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In the framework of relativistic ideal hydrodynamics, we study the production mechanism for vorticity
and magnetic field in relativistic ideal fluids. It is demonstrated that in the uncharged fluids the thermal
vorticity will always satisfy the Kelvin’s theorem and the circulation must be conserved. However, in the
charged fluids, the vorticity and magnetic field can be produced by the interaction between the entropy
gradients and the fluid velocity gradients. Especially, in the multiple charged fluids, the vorticity and
magnetic field can be produced by the interaction between the inhomogeneous charge density ratio and the
fluid velocity gradients even if the entropy distribution is homogeneous, which provides another
mechanism for the production of vorticity and magnetic field in relativistic plasmas or in the early universe.
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I. INTRODUCTION

It is well known that the Universe is filled with vorticities
and magnetic fields on all scales [1–5]. However the origin
of these vorticities and magnetic fields is still one of the
most challenging open problems in theoretical physics
[5–8]. In the nonrelativistic ideal fluid, Kelvin’s circulation
theorem in hydrodynamics or generalized version in
magnetic hydrodynamics forbids the vorticity or magnetic
fields to emerge from a zero initial value when the fluid is
barotropic [9–11]. In order to produce seed vorticity or
magnetic field, we must resort to the baroclinic effects or go
beyond the ideal fluids by including diffusive terms [9–14].
The presence of large-scale magnetic fields in the Universe
[15–21], indicates the very possibility that the magnetic
fields should have been present in the early universe
[22–24], in which the temperature of the Universe is very
high and the velocities of the fluid and the particle
components are both relativistic. Hence we need relativistic
hydrodynamics to deal with these very hot fluid systems.
Besides, relativistic hydrodynamics is also a very important
theoretical tool in high- energy heavy-ion physics. The
ideal and dissipative hydrodynamics has succeeded greatly
in describing the collective flow from the data of RHIC and
LHC. The study of the vorticity and magnetic field
production in relativistic ideal fluids is very relevant to
the important chiral effects, called the chiral-magnetic
effects [25–29], chiral-vorticity effects [28,30], and local
polarization effects [31,32], which can be expected in the
noncentral heavy-ion collisions, because all these effects
depend on the production of the vorticity and magnetic
field in the quark-gluon plasma.

In the relativistic ideal fluids, there exists a similar
covariant version of the Kelvin’s circulation theorem
[33–35]. It turns out that there are some subtleties when
we deal with the relativistic case, which have been pointed
out in Refs. [36,37] that vorticity and magnetic field can be
produced in relativistic purely ideal fluid due to space-time
distortion caused by the special relativity. However, all
these relativistic investigations up to date on the vorticity
and magnetic field, as far as we know, are only limited to
the systems with single conserved charge and the particle
components in the fluids are also specified with finite mass.
It is well known that there exist the systems without any

conserved charges theoretically or realistically, such as
neutral ϕ4 field theory or photon gas. In particular, the
hydrodynamic simulation used in relativistic heavy-ion
collisions at RHIC or LHC are all based on the ones
without charges and all the possible charge imbalance is
neglected [38–45]. Hence it is very valuable to investigate
both the neutral fluids and charged fluids all together and to
see what could be missed only from the neutral hydro-
dynamic equations and how the novel phenomenology
could appear in the single or multiple charged ones.
In this paper, we will extend these investigations to more

general cases by direct manipulation of the relativistic
hydrodynamic equations. We will not assume in advance
that the particle components are massive or not, and the
systems we will consider can have multiple conserving
charges or no conserving charge at all. We find that the
thermal vorticity will always satisfy the Kelvin’s circulation
theorem and be conserved in the uncharged fluids.
However, in the charged fluids, especially in the multiple
charged fluids, the vorticity and magnetic field can be
produced not only by the interaction between inhomo-
geneous entropy and inhomogeneous fluid velocity mag-
nitude but also by the interaction between inhomogeneous*gaojh@sdu.edu.cn
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charge density ratio and inhomogeneous fluid velocity
magnitude. The latter provides another new mechanism
for the production of vorticity and magnetic field in the
early universe or in the quark gluon plasma produced in
heavy-ion collisions at RHIC or LHC.

