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We find the excitations and construct the conserved charges (mass and angular momentum) of the
recently found minimal massive gravity (MMG) in 2þ 1 dimensions in asymptotically anti-de Sitter
spacetimes. The field equation of the theory does not come from an action and lacks the required Bianchi
identity needed to define conserved charges. But the theory, which also provides a healthy extension of the
topologically massive gravity in the bulk and boundary of spacetime, does admit conserved charges for
the metric that are solutions. Our construction is based on background Killing vectors and imperative to
provide physical meaning to the integration constants in the black hole-type metrics. As an example, we
compute the mass and angular momentum of the Bañados-Teitelboim-Zanelli black hole in MMG. We also
find the central charges of the boundary field theory and study the chiral gravity limit of MMG.
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I. INTRODUCTION

It is well known that Einstein’s gravity in 2þ 1 dimen-
sions is devoid of any local degrees of freedom even though
it has black hole solutions when a negative cosmological
constant is added [1]. (We shall work with the mostly plus
signature.) On the other hand, the parity-violating topo-
logically massive gravity (TMG) [2] has both a single
massive spin-2 local degree of freedom as well as various
black hole solutions. But TMG has a bulk-boundary
unitarity conflict that makes it rather unsuitable for the
AdS/CFT “applications.” Namely, either the bulk or the
boundary theory is nonunitary as can be seen from
the comparison of the unitarity regions defined by the
positivity of the two Brown–Henneaux boundary c charges
[3] and the bulk energies [4]. In a certain parameter choice,
one hopes that one has a unitary “chiral gravity” theory [5],
but it turns out that at the chiral point there appear
log solutions, making the boundary theory a nonunitary
logarithmic conformal field theory (CFT) [6–8].
Unfortunately, this state of affairs (the bulk-boundary
unitarity conflict) remained intact in the “new massive
gravity” (NMG) [9] that provided a nonlinear extension of
the three-dimensional Fierz–Pauli theory with two spin-2
degrees of freedom both in flat and anti-de Sitter (AdS)
spacetimes [10]. Further modification of NMG with
more powers of curvature did not solve the unitary conflict
[11–13]. For example, the Born–Infeld extension of NMG
with (in principle) infinitely many powers of curvature with
rather remarkable properties is unitary either in the bulk or
on the boundary of AdS [12,14].
At this point, one must be quite puzzled: Einstein’s

gravity is healthy both in the bulk and boundary, but it has
no local degrees of freedom and hence in some sense is not
a good example in which one can study “quantum gravity.”

On the other hand, the above-mentioned many, otherwise
healthy, nontrivial theories with one or two massive
gravitons fail to be unitary on the boundary. Apparently,
one is forced to choose either local-triviality or boundary
nonunitarity. In the age of AdS/CFT, the second option is
nothing less than heresy, and hence we are back with
Einstein’s theory. But, recently, a very interesting paper
[15] appeared in which the authors showed that there is one
more virtue, slightly less dangerous than the previous two,
that one can let go; that is the Lagrangian formulation of the
theory. Namely, they defined a theory—minimal massive
gravity (MMG)—that does not come from the variation of
an action with the metric as the independent field and hence
also lacks the all-important Bianchi identity and the diffeo-
morphism invariance. Nevertheless, a consistent restricted
version of the theory has a single massive degree of
freedom that is unitary in the bulk and gives rise to a
unitary CFT on the boundary. [See also the recent work on
MMG that couples MMG to matter fields (a nontrivial
construction), Refs. [16] and [17], for another derivation of
the theory.] All this is quite good since, after all, MMG
seems to be the theory without the infamous bulk-boundary
unitarity conflict. But, of course, to make sense of the black
hole solutions of the theory, to define thermodynamics, etc.,
one has to have conserved charges, especially energy in the
theory. Otherwise, one could not even assign a physical
meaning to the parameters (or integration constants) in the
solutions of the theory.
This is the task we carry out in this work following the

