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We forecast future constraints on local-type primordial non-Gaussianity parameter fNL with a photometric
galaxy survey by Euclid, a continuum galaxy survey by Square Kilometre Array (SKA), and their
combination. We derive a general expression for the covariance matrix of the power spectrum estimates of
multiple tracers to show how the so-called multitracer technique improves constraints on fNL. In particular we
clarify the role of the overlap fraction of multiple tracers and the division method of the tracers. Our Fisher
matrix analysis indicates that stringent constraints of σðfNLÞ≲ 1 can be obtained even with a single survey,
assuming five mass bins. When Euclid and SKA phase 1 (2) are combined, constraints on fNL are improved
to σðfNLÞ ¼ 0.61ð0.50Þ.
DOI: 10.1103/PhysRevD.90.083520 PACS numbers: 98.80.Es, 95.80.+p, 98.65.Dx

I. INTRODUCTION

Primordial non-Gaussianity of density fluctuations is key
to understanding the physics of the early Universe. Among
several types of primordial non-Gaussianity, the local-type
one, fNL, has been studied widely, partly because even the
simplest inflationary models predict small but nonvanish-
ing values of fNL of Oð0.01Þ. Here we quantify non-
Gaussianity of the local form as

Φ ¼ ϕþ fNLðϕ − hϕ2iÞ; ð1Þ

where Φ and ϕ denote the Bardeen potential and an
auxiliary random-Gaussian field.
Primordial non-Gaussianity has primarily been con-

strained from the bispectrum in cosmic microwave back-
ground (CMB) temperature fluctuations. Recently, Planck
[1] obtained a tight constraint of fNL ¼ 2.7� 5.8 at 1σ
statistical significance. A complementary way to access
non-Gaussianity is to measure its impact on a large scale
structure. Luminous sources such as galaxies must be most
obvious tracers of the underlying dark matter distributions
with a bias. Primordial non-Gaussianity induces the scale-
dependent bias [2,3] such that the effect dominates at very
large scales. Hence, based on a reasonable assumption that
the galaxy bias is linear and deterministic on large scales,
it has been shown that the galaxy survey can effectively
constrain fNL to the level comparable to CMB temperature
anisotropies [4,5]. While clustering analyses at large scales

are limited due to cosmic variance, Seljak [6] proposed a
novel method to reduce the cosmic variance using multiple
tracers with different biases, the so-called multitracer
technique. This method allows us to measure the scale-
dependent bias accurately even at large scales, leading to
strong constraints on fNL.
Future wide and deep surveys with Euclid1 in optical and

infrared bands and Square Kilometre Array (SKA)2 in radio
wavelengths will provide an unprecedented number of
galaxies to measure the power spectra. The radio con-
tinuum survey conducted with SKA covers 30; 000 deg2

out to high redshifts, though the redshift information is not
available. The authors in [7] found that even without the
redshift information the multitracer technique improves
constraints as σðfNLÞ ¼ Oð1Þ, while weaker constraints of
σðfNLÞ ¼ Oð10Þ without the multitracer technique. While
the number of galaxies and covered area are smaller for
the Euclid photometric survey (15; 000 deg2), it provides
redshift information via photometric redshifts. Redshift
information is expected to be highly advantageous for
constraining fNL because the bias evolves strongly with
redshift. As we show below, each of these two surveys
provides constraints of σðfNLÞ ¼ Oð1Þ, and constraints
improve to σðfNLÞ ¼ Oð0.1Þ with their combination. To
calculate expected constraints, in this paper, we employ the
Fisher matrix formalism including the redshift binning as
well as the mass binning, taking the overlap of the two
survey regions into account.

*yamauchi“at”resceu.s.u‑tokyo.ac.jp

1See http://www.euclid‑ec.org.
2See http://www.skatelescope.org.

