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Using relatively complete observational data concerning four angular diameter distance (ADD)
measurements and combined SNþ GRB observations representing current luminosity distance (LD)
data, this paper investigates the compatibility of these two cosmological distances considering three classes
of dark energy equation of state (EoS) reconstruction. In particular, we use strongly gravitationally lensed
systems from various large systematic gravitational lens surveys and galaxy clusters, which yield the Hubble
constant independent ratio between two angular diameter distances Dls=Ds data. Our results demonstrate
that, with more general categories of standard ruler data, ADD and LD data are compatible at 1σ level.
Second, we note that consistency between ADD and LD data is maintained irrespective of the EoS
parametrizations: there is a good match between the universally explored Chevalier-Polarski-Linder model
and other formulations of cosmic equation of state. Especially for the truncated generalized equation of state
(GEoS) model with β ¼ −2, the conclusions obtained with ADD and LD are almost the same. Finally,
statistical analysis of generalized dark energy equation of state performed on four classes of ADD data
provides stringent constraints on the EoS parameters w0, wβ, and β, which suggest that dark energy was a
subdominant component at early times. Moreover, the GEoS parametrization with β≃ 1 seems to be a more
favorable two-parameter model to characterize the cosmic equation of state, because the combined angular
diameter distance data (SGLþ CBFþ BAOþWMAP9) provide the best-fit value β ¼ 0.751þ0.465

−0.480 .
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I. INTRODUCTION

The discovery of the present acceleration of the cosmic
expansion, which was first confirmed by the observations
from the type Ia supernova (SN Ia) surveys [1,2] invokes
a straightforward inclusion of an exotic source of matter
with negative net pressure, the so-called dark energy. There
are, however, other theoretical approaches trying to explain
cosmic acceleration by modification of gravity at cosmo-
logical scales [3–5]. So the nature of dark energy is still
a mystery. Therefore, if dark energy is responsible for the
accelerating expansion of the Universe, then it is necessary
to study the parameters effectively describing its properties,
such as its density parameter and coefficients in the cosmic
equation of state (EoS): wðzÞ ¼ pX=ρX, where ρX and pX
are respectively its density and pressure and z is the redshift
[see Refs. [6–11] for more parametrizations of the wðzÞ
coefficient]. It follows then that the dark energy density
function in units of the critical density reads

ΩXðzÞ ∝ exp

�
3

Z
z

0

ð1þ wðz0Þd lnð1þ z0Þ
�
: ð1Þ

There are two direct probes of expansion history of the
Universe, which can be tested observationally. One is the
luminosity distance DLðzÞ, and the other is the angular
diameter distance DAðzÞ. Theoretically, both of the

expressions of the two cosmological distances are defined
from the so-called coordinate distance

r ¼ c

H0

ffiffiffiffiffiffiffiffiffijΩkj
p sin n

� ffiffiffiffiffiffiffiffiffi
jΩkj

p Z
z

0

dz0

Eðz0;pÞ
�
; ð2Þ

where H0 is the Hubble constant, c is the speed of light,
Eðz;pÞ ¼ H=H0 is the expansion rate that has different
forms with different cosmological model parameters p, and
Ωk is the spatial curvature density parameter; sin nðxÞ is
sinhðxÞ for Ωk > 0, x for Ωk ¼ 0, and sinðxÞ for Ωk < 0,
respectively. The angular diameter distance DA (ADD) and
the luminosity distance DL (LD) are simply related to the
coordinate distance as

DA ¼ r=ð1þ zÞ ð3Þ
and

DL ¼ rð1þ zÞ: ð4Þ
At present there exist two classes of probes that may be
used to observe the above two cosmological distances and
thus equivalently wðzÞ by searching this sort of object at
different redshifts. In order to measure the luminosity
distance, we always turn to luminous sources of known
(or standardizable) intrinsic luminosity in the Universe,
such as SN Ia and less accurate but more luminous gamma-
ray bursts (GRB) in the role of “standard candles.” On the
other hand, in order to measure the angular diameter*zhuzh@bnu.edu.cn
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distance, we always turn to objects of known (or stand-
ardizable) comoving size acting as “standard rulers.” The
most commonly used standard ruler in cosmology is the
sound horizon at the epoch of last scattering, the scale of
which can be measured either through baryonic acoustic
oscillations (BAO) matter power spectrum (the bump in
the galaxy correlation function due to baryon acoustic
oscillations) or the cosmic microwave background (CMB)
temperature spectrum. At low redshifts, radio galaxies [12]
and clusters of galaxies [13,14] may be used as standard
rulers under certain assumptions.
The reason for contemplating ADDs and LDs separately

is that these two kinds of distances are based on different
principles. In the Euclidean space these distances coincide
but in Friedmann-Robertson-Walker spacetime, i.e., in
cosmological context, they do not. Indeed, they are related
with each other by the so-called Etherington principle:
DL ¼ ð1þ zÞ2DA. Moreover, methodologies to measure
ADD and LD are based on different physical principles.
Therefore, these distinct classes of probes are prone to
different systematics, which makes them complementary
and also motivates to make cosmological inferences on
them separately. There have been arguments based on the
compatibility of results derived by using angular diameter
distances and luminosity distances, respectively, that a
certain tension in the estimated values of EoS parameters
can arise. Specifically we will use the word tension to
indicate that the EoS parameters values obtained with
techniques using ADD and LD differ from one another
at least by 2σ. It was found in [15] that systematic
differences occur between cosmological parameters
obtained from standard rulers (BAO and CMBR shift
parameter R) and standard candles (SN Ia ESSENCEþ
SNLSþ HST sample). The shift in the best-fitted param-
eters inferred from standard candles and standard rulers
was also noticed and discussed in Ref. [16,17]. The
compatibility between SN Ia and BAO data was inves-
tigated in two different dark energy EoS reconstructions
including the well-known Chevalier-Polarski-Linder (CPL)
model [18]. Further papers have also noticed this disagree-
ment in cosmographic studies using different probes.
Reference [19] made a joint ADD analysis with the strong
gravitational lensing systems, the CMB acoustic peak
location, and BAO data. While comparing the results from
standard rulers with those obtained from the Union2 SN
compilation data [20], differences in central values of the
best-fit cosmological parameters were also reported.
More recently, the analysis performed by Planck mission
team [21] has revealed the tension between cosmological
parameters inferred from Planck data and those from the
SuperNova Legacy Survey (SNLS) three-year data [22],
Union2.1 sample [23], local measurements of H0, and
BAO constraints. The authors found the following results:
(1) The Union2.1 best fit is clearly compatible with Planck,
especially for the value of Ωm within the ΛCDM model;