II. VORTICITY IN RELATIVISTIC IDEAL
UNCHARGED FLUIDS

In this section, we consider relativistic fluids without any
conserving current, in which the hydrodynamical equations
are just the energy-momentum conservation

∂νTμν ¼ 0; ð1Þ

where Tμν is the energy-momentum tensor. In the ideal
hydrodynamics, Tμν can be decomposed into the following
form,

Tμν ¼ ðεþ PÞuμuν − Pgμν; ð2Þ
where ε is the energy density in the local frame, P is the
pressure of the fluid, the metric tensor gμν is chosen as
ð1;−1;−1;−1Þ, and the fluid 4-velocity uμ ¼ ðγ; γvÞ with
the relativistic kinematic factor γ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
and the

normalization u2 ¼ 1. Substituting Eq. (2) into Eq. (1) and
contracting both sides with fluid velocity uμ, we can have

uν∂νεþ ðεþ PÞ∂νuν ¼ 0: ð3Þ

With the general equations from thermodynamics,

Tds ¼ dε; ð4Þ

Ts ¼ εþ P; ð5Þ
it is easy to verify that Eq. (3) is just the entropy current
conservation,

∂μðsuμÞ ¼ 0: ð6Þ

Using Eq. (5), we can rewrite the energy-momentum
tensor as

Tμν ¼ Tsuμuν − Pgμν: ð7Þ

With the entropy conservation (6), the energy-momentum
conservation can be rewritten by

suν∂νðTuμÞ − ∂μP ¼ 0: ð8Þ

Using the Gibbs relation dp ¼ sdT, we can have the
following identity,

uν∂νðTuμÞ − ∂μT ¼ 0: ð9Þ

It is convenient to define the antisymmetric thermal
vorticity tensor1 Ξμν by

Ξμν ¼ ∂νðTuμÞ − ∂μðTuνÞ; ð10Þ

which is in complete analogy to the definition of electro-
magnetic field tensor and can be regarded as inertia and
thermal forces from the fluid. With such a definition, we
can rewrite Eq. (9) as

Ξμνuν ¼ 0: ð11Þ

The circulation of the 4-vector temperature current Tuμ

along the covariant loop LðsÞ where s denotes the proper
time is given by

d
ds

I
LðsÞ

Tuμdxμ ¼
I
LðsÞ

Ξμνuνdxμ ¼ 0; ð12Þ

which is just the relativistic Kelvin circulation theorem.
For a specific observer, the vorticity is always defined in a
fixed frame; hence, we need to consider the circulation of
3-vector temperature current Tγv along the synchronic
loop LðtÞ. We specify the components of thermal vorticity
tensor Ξμν in the three-dimensional space as

Ξμν ¼

0
BB@

0 −E1 −E2 −E3

E1 0 −B3 B2

E2 B3 0 −B1

E3 −B2 B1 0

1
CCA; ð13Þ

with the 3-vector definition,

E ¼ ðE1; E2; E3Þ ¼ ½∇ðTγÞ − ∂tðTγvÞ�;
B ¼ ðB1;B2;B3Þ ¼ ∇ × ðTγvÞ ð14Þ

With the above definition, we can express the space
components of Eq. (11) as

E þ v × B ¼ 0; ð15Þ
or

∂t

�
Tvffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
�
þ
�
∇ ×

Tvffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
�
× v ¼ −∇ Tffiffiffiffiffiffiffiffiffiffiffiffi

1 − v2
p :

ð16Þ

It should be noted that all through our paper the spatial
hypersurfaces are always defined by the observer in the lab
frame instead of the comoving frame with velocity uμ.
Using the above identity, we can immediately obtain the
conservation of the thermal current circulation in syn-
chronic space,

1It should be clarified that there exists in Refs. [46,47] another
definition of the thermal vorticity from uμ=T instead of Tuμ here.
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d
dt

I
LðtÞ

Tγv · dx ¼
I
LðtÞ

�
∂t

�
Tvffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
�
þ
�
∇ ×

Tvffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
�
× v

�
· dx

¼ −
I
LðtÞ

�
∇ Tffiffiffiffiffiffiffiffiffiffiffiffi

1 − v2
p

�
· dx ¼ 0; ð17Þ

which implies that the thermal vorticity cannot emerge
from a zero initial value. It should be noted that although
the circulation of the thermal current Tγv is conserved, that
of the kinetic current γv can be not conserved generally
when the temperature is inhomogeneous. By applying the
Stokes theorem, the conservation of circulation can be
transformed into the conservation of the flux B through the
surface which moves along with the fluid,

d
dt

Z
SðtÞ

B · dS ¼ d
dt

I
LðtÞ

Tγv · dx ¼ 0; ð18Þ

which means that the vorticity field flux is conserved or the
vorticity lines are frozen in.
It should be noted that our result here cannot be naively

regarded as a particular case of Ref. [36,37] because all the
derivations in [36,37] are based on nonzero charge density.
Once we set the charge density to vanish, we need another
derivation from the beginning. This is actually what we are
devoted to do in this section.

