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In this paper, we introduce a noncommutative version of the Brans-Dicke (BD) theory and obtain the
Hamiltonian equations of motion for a spatially flat Friedmann-Lemaître-Robertson-Walker universe filled
with a perfect fluid. We focus on the case where the scalar potential as well as the ordinary matter sector are
absent. Then, we investigate gravity-driven acceleration and kinetic inflation in this noncommutative BD
cosmology. In contrast to the commutative case, in which the scale factor and BD scalar field are in a
power-law form, in the noncommutative case the power-law scalar factor is multiplied by a dynamical
exponential warp factor. This warp factor depends on the noncommutative parameter as well as the
momentum conjugate associated to the BD scalar field. We show that the BD scalar field and the scale
factor effectively depend on the noncommutative parameter. For very small values of this parameter, we
obtain an appropriate inflationary solution, which can overcome problems within BD standard cosmology
in a more efficient manner. Furthermore, a graceful exit from an early acceleration epoch towards a
decelerating radiation epoch is provided. For late times, due to the presence of the noncommutative
parameter, we obtain a zero acceleration epoch, which can be interpreted as the coarse-grained explanation.
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I. INTRODUCTION

Among the theories alternative to Einstein’s general
relativity, the Brans-Dicke (BD) theory [1] is the simplest
and the best known. In the BD theory, the gravitational
constant has been assumed to be a dynamical variable,
which is proportional to the inverse of a dynamical scalar
field, namely, the BD scalar field, ϕ.
In the Jordan frame of the BD theory, the scalar field

couples nonminimally only with the geometry and does
not couple directly with the matter. Hence, the energy-
momentum tensor of the ordinary matter (all types of matter
except the BD scalar field) obeys the usual conservation
law. Moreover, there is a free dimensionless adjustable
parameter, which is called the BD coupling parameter and
denoted byω. In spite of the theoretical proposals in which it
has been anticipated that the values of the BD parameter
should be of order unity, observational measurements have
indicated that the lower bound on ∣ω∣ is large [2].
At a classical level, to obtain results in agreement with

observational data, for an early as well as a late time
universe, other extended versions of the BD theory (scalar-
tensor theories) have been applied. In these theories,
contrary to the standard version of the BD theory, it has
been assumed that either the BD coupling parameter should
be a general function of the BD scalar field [3], and/or a

scalar potential [4] (which is also a function of ϕ) must be
added by hand.1 It is also established that the BD theory not
only can provide observational consequences to convince
the original aims of the theory, but also it is possible to
construct interesting quantum cosmological models, which
may present appropriate scenarios to study the inflationary
universe [7,8].
In the BD setting of [9,10], which is of interest in this

study, an accelerated expanding universe was not obtained
by adding a scalar potential or a cosmological constant.
However, contrary to the standard BD theory, a variable BD
coupling parameter rather than a constant one has been
assumed. Being more concrete, an accelerated expanding
universe emerges from the kinetic energy density of a
dynamical Planck mass2 without introducing any scalar
potential or cosmological constant. More precisely, in this
formalism, the pressure associated to the kinetic energy
density is negative.
Although having an accelerating scale factor is required

to explain the early as well as late time phases of the
Universe, additional features need to be satisfied. In fact,
the early Universe must inflate such that it can overcome
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1It has been recently shown [5] that instead of an ad hoc
assumption, such a scalar potential could be induced from the
geometry of an extra dimension. Such formalism for an anisotropic
Bianchi type I solution has been examined in [6].

2Throughout this paper, we will use Planck units. Thus, Planck
mass, which is a variable in BD theory, is given by mPl ¼ ϕ1=2.
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the problems with the standard cosmology. Moreover, a
successful inflationary model must exit from an accelerat-
ing phase and proceed to a decelerated expansion.
In Ref. [10], it has been shown that, to meet sufficient

inflation, it is required to have an accelerating scale factor
in the Einstein frame. However, there is no source to get an
accelerating scale factor in that frame in the model
investigated in [10]. Thus, kinetic inflation, even by
assuming a variable BD coupling parameter, cannot lead
to today’s Universe. Namely, in the commutative case of
the BD theory (in the Jordan frame), there is an important
problem with kinetic inflation, even with a variable ω:
regardless of the form of ωðϕÞ, all the D-branch3 solutions
are encountered with the graceful exit problem [10]. The
graceful exit problem is also an obstacle in (accelerated)
inflation within more general solutions in the context of
string theory [11].
In this work, we will present a model which can give an

accelerating scale factor for the early Universe, without
encountering the above-mentioned problems. Moreover,
we will show that the nominal as well as sufficient
conditions, which are required for an inflationary epoch,
are satisfied in a more convenient manner when the
noncommutativity parameter is present. Our model will
not be constructed by adding a scalar potential or by taking
a variable BD coupling parameter. Instead, we will study
the effects of a noncommutativity in a cosmology con-
structed with a flat Friedmann-Lemaître-Robertson-Walker
(FLRW) model in the context of the BD theory, in the
absence of the ordinary matter.
Noncommutative field theory [12] has been applied to

gravitational models which led to present a few non-
commutative proposals for gravity [13]. Such approaches
have indicated that their corresponding noncommutative
field equations are very complicated to solve. However, by
applying some arguments, gravitational models based on
noncommutativity with simplified field equations involving
noncommutative effects have been obtained. Basically, by
means of applying an effective noncommutativity on a
minisuperspace, the noncommutative deformations of the
minisuperspace can be investigated at the quantum level. At
the classical level, noncommutative deformations have also
been studied; see, e.g., [14–17].
The major objective of this paper will be to construct the

spatially flat FLRW field equations for a generalized BD
theory by means of the Hamiltonian formalism in a non-
commutative minisuperspace. Then, we proceed to obtain
the solutions for very special cases and investigate the
effects of noncommutativity. By introducing a noncommu-
tative Poisson bracket between the BD scalar field and the
logarithm of scale factor, we will construct a noncommu-
tative BD cosmology. The effects of such a noncommu-
tativity on the BD vacuum solutions are discussed.

Our paper is, therefore, organized as follows. In Sec. II,
the general Hamiltonian equations of motion for an
extended version of a BD theory (in Jordan frame) in
the presence of a special kind of a noncommutativity for a
spatially flat FLRW universe are derived. In Sec. III, we
restrict ourselves to solve the field equations for a case in
which there is not a scalar potential or an ordinary matter. In
Sec. IV, we will argue that the obtained solutions in Sec. III
can be a successful alternative for a kinetic inflationary
model. In Sec. V, we will summarize and analyze the results
of the paper.