(2) The combination of Planck and BAO measurements
can give tight constraints on the cosmic equation of state
w≃ −1, which reflects the compatibility between BAO and
CMB; (3) The SNLS SN sample, and direct measurements
of H0, are in tension with Planck at about the 2σ level for
the ΛCDMmodel. However, the mild tension seen between
SNLS3 and BAO/CMB seems to have gone away with the
recalibration efforts from the Sloan Digital Sky Survey/
SNLS joint calibration.
Up to now, there existed several explanations of this

tension or incompatibility between ADD and LD. First of
all, it may be just a statistical result produced by the limited
amount of observational data available [15]. This has been
noticed by many authors—e.g., [24], who constrained the
cosmological parameters of ΛCDM and XCDM cosmol-
ogies to examine the role of HðzÞ and SN Ia data in
constraining cosmological models. In fact, the power of
modern cosmology lies in building up consistency rather
than in single, precise, crucial experiments. In order to
draw firm and robust conclusions about the consistency
between ADD and LD, one will need to minimize statistical
uncertainties by increasing the depth and quality of
observational data sets. Second, priors on the cosmological
parameters including Ωm and Ωb may strongly influence
the estimated values of the EoS parameters [15,25].
However, by considering 1σ deviations of the matter
fraction parameters for some priors, there appears to be
no tension among SN Ia, BAO, and their combination
(SN Iaþ BAO) [18]. Third, as long as compatibility is
concerned, one cannot ignore the fact that tension may be
brought by some caveats in the dark energy EoS
parametrization.
In this context, it is clear that collection of more complete

observational data concerning angular diameter distance
measurements does play a crucial role. The purpose of our
paper is to show how the combination of the most recent
and significantly improved cosmological observations con-
cerning the CMBmeasurements [21,26–29], the BAO from
large-scale structure considerations [30], and SN Ia [23]
measurements can be used to probe the systematic
differences between ADD and LD in the analysis on the
cosmic equation of state. In addition to previously studied
probes we also use the strongly gravitationally lensed
systems [31], the x-ray gas mass fraction of galaxy clusters
[32], and high redshift gamma-ray burst data [33,34] to
provide additional constraints on dark energy EoS. The
idea of applying strong gravitational lensing systems to
probe the cosmic equation of state with the CPL para-
metrization was first discussed in Ref. [35] and also in more
recent papers [17,31]. In order to discuss the compatibility
between LD and ADD in a general framework, more wðzÞ
parametrizations will be considered.
As for the calculating method, we choose to determine

the best-fit values and the marginalized errors of each
model parameter through the Markov chain Monte Carlo
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(MCMC) method. The advantage of the MCMC method is
that it allows for a simple inclusion of priors and a com-
prehensive study of the effects of systematic uncertainties.
Our code is based on the publicly available CosmoMC
package [36], which generated eight chains and stopped
sampling when the worst e-values [the variance(mean)/
mean(variance) of 1=2 chains] R − 1 is of the order 0.01.
This paper is organized as follows. In Sec. II, we briefly

describe the methodology and observational samples for
both angular diameter distances and luminosity distances.
Then, in Sec. III, we will introduce three classes of EoS
parametrizations related to different dark energymodels.We
further present the results of constraining EoS parameters
using theMCMCmethod and test the compatibility between
ADD and LD data in Sec. IV. In Sec. V, statistical analysis
of the generalized dark energy equation of state involving
the four angular diameter distance tests is presented. Finally,
the conclusions are summarized in Sec. VI.

II. THE METHOD AND THE SAMPLES

In order to probe dark energy models against observa-
tions, we consider four background tests that are directly
related to angular diameter distances: cluster baryonic
fraction data (CBF), Dls=Ds data from strong gravitational
lensing (SGL) systems, BAO, and CMB observations. The
first two tests are always considered as individual standard
rulers while the other two probes are treated as statistical
standard rulers in cosmology. For the luminosity distances,
we choose to use SN Ia and GRB.

A. Angular diameter distance observations

The most direct angular size data were first derived from
the observations of compact radio structures in quasars and
radio galaxies [12]. Then it was found that we can also
measure the angular diameter distances by using the
Sunyaev-Zeldovich effect together with x-ray emission of
galaxy clusters [13,14,37,38]. However, the constraining
power of these ADDmeasurements is significantly affected
by the large observational uncertainties. For example, the
Bonamente sample [13] constrains Ωm to about �0.7 for
the flat ΛCDM model, indicating that it is less than 1%
effective in constrainingΩm compared with the latest BAO/
CMB constraints. Therefore, in this paper we will incorpo-
rate two new data sets directly related to angular diameter
distances: Dls=Ds data from SGL systems and CBF data.

1. Dls=Ds data from SGL systems

As one of the successful predictions of general relativity,
strong gravitational lensing, which can generate multiple
images of the background source at redshift zs, is sensitive
to angular distances between the source, the lens, and the
observer. Combined image separation, redshift measure-
ments, and the spectroscopy of the lens can give us the
ADDs. Considering that the mass distribution of the

elliptical galaxy acting as lens could be accurately
described by the singular isothermal sphere (SIS) model
[39,40]; the Einstein radius in a SIS lens at redshift zl is

θE ¼ 4π
DAðzl; zsÞ
DAð0; zsÞ

σ2SIS
c2

; ð5Þ

where σSIS can be identified with the central velocity
dispersion. Correspondingly, the ratio of the angular
diameter distances between lens and source and between
observer and lens is rewritten as

Dobs ¼ Dls

Ds

����
obs

¼ c2θE
4πσ2SIS

: ð6Þ

Obviously, with the measured stellar velocity dispersion σ0
from spectroscopy and the Einstein radius θE from image
astrometry [35,41,42], SGL systems will provide us the
third probe of ADD data in cosmology. However, this is
done indirectly—through the ratio between two angular
diameter distances. We apply such a method to a combined
gravitational lens data set, and selected 70 SGL systems
from Sloan Lens ACS and Lens Structure and Dynamics
survey [31].
In this work we take a subsample including 64 galaxy-

lens systems with the calculated distance between the
lens and the source smaller than that between the source
and the observer, Dds=Ds < 1. Concerning the observa-
tional uncertainties both on the stellar velocity dispersion
σ0 and the Einstein radius θE [35], we obtain the corre-
sponding uncertainty on the observational distance ratio
Dobs calculated through the propagation of uncertainty
statics (see Table I of Ref. [31] for details).
Let us note here that the SIS model velocity dispersion

σSIS of the mass distribution and the observed stellar
velocity dispersion σ0 may not be exactly equal and this
is one of the systematics in this method. Based on the
observations in x ray, it was argued that there is a strong
indication that dark matter halos are dynamically hotter
than the luminous stars [43]. Therefore, a new parameter fE
is included in our analysis to parametrize the relation
between the stellar velocity dispersion and the velocity
dispersion in the form of [44],

σSIS ¼ fEσ0: ð7Þ
In fact, the free parameter fE also reflects the effects of the
rms error yielded by the assumption of the SIS model to
relate θE to the observed image separation Δθ, as well as
the decreasing of the typical image separations due to the
softened isothermal sphere potentials [45]. For example, it
was found that fE was in narrow range of 1 in our previous
work [31]. So, it would be reasonable to assume it is a
constant and include a 20% uncertainty on the images
separation due to all these above factors, which is equiv-
alent to the inclusion of a constant fE in the range
ð0.8Þ1=2 < fE < ð1.2Þ1=2 [44]. Moreover, in order to obtain
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the constraint on the cosmological parameters of interest,
the “nuisance” parameter fE is marginalized by integrating
off the full probability distribution function (PDF) [31].
For the completeness, we also turn to SGL systems

with clusters acting as lenses and galaxies acting as sources.
This type of strong lensing can produce giant arcs around
galaxy clusters with the observational arc position θarc.
If the hydrostatic isothermal spherical symmetric β-model
[46] can be used to describe the intracluster medium
density profile, the Hubble constant independent ratio
can also be obtained,

Dobs ¼ μmpc2

6π

1

kBTXβX

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θ2t þ θ2c

q
; ð8Þ

where βX and θc represent the slope and the core radius; kB,
mp, and μ ¼ 0.6 are the Boltzmann constant, the proton
mass, and the mean molecular weight, respectively [47].
The position of tangential critical curve θt is usually
deemed to be equal to the observational arc position θarc.
Some authors applied such a method to SGL systems

with both x-ray satellite observations as well as optical
giant luminous arcs, and selected ten lensing galaxy
clusters in the redshift range z ¼ 0.1–0.6 [48]. The detailed
information of x-ray galaxy clusters, β, θc, the redshift z,
and the temperature TX is derived from the fitting results
of Chandra, ROSAT, ASCA satellites, and VIMOS-IFU
survey [13,49–51]. The final statistical sample of ten SGL
galaxy clusters with all the necessary parameters can be
found in Ref. [48].
Therefore, in this work we take a sample with 74

observational Dls=Ds data points including 64 galaxy-lens
systems and ten cluster-lens systems,which are selected from
Table I of Ref. [31], and the corresponding χ2 function is

χ2SGL ¼
X
i

ðDth
i ðzi;pÞ −Dobs

i Þ2
σ2i

; ð9Þ

where σ2D;i denotes the 1σ error of the observational Dobs
i .