PHYSICAL REVIEW D 90, 083520 (2014)

1550-7998=2014=90(8)=083520(5) 083520-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.90.083520
http://dx.doi.org/10.1103/PhysRevD.90.083520
http://dx.doi.org/10.1103/PhysRevD.90.083520
http://dx.doi.org/10.1103/PhysRevD.90.083520
http://www.euclid-ec.org
http://www.euclid-ec.org
http://www.euclid-ec.org
http://www.skatelescope.org
http://www.skatelescope.org
http://www.skatelescope.org


II. PRIMORDIAL NON-GAUSSIANITY IN THE
LARGE SCALE STRUCTURE CLUSTERING

First, we consider the non-Gaussian correction of the
halo bias given by [3]

Δb ¼ 2fNLδc
MDþ

ðbL − 1Þ − 1

δc

d
d ln ν

�
dn=dM
dnG=dM

�
; ð2Þ

where ν ¼ δc=σ, δc ≈ 1.68 is the critical linear density for
spherical collapse and σðM; zÞ ¼ σRðzÞ is the variance of
the linear density field smoothed on the scale RðMÞ ¼
ð3M=4πρb;0Þ1=3 with ρb;0 being the background density
today. DþðzÞ is the growth factor, MðkÞ ¼ 2k2TðkÞ=
3Ωm;0H2

0, where TðkÞ is the matter transfer function
normalized to unity at large scales [8]. We employ a fit
to simulation for the Gaussian mass function dnG=dM and
the linear bias factor bL given in [9]. We adopt a non-
Gaussian correction of the mass function developed in [10],
where we need the skewness of the density field that is
proportional to fNL [3,11,12]. In this paper, for σS3, we
adopt a fitting formula from [11].
Constraints on fNL come from the redshift and mass

dependences of the bias. Thus, in order to take advantage of
the multitracer technique, we need a rough estimate of the
halo mass of each galaxy. In the Euclid survey, assuming an
accurate photometric redshift estimate of each galaxy, we
can use various galaxy properties such as luminosity, color,
and stellar mass to infer the halo mass. See e.g. [13,14] for
details. On the other hand, it is more challenging to estimate
the halo mass of galaxies from radio surveys. In this paper,
following [7], we assume that halo mass can be estimated
from the galaxy type.
Estimates of the halo mass for individual galaxies

involve large uncertainties. We take account of the uncer-
tainties in halo mass estimation following [15]. Given the
estimated massMest, the probability that the true mass isM
is assumed to be given by log-normal distribution with the
variance σ2lnM and the bias lnMbias,

xðMest;MÞ ¼ lnMest − lnM − lnMbiasffiffiffi
2

p
σlnM

: ð3Þ

Furthermore, it is expected that these parameters depend on
both halo mass and redshift. We assume the following
functional form [16,17]:

lnMbiasðM; zÞ ¼ lnMb;0

þ
X3
i¼1

qb;i

�
ln

�
M
Mpiv

��
i
þ
X3
i¼1

sb;izi; ð4Þ

σlnMðM;zÞ¼σlnM;0

þ
X3
i¼1

qσlnM;i

�
ln

�
M
Mpiv

��
i
þ
X3
i¼1

sσlnM;iz
i; ð5Þ

withMpiv ¼ 1012h−1M⊙. Here we included a large number
of parameters that model the uncertainty of the halo mass
estimate, which are fully marginalized over when deriving
constraints on fNL.
To apply the multitracer technique, we split galaxy

samples intoNM mass-divided subsamples for each redshift
bin. The average density of galaxies in the ith redshift bin
zi < z < ziþ1 and the bth mass bin MðbÞ < Mest < Mðbþ1Þ
is given by

N̄iðbÞ ¼
Z

∞

0

dz
d2V
dzdΩ

Z
∞

0

dM
dn
dM

SiðbÞ: ð6Þ

Here d2V=dzdΩ ¼ χ2=H denotes the comoving volume
element per unit redshift per unit steradian, and we have
introduced SiðbÞðM; zÞ to represent the selection function:

SiðbÞðM; zÞ ¼ ΓðbÞΘðz − ziÞΘðziþ1 − zÞ

×
1

2
½erfcðxðMðbÞ;MÞÞ − erfcðxðMðbþ1Þ;MÞÞ�;

ð7Þ

where we have introduced the gray-body factor ΓðbÞ to
denote the fraction of observed halos for each mass
bin, since we may not be able to observe all galaxies
associated with the underlying dark matter halos. With
these variables, the Limber-approximated angular power
spectrum between b- and b0th mass bins in the ith redshift
bin is expressed by [16]

