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In this work, we study an inflationary scenario in the presence of generalized Chaplygin gas (GCG).
We show that in Einstein gravity, GCG is not a suitable candidate for inflation; but in a five-dimensional
brane-world scenario, it can work as a viable inflationary model. We calculate the relevant quantities such
as ns, r, and As related to the primordial scalar and tensor fluctuations, and using their recent bounds from
Planck and BICEP2, we constrain the model parameters as well as the five-dimensional Planck mass. But
as a slow-roll inflationary model with a power-law type scalar primordial power spectrum, GCG as an
inflationary model cannot resolve the tension between results from BICEP2 and Planck with a concordance
ΛCDM Universe. We show that by going beyond the concordance ΛCDM model and incorporating more
general dark energy behavior, we may ease this tension. We also obtain the constraints on the ns and r and
the GCGmodel parameters using PlanckþWPþ BICEP2 data considering the CPL dark energy behavior.
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I. INTRODUCTION

The present cosmological observations are amazingly
consistent with a Universe which has two accelerated
expansion phases in its entire evolution history from the
big bang till today. One of these accelerating epochs
presumably occurred during the early phase of the cos-
mological evolution when the energy scale of the Universe
was close to the Planck scale. This accelerating period was
first proposed around 1980 in order to solve the puzzles
like flatness, horizon, and monopole problems in standard
cosmology [1]. An epoch of exponential expansion was
proposed in order to solve these problems. Although a
simple cosmological constant can give rise to such expo-
nential expansion, the Universe can never exit from this
accelerating phase in such a scenario and hence does not
enter into a decelerated phase, which is necessary for
subsequent processes like nucleosynthesis and structure
formation. To solve this exit problem, a scalar field theory
was introduced where the field rolls over a sufficiently flat
potential (slow rolling) and can mimic a cosmological-
constant-like behavior. Such a scalar field (inflaton) can
drive a near exponential expansion. The exit from the infla-
tionary era is ensured as the scalar field reaches the nonflat
region (fast roll phase) of the potential. One of the greatest
successes of the inflationary model is the generation of
primordial density fluctuations in theUniversewhich can act
as the seeds for the large scale inhomogeneities that are
necessary for the structure formation of the Universe [2].
The quantum fluctuations of the inflaton during inflation
can produce such primordial density fluctuations. Given any

scalar field inflationary model, one can calculate the
spectrum of this primordial density fluctuation which is
essentially related to the scalar part of the metric fluctua-
tions. Moreover, one can also calculate the tensor fluctua-
tions in the metric produced during inflation which result
in a stochastic gravitational wave background on large
cosmological scales. Cosmologically both these primordial
fluctuations are interesting as they produce observable
features in the temperature anisotropy of the cosmic micro-
wave background radiation (CMBR). Hence measuring
temperature anisotropy in CMBR enables us to constrain
the spectrum of these initial fluctuations which in turn can
constrain the gravitational physics close to Planck scale. The
scalar part of the temperature anisotropy was first measured
by COBE [3] in the early 1990s and subsequently by a host
of CMBR experiments, e.g., BOOMERANG [4], WMAP
[5], and more recently by Planck [6]. For the polarization in
CMBR, DASI [7] first detected the E-mode polarization
in CMBR in 2001. But the B-mode polarization in CMBR,
which is clear evidence for the existence of primordial
gravitational waves generated through the tensor fluctua-
tions during inflation, had not been detected until recently.
But just recently, the BICEP2 experiment [8] has announced
the detection of the B-mode polarization signal in CMBR,
ruling out the zero tensor fluctuation at a 7σ confidence
level. This is an extraordinary result for cosmology and
if confirmed by future polarization data from the Planck
satellite, it will establish the fact that there was an accel-
erating epoch in the Universe prior to the radiation era.
From the measured value of r ¼ 0.2 (tensor-to-scalar ratio),
one can also estimate the energy scale for this accelerating
regime to be around the GUT scale (1016 GeV) which is
below the Planck scale (the scale where the quantum gravity
effects are prominent) but higher than the TeV scale
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(the scale which can be probed by current particle accel-
erators like LHC). (See [9] for an interesting discussion on
this issue.)
For inflationary model building using scalar fields, one

needs to guarantee that there is sufficient slow rolling for
the scalar field to ensure the necessary amount of inflation
to solve the horizon and flatness problems. One also has to
ensure the eventual breakdown of the slow-roll conditions
so that the Universe exits from this inflationary phase
and enters into a decelerated regime. This restricts the shape
of the potential for the inflaton. Moreover, most of the
slow-roll scalar field models produce a power-law type
primordial power spectrum (PPS) of the form Ps;T ∼ As;Tkn