2. CBF data

Recently, the x-ray gas mass fraction of clusters, i.e., the
CBF versus redshift data from the Chandra satellite have
become an effective probe at cosmological distances. The
matter content of the most massive galaxy clusters is
expected to provide an almost fair sample of the matter
content of the Universe. The ratio of baryonic-to-total mass
in these clusters should, therefore, closely match the ratio
of the cosmological parameters Ωb=Ωm. Because more
than 80% of clusters’ baryonic mass is in hot x-ray emitting
intergalactic gas, a fair sample of measurements of the
cluster x-ray gas mass fraction (hereafter fgas) from the
detection of old, relaxed, rich clusters spanning some range
of redshifts could provide an important source of ADD to
probe the acceleration of the Universe and therefore the
cosmic equation of state [32,52–55].

In this paper we will use the Chandra x-ray observations
of 42 hot (kT > 5 keV), x-ray luminous, relaxed galaxy
clusters in the redshift range z ¼ 0.05–1.1 [32], which have
been shown to provide comparable constraints on dark
energy to current SN Ia measurements [54]. Compared with
the other astrophysical measurements, the CBF measures
derived from x-ray observations are made within a given
radius r2500 for each cluster (r2500 is the radius at which
the mean enclosed mass density is 2500 times the critical
density of the Universe at the cluster-located redshift). The
r2500 value for each cluster is determined directly from the
Chandra data and these values may greatly differ from each
other. For the 42 galaxy clusters, the value of r2500 ranges
from 278þ33−25h−170 kpc CL1415.2þ 3612 at z ¼ 1.028) to
776þ43−31h−170 kpc (RXJ1347.5-1144 at z ¼ 0.451). From the
Chandra data, reliable temperature measurements can also
be made at the outermost radii, which are generally well
consistent with these r2500 values. The detailed information
of the 42 clusters (redshifts, r2500 values, mean mass-
weighted temperatures within r2500, and the x-ray gas mass
fractions within r2500) can be found in Table III of Ref. [32].
We stress here that, in order to obtain constraints on the

cosmological parameters of interest, fitting the reference
fgas data set that accounts for the expected variation in fgas
is a more convenient method. The Allen sample [52] was
used to work with the SCDM reference cosmology, how-
ever, as the Allen (2008) sample [32] clearly favors the
ΛCDM over the SCDM cosmology. Therefore, in our
analysis the fgas measurements in the reference cosmology
are written as

fgasðz; r2500Þ ¼ Aϒ2500

�
Ωb

Ωm

��
Dref

A

DA

�
1.5

; ð10Þ

where ϒ2500 is the gas depletion parameter. The factor A,
which is always very close to 1, quantifies the shift in the
angle subtended as the cosmology of interest is varied.
Compared with the previous studies neglecting the effect of
A, we include it here to guarantee the accuracy of our
analysis,

A ¼
�
rref2500

r2500

�
η

∼
� ½HðzÞDAðzÞ�
½HðzÞDAðzÞ�ref

�
η

: ð11Þ

For the 0.7–1.2 r2500 shell, the slope factor is η ¼
0.214� 0.022 [32]. DA and Dref

A are the angular diameter
distances to the clusters computed in the current model
and reference flat ΛCDM cosmology with Ωm ¼ 0.3 and
h ¼ 0.7 (h is the reduced Hubble constant expressed
as H0 ¼ 100h km s−1 Mpc−1).
In order to account for other systematic uncertainties,

Eq. (10) is extended as [32]

fgasðzÞ ¼
KAγbðzÞ
1þ sðzÞ

�
Ωb

Ωm

��
Dref

A ðzÞ
DAðzÞ

�
1.5

: ð12Þ
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Here, K is a calibration constant with a conservative 10%
Gaussian uncertainty K ¼ 1.0� 0.1 [32]. The factor γ,
with a uniform prior 1.1 < γ < 1.2 [32], models non-
thermal pressure support in the clusters. b stands for the
bias factor quantifying the difference between the baryon
fraction in the cluster and the Universe as a whole. More
specifically, this factor is modeled as b ¼ b0ð1þ abzÞ with
priors 0.65 < b0 < 1.0 and −0.1 < ab < 0.1 from gasdy-
namical simulation results [32]. The parameter s ¼ s0ð1þ
aszÞ models the baryon gas mass fraction in stars. We use
the uniform prior with −0.2 < as < 0.2 and the Gaussian
prior with s0 ¼ 0.16� 0.05 [32]. The standard systematic
uncertainties and priors on other parameters included in the
Chandra CBF analysis can also be found in Ref. [32]. Like ]
bf in the case in SGL data, these CBF nuisance parameters
are also marginalized over by multiplying the probability
distribution function for each parameter and then integrat-
ing [32,56]. Therefore, the resulting probability distribution
function only depends on three variables: Ωb, Ωm, and the
parameter p describing the cosmic equation of state.
In our analysis, in order to allow for systematics

uncertainties, the rms fractional deviations in K, η, and
s0 are also added to the χ2CBF,

χ2CBF ¼
X
i

½fthgasðzi;pÞ − fobsgasðziÞ�2
σ2i

þ ðK − 1Þ2
0.12

þ ðη − 0.214Þ2
0.0222

þ ðs0 − 0.16Þ2
0.052

: ð13Þ

In the above expression, fobsgas is the cluster gas mass fraction
from observations and σi is the total uncertainty of the CBF
data for the ith galaxy cluster.

3. BAO

As is well known, the BAO at recombination are
expected to leave acoustic peaks in the power spectrum
of galaxies, which provides a standard ruler measuring the
distance ratio

dz ¼
rsðzdÞ

DVðzBAOÞ
; ð14Þ

where rsðzdÞ stands for the comoving sound horizon scale
at recombination redshift zd,

rsðz�Þ ¼ H0
−1

Z
∞

z�
csðzÞ=Eðz0Þdz0; ð15Þ

and the dilation scale DV is given by [30]

DVðzBAOÞ ¼
1

H0

�
zBAO

EðzBAOÞ
�Z

zBAO

0

dz
EðzÞ

�
2
�
1=3

: ð16Þ

Compared with previous works involving BAO as
standard ruler [15], we use six precise measurements of
the BAO distance ratio over a range of redshifts from z ¼
0.1 to z ¼ 0.7 from the Sloan Digital Sky Survey (SDSS)
data release 7 [57], SDSS-III Baryon Oscillation
Spectroscopic Survey [58], WiggleZ survey [59], and
6dFGS survey [60]. We apply the maximum likelihood
method using the data points with the best-fit values as [28]