Ciðbb0ÞðlÞ ¼
Z

∞

0

dzWiðbÞWiðb0Þ
H
χ2

Pδ

�
lþ 1=2

χ
; z

�
; ð8Þ

where Pδðk; zÞ is the underlying dark matter power
spectrum and WiðbÞ is the weight function defined as

WiðbÞ ¼
1

N̄iðbÞ

d2V
dzdΩ

Z
∞

0

dM
dn
dM

SiðbÞbh

�
M; z;

lþ 1=2
χ

�
:

ð9Þ

III. FISHER MATRIX FORMALISM

We adopt the Fisher analysis to estimate expected errors
of model parameters for a given survey. The Fisher matrix
is defined by
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Fαβ ¼
Xlmax

l¼lmin

X
I;J

∂CIðlÞ
∂θα ½CovðCðlÞ;CðlÞÞ�−1IJ

∂CJðlÞ
∂θβ ;

ð10Þ

where the indices I and J run over the redshift and mass
bin, (i, b, b0), and θα are model parameters. Here, we
consider 29 parameters in the Fisher matrix analysis: the
primordial non-Gaussianity parameter fNL, 14 parameters
for systematic errors in the halo mass estimate for each of
Euclid and SKA [see Eqs. (4) and (5)]. We choose σlnM;0 ¼
0.3 and zero for the other parameters as fiducial values.
On the other hand, we fix standard cosmological param-
eters to those of the standard ΛCDMmodel: Ωm;0 ¼ 0.266,
Ωb;0 ¼ 0.04479, ΩΛ ¼ 0.734, w ¼ −1, h ¼ 0.710,
ns ¼ 0.963, k0 ¼ 0.05 Mpc−1 and σ8 ¼ 0.801. The mar-
ginalized error on each parameter is given by
σðαÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðF−1Þαα

p
.

Now we derive the covariance matrix generalized to
multiple tracers which are observed in different sky areas
with some overlap. We introduce the observed density
contrast as

δiðbÞw ðθÞ ¼ wðbÞðθÞδiðbÞðθÞ; ð11Þ

where wðbÞðθÞ is the survey window function on the sky
for bth tracer; wðbÞ ¼ 1 if the direction θ on the sky is
in the survey region, otherwise wðbÞ ¼ 0. With the two-

dimensional Fourier components of δiðbÞw ðθÞ,

~δiðbÞw ðlÞ ¼
Z

d2l0ð2πÞ−2 ~wðbÞðl − l0Þ~δiðbÞðl0Þ; ð12Þ

where ~wðbÞ and ~δiðbÞ are Fourier transform of wðbÞ and δiðbÞ,
respectively, we can define an estimator of the angular
power spectrum as [18]

Ĉiðbb0ÞðlÞ ¼
1

Ωðbb0Þ
w

Z
jl0j∈l

d2l0
Ωl

~δiðbÞw ðl0Þ~δiðb0Þw ð−l0Þ; ð13Þ

where we have considered the integral over a shell in the
Fourier space of width Δl and volume

Ωl ¼
Z
jlj0∈l

d2l0 ≈ 2πlΔl: ð14Þ

Here the effective survey area was defined as

Ωðbb0Þ
w ¼

Z
d2θwðbÞwðb0Þ; ð15Þ

which is the survey area of the bth tracer for b ¼ b0 and the
overlapping area of the b and b0th tracers for b ≠ b0. We
have determined the functional form of the estimator so that
it is unbiased in a sense that the ensemble average gives the

true power spectrum, namely, hĈiðbb0ÞðlÞi ¼ Ciðbb0ÞðlÞ.
Assuming the Gaussian error covariance, we obtain the
covariance matrix for multiple tracers as

Cov½Ciðbb0ÞðlÞ; Cjð ~b ~b 0Þðl0Þ�

¼ δKijδ
K
ll0

ð2lþ 1ÞΔl
4πΩðbb0 ~b ~b 0Þ

w

Ωðbb0Þ
w Ωð ~b ~b 0Þ

w

× ½Ciðb ~bÞðlÞCiðb0 ~b0ÞðlÞ þ Ciðb ~b0ÞðlÞCiðb0 ~bÞðlÞ�; ð16Þ

with

Ωðbb0 ~b ~b 0Þ
w ¼

Z
d2θwðbÞwðb0Þwð ~bÞwð ~b0Þ: ð17Þ

Since the observed spectrum includes the shot noise contami-
nation, we replace Ciðbb0ÞðlÞ with Ciðbb0ÞðlÞ þ N̄−1

iðbÞδ
K
bb0.

