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We explore G ×G unified theories with the visible and the hidden or dark sectors paired under a Z2

symmetry. Developing a system of “asymmetric symmetry breaking”we motivate such models on the basis
of their ability to generate dark baryons that are confined with a mass scale just above that of the proton, as
motivated by asymmetric dark matter. This difference is achieved from the distinct but related confinement
scales that develop in unified theories that have the two factors of G spontaneously breaking in an
asymmetric manner. We show how Higgs potentials that admit different gauge group breaking chains in
each sector can be constructed, and demonstrate the capacity for generating different fermion mass scales.
Lastly we discuss supersymmetric extensions of such schemes.
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I. INTRODUCTION

Observations have established that our Universe is
composed of ∼32% matter and ∼68% dark energy. Of
the matter, only ∼15% is accounted for by the particles that
make up the standard model. The makeup of the remaining
dark matter (DM) is one of the chief concerns of present
day physics. The visible matter (VM) is composed of three
generations of quarks and leptons interacting under
SUð3Þ × SUð2Þ × Uð1Þ gauge interactions, plus a Higgs
boson. It is common to consider that DM may be a similar
set of particles charged under a different gauge group with
only limited interactions with ordinary matter. The two
sectors, the visible and the dark, provide an explanation for
why evidence of DM has only been encountered so far
through gravitational effects and the question of how these
sectors could form to be so separate is an interesting
challenge.
Asymmetric dark matter models, a broad category within

hidden-sector scenarios, relate the creation of the mass
density in the visible sector to the generation of matter in
the dark sector. The fact that the mass densities of DM and
VM in the Universe are seen to be of the same order,

ΩDM ≃ 5ΩVM; ð1Þ

suggests that the mechanism by which VM was created in
the early Universe is connected to the production of DM.
The established origin of the relic density of VM relies on a
baryon asymmetry, in which a small excess of baryons over
antibaryons developed, and after the antibaryons had all
annihilated with opposing baryons only a baryon density
remained. In asymmetric dark matter models the asymme-
try in each sector is connected by the conservation of a

global quantum number. Once the symmetric parts in each
sector have annihilated away then the number densities of
the remaining particles in each sector are related to each
other [1–3]. However Eq. (1) is a mass-density relation. In
order to explain it, a theory of how the DM mass is related
to the proton mass is needed in addition to related number
densities. Now, grand unified theories (GUTs) unite the
fundamental forces of particle physics into a single gauge
group at high energy along with their coupling constants.
The purpose of this paper is to explore how GUTs can
relate a dark-sector confinement scale to the QCD scale.
We approach this by demonstrating an “asymmetric

symmetry breaking” mechanism in which isomorphic
and Z2 related gauge groups GV ×GD of the visible and
dark sectors naturally differ from each other after symmetry
breaking. Each sector then features different mass scales for
visible and dark baryons. We now briefly review how this
mass is generated in our own sector.
The dependence of the running coupling constant of

QCD, αsðμÞ, on the scale μ can be expressed in two ways.
The first is as a function of a reference scale μ0 which gives
an equation of the form

αsðμÞ ¼
αsðμ0Þ

1þ ðβ0=4πÞαsðμ0Þ lnðμ2=μ02Þ
; ð2Þ

where αs is known at the reference scale. Alternatively the
dependence can be expressed as

αsðμÞ ¼
4π

β0 lnðμ2=Λ2Þ ; ð3Þ

in which the parameterΛ is the confinement scale, the value
at which the strong coupling constant becomes large as the
energy scale decreases. This is a distinct feature of
asymptotic freedom in which β0 > 0. At first order the
beta function for SU(3) is
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β0 ¼ 11 −
2

3
nf; ð4Þ

where nf is the number of quark flavors that appear in the
loop corrections at a given energy scale. If one then knows
the value of the strong coupling constant at a high energy
scale U, for instance at a GUT scale, it is possible to
calculate the value of the confinement scale by evolving the
coupling constant and taking into account quark mass
thresholds. The threshold values are actually at twice the
mass of each quark as this is the amount of energy needed
to switch on the relevant loop correction. The resulting
equation is dependent on this high reference scale, U, αs at
said scale, and the masses of the fermions in the range
between the two scales:

Λ ¼ 22=9e−2π=9αsðUÞU
7
9m

2
27
c m

2
27

bm
2
27
t ; ð5Þ

wheremt;b;c are the top-, bottom-, and charm-quark masses.
One can obtain the one-loop version of this equation by
calculating the value of αs at the largest quark mass
threshold from the reference scale U using Eq. (2) and
repeating this process for each quark mass threshold, taking
the previous threshold as a starting point until the confine-
ment scale is reached. This calculation can then be
rearranged to express the confinement scale in terms of
the first reference scale U and the value of each mass
threshold in between. For a more general theory the
confinement scale is given by

Λ ¼ 21−
bu
bce−2π=αsðUÞbcU

bu
bcm

bc−bb
bc

1 m
bt−bu
bc

3 m
bb−bt
bc

2 : ð6Þ

The terms labeled bx in this form of the equation denote the
values of β0 for different numbers of contributing quark
flavors. For instance, bb is the value above twice the charm
mass but below the bottom mass. We use this notation for
the sake of the more generalized relationship between
energy thresholds and the DM confinement scale where the
number of massive quarks and the masses that they have are
initially completely free parameters. Only the masses of
quarks larger than Λ itself appear explicitly in the equation.
It is important to note that this equation is very sensitive to
the value of the scale U. This sensitivity is avoided,
however, in a non-Abelian dark sector if the confining
gauge group is also SU(3), as we explain below. To form
the alternate gauge groups we develop a systematic way of
generating different dark sectors from unified origins, with
both containing an unbroken SU(3) factor.
The idea of connecting DM to unified origins is not new,

of course, and a large number of models explore the
possibility of DM coming from a dark sector which closely
resembles our own. In particular our work is related to the
theory of mirror matter [4–21], where the two sectors share
the same gauge group and the hidden sector is an exact
copy of the standard model. Our work demonstrates the