well-established Arnowitt-Deser-Misner [18] charges of
general relativity (or in retrospect any purely metric-based
gravity theory for asymptotically flat spacetimes) and
Abbott-Deser [19] charges of (cosmological) general rel-
ativity for asymptotically (A)dS spacetimes and their
generalization, the Abbott-Deser-Tekin [20] charges, for
quadratic gravity theories and generic fðRiemannÞ theories*btekin@metu.edu.tr
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[21,22]. The details of this Killing charge construction are
given elsewhere [20]; hence, the discussion in Sec. II will
be just a recapitulation of the essential points.
We also study the excitations of the MMG theory in AdS

backgrounds and construct the boundary central charges
and excitation energies as well as the chiral gravity limit of
the theory.

II. CONSERVED CHARGES OF GRAVITY
THEORIES ENDOWED WITH

BIANCHI IDENTITIES

Given the field equations of the theory as

Φμνðg; R;∇Riemann; R2;…Þ ¼ κτμν; ð1Þ

one assumes that for vanishing τμν (A)dS is the background
solution, Φμνðḡ; R̄; ∇̄ R̄; R̄2…Þ ¼ 0, with the metric ḡμν
with vanishing energy and angular momenta (let us stay
in generic n dimensions for this brief discussion, so there
could be more than one angular momentum). (A)dS has
the maximum number of symmetries, so let us denote the
Killing vectors as ξ̄μ. (Note that, so as to not clutter the
notation, we do not put another index on the Killing vector
that could identify the different Killing vectors.) Given a
spacetime with the metric gμν, which asymptotically has
the same Killing symmetries as the background space, we
can define “conserved charges” by first linearizing the field
equations as

OðḡÞμναβhαβ ¼ κτμν; ð2Þ

where gμν ≡ ḡμν þ hμν. The operator Oμναβ is a (0,4) tensor
in AdS which can be easily found when the field equations
are given. Note that the right-hand side of (2) has all the
terms in the metric perturbation (hμν) save the linear one. If
the full equation (1) comes from a diffeomorphism-invariant
action, then it satisfies the full Bianchi identity ∇μΦμν ¼ 0

with the covariant derivative taken with respect to the metric
compatible gμν. This then leads to the background “Bianchi
identity” or background (covariant) conservation of the
linearized equation ∇̄μOðḡÞμναβhαβ ¼ 0. This is not yet
sufficient to define globally conserved charges; one makes
use of the Killing vectors to define a partially conserved
current via

ffiffiffiffiffiffi
−ḡ

p ∇̄μðξ̄νTμνÞ¼∂μð
ffiffiffiffiffiffi
−ḡ

p
ξ̄νTμνÞ¼0. Using the

Stokes theorem, one arrives at the conserved global charges
for each Killing vector,

Qμðξ̄Þ ¼
Z
M

dn−1x
ffiffiffiffiffiffi
−ḡ

p
ξ̄νTμν ¼

Z
Σ
dΣiF μi; ð3Þ

where M is our n − 1-dimensional spatial manifold with
Σ being its boundary. Here, a crucial step for each theory
is to find the antisymmetric tensor F μν that satisfies
Tμνξ̄ν ¼ ∇̄νF μν.

This procedure has been successfully applied to many
theories in which the assumed conditions on asymptotic
symmetries and the implicit assumption of the proper fall
of the perturbation hμν at the boundary are satisfied. For
example, let us recall the conserved charges of TMG that
are pertinent to our main discussion of MMG charges. The
TMG field equations read

Rμν −
1

2
gμνRþ Λgμν þ

1

μ
Cμν ¼ 0; ð4Þ

with the Cotton tensor given as

Cμν ≡ 1ffiffiffiffiffiffi−gp ϵμαβ∇αSνβ; ð5Þ

where Sνβ ¼ Rν
β −

1
4
δνβR is the Schouten tensor in three

dimensions. The field equations of TMG come from an
action which is diffeomorphism invariant up to a boundary
term, and hence the theory is endowed with the Bianchi
identity and amenable to our charge definition. This was
done in Ref. [4] with the result