IV. RESULTS

As we stated above, we consider the Euclid photometric
survey and the SKA continuum survey. For Euclid, a
redshift range 0.2 < z < zmax is considered and galaxy
samples are split into several redshift bins with the same
interval (Δz ¼ 0.5). We neglect the photometric redshift
errors as they are expected to be much smaller than Δz.
To include the effect of flux cut for each redshift range,
we adopt the following minimum observed mass for each
bin, Mest > 0.7; 1; 2; 5; 10; 20; 50; 100;… in the unit of
1011h−1M⊙ and set ΓEuclid

ðbÞ ¼ 1. Galaxy samples are further
split according the estimated halo mass. We consider five
mass bins and take separating masses such that the five
mass bins of the same redshift bin have the same number of
samples. Here it should be noted that the separating masses
depend on the redshift. We will discuss other possibilities
of the mass binning later. Summation of the power
spectrum is taken for an l range of 3 ≤ l ≤ 400.
As for the SKA continuum survey, we have only one

redshift bin as no redshift information is available. Thus we
simply drop the redshift dependent terms in Eqs. (4) and
(5). Following [7], we consider five types of galaxies as five
tracers with the typical masses [19], MSFG ¼ 1011h−1M⊙
for star forming galaxies, MRQQ ¼ 3 × 1012h−1M⊙ for
radio quiet quasars, MFRI ¼ 1013h−1M⊙ for FRI, MSB ¼
5 × 1013h−1M⊙ for starburst galaxies, and MFRII ¼
1014h−1M⊙ for FRII. Accordingly, we consider five mass
bins, MðiÞ < M < Mðiþ1Þ (i ¼ 1;…; 4) and M > Mð5Þ,
with Mð1Þ ¼ 0.9 × 1011h−1M⊙, Mð2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSFGMRQQ

p
,

Mð3Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MRQQMFRI

p
, Mð4Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MFRIMSB

p
, Mð5Þ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MSBMFRII
p

. For the flux cut, we adopt the gray body
factor as ΓSKA1

ðbÞ ¼ f0.013; 0.03; 0.1; 1; 1g and ΓSKA2
ðbÞ ¼

f0.5; 1; 1; 1; 1g, which are chosen to match the expected
number density distribution of galaxies found in these
surveys (see e.g., [7]). As for l range, we consider
2 ≤ l ≤ 400.
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In computing the Fisher matrix for the combination of
Euclid and SKA surveys, we adopt 9; 000 deg2 as the area
of the overlap region and we neglect the contributions from
the derivative of the cross correlations between Euclid and
SKA for simplicity. We focus on constraints on fNL and
marginalize over the other parameters.
Before showing expected constraints from Euclid and

SKA surveys, let us check the dependence of the efficiency
of the multitracer technique on the overlapping survey area
and different mass binning, considering a simple case of two
tracers observed by a Euclid-like survey. In Fig. 1, we plot
the marginalized error on fNL as a function of the overlap

fraction Ωð12Þ
w =Ωw for a single redshift bin 0.7 < z < 1.2.

Different curves represent different mass binning varying
the mass ratio Mð2Þ=Mð1Þ. Here we assume that the sky

coverages for both tracers are the same,Ωð11Þ
w ¼ Ωð22Þ

w ≡Ωw.
We find that the nonvanishing overlap region leads to
improved constraints on fNL, which becomes smallest in
the case of the maximal overlap. One can also see that in the
case of the maximal overlap there is a critical value of the
mass ratioMð2Þ=Mð1Þwhich results in the tightest constraint.
This behavior can be understood as follows: once we fix the
mass ratio, the number density for each mass bin, N̄iðbÞ, is
determined through Eq. (6). Changing the value of the mass
ratio leads to the larger shot noise for one of the mass bins
and smaller shot noise for the other. We find that the tightest
constraint is obtained when the shot noise for the two mass
bins becomes comparative. This is the reason for our choice
of separating masses by the same number density, as
explained above.
Next, we focus on the Euclid survey. Figure 2 shows