II. NONCOMMUTATIVE COSMOLOGICAL
EQUATIONS IN BRANS-DICKE THEORY

Let us start with the spatially flat FLRW metric as the
background geometry, namely,

ds2 ¼ −N2ðtÞdt2 þ e2αðtÞðdx2 þ dy2 þ dz2Þ; ð2:1Þ

where NðtÞ is a lapse function and aðtÞ ¼ eαðtÞ is the scale
factor. We will work with a Lagrangian density of the BD
theory4 in the Jordan frame [1,19] as

L½γ;ϕ� ¼ ffiffiffiffiffiffi
−γ

p �
ϕR −

ω

ϕ
γμν∇μϕ∇νϕ − VðϕÞ

�

þ ffiffiffiffiffiffi
−γ

p
Lmatt; ð2:2Þ

where the greek indices run from zero to 3, and Lmatt ¼
16πρðαÞ (where ρ is the energy density) is the Lagrangian
density associated to the ordinary matter. In order to have
an attractive gravity, we should notice that the BD scalar
field ϕ must take positive values. VðϕÞ is the scalar
potential, and R is the Ricci scalar associated to the metric
γμν, whose determinant was denoted by γ. In this work, we
will assume the BD coupling parameter ω to be a constant
and, in vacuum, requiring stability in Lorentzian space, it
must be restricted as ω > −3=2 [20,21]. It is straightfor-
ward to show that the Hamiltonian of the model is given by

H ¼ −
Ne−3α

2ð2ωþ 3Þϕ
�
ω

6
P2
α − ϕ2P2

ϕ þ ϕPαPϕ

�

þ Ne3αðV − 16πρÞ; ð2:3Þ

where Pα and Pϕ are the conjugate momenta associated to
the α and ϕ, respectively. We will be working with the
comoving gauge; namely, we have set NðtÞ ¼ 1. Thus, by
applying the above Hamiltonian, the equations of
motion corresponding to the phase space coordinates

3We will introduce the D and X branches in footnote 6.

4In the Lagrangian density associated to the original BD
theory, there is no scalar potential [1,18]. However, for simplicity,
we entitle the Lagrangian density (2.2) as the BD Lagrangian
density. We should note that, in the next sections, we will work in
the context of the standard BD theory.
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fα;ϕ;Pα; Pϕg, in which the Poisson algebra is fα;ϕg ¼ 0,
fPα; Pϕg ¼ 0, fα; Pαg ¼ 1 and fϕ; Pϕg ¼ 1, are given by

_α ¼ −
e−3α

2ð2ωþ 3Þϕ
�
ω

3
Pα þ ϕPϕ

�
; ð2:4Þ

_Pα ¼ e3α
�
−6V þ 16π

�
6ρþ dρ

dα

��
; ð2:5Þ

_ϕ ¼ −
e−3α

2ð2ωþ 3Þ ðPα − 2ϕPϕÞ; ð2:6Þ

_Pϕ ¼ e−3α

2ð2ωþ 3Þϕ ðPα − 2ϕPϕÞPϕ

−
e3α

ϕ

�
V þ ϕ

dV
dϕ

− 16πρ

�
; ð2:7Þ

where a dot denotes the differentiation with respect to the
cosmic time. Because of the homogeneous and isotropic
FLRW universe choice, we have assumed that the spatial
gradients in the BD scalar field are negligible, namely,
ϕ ¼ ϕðtÞ. By using the equation of state associated to a
perfect fluid and the Hamiltonian constraint, it is straight-
forward to derive the usual FLRW field equations in the
context of the BD cosmology. However, in this paper, we
prefer to work with the first order Hamiltonian differential
equations.
We will investigate the effects of noncommutativity in

this cosmological model. In fact, in order to achieve the
corresponding FLRW equations for a noncommutative
setting, we should begin from a noncommutative theory
of gravity. However, as performing such a procedure is a
complicated process, it is usually replaced by an effective
noncommutativity in the minisuperspace [14,22]. By
modifying the Poisson algebra, some particular noncom-
mutative frameworks have been applied to a minimally
coupled scalar field cosmology [17], namely, in quantum
cosmology. In particular, a dynamical deformation between
the momenta associated to the scale factor and scalar
field has been used in both nonminimally and minimally
coupled scalar field cosmology to discuss the correspond-
ing effects in the evolution of the Universe and singularity
formation [15,16].
In order to investigate the effects of a classical evolution

of the noncommutativity on the cosmological equations of
motion in the BD theory, we propose the following Poisson
commutation relations between the variables:

fα;ϕg ¼ θ; fPα; Pϕg ¼ 0;

fα; Pαg ¼ 1; fϕ; Pϕg ¼ 1; ð2:8Þ

where the noncommutative parameter θ is a constant.
Applying the commutation relations (2.8) leads us to the
following deformed equations of motion:

_α ¼ −
e−3α

2ð2ωþ 3Þϕ
�
ω

3
Pα þ ϕPϕ þ θðPα − 2ϕPϕÞPϕ

�

þ θ

�
e3α

ϕ

��
VðϕÞ þ ϕ

dVðϕÞ
dϕ

− 16πρ

�
; ð2:9Þ

_ϕ ¼ −
e−3α

2ð2ωþ 3Þ ðPα − 2ϕPϕÞ

− 6θe3α
�
VðϕÞ − 16π

�
ρþ 1

6

dρ
dα

��
; ð2:10Þ

where, as the equations of motion associated to the
momenta Pa and Pϕ under the proposed noncommutative
deformation do not change, we have abstained from
rewriting them. Equations (2.9) and (2.10) together with
those for the momenta, namely, Eqs. (2.5) and (2.7), are the
Hamiltonian equations for the noncommutative BD setting,
and obviously, the standard commutative equations are
recovered in the limit θ → 0.
In the next sections, we investigate the cosmological

implications of this model for a very simple case in which
the scalar potential and the ordinary matter are absent.

