non-relativistic DM, Eq. (6) could be
written in the following two forms, respectively:
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. k
Prdm + 3H(1 + }’Wrdm)prdm = 97/bH <H2 + ?) s (7)

or

. k
Pordm T 3H(1 + VWrdm)pnrdm = 9(1 - 7)bH <H2 + _2> :

a
(8)
Here, we define that
h = i Pie = Pde_ Pam = Pdm.
Hy’ 32 T 3HD
ﬁ — Prdm ﬁ — Prnrdm (9)
rdm 3 H(Z) ’ nrdm 3 H(Q) ’

where H| is the present value of the Hubble parameter.
Meanwhile, we define that Qo= k/H}, Qgmo =
Pamo/3H3, and Queo = paeo/3H3, which correspond to
the present value of the fractional energy densities for
curvature, DM, and MHRDE, respectively. Then, accord-
ing to Eq. (3), we can obtain that 1 + Q9 = Qymo + Lqeo-

Substituting Eq. (1) into Eq. (3) and using Eq. (9), we
obtain that

1 dh?
(@—p) dx’

where x =Ina and ’ represents d/dx. Differentiate this
equation once more, one has p/, = as

h2+gkoe—2x:ﬁdm+aiﬁh2+3 (10)

d*n?
3(a—p) dx*

. p aw 1
Pdm = a—ﬂdx

—ZQkoe_zx. (11)

Using the relation py, = Hpj,,, and Egs. (6), (10), and
(11), we have

a*n? dn?
I 3(1 4 Wiam +ﬂ>a

+9[(1 + yWeam)B + b(a — p)]n?
=3(a—B)(1 + 3yWugm — 3b) Qe . (12)
After some calculations, the general solution of the

above differential equation can be written in the following
form:

h2 = ¢ e ™% 4 cye I 4 e, (13)
where
mys = (1+yWam +B)

/(1 4y — B —4b(a—p).  (14)
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(3 —2)(1 + 3yWam )40
(1 + 37Wrdm)<3ﬂ - 2) + 9b((1 _ﬁ) .

CcC = _QkO + (15)

Define that ¢ = ¢35 — Qy, then using Eq. (15) one can
obtain that

(3a —2)(1 + 3yWram )0
(1 + 3yWeam) (34 —2) + 9b(a — B)

C3 =

Therefore, Eq. (13) could be rewritten as
R 4 Qe = cre ™M 4 cre ™ 4 cye . (16)

The coefficients ¢; and ¢, can be determined by the
following initial conditions:

) dh?
h |x:0 =1, - = 3(0‘ —ﬂ)Qdeo —3a. (17)
dx x=0

Then the coefficients can be written as

6[(a — B)Queo — a] — (3my —4)(c3 — Q) + 3m, ’

cp =

3(my —my)
(18)
or — _ 6[(a = p)Qqeo —a] — (Bmy —4)(c3 — Qo) +3m,
’ 3(my —my) .
(19)

Taking the relation a = 1/(1 + z) into consideration, one
can obtain that

W2 = ¢y (1+2) + oy (14 2)7 + (3 — Qi) (1 + 2)2,

(20
+ <a—%)cz(l + z)im
+(e=3)e-awurar]. e

+ ﬂ—%)cz(l+z)%’"2
+ (ﬁ—§ (63— Q)1 +z)2} T Qull + 2.
@)
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From these equations, it is easy to obtain the energy density
of the relativistic or the non-relativistic DM with p.4, =
YPdm and Pordm = (1 - y)pdm'

Considering the basic equations and solutions given
above, we find that there are three free parameters, i.e., b, a,
and f, that should be determined. For this purpose, using
Egs. (3), (5), and (6), the derivative of H with respect to
time is given by

gk 3 H2+£ 1+
a2 a?

where © = pym/Pde = Pam/Pde 1S the ratio between the
energy densities of DM and MHRDE. Substituting
Egs. (1) and (23) into Eq. (3), one can easily find the
relationship between u and wy, as

Wde + uywrdm (23)
1+u ’