the marginalized constraints on fNL as a function of the
number of tracers for a single redshift bin 0.7 < z < 1.2
with the maximal overlap among tracers. We find that the
constraining power increases with NM. Even 2 tracers
drastically improve the constraint, simply because the
multitracer technique does not take effect for the one tracer

case. Furthermore, combining multiple redshift bins
improves substantially the constraint, as is shown in
Fig. 3. We find that galaxy samples as far as z ¼ 3.2 (sixth
bin) contribute significantly to the constraint. When five
mass bins and eight redshift bins are taken into account, the
Euclid photometric survey can reach σðfNLÞ ¼ 0.46.
Although the use of galaxies out to z ¼ 4.2 is probably
too optimistic, even in a more realistic situation where we
use redshift bins up to z ¼ 2.7 (five bins) the improvement
is still significant, σðfNLÞ ¼ 0.66. In the reminder of the
paper we conservatively adopt zmax ¼ 2.7 as the maximal
redshift for Euclid.
Finally, Fig. 4 shows the expected marginalized con-

straints on fNL for each survey and their combinations.
The constraints on fNL from SKA1 and SKA2 are
σðfNLÞ ¼ 1.64, 0.66, respectively, which are consistent
with Ref. [7]. The results of SKA2 and SKA1 are compa-
rable to or relatively weaker than that from Euclid, presum-
ably because the redshift information obtained from the
photometric survey ismore advantageous than the larger sky
coverage and the larger number of galaxy samples from
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FIG. 1 (color online). The marginalized error on fNL as the
function of the overlap fraction, for the single redshift bin of
0.7 < z < 1.2. Different lines show results with different mass
ratio Mð2Þ=Mð1Þ.
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FIG. 2 (color online). The marginalized error on fNL as the
function of the number of the tracers in the single redshift bin
0.7 < z < 1.2. The mass bins are divided such that they have the
equal shot noises.
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FIG. 3 (color online). The marginalized constraint on fNL as a
function of the maximum redshift, assuming the redshift range
0.2 < z < zmax with width Δz ¼ 0.5. Here we take five tracers
(mass bins) for each redshift bin.
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SKA survey. Combining Euclid and SKA, the constraint
can improve further to σðfNLÞ ¼ 0.61 (Euclidþ SKA1),
0.50 (Euclidþ SKA2), suggesting that the joint analysis
between Euclid and surveys are quite effective to constrain
primordial non-Gaussianity.We again note that the improve-
ment of the constraint is mainly due to the availability of the
multiple tracer, as seen in Fig. 2. Although the results
presented would be sensitive to the assumptions we con-
sidered in this paper, the constraining power due to the
multitracer technique is expected to be generic and the
behavior of the results would remain the same.

V. SUMMARY

To summarize, we have discussed the potential
power of the multitracer technique for the combination
of the Euclid photometric survey and the SKA continuum
survey. Splitting the galaxy samples into the subsamples

by the inferred halo mass and redshift, constraints
on fNL drastically improve. We have shown that con-
straints of σðfNLÞ ¼ Oð1Þ can be obtained even with
a single survey. Combining Euclid and SKA, even
stronger constraints of σðfNLÞ ¼ Oð0.1Þ can be
obtained.
In this paper, we have made several simplified

assumptions. In future galaxy surveys, the systematic
uncertainties likely play a more important role than
statistical errors. Here we considered only the uncertainty
in the halo mass estimation. For instance, the uncertainty
in photometric redshifts and the effect of the stochastic
bias may become important. We should also address
the identification of the optical and infrared counterparts
in the overlap region of SKA and Euclid surveys. While
we conservatively assumed no redshift information
for the SKA survey, checking the counterparts in
Euclid or other surveys would provide valuable informa-
tion on redshifts of individual SKA sources, which
may allow the tomographic analysis in the SKA survey
to lead further improvements of the constraints
(see [20]). We hope to come back to these issues in
the near future.
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