III. VORTICITY AND MAGNETIC FIELDS
IN RELATIVISTIC IDEAL

MAGNETOHYDRODYNAMICS WITH
MULTIPLE CURRENTS

In this section, we are devoted to discussing the
relativistic fluids with multiple conserved currents. There
are good reasons to investigate the hydrodynamics with
multiple currents. For example, in the hot and dense QCD
matter produced in heavy-ion collisions at high energy, one
should be able to introduce electric charge, baryon number,
and strangeness into the system. Therefore multicharge
hydrodynamics is important in developing hydrodynamic
models in heavy-ion collisions. As we already mentioned in
the Introduction, the hydrodynamic simulations used in
heavy-ion collisions at RHIC or LHC are all based on the
ones without charges [38–45], and so it is very valuable to
go beyond the neutral fluids and investigate how the novel
phenomenology could appear in the single or multiple
charged ones. Besides, in the early universe, the quantum or
thermal fluctuations between different charges such as
leptonic charge, electric charge, baryonic charge, and so
on cannot coincide with each other; hence, it will be very
important to investigate if such incoincidence could con-
tribute to the production of vorticity or magnetic fields in
the early universe.

Now let us assign one of the currents to the electric
current Jμ from the local gauge symmetry, which can
interact with the fluids by the magnetohydrodynamic
equations. The other m currents Jμi ði ¼ 1; 2;…; mÞ are
from the global symmetry, such as the baryonic current,
leptonic current, and so on. Then the magnetohydrody-
namic equations for such a system are given by

∂νTμν ¼ FμνJν; ð19Þ

∂μJμ ¼ 0; ð20Þ

∂μJ
μ
i ¼ 0; ði ¼ 1; 2;…; mÞ; ð21Þ

where Fμν is the electromagnetic stress tensor and can be
written in terms of the electromagnetic 4-potential Aμ

as Fμν ¼ ∂μAν − ∂νAμ.
The constitutive equations for the ideal magnetohydro-

dynamics read

Tμν ¼ ðεþ PÞuμuν − Pgμν ð22Þ

Jμ ¼ nuμ ð23Þ

Jμi ¼ niuμ; ð24Þ
where n is the electric charge density and ni is charge
density corresponding to other global symmetry. The
energy-momentum conservation (19) and current conser-
vation (20) can yield

nuν∂ν

�
εþ P
n

uμ
�
− ∂μP ¼ nFμνuν: ð25Þ

We can define the generalized thermal vorticity tensor
Ξμν by

Ξμν ¼ Fμν þ ∂νðfuμÞ − ∂μðfuνÞ; ð26Þ
with f ¼ ðεþ PÞ=n. We can rewrite Eq. (25) as

n∂μf − ∂μP ¼ nΞμνuν: ð27Þ

Using the thermal equation

Tds ¼ dε − μdn −
X
i

μidni; ð28Þ

Ts ¼ εþ P − μn −
X
i

μini; ð29Þ
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we can have the Gibbs relation corresponding to the
multiple charge components,

Td

�
s
n

�
¼ d

�
ε

n

�
þ Pd

�
1

n

�
−
X
i

μid

�
ni
n

�
; ð30Þ

where μ and μi denote the chemical potentials with respect
to different conserving charges. Now we can rewrite
Eq. (27) as

Ξμνuν ¼ T∂μ

�
s
n

�
þ
X
i

μi∂μ

�
ni
n

�
: ð31Þ

It follows that the circulation of the 4-vector current
fuμ þ Aμ along the covariant loop LðsÞ is given by

d
ds

I
LðsÞ

ðfuμ þ AμÞdxμ

¼
I
LðsÞ

Ξμνuνdxμ

¼
I
LðsÞ

�
T∂μ

�
s
n

�
þ
X
i

μi∂μ

�
ni
n

��
dxμ; ð32Þ

where fuμ þ Aμ can be regarded as the canonical momen-
tum or minimal coupling prescription (for details see [48]).
It is obvious that the circulation of this 4-vector current is
conserved when T and μi are constant. Just like we did in
the last section, we need to consider the vorticity circulation
of the synchronic loop LðtÞ. Let us define the 3-vector,

E ¼ Eþ ½∇ðfγÞ − ∂tðfγvÞ�;
B ¼ Bþ∇ × ðfγvÞ: ð33Þ

Then the space components of Eq. (32) can be written as

γðE þ v × BÞ ¼ T∇
�
s
n

�
þ
X
i

μi∇
�
ni
n

�
: ð34Þ

It follows that

d
dt

I
L
ðfγvþ AÞ · dx ¼ d

dt

Z
S
B · dS

¼ −
Z
S

�
∇
�
T
γ

�
×∇

�
s
n

��
· dS

−
X
i

Z
S

�
∇
�
μi
γ

�
× ∇

�
ni
n

��
· dS;