Qμðξ̄Þ ¼ 1

2πG3

I
∂Σ

dli

�
qμiE ðξ̄Þ þ

1

2μ
qμiE ðΞ̄Þ þ

1

2μ
qμiC ðξ̄Þ

�
;

ð6Þ

where the parts coming from the Einstein tensor and the
Cotton tensor read, respectively, as

qμiE ðξ̄Þ≡
ffiffiffiffiffiffi
−ḡ

p ðξ̄ν∇̄μhiν− ξ̄ν∇̄ihμνþ ξ̄μ∇̄ih− ξ̄i∇̄μh

þhμν∇̄iξ̄ν−hiν∇̄μξ̄νþ ξ̄i∇̄νhμν− ξ̄μ∇̄νhiνþh∇̄μξ̄iÞ;
ð7Þ

qμiC ðξ̄Þ≡ ϵμiβGνβξ̄
ν þ ϵνiβGμ

βξ̄ν þ ϵμνβGi
βξ̄ν: ð8Þ

Here, interestingly, a new Killing vector built out of the
curl of the background Killing vector arises: Ξ̄β≡
ϵανβ∇̄αξ̄ν=

ffiffiffiffiffiffi
−ḡ

p
. All contractions and raising and lowering

must be done with the background metric, for example,
h ¼ ḡμνhμν. Even though the background tensors that
appeared here were defined in Refs. [4,23], it pays to
collect them here as we shall need some of them below for
the computation in the MMG theory. The background
satisfies

R̄μανβ¼Λðḡμνḡαβ− ḡμβḡανÞ; R̄μν¼2Λḡμν; R̄¼6Λ:

ð9Þ

In three dimensions, we do not need the linearization of the
Riemann tensor; hence, respectively, the linearized Ricci
tensor and the Ricci scalar read
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RL
μν¼

1

2
ð−□̄hμν−∇̄μ∇̄νhþ∇̄σ∇̄νhσμþ∇̄σ∇̄μhσνÞ;

RL≡ðRμνgμνÞL¼RL
μνḡμν−2Λh¼−□̄hþ ∇̄μ∇̄νh̄μν−2Λh:

These can be used to find the linearized cosmological
Einstein and the Cotton tensors as

Gμν ≡ ðGμν þ ΛgμνÞL ¼ RL
μν −

1

2
ḡμνRL − 2Λhμν;

Cμν
L ¼ 1ffiffiffiffiffiffi

−ḡ
p ϵμαβḡβσ∇̄α

�
Rσν
L − 2Λhσν −

1

4
ḡσνRL

�
:

Here, as usual, Gμν ≡ Rμν − 1
2
gμνR.

Before we conclude this section and move on to our main
goal, let us note that for a timelike Killing vector ξ̄μ ¼
ð−1; 0; 0Þ Q0 corresponds to the energy that is background
diffeomorphism invariant only if the spatial boundary is
at infinity [as in the case of flat and (A)dS space]. For
ξ̄μ ¼ ð0; 0; 1Þ (say in polar coordinates) vectors, Q0 is the
angular momentum. (Please note that the construction is
coordinate independent). See some example computations
in Refs. [23,24].

III. EXCITATIONS, CONSERVED CHARGES, AND
THE CHIRAL GRAVITY LIMIT OF MMG

A. Linearization of the field equations: Excitations

As explained in the Introduction, MMG theory was
designed to be free of the bulk-boundary unitarity conflict.
But to obtain unitarity everywhere, the authors of Ref. [15]
bartered unitarity with the precious Lagrangian formu-
lation, and hence the Bianchi identity that must be valid for
any metric is gone. This, of course, is quite worrisome in
terms of the conserved charge definition as we stressed
above. But there is a resolution as we shall see. The field
equations of MMG are

Eμν ≡ Λ0gμν þ σGμν þ
1

μ
Cμν þ

γ

μ2
Jμν ¼ 0; ð10Þ

with two dimensionless parameters σ and γ as well as two
dimensionful ones μ and Λ0. The new ingredient is the J
tensor defined as