where As;T and n are related to the shape of the under-
lying potential for the inflaton. Measuring the temperature
anisotropies in CMBR, one can put strong bounds on As;T
and n and that puts further constraints on the inflaton
potential. (See [10] for scalar field models for inflation that
are consistent with recent Planck results.)
Recently, generalized Chaplygin gas (GCG) [11]

described by an equation of state p ¼ − A
ρα, where A and

α are constants, has been discussed widely in cosmological
contexts. The case ð1þ αÞ > 0 is interesting in the context
of late time acceleration. In this case, the GCG mimics dust
in the early time and a dark energy with negative equation
of state in late time. Initially considered as a natural
candidate for a unification of dark matter and dark energy
(UDM), it was later shown that this particular UDM
behavior is not suitable for the structure formation of the
Universe [12]. But this fluid can be a possible dark energy
candidate which tracks the background fluid initially and
subsequently exits the tracking regime and starts acting as
a dark energy candidate [13].
The opposite regime, ð1þ αÞ < 0, is also equally

interesting [14]. In this case, the GCG behaves like a
cosmological constant (w ¼ −1) initially but with time, the
equation of state increases and becomes dustlike (w ¼ 0).
This behavior is suitable for inflation, as in this case
inflation happens initially and then automatically ends at
later times. We shall show that by properly adjusting
parameters, one can get enough inflation that is necessary
to solve horizon and flatness problems.
Motivated by this, we consider GCG as a model for

inflation. We write the corresponding scalar field theory
that mimics such behavior and then calculate the PPS in this
model. We show that in the context of Einstein gravity,
to get the right shape for the PPS, the e-folding at the time
of horizon exit (N�) has to be excessively large, which is a
serious drawback. But if one considers a five-dimensional
brane-world scenario which results in a correction term in
the Einstein equation, this problem of high e-folding at
horizon exit gets resolved and one gets a suitable infla-
tionary model.
Recently, it has been pointed out that a power-law form

for the scalar PPS for the inflaton field is in tension with

combined Planckþ BICEP2 results [15]. This is related to
the fact that a significantly higher value for r (r ¼ 0.2) as
measured by BICEP2 is not consistent with the suppression
of power in CTT

l at large scales as observed by Planck. In
fact the authors in [15] have shown that the power-law form
for the scalar PPS with a single spectral index is ruled out at
more than 3σ by Planckþ BICEP2 in comparison to a
broken PPS model containing two spectral indices (see [16]
for different approaches to solve this problem). This is bad
news for inflationary model building because most of the
standard and theoretically motivated slow-roll inflationary
scenarios produce a power-law type scalar PPS. GCG as a
inflationary model is of the slow-roll type and also
produces a power-law type scalar PPS. Hence this tension
applies to GCG as well. But the underlining assumption
for all these studies is that our Universe is described by a
concordance ΛCDM model. We try to address this issue
by going beyond the concordance ΛCDM model. By
allowing a general dark energy equation of state, our study
shows that one may address this issue even if one sticks to a
power-law type scalar PPS.
The structure of the paper is as follows: in Sec. II, we

describe the GCG inflationary models and its scalar field
representation; in Sec. III, we study the slow-roll infla-
tionary models with GCG in Einstein gravity and discuss
its problem; in Sec. IV, we study the GCG inflation in a
particular higher dimensional brane-world setup and put
constraints on various model parameters using observatio-
nal results from Planck and BICEP2 for a ΛCDM; in
Sec. V, we discuss the issue regarding the inconsistency
between Planck and BICEP2 results with power-law type
scalar PPS and try to address the issue with a general
dark energy model. We do the full Markov Chain Monter
Carlo (MCMC) analysis with PlanckþWP and BICECP2
data using a general dark energy model to get the constraint
on our inflationary GCG model parameters and compare
the results obtained using a ΛCDM model for dark energy.
Finally in Sec. VI, we put our concluding remarks.