capacity for natural symmetry breaking of mirrored GUT
groups to two sectors which are manifestly different at low
energies in both gauge symmetry and the masses of their
particle content. Where a number of other works, in
particular [22–25], posit the existence of a hidden non-
Abelian gauge group responsible for generating dark
baryon mass, or in the case of [26], glueball mass, we
aim to show that such confining dark sector groups and in
particular SU(3) can appear spontaneously from a unified
original gauge symmetry and that the generation of a
confinement scale in the dark sector which is different
from (often larger than) our own can be a natural conse-
quence of the way in which these unified theories break
“asymmetrically.”
Recently [27] explored models of composite fermions

from SUð5Þ × SUð5Þ with a discrete symmetry that used
potentials with different symmetry breaking scales to
achieve coupling unification and generate confining par-
ticles in the TeV range. The intention of this work is to
explore the broader possibilities of generating spontaneous
differences in GV ×GD theories to answer why DM could
have a mass of the same order as VM.
The next section gives the results on the dark SU(3)

confinement scale as a function of dark-quark mass in
nonsupersymmetric theories. Section III then explains the
basic idea behind asymmetric symmetry breaking in the
simplest possible context. With that as a springboard,
Sec. IV shows how the mechanism can be implemented
in nonsupersymmetric SU(5), while Sec. V deals with how
dark-quark mass generation can be automatically different
from ordinary quark mass generation. Section VI briefly
discusses the rather different and diverse possibilities
afforded in SO(10) constructions, and Sec. VII touches
on phenomenological constraints. Attention then turns to
supersymmetry, with Sec. VIII showing how asymmetric
symmetry breaking can be implemented, and Sec. IX
displaying the dark confinement scale results. Final
remarks are made in Sec. X. Appendixes A and B give
further details of the scalar potential analyses in the non-
SUSY and SUSY cases, respectively.

II. DARK SU(3)

The goal of these models is to obtain the standard model
in one sector and a naturally occurring but distinctly
different dark sector with its own SU(3) gauge group that
facilitates an asymptotically free strong binding of dark
quarks into heavy dark baryons. These baryons could then
account for the relative mass density difference between the
total visible and DM in a Universe where the number
density generation is governed by asymmetric dark matter
dynamics.
In a model with unified coupling constants, and where at

a high energy the gauge groups of each sector break to
SU(3) at the same scale, the two values of the strong
coupling constant αs and αsD are the same from the GUT
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breaking scale all the way down to the scale at which the
number of possible fermions in the loop corrections first
deviates between the two sectors or further symmetry
breaking occurs. This is highly desirable as it allows the
equation of the dark confinement scale to be greatly
simplified, as the high reference scale can then be chosen
to be at the value of αsD , the deviation point which has just
the value of the standard model αs at the scale of either the
top quark or the heaviest of the dark quarks depending on
which of these two has greater mass. If we make the further
assumption for the sake of simplicity that all heavy dark
quarks have the same mass, then our equation becomes a
function of just one continuous and one discrete parameter,
namely the dark fermion mass scale m and the number of
fermions, nf, that are at such a scale, Λðnf;mÞ. Figure 1
shows the relation between the dark confinement scale and
the mass of the heavy quarks which couple to the dark
strong force. One could devise scenarios in which some of
the heavy fermions attain an intermediate mass scale and
adjust the confinement scale accordingly. Figure 1 shows
that a value of Λ at approximately 1 order of magnitude
greater than the standard model is compatible with dark
quark masses up to 1000 TeV. The baryons themselves
form from the light, or massless, quarks and therefore have
mass either almost or totally dominated by the confinement
scale. If one can build a model of two such sectors that
allows for the dark sector to give masses to colored
fermions at a low enough energy scale then accordingly
one can provide an explanation for the similarity in the
mass densities of visible and dark matter.
The focus of this paper is on how asymmetric symmetry

breaking patterns from G ×G GUTs can be induced and
how quark and dark-quark mass generation may naturally
differ, as these are the most important ingredients for
determining the dark QCD confinement scale. Other
important features for asymmetric DM models, such as

the asymmetry generation and transfer mechanism and the
annihilation of the symmetric part, plus various issues
associated with constructing fully realistic GUTs,1 are left
for future work.

III. ASYMMETRIC SYMMETRY BREAKING

In order to illustrate the range of possible asymmetric
symmetry breaking models and explain the basic features
that drive asymmetric symmetry breaking we examine in
this section a simple toy model that involves all of the most
basic terms required and demonstrate what vacuum expect-
ation value (VEV) patterns are possible.
The simple model we use for illustration is based on four

real scalars in two Z2 pairs,

ϕ1↔ϕ2; χ1↔χ2: ð7Þ

The general potential can be written without loss of
generality as

V ¼ λϕðϕ2
1 þ ϕ2

2 − v2ϕÞ2 þ λχðχ21 þ χ22 − v2χÞ2
þ κϕðϕ2

1ϕ
2
2Þ þ κχðχ21χ22Þ þ σðϕ2

1χ
2
1 þ ϕ2

2χ
2
2Þ

þ ρðϕ2
1 þ χ21 þ ϕ2

2 þ χ22 − v2ϕ − v2χÞ2: ð8Þ

Terms such as ϕ3
1ϕ2 þ ϕ1ϕ

3
2 etc. are taken to be absent

because of additional discrete symmetries. If each of the
parameters is positive, then each of the six terms in this
potential is positive definite. Then each is individually
minimized if it is equal to zero. The first four terms are thus
minimized by the condition that for each Z2 pair, one field
gains a nonzero VEV while its partner has strictly zero
VEV. The fifth term is minimized by the condition that the
two nonzero-valued fields do not share a subscript (sector).
The last term is then already zero by the previous
conditions and the entire potential is minimized by these
“asymmetric” configurations:

hϕ1i ¼ vϕ; χ1 ¼ 0; hϕ2i ¼ 0; χ2 ¼ vχ : ð9Þ

Note that it could have been (ϕ2; χ1) that gained nonzero
VEVs; i.e. we cannot know a priori which way the
symmetry will break.
A key feature of these asymmetric models is the ability

of one asymmetry to induce further asymmetry in addi-
tionalZ2-related fields. If we take a second set of four fields
just as in the above case,

Ω1↔Ω2; η1↔η2; ð10Þ
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FIG. 1 (color online). Confinement scale dependence on
fermion masses with five heavy and one light quark at the top
through five light and one heavy quark at the bottom line. All
heavy quarks have mass m and all light quarks are taken to have
masses below Λ.