Jμν ≡ 1

2 det g
εμρσεντηSρτSση; ð11Þ

and one has a nonvanishing covariant divergence for
generic metrics:

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p ∇μJμν ¼ ενρσSρτCστ: ð12Þ

This is at the root of the problem, but as noted in
Refs. [15,16], for the solutions of the theory, this is indeed
zero. Therefore, we can define conserved charges. First,
let us note that one can rewrite the J tensor as

Jμν ¼ Gρ
μGρν −

1

2
gμνGρσGρσ þ 1

4
GμνRþ 1

16
gμνR2: ð13Þ

We can now find the effective cosmological constant of the
theory (10) by first noting that J̄μν ¼ Λ2

4
ḡμν. So the vacuum

field equation reads

Λ0 − σΛþ γ

4μ2
Λ2 ¼ 0; ð14Þ

with solutions

Λ� ¼ 2μ2

γ

0
B@σ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 −

γΛ0

μ2

s 1
CA: ð15Þ

We agreed that for the solutions of the full theory we have

∇μJμν ¼ 0; ð16Þ

of which the linearization about the (A)dS vacuum leads to
a background conserved tensor,

∇̄μJ
μ
L ¼ 0; ð17Þ

where J μν
L ≡ ðJμνÞL þ Λ2

4
hμν. Note the all-important sec-

ond term that makes the total expression a background
diffeomorphism-invariant expression under transforma-
tions δξhμν ¼ ∇̄μζν þ ∇̄νζμ. Let us now compute the
linearized form of (13) with the help of the linearized
tensors given above to get

ðJμνÞL ¼ −
Λ
2
Gμν −

Λ2

4
hμν; ð18Þ

hence, one has J μν
L ¼ − Λ

2
Gμν, which is needed in defining

the conserved charges of the full theory (10) of which the
linearization about one of its (A)dS vacua gives

Ēμν þ ðΛ0 − σΛÞhμν þ σGμν þ
1

μ
CL
μν þ

γ

μ2
ðJμνÞL ≡ κTμν;

ð19Þ

where the right-hand side represents all the nonlinear
terms in h. We have also introduced a scaled Newton
constant (κ) to keep the conventional dimensions of the
energy-momentum tensor. Since ðJμνÞL ¼ − Λ

2
Gμν þ Λ2

4
hμν,

using the vacuum field equation in the first term and the
terms multiplying hμν, we arrive at

�
σ −

γΛ
2μ2

�
Gμν þ

1

μ
CL
μν ¼ κTμν; ð20Þ

which is nothing but the linearized field equations of TMG
with a modified coefficient in front of the Einsteinian part.
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Before we turn back to the conserved charge issue, let us
say a few words about the bulk excitations of the theory:
the linearized equation about (A)dS explains why bulk
properties of MMG are the same as TMG, albeit with a
modified mass; from (20), using the results of the previous
works [6,25], we can write the mass of the single spin-2
mode in MMG as

M2
g ¼ μ2

�
σ −

γΛ
2μ2

�
2

þ Λ; ð21Þ

which satisfies the Breitenlohner–Freedman (BF) bound
[26]M2

g ≥ Λ in AdS. The graviton mass vanishes at the two
“chiral points” (a opposed to the one in TMG) for AdS,

Λ�
0 ¼ μ2

γ3
ðγσð2þ γσÞ − 2� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2γσ

p
Þ: ð22Þ

In fact, to actually see the “chirality” of the boundary
conformal field theory, let us compute the left and right
central charges in the theory. This was done in Ref. [15],
but our notation and conventions are quite different, and
hence it actually pays to repeat the calculation here since it
is quite simple using our formulation. We already know
the central charges of TMG, and it is clear that, as far as the
central charges of the boundary theory are concerned,
linearized MMG (20) with a vanishing left-hand side is
sufficient. Hence, the two copies of the Virasoro algebra on
the boundary have the central charges

cL ¼ 3l
2G3

�
σ þ γ

2μ2l2
−

1

μl

�
;

cR ¼ 3l
2G3

�
σ þ γ

2μ2l2
þ 1

μl

�
;

