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We derive the relativistic chiral transport equation for massless fermions and antifermions by performing
a semiclassical Foldy-Wouthuysen diagonalization of the quantum Dirac Hamiltonian. The Berry
connection naturally emerges in the diagonalization process to modify the classical equations of motion
of a fermion in an electromagnetic field. We also see that the fermion and antifermion dispersion relations
are corrected at first order in the Planck constant by the Berry curvature, as previously derived by Son and
Yamamoto for the particular case of vanishing temperature. Our approach does not require knowledge of
the state of the system, and thus it can also be applied at high temperature. We provide support for our result
by an alternative computation using an effective field theory for fermions and antifermions: the on-shell
effective field theory. In this formalism, the off-shell fermionic modes are integrated out to generate an
effective Lagrangian for the quasi-on-shell fermions/antifermions. The dispersion relation at leading order
exactly matches the result from the semiclassical diagonalization. From the transport equation, we
explicitly show how the axial and gauge anomalies are not modified at finite temperature and density
despite the incorporation of the new dispersion relation into the distribution function.
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I. INTRODUCTION

Symmetries in classical physical systems are not always
preserved when the laws of quantum mechanics are taken
into account. One remarkable example of this fact is given
by the quantum chiral anomaly, which explains the decay
of the neutral pion into two photons [1,2]. While the
implications in particle physics of the chiral anomaly have
been thoroughly studied, its macroscopic consequences
have not been enough explored. Only recently has it been
pointed out that the relativistic hydrodynamical equations,
which are the expressions of the conservation laws of a
system, would be affected by the chiral anomaly [3]. In
particular, all these studies have triggered interest in study-
ing macroscopical effects of the quantum chiral anomaly in
heavy ion colliders (see the reviews in Refs. [4,5] and
references therein).
In a series of Refs. [6–9], it has been shown how the

chiral anomaly equation could be derived from classical
transport theory in systems with well-defined Fermi sur-
faces. These references have shown that if a Berry con-
nection is included in the particle action of a relativistic
fermion, and noncanonical Poisson brackets are taken into
account, the associated classical transport approach repro-
duces the triangle anomaly present in quantum field theory.

The present work is in part motivated by the fact that while
Refs. [6–9] seem to describe the same transport equation,
they do not. The different proposals differ in the form of the
fermionic dispersion law, and also in explicit terms that
appear in the kinetic equation. Thus, they lead to a different
dynamical evolution of the fermion distribution function.
Only the authors of Ref. [8] made a derivation of some (but
not all) the terms that appear in their proposed transport
equation, starting with an effective field theory valid only
for fermion modes close to a well-defined Fermi surface.
The proof, thus, was only strictly valid at zero temperature
T ¼ 0, where antiparticles’ degrees of freedom are inte-
grated out. In Ref. [10], a consistency check of the proposal
of Ref. [8] was made. It was then shown that if the same
equation was used for particles and antiparticles at finite T,
some anomalous Feynman diagrams taken in the so-called
hard thermal loop approximation could be reproduced [11].
In this manuscript, we present a derivation of the chiral

transport equation of Son and Yamamoto. It is based on
deriving quantum corrections to the classical equations of
motion of a charged massless fermion in the background of
an electromagnetic field. In order to do so, we start with
the quantum Dirac Hamiltonian and perform a Foldy-
Wouthysen diagonalization [12] in powers of the Planck
constant ℏ, following the methods and results of Ref. [13];
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see also Ref. [14]. The rotated position and momentum
operators can be obtained at the same order in ℏ as well,
and their associated commutators turn out to be nonca-
nonical. We then take the diagonalized Hamiltonian at
order ℏ and treat it classically, together with the Poisson
brackets (PB) that can be deduced from the quantum
commutators of the theory. In this way we can reproduce
the transport equation first proposed by Son and
Yamamoto, both for particles and for antiparticles, and
without any reference to the state of the system, and in
particular to having a well-defined Fermi surface. We can
understand the quantum origin of the noncanonical PB
structure of the theory, and that the fermion and antifermion
dispersion laws are affected by the Berry connection at the
order of accuracy at which one is working.
A complementary proof can also be presented at a