1In particular, the problem of unsuccessful quark-lepton mass
relations requires a nonminimal scalar sector. This will not affect
our results provided that all colored components of these
multiplets receive GUT-scale masses, as is required in any case
to solve the doublet-triplet splitting problem.
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our new general potential can be written in the form,

V ¼ λϕðϕ2
1 þ ϕ2

2 − v2ϕÞ2 þ λχðχ21 þ χ22 − v2χÞ2 þ κϕðϕ2
1ϕ

2
2Þ þ κχðχ21χ22Þ

þ σðϕ2
1χ

2
1 þ ϕ2

2χ
2
2Þ þ ρðϕ2

1 þ χ21 þ ϕ2
2 þ χ22 − v2ϕ − v2χÞ2

þ λΩðΩ2
1 þ Ω2

2 − v2ΩÞ2 þ ληðη21 þ η22 − v2ηÞ2 þ κΩðΩ2
1Ω2

2Þ þ κηðη21η22Þ
þ σ1ðΩ2

1η
2
1 þΩ2

2η
2
2Þ þ ρ1ðΩ2

1 þ η21 þΩ2
2 þ η22 − v2Ω − v2ηÞ2

þ σ2ðΩ2
1χ

2
1 þ Ω2

2χ
2
2Þ þ ρ2ðΩ2

1 þ χ22 þ Ω2
2 þ χ21 − v2Ω − v2χÞ2

þ σ3ðϕ2
1η

2
1 þ ϕ2

2η
2
2Þ þ ρ3ðϕ2

1 þ η22 þ ϕ2
2 þ η21 − v2η − v2ϕÞ2

þ ρ4ðΩ2
1 þ ϕ2

1 þ Ω2
2 þ ϕ2

2 − v2Ω − v2ϕÞ2 þ σ4ðΩ2
1ϕ

2
2 þ Ω2

2ϕ
2
1Þ

þ ρ5ðχ22 þ η22 þ χ21 þ η21 − v2η − v2χÞ2 þ σ5ðχ22η21 þ χ21η
2
2Þ: ð11Þ

As before, with each term positive definite, the potential is
minimized for the following pattern of VEVs:

hϕ1i ¼ vϕ; hχ1i ¼ 0;

hϕ2i ¼ 0; hχ2i ¼ vχ ;

hΩ1i ¼ vΩ; hη1i ¼ 0;

hΩ2i ¼ 0; hη2i ¼ vη: ð12Þ

As usual this vacuum is degenerate with its Z2 transform.
The potential has been constructed in such a way that the
minima are when nonzero ϕ;Ω VEVs share a sector, and
the same is true for χ, η. This associated asymmetry allows
us to link together particular subgroups from gauge
symmetry breaking with appropriate Higgs multiplets for
that specific sector to give different masses to fermions.
This idea will be explored further in Sec. V. Large systems
of many representations of scalar fields can take an initially
mirrored GUT group and naturally populate each sector
with nonzero VEVs of different scales which are given to
different representations, thus making the two sectors
highly divergent in their features though identical in their
origins. This toy model will serve as a proof of concept for
the more involved scenarios that we move on to, that is,
replacing these singlet fields with representations of GUT
groups.

IV. SUð5Þ × SUð5Þ ASYMMETRIC
SYMMETRY BREAKING

We now consider how an asymmetric VEV structure
allows for separate mechanisms to generate fermion masses
in each sector. This section explores an illustrative model of
asymmetrical symmetry breaking that uses the SU(5) GUT
candidate. Paired with a discrete symmetry our SUð5Þv ×
SUð5Þd will be broken to different gauge groups in the two
sectors but with both featuring unbroken SU(3) subgroups
which have quantitative differences. This then allows a
numerical difference in the value of the dark sector

confinement scale. To accomplish this we build a symmetry
breaking potential out of four scalar multiplets making use
of two different representations of SU(5), namely the 24
and the 10, each of which will have one of two multiplets
become the sole attainer of a nonzero VEV in just one
sector, thus facilitating the different symmetry breaking
patterns. In its most basic form this is just an extension of
the simple model of Sec. III in which the two sectors are the
visible and dark and the fields ϕ1, ϕ2 are now 24 dimen-
sional multiplets while χ1, χ2 become two copies of the 10
representation of SU(5),

ϕv ∼ ð24; 1Þ; χv ∼ ð10; 1Þ;
ϕd ∼ ð1; 24Þ; χd ∼ ð1; 10Þ: ð13Þ

Consider firstly the 10 representation of SU(5) which one
uses to spontaneously break

SUð5Þd → SUð3Þ × SUð2Þ ð14Þ

by appropriate choice of the sign of parameters in a general
quartic scalar potential. The general renormalizable poten-
tial for a scalar multiplet χ ∼ 10 is

V10 ¼ −μ2t χijχji þ λt1ðχijχjiÞ2 þ λt2χijχ
jkχklχ

li: ð15Þ

Note that i; j ¼ 1;…; 5 are SU(5) gauge indices with
χij ¼ −χji, and the subscript t denotes “ten.” Choosing
the parameter λt2 to be negative produces a VEV that breaks
SU(5) to SUð3Þ × SUð2Þ [28].
In the other sector the method of breaking SU(5) to the

standard model is to use scalar fields in the adjoint
representation. The quartic potential is

V24 ¼ −μ2aϕi
jϕ

j
i þ λa1ðϕi

jϕ
j
iÞ2 þ λa2ϕ

i
jϕ

j
kϕ

k
hϕ

h
i ; ð16Þ

where the subscript a is for “adjoint,” and ϕ is Hermitian
traceless. Choosing λa2 to be positive gives us the breaking
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SUð5Þv → SUð3Þ × SUð2Þ × Uð1Þ: ð17Þ