P̄BAO ¼

0
BBBBBBBBB@

d̄0.10
d̄0.35
d̄0.57
d̄0.44
d̄0.60
d̄0.73

1
CCCCCCCCCA

¼

0
BBBBBBBBB@

0.336� 0.015

0.113� 0.002

0.073� 0.001

0.0916� 0.0071

0.0726� 0.0034

0.0592� 0.0032

1
CCCCCCCCCA
: ð17Þ

We find the contribution of BAO to the corresponding χ2 as

χ2BAO ¼ ΔPT
BAOCBAO

−1ΔPBAO; ð18Þ

where ΔPBAO ¼ PBAO − P̄BAO, and CBAO
−1 is the corre-

sponding inverse covariance matrix [28]

CBAO
−1 ¼

0
BBBBBBBBB@

4444.4 0 0 0 0 0

0 34.602 0 0 0 0

0 0 20.661157 0 0 0

0 0 0 24532.1 −25137.7 12099.1

0 0 0 −25137.7 134598.4 −64783.9
0 0 0 12099.1 −64783.9 128837∶6

1
CCCCCCCCCA
: ð19Þ

4. CMB observations

The second statistical standard ruler we use is the CMB,

which can provide the distance at high redshift in order to

determine the property of dark energy. Therefore, we
implement the nine-year WMAP data (WMAP9) measure-
ments of the derived quantities, such as the angular scale
of the sound horizon (la), the shift parameter (R), and the
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redshift of recombination (z�). The angular scale of the
sound horizon at recombination can be parametrized as

la ¼ π
Ω−1=2

k sin n½Ω1=2
k

R z�
0

dz
EðzÞ�=H0

rsðz�Þ
: ð20Þ

The commonly used CMB shift parameter R expresses as

Rðz�Þ ¼
ffiffiffiffiffiffiffi
Ωm

pffiffiffiffiffiffiffiffiffijΩkj
p sin n

� ffiffiffiffiffiffiffiffiffi
jΩkj

p Z
z�

0

dz
EðzÞ

�
; ð21Þ

and the redshift of recombination z ∼ 1089 is more accu-
rately written as z� ¼ 1048½1þ 0.00124ðΩbh2Þ−0.738×
ð1þ g1ðΩmh2Þg2Þ�. The values of relevant parameters g1
and g2 can be found in Ref. [61].

g1 ¼
0.0783ðΩbh2Þ−0.238
1þ 39.5ðΩbh2Þ0.763

ð22Þ

g2 ¼
0.560

1þ 21.1ðΩbh2Þ1.81
: ð23Þ

For the flat prior, the WMAP9 measured best-fit values
are [28]

P̄CMB ¼

0
B@

l̄a
R̄

z̄�

1
CA ¼

0
B@

302.40

1.7246

1090.88

1
CA; ð24Þ

and we construct the contribution of CMB to the χ2 value as

χ2CMB ¼ ΔPT
CMBCCMB

−1ΔPCMB; ð25Þ

with the corresponding inverse covariance matrix CCMB
−1,

CCMB
−1 ¼

0
BBB@

1.0000 0.5250 −0.4235 −0.4475
0.5250 1.0000 −0.6925 −0.8240
−0.4235 −0.6925 1.0000 0.6109

−0.4475 −0.8240 0.6109 1.0000

1
CCCA:

ð26Þ
In order to make a comparison with WMAP9, we will

also use the distance priors from the Planck first data
release [21,29], and examine their impact on the constraints
of dark energy equation of state (see Sec. IV).
We will present a combined analysis of the above four

tests to fit theoretical models to observational data, i.e., the
best-fit EoS parameters are obtained by minimizing

χ2ADD ¼ χ2SGL þ χ2CBF þ χ2BAO þ χ2CMB: ð27Þ

B. Luminosity distance observations

It is commonly believed that SN Ia can be calibrated as
“standard candles.” SN Ia data do not provide the

luminosity distance DLðziÞ directly, but rather the distance
modulus defined as

μthðziÞ ¼ m −M ¼ 5log10DLðziÞ=Mpcþ 25; ð28Þ

where m and M represent the apparent and absolute mag-
nitude of a SN. In this paper, we use the latest Union2.1
compilation released by the Supernova Cosmology Project
Collaboration consisting of 580 SN Ia data points [23]. For
the purpose of the likelihood calculations the χ2 value of the
observed distance moduli can be calculated as follows:

χ2SN ¼
X
i;j

½μðziÞ − μobsðziÞ�C−1
SNðzi; zjÞ½μðzjÞ − μobsðzjÞ�;

ð29Þ

where μðziÞ is the theoretical value of the distance
modulus, μobsðziÞ is the corresponding observed value,
and CSNðzi; zjÞ is the covariance matrix. Distance moduli
μobs and the covariance matrix CSN are given in details in
Ref. [23] and can be found on the web site.1There are two
different covariance matrices corresponding to the cases
with and without systematic errors. In this paper we will
consider the case with systematic errors. The nuisance
parameterH0 is marginalized with a flat prior, and Eq. (29)
is rewritten as [62]

χ2SN ¼
X
i;j

αiC−1
SNðzi; zjÞαj −

½PijαiC
−1
SNðzi; zjÞ − ln 10=5�2P
ijC

−1
SNðzi; zjÞ

− 2 ln

�
ln 10
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πP

ijC
−1
SNðzi; zjÞ

s �
; ð30Þ

where αi ¼ μobsðziÞ − 25 − 5log10½H0DLðziÞ=c�.
As an extension of previous works, we also add GRBs as

complementary standard candles. Recently, GRBs, which
are the most luminous astrophysical events observable,
have been proposed as distance indicators at high redshift
[63–67]. The main advantage of GRBs over SN Ia is that
they span a much greater redshift range, from low z to
z > 8 [68]. Moreover, comparing with SN, the high energy
photons in the gamma-ray band are nearly unaffected by
dust extinction. Therefore, it may be rewarding to test the
compatibility between LD and ADD with this newly
obtained GRB data. We use the “Hymnium” sample
containing 59 data points, which were derived out of
109 long GRBs by applying the cosmology-independent
luminosity relation calibration method (the well-known
Amati relation) [33,34]. The Hymnium GRB sample is also
given in terms of the distance modulus μobsðziÞ, which is
included in our analysis by adding the following χ2 [69]:

1http://supernova.lbl.gov/Union/
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χ2GRB ¼
X
i

α2i
σ2μi

−
ðP59

i¼1 αi=σ
2
μi − ln 10=5Þ2P

59
i¼1 1=σ

2
μi

− 2 ln

�
ln 10
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πP

59
i¼1 1=σ

2
i

s �
:

We will present a combined analysis of the above two
tests to fit theoretical models to observational luminosity
distance data, i.e., the best-fit EoS parameters are obtained
by minimizing

χ2LD ¼ χ2SN þ χ2GRB: ð31Þ

III. COSMIC EQUATION OF STATE TESTED

In this paper, we assume three general classes of EoS
parametrization for wðzÞ. To derive the tightest possible
constraints on the dark energy equation of state, we assume
a flat universe [27]. This is due to the well-known Ωk-w
degeneracy.