II. THE GCG INFLATION

The generalized Chaplygin gas is described by the
equation of state [11]

p ¼ −
A
ρα

; ð1Þ

where p is the pressure and ρ is the energy density of
the GCG fluid. A and α are the parameters of the model.
One can calculate energy density as a function of the
scale factor by integrating out the energy conservation
equation in the Friedmann-Robertson-Walker (FRW) back-
ground, and the corresponding expression is

ρðaÞ ¼ ðAþ BamÞ−3=m; ð2Þ
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wherem ¼ −3ð1þ αÞ and B is an integration constant. For
m < 0, GCG behaves like a dust at very early time and it
behaves like a cosmological constant at infinite future. In
between, the equation of state smoothly changes over from
dust behavior to the cosmological constant. This behavior
is attractive for dark energy model building as the GCG
tracks the background matter in the early time and then
enters the dark energy regime in the late time. This is
similar to the tracking model of dark energy that attempts to
solve the cosmic coincidence problem. On the other hand,
this behavior is not at all suitable for early time inflation,
because in this case once GCG starts accelerating the
Universe, it can never be stopped unless one invokes some
extra effect to exit from the inflationary period (see [17] for
an inflationary model with GCG with m < 0).
For m > 0, the opposite happens. In this case the GCG

behaves like a cosmological constant (CC) to start with, and
then it slowly evolves away from this CC behavior and
eventually behaves like a dust. In this case, we have an
inflationary epoch for early time which ends subsequently
and the Universe enters into a decelerating dustlike era. The
end of inflation is automatic in this case without any need
for an extra mechanism. One can suitably choose the model
parameters to get the required number of e-folds. With
this, it is now important to see whether the primordial
fluctuations that can be produced in such a model are
consistent with the observational results from experiments
like Planck and BICEP2.
GCG can be described by a minimally coupled scalar

field Lagrangian with a canonical kinetic energy term. The
energy density and pressure for a canonical scalar field ϕðtÞ
which is minimally coupled to the gravity are given by
(assuming a flat FRW metric)

ρ ¼ 1

2
_ϕ2 þ VðϕÞ

p ¼ 1

2
_ϕ2 − VðϕÞ; ð3Þ

where VðϕÞ is the potential for the field. Using these
expressions and Eqs. (1) and (2), together with the
Einstein’s equation

3H2 ¼ 1

M2
Pl

ρ; ð4Þ

one can write

dϕ
da

¼
ffiffiffi
3

p
MPl

1

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ca−m

p ; ð5Þ

where c ¼ A
B. On integration, this results in

Aþ Bam ¼ A

�
cosh

�
qðϕ − ϕ0Þ

2

��
2

; ð6Þ

where q ¼ − mffiffi
3

p
MPl

and ϕ0 is an integration constant.

After some straightforward algebraic calculations, one can
finally write

V ¼ V0

�
cosh

�
qðϕ − ϕ0Þ

2

��
6α=m

½3þ coshðqðϕ − ϕ0ÞÞ�

H ¼ H0

�
cosh

�
qðϕ − ϕ0Þ

2

��
−3=m

; ð7Þ

where V0 ¼ 1
4
A−3=m and H0 ¼

ffiffiffiffiffiffiffi
4V0

3M2
Pl

q
.

III. SLOW-ROLL INFLATIONARY
MODEL WITH GCG

Using the expression for the Hubble parameter given in
the previous section, one can now calculate the two Hubble
slow-roll parameters ϵH and δH (one can also use the
potential slow-roll parameters ϵϕ and ηϕ and the results will
be exactly the same). They are expressed as

ϵH ¼ 2M2
Pl

�
Hϕ

H

�
2

¼ 3

2

�
tanh

�
qðϕ − ϕ0Þ

2

��
2

ð8Þ

δH ¼ ϵH −
�

_ϵH
2HϵH

�

¼ 3

2
−
mþ 3

2

�
sech

�
qðϕ − ϕ0Þ

2

��
2

: ð9Þ

Under the slow-roll approximation, the scalar spectral
index ns and tensor spectral index nT are given by

ns ≃ ð1 − 4ϵH þ 2δHÞ
nT ≃ −2ϵH: ð10Þ

Using the above expressions for ϵH and δH, one can write
their expressions as [2]

ns ≃ −2þ ð3 −mÞ
�
sech

�
q
2
ðϕ − ϕ0Þ

��
2

nT ≃ −3
�
tanh

�
q
2
ðϕ − ϕ0Þ

��
2

: ð11Þ

The tensor-to-scalar ratio r which measures the amount
of stochastic gravitational waves that is produced during
inflation is given by

r≃ 16ϵH ¼ 24

�
tanh

�
q
2
ðϕ − ϕ0Þ

��
2

: ð12Þ

One should note that all the relevant quantities like ns,
nT , and r should be calculated at aH ¼ k, i.e., when a given
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mode of fluctuation exits the horizon. Once the fluctuations
exit the horizon, they do not evolve and are frozen at their
values at horizon crossing. As the inflation ends, the
horizon scale starts growing, and different fluctuations
start entering inside the horizon. The fluctuations which are
larger in scale enter later and fluctuations which are smaller
in scale enter earlier. The fluctuations which are of horizon
size today were the last to exit the horizon during inflation.
Any scale k� today that we are interested in can be related
to the number of e-folds N� before the end of inflation
which is given by [2]