In this model we have four representations of scalar fields
in the two Z2 pairs of Eqs. (15) and (16). The complete,
general fourth-order, gauge-invariant scalar potential
invariant under the discrete symmetry is written in
Appendix A. It contains two copies of each of the above
two potentials for the multiplets in each sector as well as all
possible gauge-invariant contractions between the 24 and
10 in each individual sector, that is, of the style χvχvϕvϕv.
We can take these basic potentials written above and use

them to write a simple outline of the full potential. We first
duplicate each of the above potentials to accommodate each
one’s dark counterpart, and add in the cross terms such as
Trðϕ2

vÞTrðϕ2
dÞ. We term these

VA ¼ V24 þ V 0
24 þ κaTr½ϕ2

v�Tr½ϕ2
d� ð18Þ

and

VT ¼ V10 þ V 0
10 þ κtχvijχv

jiχdnmχd
mn: ð19Þ

To this there are five remaining contractions that we must
add to write the general renormalizable potential. A portion
of this potential, displayed in full in Appendix A, can then
be written as

V ¼ VA þ VT þ C0ðχdnmχdmnTr½ϕ2
v�

þ χvijχv
jiTr½ϕ2

d�Þ þ… ð20Þ

Extending the analysis of Sec. III we find that for a
particular region of parameter space in this potential, the
global minimum is at

hϕvi ¼ vv

0
BBBBBBB@

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 −3=2 0

0 0 0 0 −3=2

1
CCCCCCCA
;

hχvi ¼ 0;

hϕdi ¼ 0;

hχdi ¼ vd

0
BBBBBBB@

0 1 0 0 0

−1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1
CCCCCCCA
: ð21Þ

By using the principles of the simple model and its
parameter space from Sec. III, this potential is seen to
induce the two SU(5) gauge groups to indeed break
differently in each sector. In one sector the 10

representation attains a VEV breaking SU(5) to SUð3Þ ×
SUð2Þ and the positive definite contraction terms push the
24 in that sector to attain a VEVof zero. In the other sector
the 10 representation is driven to have a VEV of zero by
contraction terms with its counterpart and this forces the 24
to attain a VEV that breaks this second SU(5) to the
standard model gauge group. There is once again no way of
knowing which is the visible and which is the dark sector
prior to symmetry breaking. Once the symmetry is broken
to the lowest state it shall simply be that we label the SU(5)
which is broken to the standard model group the gauge
symmetry of the visible sector and the alternatively broken
symmetry is then the dark sector gauge group.
We now explore fermion mass generation with a view to

having the visible and dark color SU(3) gauge coupling
constants evolve differently under the renormalization group.

V. FERMION MASSES

In SU(5) theories the fermions of the standard model are
assigned to the 5̄ and 10 representations. The product of
these allows for mass generation through Yukawa cou-
plings to Higgs fields in 5, 10, 45 or 50 dimensional
representations. As an example, we aim to have two
different representations for our mass generation, a 5 to
accommodate the standard model Higgs doublet in the
visible sector and another representation which attains a
nonzero VEV in the dark sector to give a different form of
mass generation for the dark sector quarks.2

The 10 representation already employed in the symmetry
breaking only gives mass to leptons and is thus unsuitable.
We therefore choose to examine how a 5 and a 45 in each
sector can allow for a difference in the scale of quark and
dark-quark masses. The 45 has the interesting property of
automatically leaving one dark quark massless [29], which
is a very useful feature for our application. The fermion
multiplets are the same in each sector, again respecting our
initial mirror symmetry:

ψv5 ∼ ð5̄; 1Þ; ψd5 ∼ ð1; 5̄Þ;
ψv10 ∼ ð10; 1Þ; ψd10 ∼ ð1; 10Þ; ð22Þ

and the Higgs multiplets which take the place of the fields
Ω, η from Sec. III are

Hv5 ∼ ð5; 1Þ; Hd5 ∼ ð1; 5Þ;
Hv45 ∼ ð45; 1Þ; Hd45 ∼ ð1; 45Þ: ð23Þ

2The idea of a non-Abelian gauge sector responsible for
confining DM has been detailed in a number of different works
such as [22] in which the range of SU(N) groups and ultraviolet
boundary conditions of the coupling constants that allow for
TeV-scale-confined DM were investigated. In [26] the scale of
gluinos and glueballs in an SU(N) hidden sector was seen to
be adjustable to produce TeV-scale glueball DM that could agree
with a number of astrophysical constraints of self-interacting DM.
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The Yukawa Lagrangian is

LF ¼ y1ψv5H
�
v5ψv10 þ y2ψv10Hv45ψv10 þ y1ψd5H

�
d5
ψd10

þ y2ψd10Hd45ψd10 þ H:c: ð24Þ
The methodology of Sec. IV can be extended to include the
Z2 scalar pairs responsible for fermion mass generation.
The asymmetric symmetry breaking described in Sec. III
can induce consecutive asymmetries in more sets of fields.
The dependence for which way the asymmetry in the
second set will fall is entirely dependent on the weighting
of the cross terms between the two sets.
It is in this manner that we arrange for the H45 in the

visible sector to have a zero VEV, while in the dark sector it
gives mass to five of the six quarks at an indeterminate scale
vd and reduces the dark sector symmetry from SUð3Þ ×
SUð2Þ to SU(3). The invariant component of Hd45 is

hHd45ib5a ¼ vd

0
BBBBBB@

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 −3 0

0 0 0 0 0

1
CCCCCCA
: ð25Þ

On the other hand the H5 has a VEV of zero in the dark
sector and a nonzero VEV in the visible sector as per the
minimal SU(5) model of giving mass to the fermions:

hHvi ¼ vvð0; 0; 0; 0; 1Þ; hHdi ¼ 0: ð26Þ
The scale vd can then be compared to the top line in Fig. 1
from Sec. II in which we have five heavy dark quarks and a
single massless dark quark. In such a scenario, if the masses
of the quarks are less than 1000 TeV then they produce dark
confinement scales less than 14 GeV. The remaining
massless quark, a dark up-quark, forms a set of neutral
ΔðuuuÞ baryonlike states, lighter than all other possible
dark color singlets and with mass completely dominated by
the confinement scale. This forms a dark analogue of the
visible sector nucleon but with mass that is an order of
magnitude greater. If we consider minimal differences in
the magnitude of the mass generating VEVs, which is quite
natural to obtain if parameters are of similar order, then at
around the electroweak scale, ∼246 GeV, a confinement
scale of 2.1 GeV is generated in the dark sector. This is
around an order of magnitude higher than the standard
model QCD scale of 0.217 GeV.