A. Dark energy with constant equation of state

For the XCDM model, the equation of state parameter
for dark energy is a constant w, and in such a case this
component is attributed to some sort of an evolving scalar
field called quintessence or quintom [70,71]. In a zero-
curvature universe filled with ordinary pressureless dust
matter (cold dark matter plus baryons), radiation, and dark
energy, the Friedmann equation reads

E2ðz;pÞ ¼ ðΩb þ ΩcÞð1þ zÞ3 þΩrð1þ zÞ4 þΩXðzÞ;
ð32Þ

where Ωb ¼ ð8πGρbÞ=ð3H2
0Þ is the current baryonic

matter component, Ωc ¼ ð8πGρDMÞ=ð3H2
0Þ is the current

dark matter component, the current radiation component
Ωr ¼ ð8πGρrÞ=ð3H2

0Þ ¼ 4.1736 × 10−5h−2 [72], and the
current dark energy component

ΩXðzÞ ¼ ð1 −Ωb −Ωc −ΩrÞ × ð1þ zÞ3ð1þwÞ: ð33Þ

Obviously, when flatness is assumed, it is a cosmological
model with three parameters: p ¼ fΩbh2;Ωch2; wg and a
nuisance parameter H0.

B. Dark energy with variable equation of state

If we expect that w coefficients vary in time, it could
be an arbitrary function of the redshift, i.e., w ¼ wðzÞ.
In the following we will consider two parametrizations
stemming from the first order Taylor expansions: in the
scale factor aðtÞ [8,9] and in redshift z [6,7,10]. These are
the commonly used CPL wðzÞ ¼ w0 þ wP1z=ð1þ zÞ and
wðzÞ ¼ w0 þ wP2z, respectively, where w0 is the current
value of the EoS parameter, and wP (P ¼ P1, P2) are free

parameters quantifying the time dependence of the dark
energy EoS. Note that the ΛCDM model can be always
recovered by taking w0 ¼ −1 and wP ¼ 0.
In the universe filled with dark energy, ordinary pressur-

eless dust matter and radiation, the density fraction of dark
energy can be expressed as

ΩXðzÞ ¼ ð1 −Ωb −Ωc −ΩrÞ

× ð1þ zÞ3ð1þw0þwP1Þ exp
�
−
3wP1z
1þ z

�
ð34Þ

in the CPL parametrization, and

ΩXðzÞ ¼ ð1 −Ωb −Ωc −ΩrÞ
× ð1þ zÞ3ð1þw0−wP2Þ expð3wP2zÞ ð35Þ

for the second case of the equation of state of dark energy
expanded up to the linear term in redshift. There are four
independent model parameters p ¼ fΩbh2;Ωch2; w0; wPg
and a nuisance parameter H0 in this model.

C. Dark energy with generalized
equation of state (GEoS)

Recently, a generalized EoS for dark energy was
proposed [11],

wðzÞ ¼ w0 − wβ
ð1þ zÞ−β − 1

β
: ð36Þ

From the above expression, it is straightforward to show
that the above two variable EoS parametrizations are
fully recovered when β → þ1 and β → −1, respectively.
Obviously, the introduction of the new parameter β is
equivalent to put the EoS parametrizations (P1)–(P2) in a
more general framework that admits a wider range of
cosmological solutions (wβ < 0 or wβ > 0). For instance,
some cases of interest relating the parameters w0, wβ, and β
may be obtained as follows:
(1) β > 0 (wβ < 0 or wβ > 0): at early times the

dark energy is a subdominant component
if w0 þ wβ=β ≤ 0.

(2) β<0 andwβ > 0: at early times thedark energy always
dominates over the other material components.

(3) β < 0 and wβ < 0: at early times the dark energy
density vanishes.

For the generalized wβðzÞ model, the Friedmann equa-
tion for a spatially flat universe that contains only dust
matter, radiation, and dark energy can be expressed as

ΩXðzÞ ¼ ð1−Ωb −Ωc −ΩrÞ

× ð1þ zÞ3ð1þw0þwβ=βÞ exp
�
3wβ

β

�ð1þ zÞ−β − 1

β

��
;

ð37Þ

where p ¼ fΩbh2;Ωch2; w0; wβ; β; H0g.
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IV. COMPARING DATA SETS AND TESTING
THEIR COMPATIBILITY

Next we shall test the compatibility between the angular
diameter distance (SGLþ CBFþ BAOþ CMB) and the
luminosity distance (SNþ GRB). To compare these two
data sets we perform fits of different cosmological scenar-
ios and obtain the constraint results displayed in Table I. We
take the following criterion of compatibility: if the con-
fidence contours of w0 and wP from ADD data shift away
from the corresponding confidence contours from LD data,
in a way that 1σ contours do not overlap, we call it a
tension; otherwise we conclude that results are compatible.
Results show that the combination with angular diameter
distance data reveals no tension in all cases, though it
also shows different features with respect to the previous
references. In fitting cosmological parameters within evolv-
ing EoS scenarios by using standard candles, we use the
priors on the Ωm either from WMAP9 or from Planck. The
reason is that we want to obtain more stringent constraints

on EoS parameters since the size of the confidence region is
at the core of our study. Fitting the Ωm would lead both to
very uncertain constraints on the density parameter itself
and also would inflate the confidence regions for the EoS
coefficients. We have verified this numerically. Although
priors always influence the analysis (especially when
obtained assuming a certain cosmological model), con-
clusions concerning compatibility of ADD and LD data
should not be affected due to the lack of constraint on Ωm
for the models we are using.

A. Dark energy with constant equation of state

By fitting the XCDM model to the above combined
standard rulers, we get Ωbh2 ¼ 0.0227� 0.0009,
Ωch2 ¼ 0.1158� 0.0075, w ¼ −0.958� 0.166, and H0 ¼
67.50� 3.55 km s−1 Mpc−1. After marginalizing over H0,
we obtain the dust matter density parameter Ωm ¼
0.302� 0.024. As shown in Table I and Fig. 1, we find
the standard ruler data give strong preference for the flat

TABLE I. Fits to different EoS models from combined ADD and LD data.

EoS parametrization SGLþ CBFþ BAO þWMAP9 SGLþ CBFþ BAO þ Planck SNþ GRB

w ¼ const Ωm ¼ 0.302� 0.024 Ωm ¼ 0.300� 0.025 Ωm ¼ 0.308þ0.112
−0.226

w ¼ −0.958� 0.166 w ¼ −1.110� 0.141 w ¼ −0.972� 0.450
w ¼ w0 þ wP1

z
1þz Ωm ¼ 0.292� 0.035 Ωm ¼ 0.305� 0.032 □

w0 ¼ −1.050� 0.375 w0 ¼ −0.960� 0.410 □

wP1 ¼ 0.440� 1.250 wP1 ¼ −0.600� 1.250 □

With WMAP9 priors on matter densities w0 ¼ −1.050� 0.340 □ w0 ¼ −0.975� 0.350
wP1 ¼ 0.400� 0.800 □ wP1 ¼ 0.025� 1.425

With Planck priors on matter densities □ w0 ¼ −1.000� 0.382 w0 ¼ −0.950� 0.365
□ wP1 ¼ −0.240� 1.120 wP1 ¼ −0.240� 1.645

w ¼ w0 þ wP2z Ωm ¼ 0.305� 0.026 Ωm ¼ 0.308� 0.026 □

w0 ¼ −0.900� 0.200 w0 ¼ −0.900� 0.250 □

wP2 ¼ −0.100þ0.150
−0.500 wP2 ¼ −0.250þ0.250

−0.680 □

With WMAP9 priors on matter densities w0 ¼ −0.900þ0.198
−0.084 □ w0 ¼ −0.875þ0.195

−0.135

wP2 ¼ −0.07þ0.100
−0.195 □ wP2 ¼ −0.100þ0.110

−0.740
With Planck priors on matter densities □ w0 ¼ −0.930� 0.206 w0 ¼ −0.880� 0.190