N� ¼
Z

te

t�
Hdt≃ −

1

M2
Pl

Z
ϕe

ϕ�

V
Vϕ

dϕ; ð13Þ

where the subscript e denotes the end of inflation and the
subscript ϕ denotes differentiation with respect to ϕ. For
all the relevant scales that can be probed through CMB
observations like Planck, 50 < N� < 60 [18].
Inflation will end when ϵH ¼ 1. Using the expression

(8), this gives

ϕe ¼ ϕ0 −
2

q
tanh−1ð

ffiffiffiffiffiffiffiffi
2=3

p
Þ: ð14Þ

The scale factor at the end of inflation can also be
calculated from Eq. (6) as

ae ¼ ð2cÞ1=m: ð15Þ
Knowing that N� ¼ ln½ae=a��, one can now calculate the

value of the scalar field at the horizon exit, using Eqs. (6),
(14), and (15):

ϕH:E ¼ ϕ0 −
2

q

"
cosech−1

 ffiffiffiffiffiffiffiffiffiffi
emN�

2

r !#
: ð16Þ

Using this expression for ϕH:E, we get the value of the
scalar spectral index and tensor-to-scalar ratio at the
horizon exit as

nsðk ¼ aHÞ ¼ 1 −mþ 2ðm − 3Þ
2þ expðmN�Þ

rðk ¼ aHÞ ¼ 48

2þ expðmN�Þ
: ð17Þ

The current bounds on ns and r as obtained by
PlanckþWP data [6] and BICEP2 [8,18] are the following:

ns ¼ 0.9624� 0.0075

r ¼ 0.20þ0.07
−0.05 : ð18Þ

We should mention that these bounds are obtained using
a ΛCDM dark energy model. In Sec. V, we obtain similar
bounds assuming a more general dark energy model.

In Fig. 1, we draw the contours in the ðα; N�Þ plane
which satisfy the above constraints. One can see that the
minimum value for N� required is N� ≃ 217, which is way
above the theoretical prior 50 < N� < 60. This is the main
drawback of this model.
So, the generalized Chaplygin gas is not a suitable model

for inflation in Einstein’s gravity.

IV. INFLATIONARY MODEL IN BRANE-WORLD
SCENARIO WITH GCG

In this scenario, we consider the observable Universe to
be confined on a 3-brane embedded in a 5-D anti–de Sitter
spacetime. One such scenario was first proposed in 1998
by Randall and Sundrum (RS) [19] to solve the hierarchy
problem in particle physics. This scenario consists of a 5-D
space-time governed by Einstein gravity with a negative
cosmological constant in the bulk. The space-time respects
the S1=Z2 symmetry and the flat 3-branes are located at
orbifold fixed points in this geometry. One of the branes is
our visible Universe where the modified Einstein equation
is now given by [20]

H2 ¼ 1

3M2
Pl

ρ

�
1þ ρ

2λ

�
; ð19Þ

where λ is the 3-brane tension. The relation between λ and
five-dimensional Planck mass M5 is given by

M5 ¼
�
4πλ

3

�
1=6

M1=3
Pl : ð20Þ

1.010 1.009 1.008 1.007 1.006 1.005 1.004 1.003

200
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N

FIG. 1 (color online). Allowed region in the (α − N�) plane.
The region inside the solid lines is for the ns constraint from
PlanckþWP; the region inside the dashed lines is for the r
constraint from BICEP2. The constraints are for the ΛCDM
model. The shaded region satisfies both the constraints.
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In this scenario, the potential slow-roll parameters are
given by [21,22]