14 u
h* = — Qe ™ + ———— |3ah? + 2Qpe ™
e 5 gy 2+ 2
— e =+ UYWrdm
—3(h? + Qe ) [ 1 4 e T Wrdm ) | 24
(h* + Qe )( + 11 u (24)
Now, taking the boundary conditions wy,y = —1 and u, =

(1 + Qo — Qqen)/Lqeo into consideration [107], and using
Eq. (24), we obtain

2 Q.
3 'Q'deO '

(25)

the value of f is given in terms of the free parameter «,
which has nothing to do with the coupling constant . From
Eq. (25), we find the coefficient before a is (1 — ), and

because Q4.0 < 1, we get that § increases as a decreases.
Now, the free parameters have been reduced to two, and
they will be fixed by the behavior of the deceleration
parameter, in particular, when a = 4/3, p4. « R, where
R =6(H +2H?) is the Ricci scalar curvature for a
spatially flat FRW space-time.

PHYSICAL REVIEW D 90, 083534 (2014)

III. EVOLUTION OF THE UNIVERSE
WITH MHRDE AND DM

A. EOS and deceleration parameter

In this section, we would like to examine the Universe’s
evolution by studying the evolution of the EOS parameter
of MHRDE and the deceleration parameter. Using Eq. (5),
one can obtain the fractional pressure of the MHRDE:

~ 7&7_~ _ld[)de_
Pde = 3H(2) = —Pde 3 dx

b(l’lz + Qkoe’z").

Then, the EOS parameter of MHRDE would be

_ Pae _ Dae

. 1 D b(hz + Qk0€_2x)
Pde ﬁde ‘

3 dx ﬁ de

Wde
(26)
Substituting Eqgs. (20) and (21) into Eq. (26), we obtain

2b
Lo 2

27
2y, 72 ( )

where

(e-3) @2 o)

Vo= QRa—m)c;(1+ Z)%’”' + (Qa—my)e (1 + Z)%m2
- 2(a —i) (&3 — Qo)1 + 22 (29)
3 = (@—P)ler (14 2 + co(1 4 2) + c5(1 + 2)2).
(30)

We have plotted the evolution of the EOS parameter of
MHRDE with respect to the redshift z in Fig. 1. Figure 1(a)

0.0F 0.0F
~02f -02}
—04} —o4
£ o6} —0.6} g
. y=1/1
-038} -08 P — y=1/6
- B y=1/3
—1.0f— -1.0 - y=2/3
e e e=44 | ——=b=0.0504 f |  emmemee y=1
0 2 4 6 0 4 6 0 2 4 6

(a)

FIG. 1.

(b) (c)

The evolution of the EOS parameter of MHRDE, i.e., wg., with respect to the redshift z under different cases: (a) b = 0.01,

y=1/6; b)) a=1.12,y =1/6; (c) a = 1.12, b = 0.01. Here, we choose Q;y = 0.02, wyy,, = 0.1, and Q4. = 0.73.
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FIG. 2. The evolution of the deceleration parameter g with respect to the redshift z under different cases: (a) b = 0.01, y = 1/6;
(b) a=1.12, y = 1/6; (c) a = 1.12, b = 0.01. Here, we choose Q,y = 0.02, w4, = 0.1, and Q4. = 0.73.

is for different @ with fixed coupling constant b = 0.01 and
fixed proportion parameter y = 1/6. This figure shows that
the value of wy, approaches O at high redshift, which
indicates that the MHRDE behaves like DM in the past
stage of the Universe. At low redshift or in the future, the
values of wy, depend on a, for bigger «a, the value of wy, is
smaller. In Fig. 1(a), one can easily find that for different a,
the value of wy, can cross the boundary condition —1, like
quintom. From Fig. 1(b) one can find that the coupling
constant can affect the value of wy, at high redshift greatly,
but weaker at the low redshift. In Fig. 1(c), we find that the
proportion parameters of relativistic DM in the total DM
can affect the values of wy. in the whole evolution: the
bigger y, the smaller wg, at high redshift and the bigger wyg,
at low redshift.

The deceleration parameter, which is used to differ-
entiate when the Universe transits from the decelerating
phase to the accelerating phase, is given by

aH? H*'

Taking H = Hyh into account, g can be rewritten in terms
of h? as

1+ zdh?

