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In this work the BB̄�=DD̄� system is studied in the Bethe-Salpeter approach with quasipotential
approximation. In our calculation both direct and cross diagrams are included in the one-boson-exchange
potential. The numerical results indicate the existence of an isoscalar bound state DD̄� with JPC ¼ 1þþ,
which may be related to the Xð3872Þ. In the isovector sector, no bound state is produced from the
interactions ofDD̄� and BB̄�, which suggests the molecular state explanations for Zbð10610Þ and Zcð3900Þ
are excluded.
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I. INTRODUCTION

The deuteron is a loosely bound state of two nucleons. It
is natural to expect other bound states composed of two
hadrons, that is hadronic molecular state [1]. After the
observation by the Belle Collaboration [2] the Xð3872Þwas
related to a loosely bound state of DD̄� immediately [3,4]
due to its mass near the DD̄� threshold. Recently, the Belle
Collaboration announced two charged bottomonium-like
structures Zbð10610Þ and Zbð10650Þ near the BB̄� and
B�B̄� thresholds [5]. The analysis of the angular distribu-
tion indicated both Zbð10610Þ and Zbð10650Þ favor
IGðJPÞ ¼ 1þð1þÞ. A structure Zcð3900Þ close to the
DD̄� threshold was also observed by the BESIII collabo-
ration in the decay of Yð4260Þ, Yð4260Þ → πþπ−J=ψ [6].
In Refs. [7,8], the BB̄�=DD̄� system was studied with a

nonrelativistic one-boson-exchange (OBE) model by solv-
ing the Schödinger equation. There exists a bound state
solution with quantum number JPC ¼ 1þþ from BB̄�
interaction while there exists no bound state solution from
DD̄� interaction. The results also suggested the importance
of π exchange [8]. It is easy to understand because the
binding energy is small for a hadronic molecular state so
that long range interaction should be more important than
short range interaction. In the nonrelatvistic OBE model,
potential VðrÞ is obtained with a direct Fourier trans-
formation on q [1,7]. However, for hadronic molecular
state, a system composed of two constituents with different
masses and/or spins is often involved, which is different
from the deuteron where proton and neutron are indistin-
guishable under isospin SUð2Þ symmetry. Such difference
may lead to invalidness of the potential model in coordinate
space, which has been ignored always.

The molecular state is a loosely bound state of two
hadrons, so the Bethe-Salpeter equation (BSE) is an
appropriate tool to deal with the molecular state. For
example, BSE was used to study deuteron and experimental
data about deuteron and nucleon-nucleon interaction were
well reproduced [9,10]. In Ref. [11] the BB̄� system has
been studied in the BSE approach with a quasipotential
approximation. However, in their study only direct diagram
was included in the calculation. Hence, the most important
π exchange as found in Ref. [8], was not included. In
Ref. [12] the Yð4274Þ and its three body decay were studied
in the BS equation approach with nonrelativistic approxi-
mation [12]. And this method was successfully applied to
the D�

0ð2400ÞN system. The Σcð3250Þ reported by the
BABAR collaboration recently can be explained as a
D�

0ð2400ÞN molecular state [13]. In this work, we will
develop a relativistic theoretical frame in BES approach to
study the BB̄�=DD̄� system with π exchange and search
bound sate solution to understand the structures Zbð10610Þ
and Zcð3900Þ.
This work is organized as follows. In next section we

present theoretical frame to study the BB̄�=DD̄� system
through solving the BSE. In Sec. III, the OBE potential is
derived with the help of the effective Lagrangian from the
heavy quark effective theory. The numerical results are given
in Sec. IV. In the last section, a brief summary is given.

II. BSE WITH QUASIPOTENTIAL
APPROXIMATION

The BSE of the vertex function Γi in general form is [14]

jΓi ¼ VGjΓi; ð1Þ

where V and G are the potential kernel and the propagator.*junhe@impcas.ac.cn
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A. BSE with definite quantum numbers

The PP̄� systems (here and hereafter we mark B or D as
P) can be categorized as the isovector (T) and isoscalar (S)
states under SU(3) symmetry with corresponding flavor
wave functions [7,8],

8>>>>><
>>>>>:

���ZðTÞ
PP̄�

þE ¼ 1ffiffi
2

p ðjP�þP̄0i þ cPþP̄�0Þ;���ZðTÞ
PP̄�

−
E
¼ 1ffiffi

2
p ðjP�−P̄0i þ cP−P̄�0Þ;���ZðTÞ

PP̄�
0
E
¼ 1

2
½ðjP�þP−i − P�0P̄0Þ þ cðPþP�− − P0P̄�0Þ�;

ð2Þ

���ZðSÞ
PP̄�

0
E
¼ 1

2
½ðjP�þP−i þ P�0P̄0Þ þ cðPþP�− þ P0P̄�0Þ�;

ð3Þ

where c ¼ � corresponds to C-parity C ¼ ∓, respectively.
Now we introduce the BSE with definite quantum

numbers especially isospin I and charge parity C. Here

we take the positive charged system jZðTÞ
PP̄�

þi as example to
explain how to obtain the BSE for a system with definite
quantum numbers. First, the coupled channel BSE for the
two-component of the positive charged system,

is figured in the first line of Fig. 1.
The coupled channel equation can be rewritten as two

equations shown in the second line. And we can construct
the vertex with definite quantum numbers as Eq. (4). After

flavor factors are isolated, two components of jZðTÞ
PP̄�

þi
should be the same under isospin SUð2Þ symmetry. Hence,
after rearranging the notations of the momenta in two
equations in the second line of Fig. 1 and summing them
up, we reach one equation at the last line of Fig. 1. Here the

flavor factors are isolated out as Iid and I
j
c for direct diagram

and cross diagram with i for different exchanged light
meson, which is the same as the flavor factors used in the
nonrelativistic OBE model [15,16]. In the existing OBE
model calculation, the final momenta of cross diagram are
not exchanged correctly [3,7,15]. This exchange does not
affect the nucleon-nucleon interaction in the study of
nuclear force, the u=d quark-quark interaction in the
consistent quark model and PP̄=P�P̄� system due to
the same masses and spins of nucleon, u=d quark and
the PP̄=P�P̄� under SUð2Þ symmetry. However, for the
PP̄� system composed of two constituents with different
masses and spins, it is essential to make such exchange in
the cross diagram.

B. Quasipotential approximation
in covariant spectator theory

The BSE of the vertex function Γ for a system composed
of a vector meson and a pseudoscalar meson (marked as
constituent 1 and 2) is written explicitly as

jΓμi ¼ VμνGνμ0 jΓμ0 i; ð5Þ

where the propagator is

Gμ0μ ¼ Gμ0μ
1 G2 ¼

−Pμ0μ
1

ðk21 −m2
1Þðk22 −m2

2Þ
≡ Pμ0μ

1 G0; ð6Þ

where Pμν
1 ¼ −gμν þ kμ

1
kν
1

m2
1

and k1;2 and m1;2 are the momen-

tum and mass for constituent 1 or 2.
As in the study of nucleon-nucleon interaction, a

quasipotential approach should be used to reduce
4-dimension equation to 3-dimension equation. Here we
adopt the covariant spectator theory which is suitable to
study a system with different constituents [9]. The heavy
constituent, here the vector meson marked as constituent 1,

FIG. 1 (color online). The BS equation for jZðTÞ
PP̄�

þi. The thick and thin lines are for pseudoscalar and vector mesons, respectively.
The red (gray) and blue (black) lines are for charged and neutral mesons, respectively. The black lines are for the diagram after isolating
the flavor factors to Ii. In the last line the SUð2Þ symmetry is applied.
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is treated as on-shell, so the numerator of propagator can be
written as Pμν

1 ¼ ϵμ1λϵ
ν
1λ with λ being the helicity of vector

meson. Here and hereafter the sum notation about helicity λ
is omitted. After multiplying the polarized vector ϵμ1λ, we
have

jΓλi ¼ Vλλ0G0jΓλ0 i; ð7Þ

with jΓλi ¼ ϵμ1λjΓμi and Vλλ0 ¼ ϵμ1λ · Vμν · ϵν1λ0 .
The propagator written down in the center of mass frame

where p ¼ ðW; 0Þ is

G0 ¼ 2πi
δþðk21 −m2

1Þ
k22 −m2

2

¼ 2πi
δþðk01 − E1ÞÞ

2E1½ðW − E1Þ2 − E2
2�
; ð8Þ

where E1;2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1;2 þ jkj2
q

. After moving a factor,

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2E2

W − E1 þ E2

s
; ð9Þ

to potential kernel and vertex, we have V̄λλ0 ¼ AVλλ0A0,
jΓ̄λi ¼ AjΓλi and Ḡ0 ¼ G0=A2. The vertex function can be
related to the Bethe-Salpeter bound state wave function as
jψλi ¼ Ḡ0jΓ̄λi and we reach the BSE for the wave function

