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We propose a cosmological model that describes isotropic expansion of an inhomogeneous universe.
The energy-momentum tensor that creates the spatial inhomogeneity may not affect the uniform expansion
scaling factor aðtÞ in the Friedmann-Lemaître-Robertson-Walker-like metrics. Such an energy-momentum
tensor may not be exotic; in fact any linear or nonlinear σ model has this feature. We show that the classical
spatial inhomogeneity can be embedded in both inflation models and the traditional cosmological expansion
by perfect fluid. The spatial inhomogeneity resembles the primordial quantum perturbation that was frozen
in the comoving frame. We obtain some exact inhomogeneous solutions with spherical or axial symmetries.
We also show that some of our cosmological models can be viewed as the dynamical black hole formation.
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I. INTRODUCTION

The recent BICEP observation [1], if confirmed, may
provide strong evidence for the inflationary origin [2,3]
of our Universe. In the discussion of the cosmological
expansion of the Universe, aside from the most general
solutions, there can exist three simplified scenarios for our
3-space: (1) isotropic and homogeneous, (2) homogeneous
but anisotropic, and (3) isotropic but inhomogeneous.
The first case is captured by the Friedmann-Lemaître-
Robertson-Walker (FLRW) model, which can also be used
to describe the cosmological inflation when certain inflaton
is present. This model is consistent with our observation of
the Universe at large scale. The small causally disconnected
inhomogeneity can then be explained by the early quantum
fluctuation that was frozen by the inflation. One can also
entertain the possibility of an anisotropic universe using the
Bianchi IX metrics in which the space is homogeneous [e.g.,
the SUð2Þ group manifold [4] or the flat 3-space [5]], but
with anisotropic expansion.
Thelast scenario, isotropicexpansionofaninhomogeneous

universe, has been typically discarded. Such a scenario
appears not to satisfy the Einstein’s equations of motion.
Naively, onewould expect that any energy-momentum tensor
that could cause the inhomogeneity in the space should affect
theexpansion rate aswell, giving rise to anisotropic expansion
in the three spatial directions. However, the inhomogeneity
of our Universe may be related to the hemispherical power
asymmetry in cosmic microwave background [6], recently
confirmedbyPlanck[7]. (Seealso [8].)Furthermore, thevoids
and walls (50–100h−1 Mpc) observed in the large-scale red-
shift surveys of galaxies may require an inhomogeneous
models [9]. (See also [10] for opposing views.) In this paper,
we present a class of models that give rise to isotropic
expansion of an inhomogeneous universe.

II. THE THEORY

We consider Einstein gravity minimally coupled two
classes of scalar fields ðΦ;ϕIÞ in general D dimensions:

e−1LD ¼ R −
1

2
ð∂ΦÞ2 − VðΦÞ − 1

2
gμν∂μϕ

I∂νϕ
JhIJ: ð1Þ

Here the scalar Φ is treated as an inflaton with a scalar
potential V; the scalars ϕI can be any linear or nonlinear
σ model, with hIJðϕKÞ being the metric. The ϕI fields
involve only the kinetic terms with no scalar potential.
The equations of motion are

Rμν ¼
1

2
∂μΦ∂νΦþ 1

2
hIJ∂μϕ

I∂νϕ
J þ V

D − 2
gμν;

□Φ ¼ ∂V
∂Φ ; □ϕI þ gμν∂μϕ

J∂νϕ
KΓI

JK ¼ 0; ð2Þ

where Γ is the affine connection for hIJ.