quantum field theory level. Using effective field theory
techniques, it is also possible to disentangle the particle and
antiparticle degrees of freedom associated with the Dirac
field. We propose what we call on-shell effective field
theory, which aims to describe the almost on-shell propa-
gation of massless fermions and antifermions. Using these
methods, we check the fermion and antifermion dispersion
laws obtained through the semiclassical diagonalization of
the Dirac Hamiltonian. We then point out that by following
the same methods and reasoning as Son and Yamamoto,
one could in principle derive from our effective field theory
their chiral transport equation without references to having
a Fermi surface.
This paper is structured as follows: In Sec. II, we review

the process of diagonalization of the Dirac Hamiltonian at
order OðℏÞ, and how the Berry connections modify the
classical Hamiltonian and change the commutators of the
space and momentum operators for a massive fermion. In
Sec. III, we use the Hamiltonian obtained previously to
derive semiclassical corrections in classical transport theory
for massless fermions, and thus show how to derive the
transport approach of Son and Yamamoto. In Sec. IV, we
derive an effective field theory valid to describe processes
dominated by massless quasi-on-shell fermions, which we
use to check the semiclassical corrections to the fermion
and antifermion dispersion laws. We use natural units
c ¼ kB ¼ ℏ ¼ 1 in the manuscript, but we keep ℏ explicitly
in Secs. II and III to show all the ℏ corrections to the
classical dynamics that have to be consistently kept. An
appendix is devoted to showing the details of the derivation
of the chiral anomaly equation for a relativistic plasma.

II. SEMICLASSICAL DIAGONALIZATION

We review in this section the semiclassical diagonaliza-
tion of the quantum Dirac Hamiltonian to order OðℏÞ
performed in Ref. [13]. After checking the results of
Ref. [13], we have detected some relevant typos in its
final equations that are important for our present discus-
sion, and we will point them out below.

Let us consider a relativistic fermion of mass m in an
electromagnetic field. The Dirac Hamiltonian reads

H0ðP;RÞ ¼ α · ðP − eAðRÞÞ þ βmþ eA0ðRÞ; ð1Þ

where in the Dirac basis,

αk ¼
�

0 σk
σk 0

�
; β ¼

�
I 0

0 −I
�
; ð2Þ

and σk and I are the Pauli and unit 2 × 2 matrices,
respectively. Here Aμ ¼ ðA0;AÞ is the vector gauge field
potential. For simplicity, we will assume that it does not
depend on time. This Hamiltonian is explicitly nondiagonal
in this basis due to the presence of the Dirac matrices α.
The classical Hamiltonian, i.e. assuming that R com-

mutes with P, can be diagonalized by performing a Foldy-
Woythuysen transformation [12] with the help of the
unitary matrix

UðP;RÞ ¼ Eþmþ βα · ðP − eAðRÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EðEþmÞp ; ð3Þ

with E≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðP−eAðRÞÞ2þm2

p
. The resulting Hamiltonian

HD

HD ¼ UH0U† ¼ βEþ eA0ðRÞ ð4Þ

is diagonal by blocks in Dirac space, with the upper-left
block corresponding to particles and the bottom-right to
antiparticles.
When one considers the noncommuting character of the

canonical variables—that is, ½Ri; Pj� ¼ iℏδij—it is still
possible to perform a perturbative diagonalization in
powers of 1=m. This diagonalization allows to reproduce
the nonrelativistic Pauli Hamiltonian, as well as higher
relativistic corrections [12]. Although not so widely known,
it is also possible to perform a perturbative diagonalization
in powers of the Planck constant ℏ [13,14]. This last
diagonalization is the only one possible for the massless
fermions we will be considering in the next section of this
manuscript. Here we will briefly describe how to achieve
this separation between particle and antiparticle degrees of
freedom at order OðℏÞ [13].
It is evident that at order Oðℏ0Þ, when the canonical

variables commute, the matrix U diagonalizes the Dirac
Hamiltonian. If we consider that the canonical variables do
not commute, then it is necessary to choose a prescription
for the operators where products of the canonical variables
appear. One possible choice is to symmetrize all operators
that depend on P and R. By symmetrization, one means
that each operator has to be written in a form where half of
all the powers of P have been put on the left, and the other
half on the right.
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After the symmetrization process, the matrix UðP;RÞ
does not remain unitary. Thus, one rather uses the matrix
UðP;RÞ þ XUðP;RÞ, where X is the contribution that
allows us to preserve unitarity at order OðℏÞ. This matrix
can be explicitly computed and reads [13]