Ḡ−1
0 jψλi ¼ V̄λλ0 jψλ0 i: ð10Þ

The normalization of the wave function can be obtained
by the normalization of the vertex,

1 ¼ i
hΓμjGμν −Gμμ0Vμ0ν0Gν0νjΓνi

p2 −M2

¼ ihψλjð−iN2δλλ0 − V̄λλ0 Þ0jψλ0 i: ð11Þ

Here,ψ → 0when jkj → ∞ andA is stablewith small jkj. As
usual we assume the dependence of V onW is small. Hence,
ðV̄Þ0 is negligible. The normalized wave functions can be
introduced as jϕi¼Njψi with N¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2E12E2

p
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ52W

p
.

The integral equation can be written explicitly as

ðW −E1ðkÞ−E2ðkÞÞϕλðkÞ ¼
Z

dk0

ð2πÞ3Vλλ0 ðk;k0;WÞϕλ0 ðk0Þ;

ð12Þ

with

Vλλ0 ðk; k0;WÞ ¼ iV̄λλ0 ðk; k0;WÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2E1ðkÞ2E2ðkÞ2E0

1ðk0Þ2E0
2ðk0Þ

p : ð13Þ

The BSE can be related to the nonrelativistic OBE model
[3,7] by nonrelativization and the Fourier transformation.
The reduced equation is

�∇2

2μ
− E

�
ϕðrÞ ¼

Z
drVðr; r0Þϕðr0Þ; ð14Þ

where μ is reduced mass and E ¼ m1 þm2 −W is the
binding energy. The potential in coordinate space can be
defined as

Vðr; r0Þ ¼ 1

ð2πÞ3
1

2

Z
dqdq0ei½q0·

r−r0
2
−q·rþr0

2
�Vðk; k0Þ; ð15Þ

where q ¼ k0 − k and q0 ¼ k0 þ k. For direct diagram the
potential after nonrelativization can be written as VðqÞ
which can be transformed to VðrÞδðr − r0Þ in coordinate
space. The Schrödinger equation can be obtained. For cross
diagram the potential is in the form Vðq0Þ, which is
transformed to VðrÞδðrþ r0Þ, so the wave functions ϕ in
the two sides of Eq. (14) are about r and −r. It is no longer
feasible to treat this issue with the Shrödinger equation.
However, the same treatment for direct diagram and cross
diagram was mistakenly applied by many authors [1,3,7].
In the current paper, we do not make such nonrelativization
but partial wave expansion of BSE.

C. Partial wave expansion

The wave function has an angular dependence as

ϕλðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2J þ 1

4π

r
DJ�

λR;λ
ðϕ; θ; 0ÞϕJ

λ;λR
ðjkjÞ; ð16Þ

where J partial wave is considered and DJ�
λR;λ

ðϕ; θ; 0Þ is the
rotation matrix with λR being the helicity of bound state.
The potential after partial wave expansion is [17]

VJ
λλ0 ðjkj; jkj0Þ ¼ 2π

Z
d cos θk;k0dJλ;λ0 ðθk;k0 ÞVλλ0 ðk; k0Þ; ð17Þ

where θk;k0 is angle between k and k0.
Now we reach a one-dimensional integral equation,

ðW − E1ðjkjÞ − E2ðjkjÞÞϕJ
λðjkjÞ

¼
Z jk0j2djk0j

ð2πÞ3 VJ
λλ0 ðjk0j; jk0jÞϕJ

λ0 ðjk0jÞ: ð18Þ

For the wave function, we have relations ϕλ ¼ ϕ−λ for
system with quantum number JP ¼ 1þ; 0− and ϕλ ¼ −ϕ−λ
for system with 1−. For potential we have Vλλ0 ¼ V−λ−λ0 .
Hence, we can only consider the independent wave
functions and potentials. In this paper we choose ϕ1 ¼ffiffiffi
2

p
ϕ� and ϕ0 for system with JP ¼ 1þ, ϕ0 for system with

JP ¼ 0þ and ϕ1 ¼
ffiffiffi
2

p
ϕ� for system with JP ¼ 1− with

proper normalization.
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Hence, we have the coupled equation,