ð35Þ

where A is the spatial part of Aμ. The second line of the
above equation is the source term which can lead to the
vorticity or magnetic fields from the zero initial value. If we

set μi ¼ ni ¼ 0, we will recover the results obtained in
Ref. [36],

d
dt

I
L
ðfγvþAÞ · dx¼ −

Z
S

�
∇
�
T
γ

�
×∇

�
s
n

��
· dS: ð36Þ

As pointed out in Ref. [36], the source term can be
decomposed into the usual baroclinic term,

Sb ≡ −
Z
S

�
1

γ
∇T ×∇

�
s
n

��
· dS; ð37Þ

and the pure relativistic term,

Sr ≡ −
Z
S

�
T∇

�
1

γ

�
× ∇

�
s
n

��
· dS; ð38Þ

which is absent in the nonrelativistic limit. When the
velocity and entropy gradients are comparable, the bar-
oclinic term can be neglected in the highly relativistic
region due to the estimate [36]

jSrj
jSbj

≈
v2

1 − v2
ð39Þ

Now when the multiple currents are involved, we notice
that an extra new term,

Sn ≡ −
X
i

Z
S

�
∇
�
μi
γ

�
×∇

�
ni
n

��
· dS; ð40Þ

arises. This is the principal result of this paper. It is very
interesting that this term will generate the vorticity or
magnetic field even when the entropy is homogeneous
where the first term in the second line of Eq. (35) will
vanish. This new term can be broken into two terms too;
one is

Snμ ≡ −
X
i

Z
S

�
1

γ
∇μi ×∇

�
ni
n

��
· dS; ð41Þ

and the other is

Snr ≡ −
X
i

Z
S

�
μi∇

�
1

γ

�
×∇

�
ni
n

��
· dS: ð42Þ

Following the similar argument for Sr and Sb above, when
the velocity and chemical potential gradients are compa-
rable, Snμ term can be neglected in the highly relativistic
region due to

jSnrj
jSnμj

≈
v2

1 − v2
: ð43Þ
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Therefore, the dominant contribution will be from the
Snr term.
Compared with the results obtained in Refs. [36,37], in

which only the single conserved current is included, we
have considered multiple currents in our work and obtained
new contributions when the ratio of the different charge
densities is inhomogeneous. This provides another possible
mechanism for the production of vorticity and magnetic
field in relativistic plasmas or in the early universe.

IV. DISCUSSION AND CONCLUSION

First, we emphasize that our result Eq. (17) for the ideal
fluid without conserving current cannot be derived from the
result Eq. (35) with conserving currents by naively taking
the limit of n → 0 and ni → 0 because there exists the 1=n
term. Take the neutral ϕ4 field or photon gas as examples.
In these systems there is no conserved charge at all, and we
cannot introduce the charge density from the beginning.
That is why we must consider the ideal fluid without
conserving currents separately. Although the result Eq. (36)
with single current can be found in the literature every-
where, we failed to find the result Eq. (17) in the literature.
Hence we have given the derivation of the result Eq. (17) in
our paper in Sec. II. The result reveals that the thermal
vorticity always satisfies the Kelvin’s circulation theorem
and cannot emerge from a zero initial value.
With respect to the result for the multiple currents in

Eq. (35), the contribution from the terms of Sn or Snμ and
Snr is new. These terms, especially the Snr term, are very
relevant to the production of vorticity or magnetic fields in
the early universe, where the particles can carry different
charges, such as leptonic charge, electric charge, baryonic
charge, and so on. Besides, it is very relevant to the quark
gluon plasma produced in heavy-ion collisions. If there is
any inhomogeneous local distribution for some different

charges, the vorticity or magnetic fields will be induced
through the mechanism in Eq. (42). Then the chiral-
magnetic effects, chiral-vorticity effects, and local polari-
zation effects [26–32] will follow in the noncentral
heavy-ion collisions.
The above result is very relevant to the recent inves-

tigation on the chiral vortical effect at RHIC. The baryon-
number separation observed by STAR [49] can be
explained by the chiral vortical effect; however, such
interpretation to a great extent depends on the existence
of large vorticity. In the Bjorken scaling scenario [50],
which is widely used as the initial condition for the
hydrodynamic equations in the relativistic heavy-ion colli-
sions, the initial vorticity must be zero. The results in our
present paper show that the vorticity will always be zero
when we insist on using the ideal hydrodynamic equations
without any conserved currents and the chiral vortical effect
does not appear at all. If we still want to be in the regime of
ideal hydrodynamics, in order to estimate the possible
chiral vortical effect, we must resort to the hydrodynamic
equations with single or multiple conserved currents.
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