III. GRAVITY-DRIVEN ACCELERATION
FOR COSMOLOGICAL MODELS IN THE

COMMUTATIVE AND NONCOMMUTATIVE
BD THEORY

Let us assume a very simple case in which we set ρ ¼ 0
and VðϕÞ ¼ 0. In the commutative setting of BD theory,
such a model has been considered as an appropriate
approach in which the key ideas of the duality and branch
changing have been studied [23]. In addition, as mentioned,
a gravity-driven acceleration epoch is obtained without
introducing any scalar potential, cosmological constant,
and/or ordinary matter. In the commutative case, such
solutions, by assuming a variable BD coupling parameter,
have been investigated in detail in Refs. [9,10]. In what
follows, we will study the effects of a constant non-
commutative parameter introduced by relation (2.8) on
the behavior of the cosmological quantities. We should
remind that, in contrast to the approaches in [9,10], we have
assumed the original BD theory in which ω should be a
constant. As we will see, the presence of the noncommu-
tative parameter leads us to some interesting consequences.
In the absence of the scalar potential and ordinary matter,

from (2.5) we get _Pα ¼ 0, which gives a constant of motion
and may assist us to solve the rest of the equations of
motion. Thus, we get Pα ¼ c1; also, Eqs. (2.7) and (2.9)
give Pϕ ¼ c�2 ϕ

−1 where c1 and c�2 ≠ 0 are the integration
constants. These constants are not independent; by sub-
stituting them into the Hamiltonian constraint, we get the
following relation between them:

NONCOMMUTATIVE MINISUPERSPACE, GRAVITY-DRIVEN … PHYSICAL REVIEW D 90, 083533 (2014)

083533-3



c�1 ¼ 3jc2j
ω

½−sgnðc2Þ � ξ�; ð3:1Þ

where ω ≠ 0, ξ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ω=3

p
, and sgnðxÞ ¼ x=jxj is the

signum function. Thus, from (2.10), _ϕ is written as

_ϕ ¼ −
f�

ξa3
; where f� ≡ jc2j

2ω
½−sgnðc2Þξ� 1�: ð3:2Þ

By employing the obtained expressions associated to the
momenta and the integration constants, Eqs. (2.9) and
(2.10) lead us to

H ¼ h�
�
_ϕ

ϕ

�
; where h� ≡ g� þ c2θ

ϕ
; ð3:3Þ

H ¼ _a=a is the Hubble constant, and g� is given by

g� ≡ −
1

2
½1� sgnðc2Þξ�: ð3:4Þ

Notice that the above equations corresponding with each
sign of5 c2 give two branches for the Hubble parameter. As
we have assumed ϕ > 0, i.e., an attractive gravity [2], in
order to discuss an expansion or contraction, the values of _ϕ
as well as h corresponding to each branch6 must be
considered. For instance, by considering a special
case by supposing c2 > 0 and θ ¼ 0, we get
H ¼ −1=2ð _ϕ=ϕÞð1� ξÞ. In this case, for ξ < 1, H > 0

only when _ϕ < 0, andH < 0 only when _ϕ > 0 (for both of
the branches). While, for ξ > 1, to have a positive Hubble
expansion, we must choose the upper sign for _ϕ < 0 and
the lower sign for _ϕ > 0.
Let us take a general case. We obtain the acceleration of

the scale factor as

ä
a
¼ H2 þ _H ¼ −

1

6ϕ
½ρðϕÞ þ 3pðϕÞ�

¼ −
�
_ϕ

ϕ

�2�
2h2 þ hþ c2θ

ϕ

�
; ð3:5Þ

where the energy density and pressure associated to the BD
scalar field are given by [5]

ρðϕÞ ≡ −T0ðϕÞ
0 ¼ 3h2

�
_ϕ2

ϕ

�
; ð3:6Þ

pðϕÞ ≡ TiðϕÞ
i ¼

�
3h2 þ 2hþ 2c2θ

ϕ

��
_ϕ2

ϕ

�
; ð3:7Þ

where i ¼ 1; 2; 3 with no sum and we have used relations
(3.2) and (3.3). Hence, in order to have an accelerating
universe, the following constraint must be satisfied

2h2 þ hþ c2θ
ϕ

< 0: ð3:8Þ

More precisely, while the Universe evolves, if the func-
tional form of h [which is given by (3.3)] changes such that
it obeys the constraint (3.8), then the Universe will be in an
accelerating phase. As ρðϕÞ > 0, relation (3.7) and con-
straint (3.8) indicate that the pressure will be negative.
In the particular case where θ ¼ 0, by using relations

(3.3) and (3.4), the constraint (3.8) reduces to

ξ½ξ� sgnðc2Þ� < 0: ð3:9Þ

As ξ > 0, the only acceptable solution will give a constraint
on the BD coupling parameter, namely, ω < 0 (ξ < 1),
which corresponds to the negative values for c2 when the
upper sign is chosen, while by taking positive values of c2,
the lower sign must be chosen. Namely, for the commu-
tative case, under changing the sign of c2, the upper and
lower solutions can be exchanged.
From (3.3), we can easily obtain a relation between the

scale factor and the BD scalar field as

aðtÞ ¼ ai½ϕðtÞ�ge−c2θϕ−1
; ð3:10Þ

where ai ¼ eαi is another integration constant, which is
associated to α in a specific time. As is seen from (3.10), the
noncommutative parameter shows itself in the power of an
exponential warp factor, which, in turn, is a linear function
of the dynamical momentum associated to the BD scalar
field. This time-dependent warp factor appears in the
differential equation associated to ϕ [see Eq. (3.11)] and
makes it very complicated, such that we have to solve it
numerically instead. Inserting (3.10) into Eq. (3.2) gives a
differential equation for the BD scalar field as

_ϕϕ3ge−3c2θϕ
−1 ¼ −

f
a3i ξ

; ð3:11Þ

where, according to (3.2), f depends on the c2 and the BD
coupling parameter, ω.

5For simplicity of expressing the quantities, we will sometimes
drop the index �.

6Following [9–11], for the commutative case, we will call the
branches as follows. Although in the Jordan frame, there are some
solutions in which the scale factor decreases, we can still obtain
an expanding universe for both of the branches. However, in the
Einstein frame, one of the branches always leads to an expanding
universe, while the other gives a contracting universe. Therefore,
the solutions correspond to the former, and the latter are called the
X branch and D branch, respectively. Throughout our paper,
when c2 > 0, the X-branch solutions correspond to the upper
sign, while the D-branch solutions correspond to the lower sign.
For the case where c2 < 0, we should note the transformations
obtained after Eq. (3.15).