VI. SOð10Þ × SOð10Þ
We now briefly touch on the subject of SOð10Þ ×

SOð10Þ and other GUT models and their scope with regard
to asymmetric symmetry breaking. In extending the grand
unification from SU(5) to SO(10) we open up a number of
possible pathways to break down to the standard model.

In particular we could consider breaking to the familiar
SUð5Þ × SUð5Þ that we showed previously or instead use
asymmetric symmetry breaking to take other paths in both
sectors towards a final standard model gauge group and
non-Abelian dark sector group. For example the use of the
45 and 54 representations allows one sector to take the
Pati-Salam symmetry breaking path [30], and the other that
of Georgi-Glashow SU(5) [31]. Alternatively one could
bypass SU(5) in one or both sectors altogether. The large
number of possibilities raises the prospect of many different
ways to adjust the confinement scale for dark QCD. In
addition, we could consider the possibilities of how we can
adjust the scale of breaking to subgroups in each sector.
As a simple example of what we mean we briefly examine a
theory which at a high GUT scale MG breaks as per

SUð5Þv → SUð3Þ × SUð2Þ × Uð1Þ; ð27Þ

and
SUð5Þd → SUð4Þd; ð28Þ

and then at an intermediate scale Mi features

SUð4Þd → SUð3Þd: ð29Þ

Then we can consider how the confinement scale of SUð3Þd
changes with the value of Mi. If, by way of a simple
example, one assumes that the visible and dark quarks of
each sector have the same masses, then the higher values of
Mi will yield lower confinement scales as the theory will
run as SU(3) for a greater energy span.
Figure 2 shows that higher values ofMi take us closer to

the previous analysis of the standard model. This is what
one would expect, as in the limit Mi → MG it is as though
we have broken directly to SU(3). If we, however, allow for
more of the running to be governed by SU(4) then the
theory will blow up at a higher scale once we transition to
SU(3). In SOð10Þ × SOð10Þ models, the many possibilities
warrant a dedicated analysis in future work.

1000 106 109 1012 1015
M_i GeV
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100

1000
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FIG. 2 (color online). The value of the confinement scale
for different intermediate breaking scales Mi for the SO(10) ×
SO(10) scenario of Eqs. (27)–(29).

STEPHEN J. LONSDALE AND RAYMOND R. VOLKAS PHYSICAL REVIEW D 90, 083501 (2014)

083501-6



VII. PHENOMENOLOGICAL ISSUES

It is important to note that we merely assumed in the
previous analysis that the gauge coupling constants of
the sectors unify at a high GUT scale. While the scenario
of a nonsupersymmetric asymmetric model that we have
described does not automatically have gauge coupling
unification, it is possible to bring the three coupling
constants of the standard model together at the GUT scale
by the addition of extra Higgs doublets. One must also
consider the constraints from the experimental lower bounds
of proton decay. Decay modes from minimal SU(5) models
have quite high bounds, τðp → π0eþÞ ≳ 1034 years [32] and
the order of magnitude estimation for the width

Γ ≈ α2
m5

p

M4
X
; ð30Þ

demands that we must have at least MX ≈ 4 × 1015. In [33]
it was shown that consistent proton decay limits and
unification could be obtained with the addition of Higgs
multiplets in a nonsupersymmetric SU(5).
Bounds on the dark baryons as DM from the bullet

cluster observation are similar to that in [34] where the self-
interaction cross section of these nucleons σ ∼ 10−26 cm2 is
compared to the upper bound of the DM self-interaction
cross section ≤ 10−23 cm2 [34–36]. The scale that vd can
take is something that we have not followed in full detail,
opting to simply take as a guide the range of scale
differences that we can accommodate in the simple model
in Sec. III. These lead us to see that the scale of vd for a
factor of 5 difference between ordinary and dark baryons
would need to be between ∼30 GeV to 104 TeV depending
on how many of the heavy quarks are given mass. The 45
representation of SU(5) would observe the lower bound
of ∼30 GeV as the mass scale would give this exact ratio.
If, on the other hand, one only gavemass to a single quark in
the dark sector then a very high mass would be compatible
with a confinement scale of order the standard model.
It would be interesting to see what additional breaking

chains discussed in Sec. VI could allow for the confinement
scales to approach this ratio without even considering
differences in the fermion masses between the two sectors.
Since the achievement of gauge coupling constant uni-

fication in non-SUSYGUTmodels is somewhat ad hoc and,
more importantly, suffers from the gauge hierarchy problem,
we now turn to SUSY models where these problems are
absent.

VIII. SUPERSYMMETRIC ASYMMETRIC
SYMMETRY BREAKING

We now develop a supersymmetric analogue of the
model in Sec. IV, that is an SU(5) theory with scalar fields
in the 10 and 24. In building the supersymmetric potential
we will have to introduce another chiral supermultiplet in
the 10 representation, Y, to make it possible to include

gauge-invariant terms containing X ∼ 10 in the superpo-
tential. We must of course also introduce a counterpart field
Yd for the sake of the discrete symmetry.
This allows for the construction of a potential including

all of the fields from the non-SUSY case. However, in order
to facilitate asymmetric symmetry breaking it is key that
we have both terms that mix the fields under different
representations in each sector and cross terms between the
two sectors. This is not possible with the set of fields as they
are. To achieve this we add a singlet scalar superfield S
which transforms into itself under the discrete symmetry.
Doing so allows for the superpotential to generate all of the
necessary cross terms for asymmetric symmetry breaking
through the F-terms of the scalar potential. The chiral
supermultiplets involved are then