ϵϕ ¼ 1

2
M2

Pl

�
Vϕ

V

�
2 1þ V

λ

ð1þ V
2λÞ2

ηϕ ¼ M2
Pl

Vϕϕ

V
1

1þ V
2λ

: ð21Þ

In the high energy limit Vλ ≫ 1, one can approximate the
slow-roll parameters as

ϵϕ ¼ 2M2
Pl

�
Vϕ

V

�
2 β

V̄
; ð22Þ

ηϕ ¼ 2M2
Pl

Vϕϕ

V
β

V̄
; ð23Þ

where V̄ ¼ V
V0

and β ¼ λ
V0
. The scalar spectral index ns can

be written in terms of the potential slow-roll parameters as

ns ¼ 1 − 6ϵϕ þ 2ηϕ: ð24Þ

The amplitude of the scalar and the tensor perturbations
are defined as [23]

A2
s ≃ 1

12π2M6
Pl

V3

V2
ϕ

�
1þ V

2λ

�
3

ð25Þ

A2
t ≃ 2

3π2M4
Pl

V

�
1þ V

2λ

�
F2; ð26Þ

where

F2 ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ s2
p

− s2sinh−1
�
1

s

��
−1

ð27Þ

s ¼
�
2V
λ

�
1þ V

2λ

��
1=2

: ð28Þ

Using Eqs. (25) and (26), we can now write the tensor-
to-scalar ratio r as

r ¼ A2
t

A2
S
¼ 8M2

Pl

�
Vϕ

V

�
2
�
1þ V

2λ

�
−2
F2: ð29Þ

In the high energy limit V
λ ≫ 1, F2 ¼ 3V

2λ and hence, in
this limit, r becomes

r ¼ 24ϵϕ: ð30Þ

Using the above definitions, we get the expressions for
the slow-roll parameters for our model as

ϵϕ ¼ 2

3
β

�
cosh

�
q
2
ðϕ − ϕ0Þ

��
6=m

× ½9þ 2mþ 3 coshðqðϕ − ϕ0ÞÞ�2

×

�
sinh

�
q
2
ðϕ − ϕ0Þ

��
2

× ½3þ coshðqðϕ − ϕ0ÞÞ�−3 ð31Þ

ηϕ ¼ β

6

�
cosh

�
q
2
ðϕ − ϕ0Þ

��
6=m

× ½3þ coshðqðϕ − ϕ0ÞÞ�−2
× ½9 coshð2qðϕ − ϕ0ÞÞ
þ 2ð2m2 þ 9mþ 18Þ coshðqðϕ − ϕ0ÞÞ
− ð4mþ 15Þð2mþ 3Þ�: ð32Þ

We also calculate the value of the field ϕ at the horizon
exit as

ϕH:E ¼ ϕ0 −
2

q

h
cosech−1

� ffiffiffiffiffiffiffiffiffiffiffiffi
2emN�

p �i
; ð33Þ

whereN� is the number of e-folds at the horizon exit. Using
this, we calculate different observables like ns, r at the
horizon exit as

ns ¼ 1 −
2β

3

�
1þ 1

2
e−mN�

�
3=m

½1þ 4emN� �−3

× ½18þ ð144þ 27m − 2m2ÞemN�

þ 6ð48þ 20mþm2Þe2mN�

þ 8mðmþ 6Þe3mN� � ð34Þ

r ¼ 8β

�
1þ 1

2
e−mN�

�
3=m

× ½1þ 4emN� �−3½3þ 2ð6þmÞemN� �2: ð35Þ

The current bound on these two parameters from
PlanckþWPþ BICEP2 with a ΛCDM model are given
in Eq. (18). Next, we calculate the initial value of the field ϕ
which gives 70 total e-folds of inflation, necessary to solve
the horizon problem:

ϕi ¼ ϕ0 −
2

q

h
cosech−1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2emNtotal

p �i
; ð36Þ

where Ntotal is the total number of e-folds during inflation.
From Eq. (25) and using the high energy limit, we get the
expression for A2

s at the horizon exit as
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A2
sH:E ¼

V0

2π2β3M4
Pl

�
1þ 1

2
e−mN�

�
−12=m

× ½1þ 4emN� �6½1þ 2emN� �−3
× ½2ðmþ 6ÞemN� þ 3�−2: ð37Þ

The measured value for A2
s by Planck for the ΛCDM

model is given as lnð1010A2
sÞ ¼ 3.089 [6]. Subsequently

we study the parameter space ðα; βÞ that is allowed by
the results obtained by PlanckþWP and BICEP2 for the
observables ns, r, and As. This is shown in Fig. 2 for
different values of N�. We should again stress that these
results are obtained assuming a ΛCDM Universe.
The first thing to be noticed is that we now have a