_. 1
20 dz (31)

q=—1+
Using Eq. (20), the above equation can be written as

1 (3m; —4)c (1 + Z)%m‘ + (3my —4)cy(1 + Z)%mz

AT+ e+ 2+ (03 = Qo) (1 +2)°
(32)

Figure 2 shows the evolution of the deceleration parameter
q with respect to the redshift z. Figure 2(a) is for variable a
with the coupling constant » = 0.01 and the proportion
parameter y = 1/6, Fig. 2(b) is for variable b with @ = 1.12
and y = 1/6, and Fig. 2(c) is for different proportion
parameters with o = 1.12 and b = 0.01. From Fig. 2,
we find the deceleration parameter decreases from about

0.5 to smaller than —1 as z decreases in the whole
evolution. The deceleration parameter is positive at high
redshift, which indicates the earlier decelerating phase of
the Universe. On the other hand, the negative deceleration
parameter at low redshift indicates the accelerating phase of
the Universe. Figure 2 shows that in the recent past at
zr = 1/2, the Universe transits from the decelerating phase
to the accelerating phase. Figure 2(a) shows that as a
decreases, the transition occurs at relatively larger values of
redshift, which indicates that the Universe enters the
accelerating phase more early. Similarly, Fig. 2(b) shows
that as the coupling constant b increases, the transition
occurs earlier. And from Fig. 2(c) one can find that as the
proportion parameter of relativistic DM increases, the
transition occurs later. With the observation data from
SNe + CMB, the ACDM model gives the transition range
zp = 0.50-0.73. However, with the help of Fig. 2 and our
calculations, we find that the transition range is about
z1r = 0.49-0.67, which shows that the transition of the
Universe from decelerating to accelerating expansion is
close to that in the ACDM model. For this model, if the
proportion parameter y is fixed, the present value of the
deceleration parameter is a constant, which has nothing to
do with the free parameters a or b. For y =1/6,
qo = —0.5775. For fixed a and b, g, increases as y
increases.

In order to examine how the densities of DM and
MHRDE change over time, the evolution of the densities
of DM and MHRDE are plotted in Fig. 3. Combining the
three graphics in Fig. 3, it is easy to see that, in the past
universe or at high redshift, the density of DM and
MHRDE was comparable with each other; at low redshift,
the MHRDE is dominating, which indicates that the
accelerating expansion begins in the recent past, which
is helpful in alleviating the coincidence problem.

B. Statefinder diagnostic

Since there are so many DE models that have been put
forward, in order to discriminate different DE models from
each other, Sahni et al. [103] introduced the statefinder pair
{r,s}, which uses the third time derivative of the scale

083534-5



EN-KUN LI YU ZHANG, AND JIN-LING GENG

PHYSICAL REVIEW D 90, 083534 (2014)

60 T . 60 FX, 60 R ' -0
50 sof ™ 0.0011 LI — «3211%0
o . y=
~ 40} ~ 40F N, e b=0.050{ ~ 40F N\ 0000 e y=1/3
& o & — =23
T 30f T 30f T 30F 0 N y=1
) c )
T 20f S 20f s 20f
= 10 T = 10k
DE
0f U 0 N
“10k ‘ DM ‘ ERET ‘ DUN 3 -0k ‘ DM ‘ E
-20 -10 0 10 20 -20 -10 0 20 -20 -10 0 10 20
In(a) In(a) In(a)
(@ (b) (©)
FIG. 3. The evolution of the energy density with respect to In a under different cases: (a) b = 0.01,y = 1/6; (b) a = 1.12, y = 1/6;

(¢) a=1.12, b = 0.01. Here, we choose Q5 = 0.02, wy,, = 0.1, and Q4. = 0.73.

factor a(t), to diagnose and discriminate behaviors of
different DE models. In this section we would like to
check up on the statefinder pair in the IMHRDE model. The
statefinder pair {r, s} is given by [94,103,104]

a r—Qu,
y = —— S=—, (33)
3(q — Q/2)

where ¢ is the deceleration parameter and Q,, = Qq,+
Q4. = 1+ Qo(1 + z)?/h%. From Egs. (31) and (33), the
statefinder pair can be written in the following form:

2 2
SO S U5 4
20 dx  2h% dx?