□ wP2 ¼ −0.085þ0.118
−0.475 wP2 ¼ −0.175þ0.175

−0.825

GEoS (β ¼ þ2) Ωm ¼ 0.303� 0.033 Ωm ¼ 0.310� 0.033 □

w0 ¼ −0.965� 0.347 w0 ¼ −0.850� 0.460 □

wP3 ¼ −0.340� 1.015 wP3 ¼ −0.800� 1.900 □

With WMAP9 priors on matter densities w0 ¼ −0.720� 0.245 □ w0 ¼ −0.860� 0.250
wP3 ¼ −0.730� 0.715 □ wP3 ¼ −0.705þ0.805

−1.495
With Planck priors on matter densities □ w0 ¼ −0.880� 0.335 w0 ¼ −0.820� 0.310

□ wP3 ¼ −0.400� 1.125 wP3 ¼ −0.500þ0.710
−2.190

GEoS (β ¼ −2) Ωm ¼ 0.277� 0.018 Ωm ¼ 0.307� 0.019 □

w0 ¼ −1.055þ0.053
−0.133 w0 ¼ 1.061þ0.070

−0.145 □

wP4 ¼ −0.015þ0.030
−0.075 wP4 ¼ −0.024þ0.042

−0.085 □

With WMAP9 priors on matter densities w0 ¼ −1.015þ0.020
−0.090 □ w0 ¼ −1.022� 0.023

wP4 ¼ −0.004þ0.007
−0.022 □ wP4 ¼ −0.009þ0.011

−0.035

With Planck priors on matter densities □ w0 ¼ −1.050þ0.048
−0.092 w0 ¼ −1.051� 0.041

□ wP4 ¼ −0.015þ0.019
−0.064 wP4 ¼ −0.019þ0.019

−0.075
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quintessence dark energy model, which is quite different
from the results supporting a best fit that crosses the phantom
divide line w ¼ −1 [15]. These results are also consistent
with those obtained from different sets of standard candle
probes including Union1 SN Ia compilation [73].
For comparison, in the following analysis our attention

will be paid to the fits with the combined luminosity distance
data. The joint contour plot of Ωm and w (corresponding
to 68.3%and 95.4% confidence level) for standard rulers and
standard candles is shown in Fig. 1. Black lines indicate the
results from combined ADD data and red lines are from the
combined LD results. In order to examine the compatibility
between the ADD and LD data in constraining the cosmic
EoS parameter, the one-dimensional PDFofw is also plotted

in Fig. 1. It is obvious that the constraints of w using the
two data combinations are consistent with each other. On
the one hand, compared with the previous fitting results
[15,19], there is nearly no tension when comparing the best
fits from ADD data and LD data, because the separation is
smaller than 1σ. On the other hand, the result tells us that
ADD and LD data are especially concordant in constraining
Ωm: the 1σ confidence region of Ωm achieved from SGLþ
CBFþ BAOþWMAP9 is Ωm ¼ 0.302� 0.024, while
SNþ GRB suggest Ωm ¼ 0.308þ0.112

−0.226 .
In order to illustrate how much weight individual

standard rulers and statistical standard rulers have in our
analysis [74,75], we present the constraint results from the
individual standard ruler joint analysis (SGLþ CBF) in
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FIG. 1 (color online). The two-dimensional regions and one-dimensional marginalized distribution with the 1σ and 2σ contours
for parameters of the XCDM model from SGLþ CBFþ BAO þWMAP9 (black line), SNþ GRB (red line), SGLþ CBF(green line),
and BAOþWMAP9 (purple line), respectively.
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Fig. 1. We find the constraint result of the EoS parameter
w ¼ −0.948� 0.375 agrees very well with the SGLþ
CBFþ BAOþWMAP9 constraint and is clearly in agree-
ment with that obtained from LD data at 1σ. Meanwhile, in
the case where the BAOþWMAP9 data are not combined
with SGLþ CBF, the data contours and one-dimensional
marginalized probability distribution are obviously shifted,
which demonstrates the non-negligible effect of the inde-
pendent standard ruler data on model constraints. On the
other hand, we also note the other two statistical standard
rulers, BAO and CMB, which are always taken as priors in
the treatment and, combined with other data, can tightly

constrain the matter density Ωm [76]. Therefore, the agree-
ment between the independent standard ruler (SGLþ CBF)
and statistical standard ruler (BAOþ CMB) constraints is
reassuring and motivates the combination of these data sets.

B. Dark energy with variable equation of state

Fitting the data from the combinations of standard rulers
to the CPL parametrization, the most widely explored dark
energy model with variable equation of state coefficient,
we get the results shown in Fig. 2, where the marginalized
probability distribution of each parameter and the

0.022 0.023 0.024

0.1 0.12

−1.5 −1 −0.5

−4 −2 0

0.25 0.3 0.35

65 70 75

H0

Ω
c h

2

0.022 0.023 0.024
0.1

0.11

0.12

0.13

w
0

0.022 0.023 0.024

−1.5

−1

−0.5

w
P

1

0.022 0.023 0.024

−3

−2

−1

0

1

Ω
m

0.022 0.023 0.024

0.25

0.3

0.35

0.1 0.12

−1.5

−1

−0.5

0.1 0.12

−3

−2

−1

0

1

0.1 0.12

0.25

0.3

0.35

Ω
c
 h

2
0.1 0.12

65

70

75

−1.5 −1 −0.5

−3

−2

−1

0

1

−1.5 −1 −0.5

0.25

0.3

0.35

w
0

−1.5 −1 −0.5

65

70

75

−3 −2 −1 0 1

0.25

0.3

0.35

w
P1

−3 −2 −1 0 1

65

70

75

Ω
m

0.25 0.3 0.35

65

70

75

Ω
b
 h

2

H
0

0.022 0.023 0.024

65

70

75

w
P

1

w
0

−1.5 −1 −0.5
−3

−2

−1

0

1

SGL+CBF+BAO+WMAP9
SN+GRB

−1.5 −1 −0.5
w

0

−4 −3 −2 −1 0 1 1.7
w

P1

FIG. 2 (color online). The two-dimensional regions and one-dimensional marginalized distribution with the 1σ and 2σ contours of
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marginalized two-dimensional confidence contours of para-
meters are presented. The best fit isΩbh2¼0.0228�0.0010,
Ωch2 ¼ 0.1155� 0.0055, w0 ¼ −1.050� 0.375, wP1 ¼
0.440� 1.250, and H0 ¼ 68.20� 3.85 km s−1Mpc−1.
After marginalizing over H0, we obtain the dust matter
density parameter Ωm ¼ 0.292� 0.035, which is also in
agreement with the earlier comprehensive results with
combined WMAP7, BAO, and SN Ia analysis [77].
In order to gain more insight into the compatibility

between ADD and LD fits and make comparisons with the
previous results, we choose to place priors on the energy
density parameters as Refs. [17,19] do. In Fig. 2 we show
the 68.3% and 95.4% confidence contours in the ðw0; wP1Þ
plane and one-dimensional marginalized parameter
likelihood distribution with the two data set categories
(standard ruler and standard candle data) for Ωbh2 ¼
0.02264 and Ωch2 ¼ 0.1138 (the best fit of the final
WMAP9 observations [28]). One can see that the w
coefficient obtained from the full ADD sample is in good
agreement with the respective value derived from LD data.
One can see in Fig. 2 that the σ distance between best fit
values is negligibly small (i.e., the distance among the best
fits is less than 1σ). Notice thatΛCDM ðw0; wP1Þ ¼ ð−1; 0Þ
is consistent with the standard candle data and the standard
ruler data at less than 1σ level. The compatibility between
fits for w0 and wP1 is greatly improved compared with
the previous literature using other independent combined
analysis [15,17,19]. Reference [17] obtained the cosmic
equation of state parameters in the CPL parametrization
with a combined sample of n ¼ 20 strong lensing systems
from Sloan Lens ACS and Lens Structure and Dynamics
surveys, and independently noticed systematic deviation
between fits done on standard candles and standard rulers.
More recently, Ref. [19] extended the analysis by combin-
ing the SGL data with the CMB acoustic peak location
and BAO data; however, differences in central values of the
best-fit cosmological parameters are still visible between
standard rulers and standard candles. The difference in our
analysis may attribute to the more precise BAO and CMB
measurements, combined with other complementary astro-
physical probes including SGL and CBF. For comparison
we also report the values of the best-fit parameters both
from the ADD and LD data in Table I.
In the case of evolving equation of state in the