S. M.M. RASOULI AND PAULO VARGAS MONIZ PHYSICAL REVIEW D 90, 083533 (2014)

083533-4



For a general noncommutative case, solving (3.11)
analytically is very difficult.7 Thus, in the following
subsections, by means of a few numerical endeavors, we
will analyze the solutions for different cases.
In the case where θ ¼ 0, dependent on the value of the

BD coupling parameter, we get two types of solutions. As
these solutions might be essential for our discussion, let us
obtain them by the Hamiltonian formalism introduced in
the previous section: (i) when g ¼ −1=3 (or ω ¼ −4=3),
which corresponds to the lower sign when c2 > 0 and the
upper sign when c2 < 0, the solutions describe the de
Sitter–like space as

aðtÞ ¼ aiϕ
−1
3

i emt and ϕðtÞ ¼ ϕie−3mt; ð3:12Þ

where ϕi is an integration constant and
m≡ −jc2j

8a3i
½−sgnðc2Þ � 3�, (ii) whereas, for ω ≠ −4=3, the

solutions are in the power-law form as

aðtÞ ¼ ~aiðt − tiniÞr� ;
ϕðtÞ ¼ ~ϕiðt − tiniÞs� ; ð3:13Þ

with

~ϕi ¼
� ∣c2∣
2a3i ω

�
sgnðc2Þ∓ ðωþ 1Þ

ξ

��
s�
;

~ai ¼ ai ~ϕ
g
i ¼ ai

� ∣c2∣
2a3i ω

�
sgnðc2Þ∓ ðωþ 1Þ

ξ

��
r�
;

where tini is an integration constant, and the exponents
r� and s� are given by

r� ¼ 1

3ωþ 4
½ωþ 1� sgnðc2Þξ�;

s� ¼ 1∓3sgnðc2Þξ
3ωþ 4

: ð3:14Þ

Indeed, due to the general form of the above relations, the
solutions (3.13) can be considered as a generalized version
of the well-known O’Hanlon-Tupper solution [2,24] for a
spatially flat FLRW universe. Let us explain the role of the
parameters present in the model. In the special case where
c2 > 0 (or c2 < 0), we obtain the solutions corresponding
to ðrþ; sþÞ and ðr−; s−Þ known as the fast and slow
solutions, respectively [2]. Such a designation can be
related to the behavior of the BD scalar field at t → 0
(for ω > −4=3), such that the fast (slow) solution is
associated to the decreasing (increasing) BD scalar field

at early times. In Fig. 1, we have plotted these behaviors of
the BD scalar field for the fast and slow solutions.8

It has been shown [25] that when ω ≠ −4=3, by
redefining Φ≡ − lnðGϕÞ (where G is the gravitational
constant), there are duality transformations as

α →

�
3ωþ 2

3ωþ 4

�
α − 2

�
ωþ 1

3ωþ 4

�
Φ;

Φ → −
�

6

3ωþ 4

�
α −

�
3ωþ 2

3ωþ 4

�
Φ; ð3:15Þ

under which the slow and fast solutions are interchanged
[26], namely, ðr�; s�Þ⟷ðr∓; s∓Þ. However, in our model
for θ ¼ 0 herein, from general relations (3.14), without
considering the duality transformations (3.15), we can see
that the sign of the integration constant c2 is responsible for
the mentioned role, interchanging the lower-upper solutions.
More precisely, under interchanging c2 > 0↔c2 < 0, the
parameters c1, g, and f transform as ðc�1 ; f�; g�Þ↔
ð−c∓1 ;−f∓; g∓Þ, and, consequently, we get ðr�; s�Þ↔
ðr∓; s∓Þ. By considering such a symmetry, a relevant
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FIG. 1 (color online). The time behavior of the BD scalar field
corresponding to slow (upper panel) and fast (lower panel)
solutions. We have taken a0 ¼ 1 ¼ ϕ0, c2 ¼ −1, θ ¼ 0, and
ω ¼ −1.2. Note that these curves, unlike their corresponding aðtÞ
curves [associated to both of the commutative and noncommu-
tative (with small values of θ) cases] coincide.

7If we integrate both sides of Eq. (3.11) (by assuming a certain
integral over the BD scalar field and the cosmic time), the integral
on the lhs (over ϕ) gives an upper (or lower) incomplete Gamma
function, namely, Γð−1 − 3g; 3c2θ=ϕÞ.

8We should note that, in some situations, when showing plots
in the same figure, from rescaling the plots or manipulating the
initial conditions just for visual clarity, it may lead to incorrect
physical interpretations. Hence, the behaviors of these quantities
are plotted in separate figures; see, e.g., Fig. 1.
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counterpart between the solutions can be made, such that the
number of different cases to study are reduced by half. We
also notice that, for the noncommutative case where θ ≠ 0,
as seen from (3.3), the general duality transformations (if one
can find them), not only depend on the f, g, and the
integration constants c1 and c2 but also may depend on the
noncommutativity parameter.
In the rest of this section, we will investigate the results

of a few numerical solutions for the noncommutative case
which will be compared with the corresponding solutions
of the commutative case.

A. Case I: The lower sign with c2 > 0, ω < 0

In the commutative case, for c2 > 0, ω < 0, and the
lower sign, the time behavior of the scalar field and scale
factor depend on the values of ω, in which, when ω is
restricted to −3=2 < ω < −4=3, the scalar field decreases
while the scale factor always accelerates. However, for
−4=3 < ω < 0, we observe a different behavior for the
scalar field and scale factor, such that, for this case, the
former increases but the latter decreases. For this, in Fig. 2,

according to the relations (3.14), we have plotted the
behaviors of the exponents r− and s− versus ω in the
range −3=2 < ω < 0. Hence, in order to have a simple
comparison of the commutative and noncommutative
cases, perhaps it will be a good idea if we also investigate
these ranges of ω in separate parts for the commutative and
noncommutative cases. As the behavior of the quantities is
sensitive to the sign of the noncommutative parameter, we
will investigate various cases for positive and negative θ.

1. Case Ia: −3=2 < ω < −4=3 and θ < 0

In order to compare the behavior of the quantities, in
Figs. 3 and 4, we have plotted the time behavior of the
scalar field, scale factor, and its first and second time
derivatives for the commutative and noncommutative cases,
respectively. In these plots, except for the noncommutative
parameter, we have chosen the same initial values for the
variables: very small negative values for the noncommu-
tative parameter and negative values for the BD parameter
in the range−3=2 < ω < −4=3 and a0 ¼ ϕ0 ¼ c2 ¼ 1. We
should remind that, in order to probe the effects of the
noncommutative parameter with more clarity, Figs. 3 and 4
have been plotted separately for each case.
As Figs. 3 and 4 show, the scalar field decreases, and its

behavior is almost the same for both of the commutative
and noncommutative cases (they almost coincide).
However, the behavior of the scale factor is different.
That is, the scale factor starts from a singular point at t ¼ 0
and increases for both of the commutative and noncom-
mutative cases, such that, for the commutative case, we
always have ä > 0, while for the noncommutative case, in
the early times we have ä > 0, but at the special point
(hereafter, we call it “point A”), it turns to be negative;
namely, after a very small time, the phase changes and we
have a decelerating universe. In the next sections, we will
discuss further such an interesting behavior of the scale
factor. It is worthwhile to describe the evolution of the scale
factor, scalar field, and their time derivatives for different
values of the three present parameters in this case. Namely,
for different values which have been chosen from the
ranges c2 > 0, θ < 0, and ω < 0. The results indicate the
following.