Φv ∼ ð24; 1Þ; Xv ∼ ð10; 1Þ; Yv ∼ ð10; 1Þ;
Φd ∼ ð1; 24Þ; Xd ∼ ð1; 10Þ; Yd ∼ ð1; 10Þ; ð31Þ

and
S ∼ ð1; 1Þ: ð32Þ

The general superpotential

W ¼ s1ðXvYv þ XdYdÞ þ s2ðΦvΦv þ ΦdΦdÞ
þ s3ðΦvΦvΦv þ ΦdΦdΦdÞ þ s4ðXdΦdYd þ XvΦvYvÞ
þ s5ðΦvΦvSþ ΦdΦdSÞ þ s6ðXvYvSþ XdYdSÞ
þ s7Sþ s8SSþ s9SSS ð33Þ

satisfies SUð5Þv × SUð5Þd gauge invariance and the Z2

discrete symmetry. The symmetry breaking possibilities with
this potential are discussed in more detail in Appendix B.
The complete potential has contributions from the

F-terms of the superpotential, the D-terms from those
fields which are charged under one of the SU(5) sym-
metries and soft mass and trilinear terms. Since we have a
complete singlet S, the nonholomorphic trilinear terms are
taken to be absent [37]. The equation is

V¼Wi�Wiþ
1

2

X
a

ðgΦiTaΦiÞ2−mXðXvijXv
jiþXdijXd

jiÞ

−mYðYvijYv
jiþYdijYd

jiÞ−mΦðΦvΦvþΦdΦdÞ−mSS2

−a1ðΦdΦdΦdþΦvΦvΦvÞ−a2ðXdYdΦdþXvYvΦvÞ;
ð34Þ

where

Wi ¼ ∂W
∂ϕi

ð35Þ

and each ϕi is one our fields. There are nine parameters
from the superpotential (s1;…; s9) and six parameters from
the soft terms mΦ, mX, mY , mS, a1, a2 as well as the SU(5)
coupling constant present in the D-terms. With this field
content we find that the scalar potential then has the
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capacity to display asymmetric symmetry breaking by
appropriate choice of the parameters. The singlet field S
is important here. Without it we could not arrive at a scalar
potential that has terms such as ΦvΦvΦdΦd, that is, terms
which mix the two sectors. Without these it is not possible
to create the necessary dependence between sectors for
VEV development to be opposing. There are nonminimal
choices one could make for the additional fields that would
allow for these terms but for now we choose to simply focus
on the simplest case.
Consider a parameter choice with s4 and s5 large

compared to the other superpotential parameters, and with
nonzero values of mX, mY and mΦ. F-terms of the style
ðΦ2

vΦ2
dÞ or ðXvXvΦvΦvÞ can then serve as the cross terms

that create the asymmetric acquisition of VEVs. With
largely positive quartic terms coming from the D-terms
and negative quadratic terms in the form of the soft masses,
these cross terms can drive one variety of each multiplet of
a given dimensionality to zero in the same manner as the
non-SUSY case. It is however the case that many other
W-terms can spoil this pattern and so many of the other
superpotential parameters must be kept relatively small, at
least an order of magnitude. The parameter s9 we can allow
to be large, as it will serve to bring the value of S to zero.
In one scenario one can generate a nonzero VEV for Φv in
the visible sector, again breaking

SUð5Þv → SUð3Þ × SUð2Þ × Uð1Þ; ð36Þ
and in the dark sector we have Φd developing a VEV of
zero. Then the multiplets Xd and Yd together acquire
nonzero VEVs which break

SUð5Þd → SUð3Þ × SUð2Þ: ð37Þ
Being a pair of conjugate representations, they will induce
breaking to the maximal stability group of SU(5) according
to Michel’s conjecture [38,39] which states that this is the
case for a potential containing only a real representation or
a pair of conjugate representations. This does not strictly
apply in this scenario, of course, because we have other
fields involved in the potential. However, we invoke it as
numerical analysis shows that symmetry breaking of this
type occurs within the parameter space that gives asym-
metric VEV patterns. Appendix B contains further details
of this parameter space. For the 10 dimensional represen-
tation, the maximal stability group, or maximal little group,
is SUð3Þ × SUð2Þ as it is the only maximal group which
observes a singlet within the 10 of SU(5).
The supersymmetric case is more constrained in its ability

to display asymmetric configurations, though with suitable
additions in particle content we have found that it is a feature
that a unified supersymmetric theory can have. Many of the
parameters in the superpotential must be kept quite small so
as to not overpower the terms essential for guaranteeing
asymmetric VEV arrays. It would be interesting to explore
this issue further in developing a complete theory and

examining more of the possibilities for asymmetric SUSY
sectors; however that is beyond the scope of this work.
We now discuss the dependence of the confinement

scale with various parameters in a general supersymmetric
theory.

IX. SUPERSYMMETRIC CONFINEMENT

In the case of supersymmetric theories the running
coupling is modified by the additional particle content.
For SU(3) we are however only interested in those particles
with color charge. Note that this analysis is not dependent
on any particular choice of GUT group, relying only on an
SUð3Þv × SUð3Þd structure after GUT breaking.
In the MSSM the one loop beta function for SU(3) is

altered by the addition of the gluinos and sfermions as per

β0 ¼ 11 −
2

3
nf − Cg −

2

6
ns; ð38Þ

where nf (ns) is the number of quarks (squarks) and Cg ¼ 2
is due to the gluinos. The calculation of the dependence of
confinement scale is more model dependent here as one must
first of all take into account the mass that visible sector
gluinos and squarks take to consider what value the coupling
will take at the GUT or high reference scale μ0. This will
alter the precise calculation of the value of α3d at the scale at
which the visible and dark sector couplings unify. One can
also consider in the dark sector how we might separate the
scales of the quarks and squarks. If we take the assumption
that the SUSY breaking scale is no higher than the mass
scale of the dark quarks in the dark sector then this provides a
rough upper bound on the scale at which we place the
supersymmetric partners in that sector. This assumption is
favorable also as it allows for a similar analysis as before in
that, if the two sectors have SU(3) gauge symmetry with the
same number of particles of each kind all the way down in
energy to the mass of the heaviest dark quark, then we can
choose this as our high reference scale and take the value of
the coupling at this scale to be the same in both super-
symmetric sectors. Then we can establish a range of possible
confinement scales that supersymmetric dark QCD could
have. We will examine the relationship between the confine-
ment scale and these mass scales as we did in the non-SUSY
case. In this case we take the squarks and gluinos of the dark
sector to be quite light (under a TeV) and in such a scenario
the dependence is similar to the non-SUSY case but with a
larger confinement scale, shown in Fig. 3.
We now examine the dependence of the dark confinement