parameter space that is allowed by the PlanckþWPþ
BICEP2 data with 50 ≤ N� ≤ 60. This is due to the

modified Einstein’s equation in the RS brane-world
setup.
In these figures, the shaded regions represent the allowed

parameter space that satisfies the constraints on ns and r as
obtained by Planck and BICEP2, respectively. Once we
have such an allowed region, one can then fix the energy
scale of the inflation as given by V0 which satisfies the
constraint on As. The dotted line in each figure represents a
typical behavior in ðα; βÞ parameter space for a particular
choice of V0. The value of V0 is chosen in such a way so
that this line falls within the shaded region. This shows that
the typical scale of inflation is around 5 × 1015 GeV, just
below the GUT scale. We should emphasize that the
constraint on As is very sensitive on this scale, as a slight
deviation from this scale can move the dotted line outside
the shaded region, making it inconsistent with the allowed

1.030 1.025 1.020 1.015
0.0

0.1

0.2

0.3

0.4

1.026 1.024 1.022 1.020 1.018 1.016 1.014
0.0

0.1

0.2

0.3

0.4

1.024 1.022 1.020 1.018 1.016 1.014 1.012
0.0
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0.3

0.4

FIG. 2 (color online). Allowed region in (α − β) parameter space for different values of N�. Here we have used best fit values and
bounds of ns and r given by PlanckþWPþ BICEP2. The cosmological model is assumed to be ΛCDM. The region inside the solid
lines satisfies the constraint on ns from PlanckþWP and the region inside the dashed lines satisfies the constraint on r from BICEP2.
The shaded region satisfies both the constraints. The dotted lines satisfy the constraint on As from Planck for V0 ¼ 7.0 × 1062 GeV4

(for the top panel), 8.0 × 1062 GeV4 (bottom left), and 9.5 × 1062 GeV4 (bottom right). The dots are for the M5 ¼ 1.47 × 10−2MPl
(top), M5 ¼ 1.54 × 10−2MPl (bottom left), and M5 ¼ 1.58 × 10−2MPl (bottom right).
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region for ns and r. As V0 is related to the brane tension λ
which in turn is related to the five-dimensional Planck
mass M5, one can also estimate the 5-D Planck mass M5.
These are M5 ¼ 1.47 × 10−2MPl, M5 ¼ 1.54 × 10−2MPl,
and M5 ¼ 1.58 × 10−2MPl for N� ¼ 50, 55, 60, respec-
tively. From Eq. (36), one can also calculate ϕi necessary to
have 70 e-folds of total inflation. The required value for ϕi
typically varies from 1.6MPl to 19.2MPl for different N�.

V. CONSTRAINTS WITH CPL DARK ENERGY

As discussed in the Introduction, it is now known that a
measured high value for r by BICEP2 is in tension with
suppression of power at large scale as observed by Planck.
In fact the recent paper by Hazra et al. [15] has ruled out the
simple power-law form for scalar PPS in comparison to a
broken scalar PPS using Planckþ BICEP2 data at more
than 3σ. And this is precisely due to the fact that with a
power-law form for the scalar PPS, a high value of r
(r ¼ 0.2) as measured by BICEP2 is inconsistent with the
suppression of power at large angular scales as observed by
Planck. But this suppression can be achieved with a broken
scalar PPS as shown in [15]. Their investigation assumes a
concordance ΛCDM model for our Universe.
Here we keep the power-law form for the scalar PPS but

we deviate from the concordance ΛCDM model by
introducing a dynamical dark energy model given by the
equation of state parameter as prescribed by Chevallier and
Polarski [24] and Linder [25]:

w ¼ w0 þ wað1 − aÞ: ð38Þ

In Fig. 3, we show the CTT
l and CBB

l variations with
angular scale l using the publicly available code CAMB [26].

The consistency relation r ¼ −8nT is assumed. We use the
parameter initialization values as provided by BICEP2 [28].
We also fix r ¼ 0.2 for our purpose. The topmost yellow
line represents the CTT

l behavior with a power-law
PPS together with a concordance ΛCDM model. It is easy
to see that the large enhancement of power at large scales,
especially at l ¼ 2, makes it inconsistent with the Planck
measurements for CTT

l . With a concordance ΛCDM model
and a power-law type scalar PPS, it is hard to escape from
this inconsistency.