B 1(,,12)// + 3(]’12)/ _ 2Qk0672x (35)

3 (B 3R Qe

Thus, using Eq. (20), we obtain
L n, L3

=——, =—-=, 36
g 21, * 3 ( )

where

9 9
= (2=Fm + 3t Jeul1-+ o

9 9
+ (2—57112 +Zm%>CI(I+Z)%m2, (37)

m = ci(1+ 2" + er(1 +2) + (3 — Qo) (1 + 2)%,
(38)

1y = 9my (m; —2)ey (1 + 2)™
+9my(my —2) ey (1 + 2)3™ = 8es(1+2)%, (39)

Ny = 6(m; —2)c; (14 Z)%m‘ + 6my(my —2)cy (1 + Z)%mz
—des(1+2)% (40)

The r-s evolutionary trajectory in the IMHRDE model is
shown in Fig. 5. In the statefinder r-s plane, the ACDM
model in the flat universe corresponds to a fixed point
{r,s} = {1,0}, and the other models of DE’s behaviors
can be measured from the distance between them and the

ACDM point. But now, in the nonflat universe, the {r, s}

pair would be {Q,, 0}, where Q,, = 1 + %jz)z varying

with time, then the statefinder pair would not be a fixed
point but a line segment. Today’s state of the evolution of
the ACDM model is {rg,so} = {1.02,0}. In Fig. 4, we
have plotted the total energy density Q,,, with respect to the
redshift. Figure 4 shows that different parameters could
strongly influence the trend of the curves of €, at high
redshift but much weaker at low redshift.

The black spots in Fig. 5 correspond to today’s state for
the ACDM model and the IMHRDE model. From
Fig. 5(a), we find that as the value of a becomes bigger,
the range of the trajectory becomes larger. Figure 5(b) shows
that the present values of the statefinder pair under different
coupling constants are {rg,so} = {1.152,—0.0404},
{1.147,-0.0388}, {1.099,—0.0243}, {0.888,0.0403},
respectively. It is easy to find that as b increases, the range
of the trajectory becomes smaller first and then bigger.
Figures 5(c) and 5(d) show that the influence of y on the
range of the trajectory is weak. Today’s distances between
different IMHRDE models and ACDM models with respect
to the coupling constant b are plotted in Figs. 5(e) and 5(f),

a=1.12,y=1/6,b=0.001
——————— @=1.12,y=1/6,b=0.01

1.020¢ N, a=1.12,y=0,b=0.01 ]
g 1.015} ' - a=1.12,y=1,b=0.01 |
=]

1.025¢

1.010¢

1.005F Tl

1.000E

FIG. 4. The curves of Q,, with respect to z under different cases.
Here, we choose Qy = 0.02, wyg,, = 0.1, and Q4.9 = 0.73.
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FIG. 5. Figures (a)—(d) are for the » — s plane of the IMHRDE model in different cases: (a) b = 0.01 and y = 1/6, (b) @ = 1.12 and
b =0.01, (c) and (d) @ = 1.12 and b = 0.01. Figures (e) and (f) are today’s distances between different IMHRDE models and ACDM
models with respect to the coupling constant b, where AR = \/r3 + s3 — 1.02. Figure (e) is for different & with y = 1/6; curves from
below to top are for a = 1.12,1.22,4/3,1.44. Figure (f) is for different y with a = 1.12; curves from top to below are for
y=0,1/10,1/6,1/3,2/3, 1. Here, we choose Q;, = 0.02, w4, = 0.1, and Q4. = 0.73.

where AR = /r§ + s3 — 1.02. From these two graphics,
one can find that as b increases the distance becomes smaller
first and then bigger.

Figure 5(a) shows that, when s — 400, ¥ = 7eonet (Feonst
is a positive constant). In Fig. 5(a), it is easy to see that, as s
increases from —oo to 0, r increases from 7., to a finite
value, and as s increases from O to +oo, r increases from a
positive value less than 7.y, 10 Feong- Figure 5(b) shows
that, for » = 0,0.001, 0.01, as s increases from —oo to + oo,
r increases from r.,, to a maximum first, and then
decreases from the maximum to a constant bigger than
Teonst When s < 0, but for s > 0, r increases from a small
positive value to 7., as s increases. When b = 0.005, as s
increases r increases first and then decreases. Figures 5(c)
and 5(d) show that for big values of the proportion
parameters, one can find that as s increases from —oo to
0, r decreases from r, to a finite value, and when s is big
enough, as s increases, r increases from a positive value to
Feonsi- HOWever, if there is no relativistic DM or its
proportion is small, the phenomena s — 00,7 — Feone
cannot happen.