III. COSMOLOGICAL ANSATZ

We consider the cosmological model

ds2D ¼ −dt2 þ aðtÞ2ds2D−1; ds2D−1 ¼ ~gijdxidxj; ð3Þ

Φ ¼ ΦðtÞ; ϕI ¼ ϕIðxiÞ: ð4Þ

The metric is analogous to the FLRW model. A crucial
difference is that the principal orbits ds2D−1 in our models
are no longer homogeneous such as S3, T3 or H3. Instead
they are given by some inhomogeneous spaces whose
inhomogeneity is caused by the scalars ϕI at the classical
level. Our space-time configuration is also different from
those spherically symmetric Lemaitre-Tolman-Bondi cos-
mologies [11], in which the isotropy extends only in the
sphere directions, but not in the radial direction. The
Lemaitre-Tolman-Bondi cosmology in Einstein gravity
coupled to a time-dependent free scalar was studied in [12].
We now demonstrate the Ansätze (3) and (4) are

consistent with equations of motion. It follows from the
Ricci curvature of the metric (4)
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Rtt ¼ −
ðD − 1Þä

a
; Rij ¼ ððD − 2Þ _a2 þ aäÞ~gij þ ~Rij;

ð5Þ

that the equations of motion become separated into two
sets. One involves ðaðtÞ;ΦðtÞÞ and the other involves
ð~gij;ϕIÞ, which depend on the spatial coordinates only.

IV. SEPARATION OF VARIABLES

The time-dependent set is given by

H2 ¼ 1

ðD − 1ÞðD − 2Þ
�
1

2
_Φ2 þ V

�
−

k
a2

;

_H ¼ −
1

D − 2

�
1

2
_Φ2

�
þ k
a2

; Φ̈þ ðD − 1ÞH _Φþ ∂V
∂Φ ¼ 0;

ð6Þ

where H ¼ _a=a is the Hubble parameter. The scaling
symmetry implies that the parameter k, introduced from
the separation of variables, can take discrete values,
ð−1; 0;þ1Þ. The time-dependent equations (6) become
precisely those of the (isotropic and homogeneous)
FLRW model with matter field Φ, namely,

e−1LD ¼ R −
1

2
ð∂ΦÞ2 − VðΦÞ;

ds2D ¼ −dt2 þ aðtÞ2dΩ2
D−1;k: ð7Þ

The space-dependent equations are

~Rij ¼
1

2
∂iϕ

I∂jϕ
JhIJ þ k~gij;

~□ϕI þ ~gij∂iϕ
J∂jϕ

KΓI
JK ¼ 0: ð8Þ

These are of Einstein gravity coupled to the sigmal-model
in ðD − 1Þ-dimensional space: e−1LD−1 ¼ ~R − ðD − 2Þk−
1
2
~gij∂iϕ

I∂jϕ
JhIJ. Thus our Ansatz can be viewed as a

warped timelike Kaluza-Klein reduction. (For k ¼ 0, the
Euclidean theory can also be obtained from the reduction
on the stationary time; see, e.g., [13].)
In the above model, we need at least two scalars: one is

the inflaton that depends on time, and the other is time
independent. For the metric to be isotropic in all spatial
directions, it is very important that there should be no scalar
potential for the time-independent scalar ϕ. Such a scalar
can arise as modulus parameter in the flat direction of the
string compactification.

V. GENERALIZING THE ENERGY-MOMENTUM
TENSOR

The σ-model fields can be replaced by any matter
energy-momentum tensor ðTsÞμν that satisfies

ðTsÞ0i ¼ 0; ðTsÞ00 −
1

2
g00ðTsÞμμ ¼ 0;

∂0ððTsÞij −
1

2
gijðTsÞμμÞ ¼ 0: ð9Þ

The curvature tensor in ðD − 1Þ space then satisfies

~Rij −
1

2
~gijð ~Rþ ðD − 3ÞkÞ ¼ Ts

ij: ð10Þ

The scalar ΦðtÞ can be replaced by multiscalars. It can also
be replaced by some generic perfect fluid with T t

μν ¼
diagf−ρðtÞ; pðtÞ…; pðtÞg. The general equations of motion
for our model are then given by

Rμν þ
Λ

D − 2
gμν ¼ T t

μν þ Ts
μν: ð11Þ

The time-dependent part of equations of motion for the
cosmological Ansatz (3) are then exactly the same as those
of the standard FLRW model.