ð23Þ

where we have used the AdS radius defined as l2 ¼ − 1
Λ

and normalized the central charges as Brown and
Henneaux [3].
Let us now consider the energies of the linear excitations

following Refs. [5,27]. For this purpose, we need to find the
(free) action leading to (20), which is

S¼ 1

2πG3

Z
d3x

ffiffiffiffiffiffi
−ḡ

p �
−
1

2

�
σ −

γΛ
2μ2

�
hμνGμν −

1

2μ
hμνCL

μν

�
:

ð24Þ

We need to get the Ostrogradsky Hamiltonian; before that,
it is a good idea to fix the gauge by choosing the transverse
traceless conditions

∇̄μhμν ¼ 0; h ¼ 0; ð25Þ

which reduces the action to

S ¼ −
1

4πG3

Z
d3x

ffiffiffiffiffiffi
−ḡ

p ��
σ −

γΛ
2μ2

�
∇αhμν∇̄αhμν

þ 2Λhμνhμν þ
1

μ
ϵαβμ ∇αhμνð□̄ − 2ΛÞhβν

�
: ð26Þ

Choosing the AdS metric as

ds2 ¼ 1

−Λ
ð−cosh2ρdt2 þ dρ2 þ sinh2ρdϕ2Þ ð27Þ

and decomposing the metric into massive, left-moving and
right-moving fluctuations as was done in Ref. [5],

hμν ≡ hMμν þ hLμν þ hRμν; ð28Þ

the Ostrogradsky Hamiltonian leads to the excitation
energies

EM ¼ M2
g

4πG3μ

1

T

Z
d3x

ffiffiffiffiffiffi
−ḡ

p
ϵα

0μhαν∂thMμν; ð29Þ

EL ¼ −
cL
6πl

1

T

Z
d3x

ffiffiffiffiffiffi
−ḡ

p ∇̄0hανL ∂thLμν; ð30Þ

ER ¼ −
cR
6πl

1

T

Z
d3x

ffiffiffiffiffiffi
−ḡ

p ∇̄0hανR ∂thRμν; ð31Þ

where we have made use of the central charges (23) and
defined a (large) timeT forwhich the relevance is explained in
Ref. [27]. To judge the positivity or the negativity of all these
three energies, we must find all solutions of the linearized
theory which split into three equations: one for the massive

ϵμ
αβ∇̄αhMβν þ μ

�
σ −

γΛ
2μ2

�
hMμν ¼ 0; ð32Þ

and the other two for left- and right-moving modes

ϵμ
αβ∇̄αhLβν þ lhLμν ¼ 0; ϵμ

αβ∇̄αhRβν − lhRμν ¼ 0: ð33Þ

Fortunately, the solutions of these equations were given
in Ref. [5] using the SLð2; RÞL × SLð2; RÞR isometry of
the AdSmetric. Without going into further details, let us note
that all the solutions furnish a representation of this
group and can be generated from the three primaries with
weights ðh; h̄Þ. The left-moving mode has weights (2, 0), the
right-moving mode has weights (0, 2), and the massive mode
has weights

h ¼ 3

2
þ σl

2
þ γ

4lμ2
; h̄ ¼ −

1

2
þ σl

2
þ γ

4lμ2
; ð34Þ

where we assumed σ − γΛ
2μ2

> 0. We do not depict the explicit

solutiongiven inRef. [5], sinceweonly need the all-important
conclusion that once the solutions are plugged in to the energy
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expressions (29) to (31) all the integrals yield negative values.
This is quite good news for the left- and right-moving modes
since then, as noted in Ref. [15], both central charges can be
positive, andpositivity of central charges is not inconflictwith
the excitation energies of the left- and right-moving modes.
For the massive mode, assuming μ > 0, positivity of the
energy demands that the square of the graviton mass is
negative. But this is allowed in AdS and does not lead to
tachyonsas longas theBFcondition is satisfied. In thiscase, as
we have shown above, it is indeed satisfied. So we have a
stronger condition than the BF condition for positive energy
massive modes,

