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The (absence of detecting) lensing dispersion of supernovae type Ia (SNIa) can be used as a novel and
extremely efficient probe of cosmology. In this preliminary example we analyze its consequences for the
primordial power spectrum. The main setback is the knowledge of the power spectrum in the nonlinear
regime, 1 Mpc−1 ≲ k≲ 102–103 Mpc−1 up to redshift of about unity. By using the lensing dispersion and
conservative estimates in this regime of wave numbers, we show how the current upper bound
σμðz ≤ 1Þ < 0.12 on existing data gives strong indirect constraints on the primordial power spectrum.
The probe extends our handle on the spectrum to a total of 12–15 inflation e-folds. These constraints
are so strong that they are already ruling out a large portion of the parameter space allowed by PLANCK
for running α≡ dns=d ln k and running of running β≡ d2ns=d ln k2. The bounds follow a linear
relation to a very good accuracy. A conservative bound disfavors any enhancement above the line
βðk0Þ ¼ 0.036–0.42αðk0Þ and a realistic estimate disfavors any enhancement above the line
βðk0Þ ¼ 0.022–0.44αðk0Þ.
DOI: 10.1103/PhysRevD.90.083509 PACS numbers: 98.80.Es, 98.62.Sb

I. INTRODUCTION

Cosmology is becoming a precise science, most notably
due to increasing number and quality of measurements.
Utilizing several probes is crucial in breaking degeneracies
between cosmological parameters. The combination of
CMB, large scale structure and type Ia supernovae (SNIa)
has lead to the emergence of the “concordance model” of
cosmology. SNIa are widely used in cosmology due to their
small intrinsic dispersion around their mean luminosity.
By observing supernovae at cosmological distances, we
can measure the luminosity-redshift relation dLðzÞ and
infer cosmological parameters from the mean luminosity.
However, the intrinsic dispersion of SNIa luminosities
is not the only source of scatter in the data. Photons arriv-
ing from these “Standard Candles” are affected by the
inhomogeneous matter distribution between the source
and observer. This induces an additional scatter in the
luminosity-redshift relation, making it a stochastic observ-
able with mean, dispersion, etc. Therefore, by disentangling
this cosmic dispersion from the intrinsic scatter, we can
potentially probe background parameters like Ωm0 or
fluctuations, i.e. the power spectrum. Our main interest will
be the lensing contribution, which dominates the cosmic
dispersion at z≳ 0.3.
We suggest using the lensing dispersion of SNIa as an

additional probe of cosmology. The now operational Dark
Energy Survey [1] will measure thousands of SNIa, up to
redshift z ∼ 1.2 and LSST [2] will measure millions of
SNIa. This will reduce statistical errors considerably and
increase the chance for detection since the lensing dispersion
growswith the redshift at z ∼ 1 [3–5].With future data, it has

been suggested to use the lensing dispersion to constrain
certain cosmological properties [3,6–9].
In this preliminary paper we analyze the implications

of the lensing dispersion σμðzÞ on the primordial power
spectrum. The distance modulus, μ ¼ 5log10ðdLðzÞ=
10 pcÞ, is a function of the luminosity distance dLðzÞ
to the source at redshift z. Existing data analysis has not
detected lensing dispersion with enough statistical sig-
nificance, but has placed an upper bound of σμðz ≤ 1Þ ≤
0.12 for the redshift of up to unity [10] at 95% C.L. and
other analyses [11–13] yield similar results. A Bayesian
analysis was carried out in [14], suggesting a very
marginal detection of a lensing signal. Finally, in [15]
the Joint Light-curve Analysis (JLA) compiled 740 SNIa,
reducing considerably systematic errors. For z≲ 1 The
JLA analysis used mean value of [10] σμðzÞ ¼ 0.055z
and added a “coherent dispersion” σcoh. to account for
any other sources of intrinsic variations. The outcome is
σcoh ¼ 0.106� 0.006. Moreover, there is a clear trend of
σcoh. decreasing with redshift. Hence, the JLA analysis
gives a model independent estimate of the total observed

dispersion. Given that σtotalðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σμðzÞ2 þ σ2coh

q
≤ 0.12,

we find that considering σμðz ≤ 1Þ ≤ 0.12 is a rather
conservative upper bound, and we shall use this bound in
our analysis.
In principle, the primordial power spectrum is not limited

to a specific parametrization. In practice, it is typically
parameterized as Pk ¼ Asðk=k0Þnsðk0Þ−1, where k0 is a
suitable “pivot scale”. A common, more general form, is
when the spectral index nsðkÞ is scale dependent, and then
expanded around the pivot scale k0,
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nsðkÞ ¼ nsðk0Þ þ
αðk0Þ
2