VI. SOME EXACT SOLUTIONS

The FLRW equations have been studied extensively in
literature. We focus on the equations of the space sector and
construct some exact solutions. We restrict our discussion
in 3-space dimensions. We first consider spherically sym-
metric solutions in three dimensions:

ds23 ¼ dr2 þ bðrÞ2dΩ2
2: ð12Þ

The solution for b is independent of the scalars ϕI , and it is
given by

b2 ¼
8<
:

r2 − l2; k ¼ 0;

A coshð2rþ δÞ − 1
2
; k ¼ −1;

A cosð2rÞ − 1
2
; k ¼ þ1.

ð13Þ

The scalars can be solved straightforwardly. For example,
for a single free scalar ϕ in the k ¼ 0 case, we have
ϕ ¼ arctanhðr=lÞ. It is of interest to note that if we let
l → il, for which ϕ becomes pure imaginary, the metric
describes a wormhole of radius l. Combining with the time
direction, we obtain a wormhole solution in an isotropic
expanding universe.
We also obtain an axial-symmetric solution for Einstein

gravity coupled to the scalar SLð2; RÞ=Uð1Þ coset

e−1L ¼ R −
1

2
ð∂ϕÞ2 − 1

2
e2ϕð∂χÞ2: ð14Þ

We obtain the following exact cohomogeneity-two
solution:
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ds23 ¼ ðxðxþ qÞ þ p2cos2θÞ
�

dx2

xðxþ qÞ þ p2
þ dθ2

�

þ ðxðxþ qÞ þ p2Þsin2θdϕ2;

eϕ ¼ 1þ qðxþ qÞ
xðxþ qÞ þ p2cos2θ

;

χ ¼ pq cos θ
ðxþ qÞ2 þ p2cos2θ

; ð15Þ

where ðp; qÞ are two integration constants.

VII. COSMOLOGY AS BLACK HOLE
FORMATION

When the inhomogeneous 3-space is spherically sym-
metric, the four-dimensional cosmological solution is of
cohomogeneity-two and the Killing vectors lie in the S2

only. This is exactly the same situation of black hole
formation while keeping the spherical symmetry intact. It is
then natural to expect that the cosmological solution of an
expanding universe may be viewed as black hole formation
by a different observer. To see this, we define a new
coordinate u such that du ¼ drþ dt=aðtÞ, we have

ds24 ¼ 2a2dudr − a2du2 þ a2b2dΩ2
2:

Let R ¼ ab, the existence of an apparent horizon is then
given by

gμν∂μ∂νR ¼ −b
d2a
dt2

þ a−1
d2b
dr2

¼ 0:

To make the above observation concrete, we consider
cosmological Einstein gravity coupled to a free scalar, i.e.,
e−1L ¼ R − 2Λ − 1

2
ð∂ϕÞ2. Following the earlier discus-

sion, it is easy to construct the cosmological solution,

ds2 ¼ −dt2 þ sin2ð ffiffiffi
λ

p
tÞ

λ

×

�
dr2 þ 1

4
e−2rððe2r − 1Þ2 − q2ÞdΩ2

2

�
;

eϕ ¼ e2r − 1 − q
e2r − 1þ q

; λ ¼ −
1

3
Λ: ð16Þ

For positive cosmological constant Λ, the sine function
becomes sinh and the metric describes an expanding
universe. Making the following coordinate transformation,

~r ¼ −
1

2
e−rðe2r − 1þ qÞ sinð

ffiffiffi
λ

p
tÞffiffiffi

λ
p ;

v ¼ e−r
sinð ffiffiffi

λ
p

tÞffiffiffi
λ

p ;