w ¼ w0 þ wP2z parametrization, we obtain the results
from standard rulers as shown in Fig. 3. The best
fit is Ωbh2 ¼ 0.0228� 0.0011, Ωch2¼ 0.1175�0.0050
(Ωm ¼ 0.305� 0.026), w0 ¼ −0.900� 0.200, wP2 ¼
−0.100� 0.325, and H0 ¼ 67.80� 3.41 km s−1Mpc−1.
Figure 3 shows a comparison between the two distance data
sets after assuming theWMAP9 priors on thematter fraction
parameters Ωbh2 and Ωch2. We note that the 1σ confidence
interval forw from the combinedADDdata set lieswithin the
1σ confidence interval from theLDdata,which demonstrates
the compatibility between the two distance observations,

although the corresponding consistency is weaker than that
in the case of CPL parametrization. In this case, a possible
explanation of this tendency could be that this linear para-
metrization is largely redshift dependent asymptotically at
high redshifts (sensitive to the ADD data, especially CMB),
while the LD data could play an important role in the
relatively low redshift constraints. Therefore, it is not
surprising that, for this EoS parametrization, the mild differ-
ence in best fits between standard candles and standard rulers
persists, as also clearly reflected by Table I. Moreover, the
negative central value ofwP2 fit in both joint analyses is fully
compatible with wP2 ¼ 0 case when the 1σ confidence
interval is considered.
In the next subsections we will look deeper into the

results by applying the two distance data to more cosmic
EoS parametrizations. In the dark energy model with
generalized equation of state, the two EoS parametrizations
in the above subsection could be fully recovered when
β → −1 and β → þ1, respectively. One can deduce that
these two models are different projections in different
parameter subspaces of the general EoS model. We choose
to assign different values β ¼ �2 to this parameter and
obtain two time-dependent EoS parametrizations like CPL.

C. Truncated GEoS model with β ¼ �2

In the first case, we consider the β ¼ þ2 parametrization
for dark energy with the following equation of state:

wðzÞ ¼ w0 − wP3
ð1þ zÞ−2 − 1

2
: ð38Þ

The corresponding dimensionless dark energy density is
then

ΩXðzÞ¼ ð1−Ωm−ΩrÞ

× ð1þ zÞ3ð1þw0þwP3=2Þ exp
�
3wP3

2

�ð1þ zÞ−2−1

2

��
:

ð39Þ
In this model, we also have four model parameters
p ¼ fΩbh2;Ωch2; w0; wP3g and a nuisance parameter H0.
The results are displayed in Fig. 4, with the best
fit Ωbh2 ¼ 0.0228� 0.0010, Ωch2¼ 0.1180�0.0040
(Ωm ¼ 0.303� 0.033), w0 ¼ −0.965� 0.347, wP3 ¼
−0.340� 1.015, and H0 ¼ 68.60� 1.99 km s−1Mpc−1.
At 68.3% C.L., we find that this model is still compatible
withΛCDM, i.e., the case (w0 ¼ −1;wP3 ¼ 0) typically lies
very close to the 1σ boundary though very close to it. We
further use the best-fit values of Ωbh2 and Ωch2 from
WMAP9 to obtain the confidence contour of the EoS
parameters displayed in Fig. 4. Two-dimensional analysis
performed for w0 and wP3 shows the compatibility between
ADDandLDdata at 1σ (let us notice thatmost parts of the 1σ
confidence contours intersect).
Performing similar analysis as before, this time with

β ¼ −2, we obtain the equation of state
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wðzÞ ¼ w0 þ wP4
ð1þ zÞ2 − 1

2
ð40Þ

and the dimensionless dark energy density

ΩXðzÞ ¼ ð1−Ωm −ΩrÞ

× ð1þ zÞ3ð1þw0−wP4=2Þ exp
�
3wP4

2

�ð1þ zÞ2 − 1

2

��
:

ð41Þ
The results are displayed in Fig. 5 and Table I. The
joint analysis with standard rulers provides the
best-fit parameters as Ωbh2¼ 0.0226�0.0009, Ωch2 ¼
0.1186�0.0036 (Ωm¼0.277�0.018), w0¼−1.055þ0.053

−0.133 ,
wP4¼−0.015þ0.030

−0.075 , and H0 ¼ 71.50�2.25 kms−1Mpc−1.
In particular, compared with the case with β ¼ þ2, when

β ¼ −2, both of the two EoS parameters w0 and wP4 will
be much more stringently constrained and the distance bet-
ween ADD and LD best fits gets greatly reduced. From
our analysis, the constraints of ADD and LD data are both
restrictive at the confidence level of 68.3% and the best-fit
results exhibit strong statistical agreement betweenADDand
LD constraints on the cosmic equation of state, which is
indicative of a strong consistency between the standard ruler
and standard candle data sets. Another evidence highlighting
the equivalence between the two cosmological distance data
is that the estimated values of w0 and wP4 within 1σ are
almost identical (1σ contours match each other perfectly).
Now we choose to make two comparisons as follows.

First, we throw out the gamma-ray burst distances and
use only the SN Ia data to rederive the best estimate on the
EoS parameters. Constraints on three parametrizations of
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FIG. 3 (color online). The same as Fig. 2, but for the EoS parametrization w ¼ w0 þ wP2z.
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cosmic equation of state with two luminosity distance data
are shown in Fig. 6. Comparing the constraints from
SN data with those from SNþ GRB data, we find the
two plots are almost the same, confirming that the current
GRB data are consistent with the SN observation, although
they contribute little to the existing LD constraints.
Second, we use the Planck first data release [21] instead

of WMAP9 to check its effect on the constraints obtained in
the previous section. Like WMAP9, the reduced Planck
data we use are the mean values and covariance matrix of
fR; la;Ωbh2g from the Planck temperature data combined
with Planck lensing, as well as WMAP polarization at low
multipoles (l ≤ 23)[29], which represents the tightest con-
straints from CMB data at present. Note that the original

Planckþ lensingþWP data derived from the Planck
archive data include the mean values and covariance matrix
of the data set fR; la;Ωbh2; nsg, where ns is the power law
index of primordial matter power spectrum. The Gaussian
distributions of the four reduced data points are given with
the following means and standard deviations σ [29]:

P̄Planck ¼

0
BBB@

l̄a
R̄

Ω̄bh2

n̄s

1
CCCA ¼

0
BBB@

301.57� 0.18

1.7407� 0.0094

0.02228� 0.00030

0.9662� 0.0075

1
CCCA: ð42Þ

The normalized covariance matrix of ðla; R;ωb; nsÞ is [29]
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NormCovPlanck

¼
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BBB@

1.0000 0.5250 −0.4235 −0.4475
0.5250 1.0000 −0.6925 −0.8240
−0.4235 −0.6925 1.0000 0.6109