ln
k
k0

þ βðk0Þ
6

ln2
k
k0

; ð1Þ

where α is typically dubbed the “running” of the spectral
index, and β, the “running of running”. The best constraints
on α, β with k0 ¼ 0.05 Mpc−1, nsðk0Þ≃ 0.96 are given
by PLANCK [16] and Lyα [17]. These analyses are
only probing the range H0 ≤ k≲ 1 Mpc−1. The lensing
dispersion, σμ is sensitive to 0.01≲ k≲ 102–103 Mpc−1,
thus giving access to 2–3 more decades of the spectrum.
Hence, σμðzÞ is particularly sensitive to the quasi-linear and
non-linear part of the spectrum. In terms of inflation, the
direct measurement of k≲ 1 Mpc−1 corresponds to about
eight e-folds of inflation, leaving most of the power
spectrum of ∼60 e-folds out of reach [18]. Therefore, even
after PLANCK there is still an enormous space of infla-
tionary models allowed. It is therefore of crucial impor-
tance to infer as much of the spectrum as possible for a
better inflationary model selection. The lensing dispersion
constrains additional 4–7 e-folds, yielding a total of 12–15
e-folds.
Other methods of probing the primordial spectrum

include methods such as Lyα [17], the absence of primordial
black holes and Ultracompact Minihalos [19–21], measur-
ing spectral distortions of the CMB blackbody spectrum
[22–24], galaxy weak lensing [25], galaxy correlation
functions [26] and cluster number counts [27]. All of which
have either different systematics, different k range sensi-
tivity, based on future data or some combination of the
above. Albeit degenerate with other cosmological parame-
ters, σμ surpasses these methods by actually cutting into the
allowed parameter space allowed by PLANCK, using
existing data only. In a separate publication [28], we analyze
the case, where the power spectrum takes a different “non-
slow-roll” parametrization such as in cases analyzed in [23].

II. METHOD

We start from the full dispersion expression of the
luminosity distance, calculated in the light-cone average
approach up to second order in the Poisson (longitudinal)
gauge, [5,29–32], and recently confirmed in [33]. The
dominant contribution of the dispersion at z≳ 0.3, comes
from the lensing contribution. For a perturbed FLRW
Universe, one starts with the line of sight (LOS) first order
lensing contribution to the distance modulus,

δμ1ðηð0Þs Þ ¼ 5

ln 10

Z
ηo

ηð0Þs

dη1
Δη

η1 − ηð0Þs

ηo − η1
Δ2Ψ; ð2Þ

where the gravitational potentialΨ ¼ Ψðηi; ri; ~θaÞ is evalu-
ated along the past light-cone at ri ¼ ηo − ηi, ηo is the

observer conformal time, ηð0Þs is the conformal time of the

source with unperturbed geometry, ΔηðzÞ ¼ ηoðzÞ −
ηð0Þs ðzÞ ¼ R

z
0

dy

H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm0ð1þyÞ3þΩΛ0

p and Δ2 is the 2D angular

Laplacian, see [5,30] for technical terms and explanations.
Squaring (2) and taking the ensemble average in Fourier
space at a fixed observed redshift, gives the variance, σ2μðzÞ
[34]. In general, the calculation involves a complicated
double line of sight (LOS) and wave number integration.
However, at z≳ 0.3, the double LOS integral is dominated
by the equal time part, and further by Siðx ≫ 1Þ ≈ π=2,
yielding:

σ2μ ≃
�

5

ln 10

�
2 π

Δη2

Z
ηo

ηð0Þs

dη1dk
k

PΨðk; η1Þk3

× ðη1 − ηð0Þs Þ2ðηo − η1Þ2; ð3Þ

where PΨ is the linear (LPS, PL) or non-linear dimension-
less power spectrum (NLPS, PNL) of the gravitational
potential [35]. Hence, the lensing dispersion of supernovae
is a direct measurement of the integrated late-time power
spectrum. At the most basic level, this can be used to
constrain parameterizations of PΨ, or cosmological param-
eters such as Ωm0, σ8 or wðzÞ. We will be mostly interested
in the dispersion at z ¼ 1 where sufficient data is available
and because up to the redshift of a few, the dispersion grows
approximately linearly [5,10,13,36], so the best constraints
can be given at the maximal available redshift. In general,
the k2 enhancement makes σμ a sensitive probe to the small
scales of the power spectrum. To make this claim trans-
parent, let us switch to dimensionless variables, ~η ¼ H0η
and p ¼ k=keq [37]:

σ2μ ≃
�

5

ln 10

�
2 π

Δ~η2

�
keq
H0

�
3
Z

d~η1dpPΨðp; ~η1Þp2

× ð~η1 − ~ηð0Þs Þ2ð~ηo − ~η1Þ2: ð4Þ

From this expression we learn that: (a) The relevant
physical scales are H0 and keq, which give an enhancement
of ðkeq=H0Þ3. (b) The dispersion is really sensitive to the
scales smaller than the equality scale p > 1. (c) The NLPS
has an additional redshift dependent physical scale which is
the onset of nonlinearity. For a given redshift, parameter-
izing the NLPS as ∼Cðk=kNLÞν, from some kNL, will have
an additional parametric enhancement of ðkNL=keqÞ3.
Equation (4) is free of IR and UV divergences so the

main limitation is the validity of the spectrum [5]. For
k ≫ H0 at some redshift dependent point standard cosmo-
logical perturbation theory breaks down, and one has to
resort to numerical simulations to get an approximate
fitting formula for the power spectrum. We use the
HaloFit model [38–40] with kUV ¼ 320h Mpc−1. We have
verified that varying kUV ∈ ð30h;∞Þ Mpc−1 or H0 and
Ωm0 independently within the range H0 ∈ ½64; 70�, Ωm0 ∈
½0.27; 0.36� gives at most 15% change in the value of σμ.
Taken that σμðz¼1;α¼β¼0;kUV¼320hMpc−1Þ¼0.08,
the bound cannot be saturated by varying the background
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parameters and/or integrating up to arbitrarily small scales.
Hence the bound can be useful for constraining αðk0Þ and
βðk0Þ and our results are accurate to about 20%.
Considering a big enough α and β, the HaloFit fitting

formula is not reliable anymore due to its sensitivity to
initial conditions. For example, with α ¼ 0.04 and β ¼
0.05 the existing HaloFit actually gives enhancement
of a few at 1 < k < 175 Mpc−1 and a suppressed power
spectrum compared to the linear one at larger k. It is
nevertheless obvious that the non-linear evolution causes
clustering and enhances the power spectrum. For example,
at redshift z ¼ 1, the ratio between the HaloFit formula,
PNLðk; zÞ, with standard initial conditions (ns ≃ 0.96,
α ¼ β ¼ 0) and the linear power spectrum PNLðk; 1Þ=
PLðk; 1Þ is the solid, thick, black curve plotted in Fig. 1.

Already at k ¼ 1 Mpc−1 the non-linear power spectrum is a
factor of a few larger than the linear one, and for
k≳ 10 Mpc−1, it behaves as a power law with a scaling
exponent of nearly 1=2. We therefore utilize this ratio in the
standard case of ns ¼ const. to define a “transfer function,”

Fðk; zÞ≡ PNLðk; zÞ
PLðk; zÞ

; ð5Þ

where PNL is the non-linear power spectrum, PL ¼
ð3=5Þ2PkT2ðkÞg2ðzÞ is the linear spectrum and TðkÞ is
the transfer function with baryons [41], all taken in the
standard scenario with ns ≃ 0.96, α ¼ β ¼ 0. We take the
enhancement into account in two simple ways. The first
method is by the Heaviside function ΘðkÞ. Here we are not
limited to the HaloFit formula, so we perform the following
substitution in equation (3),

PΨ → PLðk; zÞð1þ bΘðk − kNLÞÞ; ð6Þ

and we evaluate σμ for b ¼ 0, 3, 10, 50 with corresponding
kNL ¼ 1, 1, 2, 15 Mpc−1, such that the step function is
always underestimating the transfer function F, so this is a
very conservative estimate. The step functions are the solid
blue, cyan and purple lines in Fig. 1. The second method is
to use F of the HaloFit model, such that

PΨ → PLðk; zÞð1 − cþ cFðk; zÞÞ; ð7Þ

and evaluate σμ with c ¼ 0, 0.01, 0.1, 0.5, 1. In both
methods b ¼ 0 or c ¼ 0 correspond to computing the
dispersion with the linear power spectrum only, while
c ¼ 1 corresponds to exactly following the HaloFit

FIG. 1 (color online). Log-Log plot of the “transfer functions”
(5) at redshift z ¼ 1 multiplied by c ¼ 1 (solid black), c ¼ 0.5
(upper dashed, gray), c ¼ 0.1 (middle dashed, red) c ¼ 0.01
(bottom dashed, green). Solid blue, cyan and purple curves are
the step functions in (6) with b ¼ 3, kNL ¼ 1 Mpc−1; b ¼ 10,
kNL ¼ 2 Mpc−1; b ¼ 50, kNL ¼ 15 Mpc−1, respectively. Posi-
tion of each step is given by kNL.