ð17Þ

the solution becomes

ds2 ¼ 2dvd~rþ ðq − 1Þdv2 − λð~rdv − vd~rÞ2
1þ λvð2~rþ ðq − 1ÞvÞ

þ ~rð~rþ qvÞdΩ2
2;

eϕ ¼ 1þ qv
~r
: ð18Þ

For λ ¼ 0, the solution reduces to the Roberts solution [14]
in Eddington-Finkelstein coordinates. For general λ, we can
define the Eddington-Finkelstein coordinates as follows:

v ¼ 2ðλ~rþ wÞ
λð1 − qÞ þ w2

; with

wðuÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðq − 1Þp

tanhð1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðq − 1Þp

uÞ : ð19Þ

The metric becomes

ds2 ¼ 2d~rdu − ðλ~r2 þ 1 − qÞdu2 þ ~rð~rþ qvÞdΩ2: ð20Þ

It is easy to verify that for large R ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~rð~rþ qvÞp

, the
metric is asymptotic to the (A)dS or flat space-times
depending on Λ. The apparent horizon emerges only for
q > 1, independent of Λ. The above procedure allows us to
obtain the new exact black hole formation in asymptotic
(A)dS from the simpler inhomogeneous cosmological
solution. These solutions do not evolve to some static
black holes, unlike those recently found in [15].

VIII. THE (A)dS/CFT CORRESPONDENCE

The Lagrangian (1) is also common in gauged super-
gravities in which the potential VðΦÞ has stationary point
giving rise to negative cosmology constant. In these theories
we can construct asymptotic locally AdS geometries,

ds2D ¼ dr2

r2
þ aðrÞ2 ~gμνdxμdxν;

Φ ¼ ΦðrÞ;
ϕI ¼ ϕIðxμÞ: ð21Þ

Asymptotically at r → ∞, we have a ∼ r. In general, the
behavior of ϕI at large r is governed by the boundary
condition ϕI ∼ ϕI

1ðxÞ þ ϕI
2ðxÞ=rD−1. In the AdS/CFT cor-

respondence [16], ϕI
1’s are treated as the sources and ϕI

2’s
are the associated condensates. Interestingly, the backreac-
tion to the metric with ϕI

2 ¼ 0 perturbs only the metric ~gμν
but leaves aðrÞ alone, implying that the UVand IR physics is
the same. Our cosmological solution is the de Sitter analogue
when VðΦÞ has a stationary point with a positive cosmo-
logical constant.
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IX. CONCLUSION AND FURTHER DISCUSSION

We constructed the cosmological model describing
isotropic expansion of an inhomogeneous universe. The
energy-momentum tensor Ts

μν that can cause inhomoge-
neity in space may not affect the isotropic expansion factor
aðtÞ provided that it satisfies (9). Such an energy-
momentum tensor may not be exotic. In fact, we showed
that any σ model could have this property. The isotropic
scaling factor aðtÞ is driven by the energy-momentum
tensor T t

μν of perfect fluid, exactly the same as in the
standard FLRW model.
The equations of motion of our model are also consistent

with cosmological inflation. We demonstrated that an
inhomogeneous universe could undergo an isotropic infla-
tion. The initial inhomogeneities are expected to be washed
out by the inflation for large e-foldings. However, some
extreme large-scale inhomogeneity such as the hemispheri-
cal power asymmetry may survive. They can also play an
important role for some inflationary models with a mod-
erate total e-folding number. In some aspects, the energy-
momentum tensor Ts

μν resembles that of dark matter. They
do not interact with other matter, but affect their motions
gravitationally by creating the space curvature. However,
they expand uniformly and do not contribute to aðtÞ as dark
matter does. Our classical initial inhomogeneity resembles

the primordial quantum fluctuation that was fixed in the
comoving frame. It is of interest to investigate whether
such inhomogeneity has the effect of congregating baryonic
matter in our Universe, since this may give rise to large
scale structures that are beyond the linear primordial
quantum fluctuation.
We constructed some exact inhomogeneous spatial

solutions with spherical and axial symmetries, including
wormholes. For the spherically symmetric system, we
showed that the Ansätze for cosmology and black hole
formation were of the same class. We obtained some new
exact black hole formation in cosmological gravity coupled
to a free scalar from the simpler cosmological solution by
the coordinate transformation.
The fact that some inhomogeneous spaces can expand

isotropically is of great interest. It does not require exotic
matter and may have implication in cosmology; it is worth
further investigation.
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