X ¼ i
4ℏ

½APi ;ARi
�; ð5Þ

written in terms of the Berry connections

ARi
¼ iℏU∇Pi

U†; ð6Þ
APi

¼ −iℏU∇Ri
U†: ð7Þ

The reason why the above functions are called Berry
connections comes from the fact that they give rise to the
same Berry curvatures [15] that can be computed starting
from the momentum eigenstates of the Dirac Hamiltonian.
An explicit evaluation of these functions from the matrix
U gives

ARi
¼ ℏ

−iα · ðP − eAÞðPi − eAiÞβ − iβEðEþmÞαi − E½Σ × ðP − eAÞ�i
2E2ðEþmÞ ; ð8Þ

where

Σk ¼
�
σk 0

0 σk

�
ð9Þ

is the spin matrix and

APi ¼ e∇RiAkðRÞARk : ð10Þ

Note that this diagonalization is respectful of the gauge
symmetry. While the Berry connection ARi

only depends
on P − eAðRÞ, operating as a covariant derivative when
acting on the fermion wave function, the connection APi

explicitly breaks gauge invariance, as it depends on ∇RiAk.
However, it is easy to prove that X, and thus U þ XU, has
the gauge covariant properties one requires to preserve the
gauge symmetry.
After the unitary transformation, the new Hamiltonian

still includes nondiagonal terms of order OðℏÞ. However,
as proven in Ref. [13], the true diagonalized Hamiltonian
coincides with the projection on the diagonal of the trans-
formed Hamiltonian at this stage. After a straightforward
but tedious computation, one arrives at an almost diag-
onal Hamiltonian, which when projected on the diagonal
gives

HD ¼ βEðr;pÞ

þ i
2ℏ

Pf½βEðr;pÞ;ARi
�APi − ½βEðr;pÞ;APi �ARi

g
þ eA0ðrÞ; ð11Þ

where P is the projection over the diagonal operator and
Eðr;pÞ is

Eðr;pÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp − eAðrÞÞ2 þm2

q
: ð12Þ

Working out the commutators and projecting into the
diagonal, we find

HD ¼ βE − β
eℏΣ · B
2E

− β
eL ·B

E
þ eA0ðrÞ; ð13Þ

where an intrinsic angular momentum, which takes into
account spin-orbit effects, has been introduced as

L ¼ ~p × PðARÞ ¼ ℏ
~p × ð ~p × ΣÞ
2EðEþmÞ ; ð14Þ

where ~p ¼ p − eAðrÞ is the kinetic momentum.
Equation (13) is the same Hamiltonian that appears in

Ref. [13], although we note a typo in their Eq. (49). It also
coincides with the result of Ref. [14].
We have already written the Hamiltonian in the new

basis in terms of the rotated position and momentum
operators, which at order OðℏÞ read

r ¼ P½UðP;RÞRU†ðP;RÞ� ¼ Rþ PðARÞ; ð15Þ

p ¼ P½UðP;RÞPU†ðP;RÞ� ¼ Pþ PðAPÞ: ð16Þ

It is possible to check that the new Hamiltonian preserves
gauge invariance at order OðℏÞ, as the new kinetic
momentum ~p ¼ p − eAðrÞ can be checked to preserve
the gauge symmetry if one expands AðrÞ at that order.
Not surprisingly, the commutation relations of the new

variables turn out to be noncanonical. Their basic commu-
tators can be derived from Eqs. (15) and (16) as

½ri; rj� ¼ ½Ri; PðARj
Þ� − ½Rj; PðARi

Þ� þ ½PðARi
Þ; PðARj

Þ�;
½pi; pj� ¼ ½Pi; PðAPj

Þ� − ½Pj; PðAPi
Þ� þ ½PðAPi

Þ; PðAPj
Þ�;