scale on the dark SUSYbreaking scale for a range of different
dark-quarkmasses. The scale of dark-quarkmasses is taken to
be higher than the SUSY breaking scale in each case.
Figures 4–6 show this dependence for different numbers of
heavy dark quarks. The value of the confinement scale is in
general higher than the non-SUSY case though we do have
additional parameters to contend with in the form of the mass
scales of the squarks and gluinos.
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X. CONCLUSIONS

Dark matter may be the manifestation of a perhaps
quite complicated dark sector that is described by a gauge
theory similar to the standard model. The cosmological

“coincidence” ΩDM ≃ 5ΩVM encourages the thought that
DM has a similar origin to VM, and serves as the main
motivation for asymmetric DM. These models typically
succeed in relating the baryon and DM number densities,
but have nothing very profound to say about the dark matter
mass scale. But the latter is as important as the former in
considerations of the mass-density coincidence. In most
asymmetric DM models, the similar number densities
imply that the DM mass should be similar to the proton
mass, usually a factor of a few higher. What could be the
origin of such a DM mass scale?
We have explored the idea that grand unification may

provide an explanation. Beginning with a mirror-matter
style G ×G gauge group augmented by Z2 interchange
symmetry, we invented a process termed “asymmetric
symmetry breaking” which sees the two factors of G
break in different ways. For the asymmetric DM appli-
cation, we required that both sectors feature unbroken
SU(3) subgroups, with different but related confinement
scales. The ordinary QCD confinement scale sets the
proton mass, while its dark-sector analogue sets the
mass scale of the dark baryon that serves as the DM.
We demonstrated that a significant region of parameter
space furnishes a dark confinement scale within an order
of magnitude or so above the QCD scale, as favored by
most asymmetric DM models. Much higher scales are also
possible, of course. We investigated both nonsupersym-
metric and, more compellingly, supersymmetric GUTs
of this type, and in the process explained how dark-quark
mass generation can naturally differ from quark mass
generation. Our analysis serves as a starting point for
building fully realistic asymmetric DM models from a
grand unification base.
The possibilities inherent in asymmetric symmetry break-

ing are rather large when one considers G ¼ SOð10Þ and
other higher-rank options. This seems to offer fruitful
avenues for future investigations, and may ultimately serve
to provide a truly unified understanding of the microphysics
and macrophysics of ordinary and dark matter.
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FIG. 3 (color online). Confinement scale dependence on fermion
masses, in the simple SUSY case, almost identical to non-SUSY,
but with the confinement scale axis multiplied by ∼10.
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FIG. 4 (color online). Confinement scale dependence on SUSY
breaking scale for a fixed dark-quark mass scale of 100 GeV. The
number of heavy quarks at the dark-quark mass scale ranges from
five at the top to one at the bottom.
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FIG. 5 (color online). As for Fig. 4 but with a dark-quark mass
scale of 1000 GeV.
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FIG. 6 (color online). As for Fig. 4 but with a dark-quark mass
scale of 104 GeV.

GRAND UNIFIED HIDDEN-SECTOR DARK MATTER PHYSICAL REVIEW D 90, 083501 (2014)

083501-9



ACKNOWLEDGMENTS

We thank Michael A. Schmidt for comments on an earlier draft. S. J. L. thanks B. Callen and A. Sharma for helpful
discussions. This work was supported in part by the Australian Research Council.

APPENDIX A: SCALAR POTENTIAL FOR NONSUPERSYMMETRIC SUð5Þ × SUð5Þ MODEL

In Sec. IV we outlined the construction of an SUð5Þ × SUð5Þ potential with asymmetric minima. Here we discuss its
features in more detail and explore some of the possibilities in regard to breaking to various subgroups. The full SUð5Þ ×
SUð5Þ potential can be written as

V ¼ λa1ðϕv
i
jϕv

j
i þ ϕd

i
jϕd

j
i − μ2aÞ2 þ κaðϕv

i
jϕv

j
iϕd

h
kϕd

k
hÞ þ λa2ðϕv

i
jϕv

j
kϕv

k
hϕv

h
i þ ϕd

i
jϕd

j
kϕd

k
hϕd

h
i Þ

þ λt2ðχvijχvji þ χdijχd
ji − μ2t Þ2 þ κtðχvijχvjiχdijχdjiÞ

þ λt2ðχvijχvijχvijχvij þ χdijχd
ijχdijχd

ijÞ þ C0ðχvijχvijϕv
i
jϕv

j
i þ χdijχd

jiϕd
i
jϕd

j
iÞ

þ C1ðχvijχvjkϕv
l
kϕv

j
l þ χdijχd

jkϕd
l
kϕd

j
lÞ þ C2ðχvlqχvijϕv

l
jϕv

q
i þ χdlqχd

ijϕd
l
jϕd

q
i Þ

þ C3ðχvsuχvpqϕv
n
mϕv

i
jϵ

smujtϵpnqit þ χdsuχd
pqϕd

n
mϕd

i
jϵ

smujtϵpnqitÞ
þ C4ðϕv

i
jϕv

j
iχdijχd

ji þ ϕd
i
jϕd

j
iχvijχv

jiÞ: ðA1Þ

The parameters are λt1; μt; λt2 as well as λa1; μa; λa2, κa and
κt. In addition to these there are five cross terms arising
from nontrivial contractions between our representations,
with parameters ðC0; C1; C2; C3; C4Þ. In general the asym-
metry required can be attained by making these additional
cross term parameters smaller than C0 and the other
parameters of the model. In minimizing this potential we
can reduce the total number of parameters by placing all of
our fields in a simplified VEV form. The adjoint can be
represented by the traceless matrix