FIG. 3 (color online). Behavior of CTT
l (left) and CBB

l (right) with angular scale l for different cases. For the left panel, top to
bottom, Power Law PPS ðΛCDMÞ þ r (PlanckþWPþ BICEP2), Power Law PPS ðDE1Þ þ r (PlanckþWPþ BICEP2), Power Law
PPS ðDE2Þ þ r (Planck þWPþ BICEP2). The error bars are for Planck low-l data points. For the right panel, bottom to top,
Power Law PPS ðΛCDMÞ þ r (PlanckþWP), Power Law PPS ðΛCDMÞ þ r (PlanckþWPþ BICEP2), Power Law PPS ðDE1Þ þ r
(PlanckþWPþ BICEP2), Power Law PPS ðDE2Þ þ r (Planck þWPþ BICEP2). The error bars are for BICEP2 data points.

TABLE I. Results for the χ2 minimization with COSMOMC. For
all cases, the power-law form for the scalar PPS is assumed.

Comparison of the ΛCDM with CPLDE

PlanckþWP PlanckþWPþ BICEP2

nT ¼ −r=8 ΛCDM CPLDE ΛCDM CPLDE

Ωbh2 0.02217 0.0223 0.0221 0.0223
ΩCDMh2 0.1183 0.1171 0.1177 0.116
100θ 1.041 1.042 1.041 1.041
τ 0.088 0.088 0.089 0.089
ns 0.9658 0.9676 0.9686 0.9732
w0 −1 −1.408 −1 −1.599
wa 0 −0.894 0 −1.17
r 0.009 0.01 0.16 0.17
lnð1010ASÞ 3.085 3.081 3.085 3.081

−2 lnL [Best fit]
COMMANDER −7.454 −8.61 −1.695 −4.802
CAMSPEC 7796.235 7795.474 7797.54 7796.988
WP 2014.141 2014.55 2013.321 2013.572
BICEP2 � � � � � � 39.141 38.281
Total 9802.92 9801.41 9848.31 9844.04
−2Δ lnL � � � −1.51 � � � −4.3
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To ease this tension, we extend the parameter space by
allowing a phantom equation of state (w0 < −1) together
with wa < 0 (so that the equation of state remains phantom
at all times) for the dark energy. To demonstrate how this
may address the issue, we take two possible phantom dark
energy models (DE1 and DE2) with two specific choices
for the parameters w0 and wa, e.g., w0 ¼ −1.3, wa ¼ −0.5,
and w0 ¼ −1.4, wa ¼ −0.5, respectively. The rest of the
parameters are fixed as in the ΛCDM case described above.
With these choices, one can now suppress the power at
large scales to make it more consistent with Planck
measurement as one can see from the plots in Fig. 3.
Moreover, the CBB

l plot shows that if one assumes r ¼ 0.2
with a power-law type scalar PPS, both of these phantom
models are consistent with B-mode polarization measure-
ment by BICEP2.

Next, we also calculate the best fit χ2 values for ΛCDM
and a CPL dark energy model (CPLDE) using the Planckþ
WP and BICEP2 likelihoods. We use only the χ2 mini-
mization routine in the publicly available code COSMOMC

[27] for this. The results are shown in Table I.
Without the BICEP2 data, for CPLDE models, there

is an improvement around 1.51 in χ2 compared to the
ΛCDM model. This is consistent with the earlier results
obtained by Hazra et al. [13]. But with the addition of
BICEP2 data, the improvement in χ2 is roughly 4.3 for
CPLDEmodels, which is roughly three times what one gets
without BICEP2. We should stress that these numbers are
indicative. It shows that with a full likelihood analysis
for CMBþ non-CMB data using MCMC, one can expect
a substantially better fitting with a general dark energy,
keeping the power-law form for scalar PPS. In a recent
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FIG. 4 (color online). Likelihood functions for ns and r using PlanckþWPþ BICEP2 with the CPLDE model.
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FIG. 5. Likelihood function for α and β for different values of N� using PlanckþWPþ BICEP2 with the CPLDE model. The thick
black lines in both panels represent N� ¼ 55 while the dotted lines in both panels correspond to likelihood for N� ¼ 60.
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paper, Hazra et al. [13] have shown that there is a mild
preference for the phantom model over ΛCDM with the
current CMBþ non-CMB data (pre-BICEP2) and ΛCDM
is disfavored at more than 1σ confidence level but it is still
allowed at 2σ. All these happen with simple power-law type
scalar PPS. Our result shows that with the inclusion of
BICEP2 data, this result can change substantially.
Encouraged by this, we run the full MCMC chain with

COSMOMC for a general CPLDE model, taking the
PlanckþWPþ BICEP2 data. As before, we use the
parameter initialization values as provided by BICEP2
[28]. Additionally, we use the Gaussian prior for w0 and
wa with central values as −1.1;−0.5 and the standard
deviations 0.01,0.1, respectively.