FIG. 2 (color online). Regions of allowed parameters combined with PLANCK data. The ellipses are the 68% and 95% C.L. contours
from [16]. In the colored regions σμðz ¼ 1Þ > 0.12 and are disfavored for b ¼ 0, 1, 3, 10, 50 (left panel) and c ¼ 0, 0.01, 0.1, 0.5, 1
(right panel).
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enhancement pattern. Except c ¼ 1 all the second method
values of c are underestimates as well. The resulting
enhancement at z ¼ 1, is plotted in Fig. 1 as green, red
and grey dashed lines.

III. RESULTS

In Fig. 2 we show the constraints on running and running
of running from the non-detection of lensing dispersion
overlaid on PLANCK likelihood contours. In the left panel,
the values b ¼ 0, 3, 10, 50 with corresponding kNL ¼ 1, 1,
2, 15 Mpc−1 are considered. The right panel considers
c ¼ 0, 0.01, 0.1, 0.5, 1. In both panels, colored regions give
σμðz ¼ 1Þ ≥ 0.12 and are disfavored.
We wish to note that there are additional factors which

make our analysis an underestimate. First of all, partial sky
coverage is expected to increase dispersion [4]. Second,
SNIa at higher redshift have already been detected and used
for cosmological parameter inference. The monotonicity of
σμðzÞ ensures that considering, for instance, σμðz ¼ 1.2Þ
would give more stringent bounds. Third, the consideration
of other analyses. Bayesian analyses [14,42] suggested that
the total dispersion is about 0.12 with a very marginal
detection of the lensing signal. Better yet, the JLA [15] is an
up to date, model independent analysis and also there
σtotalðz ≤ 1Þ ≤ 0.12, not just the lensing dispersion. In the
above cases, the intrinsic or coherent dispersion, actually
dominates the total dispersion. On top of that, in the JLA
analysis there is a clear trend of σcoh. decreasing in redshift,
meaning that the actual value of the lensing dispersion is
probably smaller than the σμ ¼ 0.055z it uses. Last, all
other analyses (data, statistical, theoretical and numerical)
[5,10,13,36,43] point to a lower value of the dispersion as
well, at most σμðzÞ≃ 0.093z, practically disfavouring even
a larger portion of the parameter space allowed by
PLANCK.

IV. CONCLUSIONS AND OUTLOOK

From Fig. 2, it is obvious that the lensing dispersion or
its absence is an extremely powerful cosmological probe.
Even if a scale dependent spectral index induces clustering
which is an order of magnitude smaller than the standard
constant ns scenario, some of the parameter space allowed

by PLANCK is ruled out. Moreover, the analysis discusses
the spectrum up to k ∼ 320h Mpc−1, more than two orders
of magnitude beyond PLANCK’s lever arm (∼5 e-folds
more) irrespective of whether models are ruled in or out. It
can be treated as a prediction of inflationary models. In the
more realistic case where the enhancement is similar to the
HaloFit model, such as c ¼ 0.5, 1, one gets strong bounds
on the allowed parameters, that can be expressed as a linear
relation,

βðk0Þ ≤ 0.036 – 0.42αðk0Þ; c ¼ 0.5 ð8Þ

βðk0Þ ≤ 0.022 – 0.44αðk0Þ; c ¼ 1: ð9Þ

The realistic case of βðk0Þ ≤ 0.022 nicely matches
PLANCK’s αðk0Þ ¼ 0þ0.016

−0.013 , βðk0Þ ¼ 0.017þ0.016
−0.014 . Obvi-

ously, a definite detection of lensing will enable a more
stringent analysis similar to CMB lensing.
It is very appealing to add the lensing dispersion

constraint to the likelihood analysis of the PLANCK data.
We believe that numerical simulations with initial con-
ditions as suggested here, αðk0Þ, βðk0Þ ≠ 0, which will give
a more accurate late time power spectrum, will yield
similar results, thus strengthening our argument. These
simulations are already on their way. Last, we have
suggested using the (absence of) dispersion to constrain
the primordial power spectrum. Since the dispersion
depends on several cosmological parameters, it can be
useful in constraining other fundamental cosmological
parameters as well.
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