hϕvi ¼ vv

0
BBBBBB@

α1 0 0 0 0

0 α2 0 0 0

0 0 α3 0 0

0 0 0 α4 0

0 0 0 0 α5

1
CCCCCCA
; ðA2Þ

with α1 þ α2 þ α3 þ α4 þ α5 ¼ 0. For the 10 we have

hχdi ¼ vd

0
BBBBBB@

0 ρ1 0 0 0

−ρ1 0 0 0 0

0 0 0 ρ2 0

0 0 −ρ2 0 0

0 0 0 0 0

1
CCCCCCA
; ðA3Þ

with ρ1;2 complex. The 24 and 10 are both reduced to just
four total different degrees of freedom each in this form.
Working numerically we can however quickly compare the
results of using just these 16 degrees of freedom or the full
68; they were found to agree in all cases. The parameter
space is directly comparable to that of the simple model of
Sec. III. The positive definite terms act exactly like
collections of additional fields that one could add to that
previous model with the same-sector and cross-sector

couplings needed to generate asymmetric VEVs that
differentiate entire sets of fields within these multiplets.
That is, if κa is large enough then if all (ϕv

i
j) fields gain a

nonzero VEV, all of the fields (ϕd
i
j) are encouraged to

become zero. Together with (C1; C2; C3; C4) there is a
greater variability for the signs of quartic terms of the
potential. Scaling any of these additional quartics too high
may alter the VEV pattern from the desired asymmetric
pattern. A larger value of C0 will however ensure the
breaking is the extension of that in Sec. III. To be concrete,
we display an example of some parameters set along these
guidelines and the VEVs that are produced. The parameters

λa1 ≃ 0.4; κa ≃ 0.4; κt ≃ 0.4; λt1 ≃ 0.8;

μt ≃ 0.2; μa ≃ 0.1; λa2 ≃ 0.1; λt2 ≃ −0.1;

C0 ≃ 0.5; C1 ≃ −0.1; C2 ≃ −0.1; C3 ≃ −0.1;

C4 ≃ −0.1 ðA4Þ

give rise to the VEVs

hϕvi≃ 0.24

0
BBBBBB@

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 −3=2 0

0 0 0 0 −3=2

1
CCCCCCA
;

hχvi≃ 0; hϕdi≃ 0;

hχdi≃ 0.1

0
BBBBBB@

0 1þ i 0 0 0

−1 − i 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1
CCCCCCA
: ðA5Þ
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APPENDIX B: SCALAR POTENTIAL FOR
SUPERSYMMETRIC SUð5Þ × SUð5Þ MODEL

In this section we will discuss further the results of the
supersymmetric version of asymmetric symmetry breaking.
The analysis here only serves to demonstrate that such
asymmetric patterns are possible within the constraints
inherent in supersymmetric theories.
Positive definite couplings between fields of different

sectors are required to create the anticorrelation between
sectors. This is what necessitates a field which transforms
into itself under the discrete symmetry. An alternative to this
could be to arm the theory with a pair of complete singlets
under the discrete symmetry, i.e. Sv, Sd. Without such
additions we are unable to create gauge-invariant terms in
the superpotential which can allow for cross-sector couplings
to appear in the F-terms. The other addition we made of the
multiplet Y was based on our choice of complex represen-
tations.3 We wish, however, to demonstrate that the theory
which we used previously can be adopted into a super-
symmetric form with the same gauge group breaking chains.
The terms that we wish to highlight that are derived from the
superpotential are the contractions of the form

s24ðΦvΦvXvXv þ ΦvΦvYvYv þ ΦdΦdXdXd þ ΦdΦdYdYdÞ:
ðB1Þ

It is clear that the parameter s4 being larger can help lead to
asymmetric VEVs. The other important parameter is s5
which affects the term

s25ðΦdΦdΦvΦvÞ: ðB2Þ

With just these terms and the additional soft masses one can
generate an asymmetric VEV pattern. For the parameter
example

s4 ¼ s5 ≃ 0.02; g5 ≃ 0.037; s9 ≃ 0.001;

mX ¼ mY ≃ 0.001; mΦ ≃ 0.1; mS ¼ 0; ðB3Þ

and all trilinear terms and other parameters set at or close to
zero, we obtain nonzero VEVs for the adjoint in one sector
and for the fieldsXv and Yd in the other sector which serve to
break SUð5Þv to the standard model gauge group and
SUð5Þd to the dark sector gauge group with VEVs

hΦvi≃ 2.1

0
BBBBBB@

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 −3=2 0

0 0 0 0 −3=2

1
CCCCCCA
;

hXvi≃ 0; hYvi≃ 0; hΦdi≃ 0; hSi≃ 0;

hXdi≃

0
BBBBBB@

0 1.2þ 2.9i 0 0 0

−1.2 − 2.9i 0 0 0 0

0 0 0 −1.53 − 2.1i 0

0 0 1.5þ 2.1i 0 0

0 0 0 0 0

1
CCCCCCA
;

hYdi≃

0
BBBBBB@

0 1.2 − 2.9i 0 0 0

−1.2þ 2.9i 0 0 0 0

0 0 0 −1.53þ 2.1i 0

0 0 1.5i − 2.1i 0 0

0 0 0 0 0

1
CCCCCCA
: ðB4Þ

This demonstrates the capacity for supersymmetric models to display the same asymmetric symmetry breaking as non-
SUSY models. There are other terms which can contribute to the asymmetric pattern, i.e. contractions of the style
ðXdXdXvXvÞ, but scaling these up to be larger also scales upwards terms that we would need to contend with to maintain the
asymmetry.

3This may of course not be necessary, if one was working with two different real representations to facilitate different symmetry
breaking in each sector. In that case the procedure would be more straightforward.
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