ðW − E1ðkÞ − E2ðkÞÞϕJ
i ðjkjÞ

¼
X
j

Z jk0j2djk0j
ð2πÞ3 VJ

ijðjk0j; jk0jÞϕJ
j ðjk0jÞ; ð19Þ

with the normalization as

X
i

Z
jkj2djkjϕJ2

i ðjkjÞ ¼ 1: ð20Þ

The potential Vij can be written with VJ
λλ0 as

Vð1þÞ ¼
� V1

11 þ V1
1−1

ffiffiffi
2

p
V1
10

1ffiffi
2

p ðV1
01 þ V1

0−1Þ V1
00

�
;

Vð1−Þ ¼ V1
11 − V1

1−1;

Vð0þÞ ¼ V0
00: ð21Þ

D. Numerical solution of the BSE

The coupled one-dimensional integral Eq. (22) can be
rewritten in the form as

ϕJ
i ðjkjÞ ¼

Z
djk0jAijðjk0j; jk0jÞϕJ

j ðjk0jÞ: ð22Þ

To solve the integral equation, we discrete the jkj and jk0j
to jkjk and jkjk0 by the Gauss quadrature, then the above
equation can be transformed to a matrix equation,

Wϕik ¼
X
jk0

Aik;jk0 ðWÞωjϕjk0 : ð23Þ

We remark the indices ik and jk0 to new indices i and j and
absorb ω to A,and have

Wϕi ¼
X
j

~AijðWÞϕj; ð24Þ

which can be written in a compact matrix form,

Wϕ ¼ ~AðWÞϕ: ð25Þ
Due to the dependence of the total energy W of ~A, the

solution of above equation (25) is a nonlinear spectral
problem. In this paper the recursion method in Ref [18,19]
is adopted. The values of W and ψ are obtained by
performing a sequence of approximations by using the
recursion relation,

WðlÞ
n ψ ¼ ~AðWðl−1Þ

s Þψ ; ð26Þ
where the upper index ðlÞ and the lower index n ¼
1; 2;…s;… are the iteration number and eigenvalue
number, respectively. At the first iteration, we choose a
sought eigenvalue and substitute it into the kernel ~A. In the
current problem, the binding energy is very small, so the

total energy W is chosen as the sum of the masses of two
constituents m1 þm2. The nth eigenvalues can be obtained
with the help of the code of DGEEV function in the NAG
Fortran Library. If we want to obtain the sth eigenvalues,
the corresponding eigenvalue should be substituted in
kernel ~A on each iterative loop. In the current paper, we
choose ground state. With new kernel, the linear spectral
problem is solved again. On each iteration stopping

criterion jWðlÞ
s −Wðl−1Þ

s j < ϵ, which is related to precision
of the final results, is tested. Once stopping criterion
fulfilled, the iterative process is terminated. The eigenvalue

WðlÞ
s and eigenfunction ϕðlÞ

s obtained on the last iteration are
adopted as the solution.

III. THE ONE-BOSON-EXCHANGE POTENTIAL

To give the potential, we adopt the effective Lagrangians
of the pseudoscalar and vector mesons with heavy flavor
mesons from the heavy quark effective theory [20,21],

LP�PP ¼ −
2g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mPmP�

p
fπ

ðPbP
�†
aλ þ P�

bλP
†
aÞ∂λPba

þ 2g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mPmP�

p
fπ

ð ~P�†
aλ
~Pb þ ~P†

a
~P�
bλÞ∂λPab;

LP�PV ¼ −i
ffiffiffi
2

p
λgVελαβμðP�μ†

a ∂↔λ
Pb þ P†

a∂
↔λ

P�μ
b Þð∂αVβÞba

− i
ffiffiffi
2

p
λgVελαβμð ~P�μ†

a ∂↔λ
~Pb þ ~P†

a∂
↔λ

~P�μ
b Þð∂αVβÞab;

LPPV ¼ −i
βgVffiffiffi
2

p P†
a∂
↔

μPbV
μ
ba þ i

βgVffiffiffi
2

p ~P†
a∂
↔

μ
~PbV

μ
ab;