In order to explain the above phenomena, let us take the
total density p,, and total pressure p, into consideration;
then the statefinder pair can be written in the following
form:

9
r:Qtot‘f'i

Prot T Prot @

k . 9,
Prot — 3 2 Prot

(41)

¢ — Prot + Prot Prot
Pt Prot

. (42)

From Eq. (42) one can find that the statefinder s is
exceedingly sensitive to the total pressure p,. At a very
early time, which is the dark matter dominating stage, the
positive pressure of the relativistic DM ensures that the total
pressure in the Universe is positive, which is just like
radiation, whose pressure is positive; then we call this stage
the “radiation stage.” Much later, the Universe would be DE
dominated, whose negative pressure can drive the Universe
to accelerating expansion, for this stage we call it the
“accelerating expansion stage.” Between these two stages,
one can find that there would be a precise moment or a
stage in which the positive pressure of relativistic DM is
balanced by the negative pressure of DE. At such a moment
or stage, one has p,, =0, |s| — oo; in this paper, we call
such stage the “dust stage” [108,109]. From Fig. 6, one can
find that when s — +o00, p;o; = 0.

According to Figs. 6(a) and 6(d), one can say that as a
decreases, the dust stage occurs early. Figures 6(b) and 6(e)
show that if the coupling constant is too big, the dust stage
disappears, and as the value of b increases the dust stage
occurs earlier. In Figs. 6(c) and 6(f) we choose a = 1.12
and b = 0.01. In this case, we find that as the relativistic
DM’s proportion decreases the dust stage appears earlier.
However, if the proportion is too small, the dust stage
cannot appear. Then we can say that the existence of the
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FIG. 6. Figures (a), (b), and (c) are for the evolution of the statefinder parameter s with respect to z under different cases: (a) b = 0.01,
y=1/6; (b) a =1.12, y = 1/6; (c) a = 1.12, b = 0.01. Figures (d), (e), and (f) are for the evolution of the total pressure p, with
respect to z under different cases: (d) » = 0.01,y =1/6; (e) a = 1.12,y = 1/6; (f) a = 1.12, b = 0.01. Here, we choose Q;;, = 0.02,

Weam = 0.1 and Queo = 0.73.

dust stage in the past and the time of its occurrence are all
influenced not only by a and y, but also by the coupling
constant b. Above all, we can say that if the parameters are
suitable, the IMHRDE model could explain the Universe’s
transition from radiation stage to accelerating expansion
stage through the dust stage.

Now, we turn our attention to the precise moment when
the dust stage occurs. Figure 7 shows the precise moment z,,
with respect to b for different y. From Fig. 7, it is easy to
find that the coupling constant b and proportion parameter
y all have great influence on z,.. For a fixed y, as b increases,
Z, increases more and more rapidly and tends to infinity
finally. One can also find that, for a fixed y, only when the
coupling constant is small enough can the dust stage

16 F
14
12F

~—

[=))
T
\
\
\
\
\
N
\
\
\
\.
\,
AN
.
.

0.01

FIG. 7. Redshift for the Universe entered the dust stage with
respect to b in the nonuniform coordinate, curves from left to
right are for y =0,1/10,1/6,1/3,2/3,1, and @ = 1.12. Here,
we choose Qg = 0.02, wy, = 0.1, and Qg9 = 0.73.

appear. Here we give some values of z,: fora = 1.12, y =
1/10 and b = 0.001, we have z, = 4.505; for a = 1.12,
y=1/10 and b =0.005, we have z, =5.688; for
a=1.12, y =1/10 and b = 0.009, we have z, = 10.99.