−0.4475 −0.8240 0.6109 1.0000

1
CCCA: ð43Þ

In order to obtain the covariance matrix for ðla; R;ωbÞ, we
choose to marginalize the CMB distance priors over ns as

CPlanckðpi; pjÞ ¼ σðpiÞσðpjÞNormCovPlanckðpi; pjÞ; ð44Þ

where i; j ¼ 1; 2; 3. The contribution of the Planck data to
the χ2 value is

χ2Planck ¼ ΔPT
PlanckC

−1
PlanckΔPPlanck: ð45Þ

We perform analysis with SGLþ CBFþ BAOþ Planck
likelihood combinations and the results are shown in Table I.
The high value of Ωm is consistent with the parameter
analysis described by the Planck analysis [21]. For com-
parison, the constraint results from the combined angular
diameter distance data (SGLþ CBFþ BAOþ Planck) and
luminosity distance data (SNþ GRB) are also shown in
Fig. 7. We find that Planck data give very similar results as
WMAP9data on the EoSparameterwðzÞ, and adding Planck
priors to ADD data leads to a more evident consistency with
the LD data for the five EoS parametrizations. The best-fit
values of the parameters along with their 1σ uncertainties
from the two different distance data are also listed in Table I.
Now, from the above comparison and previous works,

we comment on the constraint compatibility between
ADD data from standard rulers and LD data from standard
candles. In our analysis with larger ADD data sets, we
obtain the cosmic equation of state parameters whose
values generally agree with LD results already known in
the literature. Our results from the observational ADD data
are reliable and the results are consistent with those using
the LD data of SNþ GRB. Obviously, for some cosmic
EoS parametrizations such as w ¼ w0 þ wP2z, small sys-
tematic deviation between fits done on standard candles
and standard rulers still exists; however, our findings reveal
that for all cases the ADD and LD 1σ overlap significantly.

V. DARK ENERGY WITH GENERALIZED
EQUATION OF STATE

As a final check, we will investigate observational
bounds on the parametric spaces w0 − wβ − β from a
statistical analysis involving four classes of angular diam-
eter distance data. These larger samples covering a wider
range of redshift z will allow us to draw more information
about the evolutionary properties of the cosmic equation
of state.
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FIG. 7 (color online). The constraint results from the combined
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With the combined SGLþ CBFþ BAOþWMAP9
data, Fig. 8 shows the marginalized probability distribution
of each parameter and the marginalized two-dimensional
contour plot for the χ2ADD given by Eq. (31). The best-fit
values of the main parameters are Ωbh2¼0.0228�
0.0007, Ωch2¼0.118�0.004, Ωm¼0.286�0.017,
w0¼−1.035þ0.110

−0.079 , wβ¼−0.120þ0.205
−0.115 , and β¼0.751þ0.465

−0.480 ,
which indicates that at early times the dark energy is a
subdominant component. Apparently, compared with the
previous works, the combined ADD data could provide
more stringent constraints on the EoS parameters w0 and wβ

and present clear evidence supporting the CPL parametri-
zation for the cosmic equation of state with β≃ 1. This
result marginally disagrees with the recent analysis with
SNþ BAOþHðzÞ: w0 ¼ −0.98, wβ ¼ 0.1, β ¼ −3.04,
and SNþBAOþCMB: w0¼−1.0, wβ¼0.28, β¼0.1 [11].

VI. CONCLUSIONS

Recent observations have provided a lot of information
concerning distance measurements, which is useful to
analyze the dynamical behavior of the Universe.
However, previous studies by others raised the question
whether there is a tension between the angular diameter
distance and luminosity distance data when applied to

cosmography. Indeed, even a very interesting remark has
been made [78–80] that initiated a lot of subsequent studies
[81,82]. Namely, even though ADD and LD are based on
different concepts and give different values in physical
units, they are connected with each other by the so-called
Etherington duality principle. The breakdown of this
principle would mean that either the gravity is not a metric
theory (which is so improbable that it is almost impossible)
or there is some mechanism of nonconservation of the
number of photons on the path from the source to observer
(this could be as obvious as extinction or as exotic as, e.g.,
converting photons into axions) [79]. Our testing of the
consistency between ADD and LD can also be perceived
from this perspective.
We have collected relatively complete observational data

concerning four angular diameter distance measurements to
provide constraints on the cosmic equation of state, and
compared the fitting results with those obtained from larger
luminosity distance data. In addition to the previous probes,
we use the x-ray gas mass fraction of galaxy clusters and
strongly gravitationally lensed systems from various large
systematic gravitational lens surveys and galaxy clusters.
As an extension of the previous works, the newly updated
high redshift GRB data set is also included as comple-
mentary to SN Ia in the role of standard candles.
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We have performed joint analysis of three classes of
cosmological models invoked to explain accelerating
expansion of the Universe: (1) Constant dark energy equa-
tion of state wðzÞ ¼ w; (2) Variable dark energy equation
of state, parametrized by wðzÞ ¼ w0 þ wP1z=ð1þ zÞ and
wðzÞ ¼ w0 þ wP2z; and (3) Generalized dark energy equa-

tion of state wðzÞ ¼ w0 − wβ
ð1þzÞ−β−1

β . In order to verify if
ADD data can provide results consistent with the widely
used LD data, we also display the constraints on the EoS
parameters with the combined angular diameter distance
data (SGLþCBFþBAOþWMAP9), in comparison with
the luminosity distance data (SNþ GRB) in Table I.
From the results listed, first of all, we find that the
combination with angular diameter distance data reveals
no obvious disagreement between standard candle and
standard ruler data, which is quite different from the
previous findings [15]. Second, when discussing the
tension between LD and ADD in a general framework,
we note that the consistency between ADD and LD data
shows up irrespective of the EoS parametrizations: there
is a good match between the universally explored CPL
model and other formulations of cosmic equation of state.
Third, we have considered the influence of the parameter β
in the generalized equation of state. Especially for the
truncated GEoS model with β ¼ −2, the angular diameter
distance data combination reveals no tension for this EoS
parametrization. These findings still hold when throwing
out the gamma-ray burst observations and substituting
WMAP9 with Planck data.
Finally, complementary conclusions are obtained from

the statistical analysis of the generalized equation of state.
Compared with the previous works, the combined ADD
data could effectively provide more stringent constraints
on the EoS parameters w0, wβ, and β. In this aspect, the
constraint results indicate that dark energy seems to act as a
subdominant component at early times of the Universe.
Moreover, compared with other two-parameter and time-
dependent EoS parametrizations discussed in this paper,
the CPL parametrization is a more favorable model to

characterize the cosmic equation of state with β≃ 1, since
the combined SGLþ CBFþ BAOþWMAP9 data pro-
vide the best-fit value β ¼ 0.751þ0.465

−0.480 . However, this
conclusion still needs to be checked by future observational
data of high accuracy [83–85], which can hopefully provide
significantly more restrictive constraints on cosmological
parameters.
In conclusion, finding out whether the angular diameter

distances and the luminosity distances are consistent is a
permanent pursuit, especially in the constraints of dark
energy equation of state. Our results demonstrate that, with
more general categories of standard ruler data, the con-
troversial constraint tension betweenADDandLDdata does
not persist at 1σ. In this sense our results support the validity
of the Etherington duality principle, but of course it is not a
strong test because our analysis has different goals in focus.
Understanding of the systematic uncertainties of all data
used in this paper still needs to be improved. We hope that
future dark energymeasurements fromspace [86–88],which
may dramatically minimize systematic uncertainties by
design, will shed much more light into the dark Universe.
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