The likelihoods for ns and r are shown in Fig. 4. The
68.3% error bars for ns and r are

ns ¼ 0.9690� 0.0071

r ¼ 0.1707� 0.0367: ð39Þ
One can see that going beyond the concordance ΛCDM

model, the allowed value of r has come down appreciably
and at 68.3% confidence limit, it is almost the same as what
PlanckþWP obtained for r, i.e., r < 0.11.
Next, using the covariance between ns and r as obtained

from the full COSMOMC chains, we obtain the correspond-
ing likelihood functions for GCG model parameters α
and β and subsequently the likelihood contours in the α − β
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FIG. 6 (color online). Allowed region in (α − β) parameter space for different values of N� using PlanckþWPþ BICEP2 with the
CPLDE model. The region inside the solid lines satisfies the constraint on ns and the region inside the dashed lines satisfies the
constraint on r. The shaded region satisfies both the constraints. The dotted lines satisfies the constraint on As from Planck for
V0 ¼ 1.6 × 1063 GeV4 (for the top panel), 1.9 × 1063 GeV4 (bottom left), and 2.1 × 1063 GeV4 (bottom right). The dots are for the
M5 ¼ 1.68 × 10−2MPl (top), M5 ¼ 1.8 × 10−2MPl (bottom left), and M5 ¼ 1.83 × 10−2MPl (bottom right).
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parameter plane. These are shown in Figs. 5 and 6. One can
see from Fig. 6 that the allowed regions in α − β parameter
space are decreased slightly compared to those obtained
using a ΛCDM model, as shown in Fig. 2.
Finally, in Fig. 7, we draw the contours in the ns − r

parameter space using PlanckþWPþ BICEP2 with the
CPLDE model and show different combinations of α and β
which are allowed in this parameter space. Here we also
show the same contours using only the PlanckþWP data.
It is evident that going beyond the concordance ΛCDM
model, these two data sets are consistent.

VI. CONCLUSION

In this paper, we have considered GCG as a natural
candidate for the inflation. In this model, the equation
of state for GCG starts with w ¼ −1 behavior and leads
to inflation. With time, the equation of state naturally
evolves towards w ¼ 0 dust behavior and inflation ends.
Subsequently we study a canonical scalar field theory that
represents the GCG behavior.

While studying the primordial fluctuations in this model,
we show that in Einstein gravity, GCG is not suitable for
generating the required PPS, as one needs a fairly large
value for N� (N� ¼ 217), the required e-folding at the
horizon exit, which is incompatible with theoretical con-
straint 50 < N� < 60. Next we consider the GCG infla-
tionary model in the RS type five-dimensional brane-world
scenario, where the Einstein equation gets a correction term
due to the presence of the higher dimension. In this setup,
we show that GCG works perfectly as a slow-roll infla-
tionary model. We obtain the constraints on the model
parameters using the bounds on ns, As, and r as obtained by
Planck and BICEP2. The inflationary energy scale in our
model is around 5 × 1015 GeV, one order less than the
GUT scale. The value of the five-dimensional Planck mass
is around 10−2MPl in our model.
As any other slow-roll inflationary model with power-

law type scalar PPS, the GCG model is also in tension
with combined Planckþ BICEP2 data primarily due to the
fact that a large contribution from gravitational waves as
measured by BICEP2 cannot explain the suppression of
power at large scales as observed by Planck. We show that
by allowing a general dark energy equation of state given
by CPL parametrization, one can ease this tension as a
general dark energy behavior may allow suppression of
power at low l even with r ¼ 0.2. By calculating the best fit
likelihood values for the ΛCDM and CPLDE models, we
show that the CPLDE model with a power-law type scalar
PPS is a better fit to the joint PlanckþWPþ BICEP2 data
compared to a ΛCDM with similar PPS. Hence, allowing a
deviation from concordance, the ΛCDM model may save
the simple slow-roll inflationary models with power-law
type scalar PPS. Finally we do a full MCMC analysis using
COSMOMC with a CPLDE model using PlanckþWPþ
BICEP2 data and obtain the revised estimate for ns and r,
as well as our model parameters α and β.
It will be interesting to extend our work to phantom

scalar inflationary models as previously studied in [29] and
we hope to address this issue in the future.
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