C. Om diagnostic

Now, in this section, we will turn to the Om diagnostic,
which is helpful in distinguishing different DE models
without referencing to either the matter density or Hy [105].
It is defined as

h*(y) — 1

o 43)

Om(y) =

’

where y = 1+ z and h(y) = H(y)/H,. From the defini-
tion, we see that Om involves only the first derivative of the
scale factor through the Hubble parameter. Using Eq. (20)

we obtain

Om(z)
ci(1+ 2 + ¢y (14 2)" + (c3 — Qo) (1 +2) — 1
(1+z)P—1 '

(44)

Figure 8 shows the variations of Om(z) with respect to the
redshift z. According to the work [105], an upward trend of
Om(z) represents phantom (wg. < —1) and a downward
trend of Om(z) represents quintessence (wg, > —1). In
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b = 0.01. Here, we choose €;5 = 0.02, wy,, = 0.1 and Q4o = 0.73.

Fig. 8 (a) we find that for « = 1.12, 1.22, 4/3, and 1/44,
Om(z) increases as the redshift z increases, which is similar
to the phantom model. Figure 8(b) shows that when b = 0,
0.001 and 0.01, the Om(z) curves have an upward trend,
but it is a downward trend for » = 0.05. Thus, we can say
that for « = 1.12 and y = 1/6, the IMHRDE acts like
quintessence when the interaction is very weak, but it is
phantom-like under strong interaction. From Fig. 8(c), we
find fory = 2/3 and y = 1, as z increases Om(z) decreases
first, and then increases, which indicates that the state of the
IMHRDE model will transit from quintessence to phantom
phase. When the proportion parameter y is small, Om(z)
has a positive slope only, suggesting the IMHRDE model is
phantom-like.

IV. CONCLUSION

In this paper, we have examined the evolution of a
nonflat FRW universe, which is filled with DM and
MHRDE. The IR cutoff of the MHRDE is given by the
modified Ricci scalar; its form is pg. = a%ﬂ (H + %aHz).
The total DM has two components: relativistic DM and
non-relativistic DM; the EOS parameters of the relativistic
DM and non-relativistic DM are chosen as w,g,, = 0.1 and
Waam = 0, respectively. The present density ratio between
DM and DE and the present EOS parameter of DE are
chosen as the boundary conditions; then the parameter /3
can be obtained in terms of the free parameter a. In the
present paper, we take the form of the interaction between
DM and MHRDE as Q = 3bH(pge + pam)-

In order to examine the evolution of the nonflat universe,
the EOS parameter of MHRDE and the deceleration
parameter are studied first. We find that the value of a
have a great effect on the future value of wy., b has a great
effect on the past value of w., and the proportion parameter
y could influence the value of wy, in the past and the future.
Figure 1 also shows that the MHRDE behaves like DM in
the early universe and phantom-like in the future. By
examining the deceleration parameter, we find that the
Universe’s transition from decelerating to accelerating

expansion would be affected by the values of «, b, and
y. We also find that the transition of the Universe from
decelerating to accelerating expansion is close to that in the
ACDM model. Combining the evolution of the densities of
DM and MHRDE, we find that MHRDE’s density is
comparable to DM’s at high redshift and MHRDE is
dominating at low redshift, which indicates that the accel-
erating expansion begins in the recent past. This is helpful
in solving the coincidence problem.

Next, we have studied the statefinder diagnostic for the
IMHRDE model by plotting the trajectories in the r-s
plane. One can find that for some parameters we choose, a
special phenomena appears: for s — 00, r = reopg. 1IN
order to clarify the phenomena, we take the total density
and the total pressure into consideration. As we know, the
statefinder parameter s is sensitive to the total pressure p,;
then we studied the evolution of the total pressure p,. next.
One can find that for s — o0, p;,; = 0, and we call this
stage the “dust stage.” Whether there is a dust stage is
decided by » and y and the moment when the dust stage
occurs due to a, # and y. For suitable model parameters, one
can say that the IMHRDE model can explain the Universe’s
transition from the radiation stage to the accelerating
expansion stage through the dust stage. By studying the
Om diagnostic we find that if the interaction between DM
and MHRDE is weak and the proportion of relativistic DM
in the total DM is small, the IMHRDE would be phantom-
like. Strong interaction can lead to quintessence-like and
large y can lead to the transition from quintessence to
phantom.
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