0 ≥ M2 ≥ Λ: ð35Þ
Therefore, unlike the case of the TMG, there is no conflict
between the bulk and boundary unitarity inMMG as noted in
Ref. [15]. Let us now look at the chiral point at whichM2

g ¼ 0

and hence the bulk graviton disappears as well as the left-
moving modes with cL ¼ 0. Right-moving modes survive
with positive energy and a central charge cR ¼ 3

G3μ
that differs

from that of the chiral gravity limit of TMG.Onemightworry
about the existence of the parameter region that could allow a
positiveμunder theseconditions. It is easy to see that for γ > 0
the region σγ ≤ 1=2 yields such a μ. There is another problem
that we do not deal with here; that iswhether the chiral gravity
point is “really” unitary in the sense that there will be
logarithmic solutions that could lead to a nonunitary loga-
rithmic field theory as in the case of the chiral gravity limit of
TMG [7]. For new massive gravity, see the analogous
discussions in Ref. [28].

B. Conserved charges

Having found the mass of the bulk spin-2 excitation, let
us now return to our construction of conserved charges.
With the background knowledge given in the previous
section, we can now write down the conserved charges for
the MMG theory as

Qμðξ̄Þ ¼ 1

2πG3

I
Σ
dli

��
σ −

γΛ
2μ2

�
qμiE ðξ̄Þ

þ 1

2μ
qμiE ðΞ̄Þ þ

1

2μ
qμiC ðξ̄Þ

�
; ð36Þ

where we have chosen the normalization factor to conform
to our earlier conventions in TMG. The integral is to be
evaluated on a circle at infinity. Let us apply this to the
rotating BTZ black hole or a spacetime that is asymptoti-
cally a rotating BTZ black hole with the metric

ds2 ¼ ðmG3 þ Λr2Þdt2 − adtdϕþ r2dϕ2

þ dr2

−mG3 − Λr2 þ a2

4r2
; ð37Þ

where a is the rotation parameter [1]. Choosing m ¼ 0 and
a ¼ 0 to be the background, we obtain the mass (energy)
corresponding to the Killing vector ξ̄μ ¼ −ð ∂∂tÞμ and the
angular momentum corresponding to the Killing vector
ξ̄μ ¼ ð ∂

∂ϕÞμ of the asymptotically BTZ black hole in MMG,
respectively, as

E ¼ 1

G3

��
σ −

γΛ
2μ2

�
mþ aΛ

μ

�
;

J ¼ 1

G3

��
σ −

γΛ
2μ2

�
a −

m
μ

�
: ð38Þ

Note that these expressions reduce to the TMG forms
when γ ¼ 0 [24]. Let us see the chiral gravity limit of
MMG from these expressions. The angular momentum
vanishes when

a ¼ m�
σ − γΛ

2μ2

�
μ
; ð39Þ

and at this point, the energy becomes

E ¼ m

G3μ
�
σ − γΛ

2μ2

�M2
graviton; ð40Þ

which also vanishes at the point at which the bulk graviton
is massless. Note also that positivity of black hole energy
is not in conflict with the positivity of the energy of
excitations.
One might wonder how conserved charges will be

defined for spacetimes that are not asymptotically AdS.
We shall not go into that discussion here, since it was
carried out in Refs. [29,30] and the expressions are valid for
MMG with small adjustments of the coefficients.

IV. CONCLUSIONS

Following the Killing charge techniques, we have con-
structed the conserved mass and angular momentum of the
recently found minimal massive gravity that only has an
on-shell Bianchi identity. But that is sufficient to define
conserved quantities. We have applied our formulation to
the rotating BTZ black hole. We have also studied
excitations of the theory and found the left and right
central charges of the boundary algebra as well as the
energies of massive and massless left- and right-moving
modes. There is no conflict between the boundary and bulk
unitarity. We also constructed the chiral gravity limit of the
MMG theory. As of now, it is not clear if this chiral theory
has a unitary boundary CFT or not.
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