½ri; pj� ¼ iℏδij þ ½Ri; PðAPj
Þ� − ½Pj; PðARi

Þ�
þ ½PðARi

Þ; PðAPj
Þ�: ð17Þ

The explicit evaluation of the above commutators gives

½ri; rj� ¼ iℏ2Gij ¼ −iℏ2ϵijkGk; ð18Þ
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where

Gð ~pÞ ¼ 1

2E3

�
mΣþ ðΣ · ~pÞ ~p

Eþm

�
: ð19Þ

Here Gij can be interpreted as a field strength tensor in
momentum space.1

The remaining commutators are better expressed in
terms of the kinetic momentum as

½ ~pi; ~pj� ¼ ieℏFij þ ie2ℏ2FikFjmGkm; ð20Þ

½ri; ~pj� ¼ iℏδij þ ieℏ2FjkGik: ð21Þ

These relations coincide with those presented in Ref. [14].
With the basic commutators, one could derive the

associated equations of motion. We will only write them
in the next section for massless fermions.

III. SEMICLASSICAL KINETIC THEORY FOR
MASSLESS FERMIONS

The Hamiltonian derived in Eq. (13) can be used to
derive semiclassical corrections—that is, corrections of
order OðℏÞ to the classical dynamics. In particular, it
can be used to derive the first ℏ corrections to the well-
known Vlasov transport equations. We will prove in this
section that when we use the semiclassical Hamiltonian
together with the associated noncanonical variables in the
massless case, we reproduce the chiral kinetic theory of
Ref. [8]. We should stress here that for massive fermions
the same method and reasoning could be used to obtain
their corresponding transport equations, although such a
case will be treated elsewhere [see for instance the recent
results of Ref. [18], but where the fermion dispersion
relation was taken at Oðh0Þ].
Several drastic simplifications occur in the dynamics in

the massless case. We first note that when m ¼ 0, the
Hamiltonian Eq. (13) can be expressed as

HD ¼ βpð1 − eℏλΩ ·BÞ þ eA0ðrÞ; ð22Þ

where we have defined the Berry curvature

Ω ¼ p
2p3

ð23Þ

and the helicity operator

λ ¼ Σ · p
p

; ð24Þ

which can take values �1. Note that we have renamed in
this section the kinetic momentum ~p as p to simplify the
notation. Note also that for m ¼ 0, the field in Eq. (19) is
now written as G ¼ λΩ.
From the above Hamiltonian, we can immediately read

the dispersion relations. Assuming A0 ¼ 0, the dispersion
relation for the particle reads

ϵþp ¼ p

�
1 − eℏλ

B · p
2p3

�
; ð25Þ

while for the antiparticle

ϵ−p ¼ −p
�
1 − eℏλ

B · p
2p3

�
: ð26Þ

In the semiclassical diagonalization we carried out, in an
ℏ expansion, one assumes that quantum corrections to the
classical physics should be small. Thus, the validity of our
results requires that eℏB · p=p3 ≪ 1, as otherwise one
should keep more corrections in the diagonalization
procedure.
The dispersion relations (25) and (26) have been used in

previous works—see Refs. [8,10,19]—although only the
particle dispersion relation has been derived for fermions
close to the Fermi surface at temperature T ¼ 0 using
effective field theory methods [8]. Here we see that the
dispersion relations used in these references can naturally
be derived after performing the semiclassical diagonaliza-
tion of the massless quantum Dirac Hamiltonian.
If we want to compute ℏ corrections to the classical

equations of motion of a fermion in an electromagnetic
field, we need the Poisson brackets (PB) of the associated
position and momentum variables. These can be deduced
from the quantum commutators, through the standard rule
1
iℏ ½·; ·� → f·; ·gPB. In the massless case, and from the
quantum commutators obtained in the previous section,
one finds

fri; rjgPB ≈ −ℏϵijkλΩk; ð27Þ

fpi; pjgPB ≈ eϵijkBk; ð28Þ

fri; pjgPB ≈ δij; ð29Þ

where we have only kept the leading ℏ corrections in the
coordinate PB, and have neglected other quantum correc-
tions in front of the classical values otherwise.
With the Hamiltonian in Eq. (22) and the PBs above, one

obtains the classical equations of motion for a right-handed
fermion (λ ¼ 1):