LP�P�V ¼ i
βgVffiffiffi
2

p P�†
a ∂↔μP�

bV
μ
ba

− i2
ffiffiffi
2

p
λgVmP�P�μ

b P�ν†
a ð∂μVν − ∂νVμÞba

− i
βgVffiffiffi
2

p ~P�†
a ∂↔μ

~P�
bV

μ
ab

− i2
ffiffiffi
2

p
λgVmP� ~P�μ†

a
~P�ν
b ð∂μVν − ∂νVμÞab;

LPPσ ¼ −2gσmPP
†
aPaσ − 2gσmP

~P†
a
~Paσ;

LP�P�σ ¼ 2gσmP�P�†
a P�

aσ þ 2gσmP� ~P�†
a
~P�
aσ;

where the octet pseudoscalar and nonet vector meson
matrices read as

P ¼

0
BBB@

π0ffiffi
2

p þ ηffiffi
6

p πþ Kþ

π− − π0ffiffi
2

p þ ηffiffi
6

p K0

K− K̄0 − 2ηffiffi
6

p

1
CCCA;

V ¼

0
BBB@

ρ0ffiffi
2

p þ ωffiffi
2

p ρþ K�þ

ρ− − ρ0ffiffi
2

p þ ωffiffi
2

p K�0

K�− K̄�0 ϕ

1
CCCA: ð27Þ
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Here we choose parameters g ¼ 0.59, β ¼ 0.9,
λ ¼ 0.56 GeV−1, gV ¼ 5.8 and gσ ¼ gπ=ð2

ffiffiffi
6

p Þ with
gπ ¼ 3.73 [22,23].
With above Lagrangians, the potential kernel V can be

written as

VDirect
V ¼ i

β2g2V
2

�ðk1 þ k01Þ · ðk2 þ k02Þ
q2 −m2

V

�
ϵ1 · ϵ01

VDirect
σ ¼ i4g2σmPmP�

ϵ1 · ϵ01
q2 −m2

σ

VCross
P n ¼ i

4g2mPmP�

f2π

q · ϵ1q · ϵ01
q2 −m2

P

VCross
V ¼ i8λ2g2V

1

q2 −m2
V
ðq · ϵ1q · ϵ01k2 · k

0
2

þ ϵ1 · ϵ01ðk2 · qk02 · q − k2 · k02q
2ÞÞ; ð28Þ

where q ¼ k01 − k1 for direct diagram and q ¼ k02 − k1 ¼
k2 − k01 for cross diagram. A form factor hðk2Þ ¼

Λ4

ðm2−k2Þ2þΛ4 is introduced to compensate for the off-shell

effect of heavy meson. In the propagator of exchanged
meson we make a replacement q2 → −jq2j to remove
singularities as Ref. [17]. The form factor for light meson
is chosen as fðq2Þ ¼ Λ2−m2

Λ2þjq2j. The flavor factors I
i
d and I

i
c for

direct and cross diagrams are presented in the following
Table I.

IV. NUMERICAL RESULTS

In this paper, the states with J ¼ 0; 1 are considered and
the results of the binding energy E ¼ m1 þm2 −W are
listed in Table II with cutoffs in the range 0.8 < Λ <
5 GeV and compared with the nonrelativistic OBE model
[7,8]. In this paper, only bound states with small binding
energy E < 10 MeV are considered because hadronic
molecular state is defined as a loosely bound state.
In the isoscalar vector, there exist the hidden bottomed

bound state solutions with quantum number IGðJPCÞ ¼
0−ð0−−Þ, 0−ð1−−Þ, 0−ð1þ−Þ and 0−ð1þþÞ and the hidden
charmed bound state solution with 0−ð1þ−Þ and 0−ð1þþÞ.

The DD̄� bound state with IGðJPCÞ ¼ 0þð1þþÞ can be
related to the Xð3872Þ. This bound state was also found in
the nonrelativistic OBE model [7] but with different cut-
offs. It is well known that there exists a cc̄ component in X
(3872) [24]. In the current paper only the hadronic
molecular states are considered. The discussion about
the cc̄ component is beyond the scope of this work and
not considered here.
In the isovector sector, the nonrelativistic OBE model

predicted a molecular state BB̄� with IGðJPÞ ¼ 1þð1þÞ
with cutoffs about 2 GeV, which is assigned to the observed
Zbð10610Þ state [7]. The observed Zcð3900Þ is also
explained as DD̄� state in literatures [25,26]. In our
calculation, there does not exist isovector bound state
solution with all cutoffs Λ < 5 GeV, which suggests the
structures Zbð10610Þ and Zcð3900Þ should be originated
from other mechanisms, such as four-quark states or cusp
effect [27]. In fact, if we compared the experimental masses
for Zbð10610Þ and Zcð3900Þ and the thresholds for BB̄�

and DD̄�, we can find that these two states are above the
thresholds, which conflicts with the molecular state
assumption. The lattice results disfavored the possibility
of a shallow bound state for DD̄� interaction also [28,29].