(i) The larger the integration constant c2, the shorter the
time of the accelerating phase (see Fig. 5). Namely,
when we take a larger c2, the scale factor increases
faster (with a larger speed and acceleration), and,
consequently, we get to the point A faster. In other
words, by increasing this integration constant, the ä
curve is shifted to the left simultaneously with a
contraction of the amount of the time associated to
the accelerating (as well as decelerating) and an
increase of jäj for both the accelerating and decel-
erating phases. Furthermore, as Fig. 5 demonstrates,
by taking a larger value for c2, the scalar field
decreases faster. Consequently, as the value of c2
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FIG. 2 (color online). The behavior of the exponents r− (solid
curves) and s− (dashed curves) versus ω associated to the
commutative case for the lower sign when c2 > 0. We have
chosen the ranges −4=3 < ω < 0 and −3=2 < ω < −4=3 for the
upper and lower panels, respectively.
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determines the time of the accelerating phase and its
corresponding scale factor value, it can, thus, be
related to the number of e-folds for an inflationary
universe.

(ii) In Fig. 6, we have plotted the behavior of the scale
factor and its derivatives (with respect to the cosmic
time) for different values of the noncommutative
parameter. For different values of ∣θ∣, we cannot see
perceptible changes in the behavior of the scalar
field. However, the smaller the ∣θ∣, the larger the
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FIG. 4 (color online). The time behavior of the scale factor and
its first and second derivatives associated to the noncommutative
case for the lower sign. We have taken θ ¼ −0.000001. All the
other initial values are the same as they were in Fig. 3. Note that
the ϕðtÞ curves associated to the commutative and noncommu-
tative cases almost coincide.
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FIG. 3 (color online). The time behavior of the BD scalar field,
scale factor, and its first and second derivatives associated to the
commutative case (θ ¼ 0) for the lower sign with a0 ¼ ϕ0 ¼
c2 ¼ 1 and ω ¼ −1.4.
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slope of aðtÞ, namely, _a. More precisely, the speed of
the expansion directly depends on the ∣θ∣. More
concretely, the time behavior of a (and, conse-
quently, _a and ä), by taking different values of
the noncommutative parameter, changes, such that
as Figs. 5 and 6 show, it seems that ∣θ∣ plays the role
of c−12 (as the previous item shows) in the ä plots.
This claim is true for the amount of the interval time
of the accelerating and decelerating phases, but it
does not hold for the value of ∣ä∣, because in this
case, the larger the value of ∣θ∣, the smaller the value

of ∣ä∣. Hence, we should note that, as the numerical
results show, it is not valid to argue that when the
value ∣c2θ∣ remains constant, the behavior of the
scalar field, scale factor, and their time derivatives do
not change. This can be read from (3.10) and (3.11);
namely, the extra role of c2 in other parts of the
differential equations, for instance, the f itself,
depends on c2 rather than θ.

(iii) For large values of the cosmic time, by assuming the
same initial values for the parameters of the model
(except θ), the BD scalar field goes to zero for both
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FIG. 5 (color online). The time behavior of a, ä, and the ϕ for
the noncommutative case with different c2. In this figure, we take
three different values as c2 ¼ 1 (solid curve), c2 ¼ 2 (dashed
curve), and c2 ¼ 3 (dotted curve). The other parameters have the
same initial values as in Fig. 3.
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FIG. 6 (color online). The time behavior of a, _a, and ä for the
noncommutative case for different values of the noncommutative
parameter. Here, we take c2 ¼ 1 ¼ a0, ω ¼ −1.4 for three
different values of the noncommutative parameter as θ ¼
−0.000001 (solid curve), θ ¼ −0.00001 (dashed curve), and θ ¼
−0.001 (dotted curve).
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the commutative and noncommutative cases. How-
ever, the time behavior of the scale factor is not the
same for these cases. In the commutative case, the
scale factor always accelerates with a variable
acceleration, such that ä never takes a constant
value. However, for the noncommutative case, ä
vanishes, _a takes very small constant value, and,
consequently, the Universe expands with a small
constant speed. Namely, in the noncommutative
case, for late times, we get a zero acceleration
epoch. Such behavior for the scale factor can be
interpreted as a direct consequence of the existence
of the noncommutative parameter. This is almost
similar to the result obtained in [15], in which a
constant deformation parameter is also included.
However, the difference is that, in our model, the
speed of the scale factor in late times is not exactly
zero, but it approaches zero instead. We should note
that in [15], as the behavior of the quantities were
investigated, when ω → ∞, such a difference can be
interpreted as a natural consequence of the models.
This effect of the noncommutative parameter shows
itself very far from the initial singularity, and it has
been suggested as a footprint of quantum gravity in a
coarse-grained explanation.

2. Case Ib: −4=3 < ω < 0 and θ < 0:

As mentioned, in this range of the BD coupling
parameter, for the commutative case, our solutions are
more general than the solutions obtained by O’Hanlon and
Tupper. More precisely, in the O’Hanlon-Tupper solutions,
for the lower sign with −4=3 < ω < 0, the BD scalar field
always increases while the scale factor decreases. However,
the behavior of these quantities in our model not only
depends on the values of ω but is also sensitive to the values
of the integration constant c2, such that by taking different
values for ω and c2, we can obtain in addition to the
O’Hanlon-Tupper solutions other different behaviors as
obtained in case Ia. For instance, in Fig. 7, we have plotted
the behavior of the BD scalar field for two different values
of c2. Note that the other initial values are the same for both
of these figures. Moreover, for the noncommutative case,
we also observe that the behavior of these quantities
depends on, besides c2 and ω, the noncommutative
parameter. In short, for the noncommutative case, the
obtained solutions in the previous case (case Ia) can also
be produced when we take the range −4=3 < ω < 0,
although the initial values may be changed.

B. Other cases

We can also add a new case, i.e., the lower sign in which
c2 > 0, ω < 0, and θ > 0, instead of negative values for the
noncommutative parameter. Also, we can analyze other
cases similar to those categorized in case I but instead with
an upper sign (rather than a lower sign). However, as all of

the mentioned cases give different results, which are not in
the scope of this work, we will leave them.

IV. KINETIC INFLATION

In the previous section, we have shown that by intro-
ducing a noncommutative relation between the BD scalar
field and the logarithm of the scale factor, not only does the
scale factor accelerate in the early times, but also it can exit
from the acceleration epoch and initiate a decelerating
phase. In other words, a suggestion on how to solve the
graceful exit problem. However, these features alone do not
guarantee an appropriate setting for the resolution of the
problems with the standard cosmology.
One of the well-known shortcomings with the standard

cosmology is the horizon problem. Namely, there are
plenty of regions in the large volume of today’s
Universe, which were not causally connected at early
times. More precisely, the size of the presently observed
Universe9 at some earlier time t (at least as
early as t ∼ 1 × sec), dUðtÞ ∼ aðtÞ=ðH0a0Þ, is much larger
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FIG. 7 (color online). The time behavior of the BD scalar field
for the commutative case for different values for c2 as c2 ¼ 1
(upper panel) and c2 ¼ 0.1 (lower panel). The other initial values
have been taken the same for both of the plots. Here, a0 ¼ 1,
ω ¼ −1.2, and θ ¼ 0.

9A subscript 0 stands for the present epoch.
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than a distance which a photon traveling by t,10 dHorðtÞ ¼
aðtÞ R t

ti
dt0=a0[28]. Let us first check the nominal condition

for the acceleration associated to the inflation [9], namely,

dHor > H−1: ð4:1Þ

Then, in the rest of this section, we will investigate the
condition for sufficient inflation.
From Eqs. (3.2) and (3.3), we get

�
H þ

_ϕ

2ϕ

�2

¼
��

hþ 1

2

��
_ϕ

ϕ

��2
; ð4:2Þ

which gives

d lnða2ϕÞ
dt

¼ �ð2hþ 1Þ
�
_ϕ

ϕ

�
: ð4:3Þ

This equation shows that the horizon distance can be
related to ϕ, ω, the scale factor, and the noncommutativity
parameter. Applying (3.2) and integrating over dt, we
obtain

dHor ¼ a3ϕ
jfj −

2c2
2gþ 1

dNC ð4:4Þ

up to a constant of integration. In Eq. (4.4), we have
introduced the new distance dNC as

dNC ≡ θa
c2

Z P0
ϕ0dt0

a0
; ð4:5Þ

in which the integrand not only depends on the inverse of
the scale factor (similar to the one defined for optical
horizon) but also depends on the nonocommutativity
parameter and the conjugate momentum of the BD scalar
field. The factor c2 is multiplied in the denominator of
relation (4.5) to make the dimension of dNC the same as
dHor. (Note that we have found a relation between the BD
scalar field and its momentum conjugate as Pϕ ¼ c2=ϕ.)
We expect that this new term can add a positive value to the
dHor to properly assist in satisfying the requirement
associated to the horizon problem. In order to compare,
we rewrite Eq. (3.3) by the aid of (3.2) as

H ¼ jfj
ξ

h
a3ϕ

: ð4:6Þ

Using (4.4) and (4.6) in the nominal condition (4.1) gives

DNC ≡ dHor −H−1 ¼ ϕa3

jfj
�
1þ ξ

h

�
−

2dNC

2gþ 1
> 0: ð4:7Þ

Obviously, in the limit θ → 0, dNC goes to zero as well,
and, thus, the relation associated to the horizon distance of
the commutative case is recovered. Further, in the men-
tioned limit, the resulted relation is the same as one
obtained in Ref. [9] (by assuming a constant BD coupling
parameter in the mentioned paper). Therefore, in the
commutative case where θ ¼ 0, the only acceptable result
is 0 < ξ < 1 (−3=2 < ω < 0), which is obtained by choos-
ing either the upper sign for c2 > 0 or the lower sign for
c2 < 0.
For the general noncommutative case, we should note

that, in addition to the sign of c2, the allowed values of ω as
well as the behavior of the BD scalar, the noncommutative
parameter has a substantial role in determining whether this
constraint is satisfied or not. Obviously, as the numerical
results of the previous section show (see, especially, Figs. 5
and 6 and their analysis), due to the presence of the
noncommutative parameter and the extra terms associated
to it, satisfying the constraints for the noncommutative case
is easier than its corresponding commutative case. For
instance, in Fig. 8, for case Ia,DNC has been plotted against
cosmic time. Therefore, we observe that the constraint (4.7)
for the noncommutative case can be easily satisfied at all
times. To be more clear, we also have plotted the time
behavior of DNC for the commutative case (θ ¼ 0) sepa-
rately in Fig. 9.
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FIG. 8 (color online). The time behavior of DNC, the quantity
which is defined as in (4.7). The solid and dashed curves are
associated to the noncommutative and commutative cases,
respectively. This figure is prepared as an example to indicate
that the nominal condition (4.1) for the noncommutative sol-
utions (specially for case Ia) can be easily satisfied. The initial
values are a0 ¼ 1 ¼ c2, ω ¼ −1.4, θ ¼ −0.000001 (solid curve),
and θ ¼ 0 (dashed curve).

10The primed variables are evaluated at time t0. We should note
that the quantity introduced here as dHor is, indeed, the radius of
the optical horizon defined for the FLRW space in which
ti ¼ trecombination [27], while the radius of the particle horizon
at time t usually is defined as a radius of a sphere whose center is
located at the same point where the comoving observer localized,
and it encompasses all particle signals that have been reached
from the time of the big bang (i.e., t ¼ 0 instead of trecombination)
until t.
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In what follows, we intend to probe the condition for
sufficient inflation,11 which is given by [10]

dHor⋆
a⋆

>
1

H0a0
; ð4:8Þ

where the lhs of the above inequality stands for a comoving
size of a causally connected region at a specific earlier time
t⋆. By including a nonzero integration constant, relation
(4.3) for the specific time t⋆ gives

dHor⋆ ¼ a3ϕð1 − δÞ
fsgnðc2Þ

−
2

2gþ 1
dNC

				⋆; ð4:9Þ

where the integration constant, which was removed in
relation (4.4), has now been included in δ≡ a2i ϕi

a2ϕ where the
subscript i stands for initial values. Note that, as the BD
scalar field takes positive values, we always have δ ≥ 0.
The Hubble constant at present timeH0 can be expressed

in terms of the value of the Planck mass today M0 and
T0 as [10]