TABLE I. The flavor factors Iid and Iic for direct and cross
diagrams and different exchange mesons.

Direct diagram Cross diagram

V S P V

Exchanged meson ρ ω σ π η ρ ω

ZðTÞ
PP̄� − 1

2
1
2

1 − 1
2

1
6

− 1
2

1
2

ZðSÞ
PP̄�

3
2

1
2

1 − 3
2

1
6

3
2

1
2

TABLE II. The binding energies E for DD̄� and BB̄� systems
with different cutoff Λ obtained in this work (BS) and in the
nonrelativistic OBE model (OBE) [7]. “� � �” means that no bound
state is found. The cutoff Λ and binding energy are in the units of
GeV and MeV, respectively.

DD̄� BB̄�

BS OBE BS OBE

IGðJPCÞ Λ E Λ E Λ E Λ E

0−ð0−−Þ � � � � � � 1.5 1.6
� � � � � � 1.7 4.1
� � � � � � 1.9 6.7

0þð0−þÞ � � � � � � � � � � � �
0−ð1−−Þ � � � � � � 1.6 1.4

� � � � � � 1.7 3.7
� � � � � � 1.8 6.4

0þð1−þÞ � � � � � � � � � � � �
0−ð1þ−Þ 1.3 0.2 1.4 3.44 1.1 0.6 1.4 1.56

1.4 6.0 1.5 16.57 1.2 7.8 1.5 12.95
0þð1þþÞ 2.0 0.2 1.1 0.61 1.3 0.2 1.1 0.61

2.2 1.4 1.2 4.42 1.5 3.0 1.2 4.42
2.4 4.1 1.3 11.78 1.7 7.4 1.3 11.78

1þð0−Þ � � � � � � � � � � � �
1−ð0−Þ � � � � � � � � � � � �
1þð1−Þ � � � � � � � � � � � �
1−ð1−Þ � � � � � � � � � � � �
1þð1þÞ � � � � � � � � � � � � � � � � � � 2.1 0.22

� � � � � � � � � � � � � � � � � � 2.2 1.64
� � � � � � � � � � � � � � � � � � 2.5 4.74

1−ð1þÞ � � � � � � � � � � � � � � � � � � 4.9 0.14
� � � � � � � � � � � � � � � � � � 5.0 0.41
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V. SUMMARY

In this paper the BB̄� and DD̄� systems are studied in a
BSE approach with quasipotential potential approximation
by adopting the covariant spectator theory which is suitable
to study a system with different constituents. In our
calculation, both direct and cross diagrams are considered
in the one-boson-exchange potential so that the π exchange
which was found more important in the BB̄� and DD̄�
interactions [7,8] is included. Partial wave expansion is
used to reduce the BSE to a one-dimensional equation,
which is solved by a recursion method. The numerical
results indicate the existence of an isoscalar bound state
DD̄� with JPC ¼ 1þþ, which may be related to the
Xð3872Þ. In the isovector sector, no bound state is produced
from both DD̄� and BB̄� interactions, which disfavors the
molecular state explanations for Zbð10610Þ and Zcð3900Þ.
It is found in our calculation that for cross diagram the

BSE can not be transformed to the Schrödinger equation
with potential in coordinate space VðrÞ. This problem
appears in all systems composed of two constituents with
different masses and/or spins which can convert to each

other, such as the K exchange potential between s quark
and u=d quark in the constituent quark model [30] andNN�
interaction [31] where a potential in coordinate space are
used. The results obtained in this work show there does not
exist isovector BB̄�=DD̄� bound state, which is more
consistent with the experiment and the lattice QCD
[28,29]. Hence, one should be cautious in the direct
application of potential in coordinate space obtained by
a simple Fourier transformation, which has been widely
used in the studies of the hadron spectrum, hadronic
molecular states and other fields [1,7,30].
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