H0 ¼
ffiffiffiffiffi
α̂0

p T2
0

M0

; ð4:10Þ

where α̂0 ¼ γðt0Þη0 ¼ ð8π=3Þðπ2=30Þḡðt0Þη0, in which η0
stands for the ratio today of the energy density in matter to
that in radiation. In order to see whether or not the above
condition is satisfied by the solutions herein, we would like
to employ the assumptions of the Ref. [10]: (i) the time tend
is allocated to the end of inflation in which the entropy is
produced; (ii) since the time tend, the Universe has evolved
adiabatically such that we can assume aendTend ¼ a0T0.
Employing relation (4.10) and assumption (ii) in (4.8) gives

a⋆
aend

≳
�

M0ffiffiffiffiffi
ᾱ0

p
T0

�
1

∣dHor⋆ ∣Tend
: ð4:11Þ

In order to proceed, we consider a simple conjecture for
the heating mechanism. Let us use the following rela-
tion between Tend and the net available kinetic energy
Eend as

Tend ¼ ϵEend; ð4:12Þ

where ϵ denotes the efficiency of the system where the
kinetic energy density is converted to entropy [10]. The
kinetic energy density for our model is only given by
the energy density of the BD scalar field in unit volume.
Namely, we have Eend ¼ ρðϕÞendð4π=3Þa3end, where by sub-
stituting the energy density associated to the BD scalar field
from relation (3.6), we obtain

Tend ¼
4πϵf2

ξ2
h2end

a3endϕend
: ð4:13Þ

Substituting dHor⋆ from (4.9) and Tend from (4.13) into
(4.11), we get

a2⋆ϕ⋆
a2endϕend

≳
�

M0ffiffiffiffiffi
ᾱ0

p
T0

�
ð1 − δ⋆Þ−1ξ2

×
1

4πϵ∣f∣ðgþ c2θ
ϕ Þ2½1 − 2dNC⋆

ð2gþ1Þ∣f∣ð1−δ⋆Þa3⋆ϕ⋆
�
:

ð4:14Þ

The constraint (4.14) is the modified (noncommutative)
version of the one obtained in the BD theory in [10].
Let us first review the obstacles of the commutative model

regarding (4.8) and then turn to solve the problems by
applying the noncommutative model. In [10], ð1 − δ⋆Þ ∼ 1,
f ∼ 1, M0 ¼ 1.2 × 1019 GeV, T0 ¼ 2.3 × 10−13 GeV, and
assigning two different values for ω, the model was
examined. In one case where ω ∼ 0, satisfying (4.8) leads
us to take the D branch. Let us be more precise. By
substituting the above values in the inequality for the com-
mutative case, the constraint ða2⋆ϕ⋆Þ=ða2endϕendÞ≳ 1030=ϵ
follows. This condition, even with ϵ ∼ 1, implies that the
quantity a2ϕ decreases with the cosmic time. Such a result
demands that we must take the D branch of the solutions.
However, to have an expanding universe, we must have
aend > a⋆. By using this requirement in (4.14) for the
commutative case, the minimum change in the dynamical
Planck mass will be mPlðtendÞ=mPlðt⋆Þ≳ 10−15ϵ1=2, which
implies that the Planck mass must decrease during inflation.
However, as was argued by Levin [10], it is not enough that
such a requirement is satisfied, and a branch change must be
induced.
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FIG. 9 (color online). The time behavior of DNC for the
commutative case with the same initial values as in Fig. 8.

11It has been claimed [29] that the constraint (4.8) is only valid
for the power-law scale factor of the Universe. As in our model,
we assume that the warp factor can be expanded such that,
because of the smallness of the noncommutative parameter, we
can take only up to the linear term. Then, the mentioned causality
condition needed to overcome the horizon problem holds for our
model.
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Let us further discuss the assistance of a few plots from
our model for the lower sign with c2 > 0 (D branch) and
then compare it with the noncommutative case.
Equation (4.3), by using (3.3) and (3.4) for the lower sign,
can be rewritten as

d lnðaϕ1
2Þ

dt
¼ −

1

2

�
sgnðc2Þξþ

2c2θ
ϕ

�� jfj
ξa3ϕ

�
: ð4:15Þ

In the commutative case with c2 > 0, we get

d lnðaϕ1
2Þ

dt
¼ −

jfj
2a3ϕ

; ð4:16Þ

which indicates that the quantity aϕ1=2 always decreases
with the cosmic time. In Fig. 10, such behavior has been
shown for the lower sign (see the dashed curve). Because a
variation in the strength of gravity for today’s Universe has
not been observed, this behavior is consequently not
acceptable: namely, the BD scalar field must take almost
constant values today. On the other hand, as we have an
expanding universe, the quantity aϕ1=2 has to increase.
While for a general noncommutative case, due to the
complicated dependence of the rhs of (4.15) to c2, ω, θ,
as well as the BD scalar field, we cannot analytically draw
the time behavior of aϕ1=2. However, fortunately, for
c2 > 0, θ < 0, and lower case, i.e., the D branch, we have
shown numerically that at the early times, aϕ1=2 behaves
the same as its corresponding quantity in the commutative
case; namely, it decreases with time. However, after reach-
ing a nonzero minimum, it starts to increase. For instance,
in Fig. 10, the time behavior of aϕ1=2 for the lower sign
associated to the noncommutative case has been plotted.
We also should remind that in the commutative case,

even with taking a variable BD coupling parameter, the D
branch cannot give today’s expanding Universe. Hence,
such a result is not consistent with the present accelerating
Universe.

V. CONCLUSIONS

In this paper, we have introduced a noncommutative
version of the BD theory. More precisely, a modified
Poisson algebra among minisuperspace variables (the
logarithm of the scale factor and the BD scalar field)
has been used. Such an ansatz bears much resemblance to
the assumptions taken in noncommutative quantum cos-
mology [14,30] as well as a few classical noncommutative
cosmological models in theories alternative to general
relativity with a minimally [16,17] (or a nonminimally
[15]) coupled scalar field to the geometry.
We have investigated the BD cosmological equations of

motion in the comoving gauge. The general Hamiltonian
equations indicate that when the noncommutative param-
eter tends to zero, all the equations reduced to their cor-
responding counterparts in the standard commutative case.
We have focused on the case in which there is neither a

scalar potential nor a cosmological constant. Furthermore,
we have assumed that the Lagrangian density associated to
the ordinary matter is absent. We constructed a generalized
noncommutative analogue to include key ideas of duality
and branch changing as well as gravity-driven acceleration
and kinetic inflation. In this manner, we have seen that the
power-law scale factor of the Universe (associated to the
commutative case) is generalized to be multiplied with a
time-dependent exponential warp factor, which is a func-
tion of the noncommutative parameter and the momentum
associated to the BD scalar field [see relation (3.10)].
Moreover, in this case, in contrast to the commutative case,
we have observed that the BD scalar field is not in the form
of a simple power function of time, but, instead, it is
obtained from a more complicated differential equation,
which is found to be an incomplete gamma function [see
differential equation (3.11)].
In the commutative case, because of the appearance of

the integration constant associated to the momentum
conjugate of the BD scalar field in the solutions, our
model can be considered as an extended model of the de
Sitter–like space and O’Hanlon-Tupper solutions. In the
latter, the mentioned integration constant has an interesting
property. Namely, under changing its sign, a symmetry
relates a category of the solutions to its corresponding
counterpart, such that the number of models to be discussed
can be reduced by half. More precisely, this integration
constant together with others presented in the model can
play the role of the duality transformations introduced in
the context of the BD theory [26].
After a short discussion of the consequences of our

model within the standard commutative case, we have
focused on noncommutative solutions (and their interesting
interpretations in cosmology), which give very different
results with respect to their corresponding in the commu-
tative case.
In case Ia, we have assumed very small negative values

of the noncommutative parameter θ, positive values of c2,
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FIG. 10 (color online). The time behavior of aϕ1=2 for the
commutative case (dashed curve) and noncommutative case
(solid curve). We have taken c2 ¼ 1 ¼ a0, ω ¼ −1.36, and θ ¼
−0.000001 for the noncommutative case.
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and the lower sign. We have shown that, unlike the time
behavior of the BD scalar field, the time behaviors of the
scale factor, its speed, and acceleration are very different in
the noncommutative case with respect to the commutative
case. Let us be more concrete. When the BD coupling
parameter is restricted12 to −3=2 < ω < 0, the scale factor
of the commutative case always accelerates, while, for the
noncommutative case, it accelerates only for the very early
times, and after a very short time, it turns to give a
decelerated universe. This interesting effect of the non-
commutative parameter on the behavior of the scale factor
constitutes a feature of an appropriate alternative model
proposed for an inflationary model, which can overcome
the graceful exit problem.
Furthermore, the mentioned behavior of the scale factor

can also be altered with different allowed values of the
parameters present in the model. More precisely, when
different values are taken for θ, ω, and c2, the time interval,
speed, and acceleration of the scale factor associated to the
acceleration phase of the very early era of the Universe also
changes. We have numerically shown that the e-folding
number relates to the amount of c2 and/or θ. Our numerical
analysis show that, for case Ia, the noncommutative
minisuperspace model herein, in which the noncommuta-
tive parameter is a constant, can constitute as a viable
phenomenological model, at least for an inflationary epoch,
when ∣θ∣ takes very small values.
Moreover, in case Ia, for late times, contrary to the

commutative model in which the scale factor always
accelerates, we get a zero acceleration epoch for the
Universe. This behavior of the scale factor that is occurring
very far from the singularity is guaranteed by the existence
of a constant noncommutative parameter, and it is usually
interpreted as coarse-grained explanation of the quantum
gravity footprint.
The horizon problem is the main shortcoming with the

standard cosmology, so we turned to investigate it in our
model. We have shown that by extending the FLRW
vacuum universe, in the standard BD theory, by introducing
a deformation among the minisuperspace variables, we can
overcome this problem.
By means of numerical diagrams, we have shown that

the nominal as well as sufficient requirements associated to
the inflation can be fully satisfied in our model. In a kinetic
inflation model in the context of the BD theory with a
variable ω for the commutative case [10], it was claimed
that all the accelerations in the D branch suffer from the
well-known graceful exit problem. Namely, such a problem
has a direct relation with the time behavior of the quantity
aϕ1=2. More precisely, if aϕ1=2 decreases forever, then a

branch change is required. Indeed, in the commutative case,
the mentioned quantity always decreases, which is in direct
contradiction with the observational indications concerning
the strength of the gravity as well as the expansion of
today’s Universe. This problem is properly solved by the
effects of the noncommutative parameter, such that at the
very early times, exactly the same as the commutative case,
aϕ1=2 decreases with the cosmic time, while after the phase
changing, it starts to increase with time, which is in
agreement with observation.
Let us look at the above problem from another perspec-

tive. If we would like to know whether or not the model
also provides inflation in the conformal Einstein frame, we
must consider not only the behavior of the scale factor but
also check the behavior of the quantity aRI ≡ ½aðtÞl0�=lPlðtÞ,
in which aðtÞl0 (where l0 is a comoving constant length) is

any physical length, and lPlðtÞ≡
ffiffiffiffiffiffiffiffi
ℏGeff
c3

q
¼

ffiffiffiffiffiffiffiffiffi
ℏ

c3ϕðtÞ
q

is the

Planck length, which is not a constant in BD theory. If the
mentioned conditions were satisfied, then inflation is called
real inflation [2]. As mentioned, in some models, the
Planck length decreases faster than the scale factor, and,
thus, the ratio aRI always decreases, which is not consistent
with the observational data. However, in our model, as we
have used the Planck units, the ratio aRI reduces to the
quantity aϕ1=2, and, thus, our model provides real inflation.
However, in the case of the commutative model, for any ω,
particularly for the case ω ¼ −1, which has been known as
pre-big-bang cosmology [31], the requirements of the real
inflation are not fully satisfied [20,32].
We should be aware of some shortcomings regarding our

noncommutative setting herein.
(i) In our model, as in other investigations in the context

of the BD theory, to retrieve the acceleration for the
early as well as late time epochs, the BD coupling
parameter takes very small values, which is in
contradiction with Solar System experiments. Dif-
ferent approaches have been presented to solve the
shortcomings with the cosmological models based
on the BD theory, especially the mentioned problem
with ω, see, e.g., Refs. [8,33].

(ii) In this paper, we have confined our discussion to the
noncommutative version of the standard BD theory
in the absence of the ordinary matter, but we can
extend this procedure by adding a matter sector,
scalar potential, and/or assuming a variable BD
coupling parameter instead of the constant one. In
addition, we can consider other deformed Poisson
brackets instead of the one presented here.

(iii) Another important point is that we have not tested the
predictions of our model (for the very early Universe)
by means of density and gravitational fluctuations
around the FLRW background. In many investiga-
tions, by employing different approaches, the pertur-
bation of the FLRW background in the BD and

12We should remind that the behaviors of the quantities, which
have been reported for the noncommutative case in the range
−3=3 < ω < −4=3, under some different initial conditions can
also be retrieved for −4=3 < ω < 0.
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generalized scalar-tensor theories have been studied;
see, e.g., [2,34]. Employing perturbation theory,
similar to transformations required for finding the
predictions of the model in the conformal Einstein
frame, is crucial, but performing them in the presence
of the noncommutative parameter is very complicated
and in some situations may be impossible.
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