1It is interesting to note here that while the Berry connection
for massless fermions transforms underUð1Þ × Uð1Þ rotations, in
the massive case the Berry connections are non-Abelian and
transform under the SUð2Þ group [16]. (See also the coincident
results in Ref. [17], where the Berry curvature vector defined
there corresponds to our −ℏ2G.)
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_p ¼ −
∂ϵþp
∂r þ eðEþ _r ×BÞ; ð30Þ

_r ¼ ∂ϵþp
∂p − ℏð _p × ΩÞ: ð31Þ

Substituting one equation into the other, one then gets

ð1þ eℏB · ΩÞ_r ¼ ~v þ eℏð ~E ×ΩÞ þ eℏBð~v · ΩÞ; ð32Þ

ð1þ eℏB · ΩÞ _p ¼ eð ~Eþ ~v ×BÞ þ e2ℏΩð ~E ·BÞ; ð33Þ

where we have defined

~E ¼ E −
1

e

∂ϵþp
∂r ; ð34Þ

~v ¼ ∂ϵþp
∂p : ð35Þ

Similar equations could be found for left-handed particles,
or for antiparticles of any helicity.

Note that these equations are essentially the same as
those first written in Ref. [7] (see also Ref. [9]), except for
the fact that in these references the fermion dispersion
relation was taken as ϵp ¼ p. Here we see that this
approximation is not correct if one wants to consistently
take into account all the ℏ corrections to the classical
dynamics. Furthermore, we have checked in Ref. [10] that
the anomalous hard thermal loop diagrams that appear in a
quantum field theory computation can only be reproduced
if the ℏ corrections to the fermion and antifermion
dispersion laws are taken into account.
It is now possible to compute semiclassical corrections to

the transport equation. Using Liouville’s theorem, one can
evaluate the dynamical evolution of the one-particle dis-
tribution function fp and find the kinetic equation

dfp
dt

¼ ∂fp
∂t þ _r ·

∂fp
∂r þ _p ·

∂fp
∂p ¼ 0; ð36Þ

which can be expressed for λ ¼ 1 as

∂fp
∂t þ ð1þ eℏB ·ΩÞ−1

�
½~v þ eℏ ~E ×Ωþ eℏBð~v ·ΩÞ� · ∂fp∂r þ e½ ~Eþ ~v ×Bþ eℏΩð ~E · BÞ� · ∂fp∂p

�
¼ 0: ð37Þ

This equation agrees exactly with the chiral kinetic
equation first proposed by Son and Yamamoto in
Ref. [8]. It also agrees with the transport equation of a
Bloch electron in a solid previously derived in Ref. [20].
Note that in the ℏ → 0 limit, it reduces to the standard
kinetic equation of a charged particle in the presence of an
electromagnetic field.
Given the noncanonical character of the r;p

variables, the invariant measure of the phase-space
integration has to be modified [21]. It is given by
ð1þ eℏB · ΩÞd3rd3p=ð2πℏÞ3 [20]. Then the particle
density associated with right-handed fermions reads

n ¼
Z

d3p
ð2πℏÞ3 ð1þ eℏB · ΩÞfp; ð38Þ

while the associated current can be expressed as [8]

j ¼ −
Z

d3p
ð2πℏÞ3

�
ϵp

∂fp
∂p þ eℏΩ ·

∂fp
∂p ϵpBþ ℏϵpΩ

×
∂fp
∂r − eℏfpE ×Ω

�
: ð39Þ

After integrating the kinetic equation over the (invariant)
momentum measure, one then obtains

∂n
∂t þ∇ · j ¼ −e2ℏ

Z
d3p

ð2πℏÞ3
�
Ω ·

∂fp
∂p

�
E ·B: ð40Þ

Written in this form, one sees the clear quantum origin of
the nonconservation of the current, because if the quantum
corrections to the classical equations of motion were
neglected, the current would be conserved.
From Eq. (40) one can deduce the same quantum chiral

anomaly equation of quantum field theory for an equilib-
rium relativistic plasma if we take into account the different
contributions of particles and antiparticles of different
helicities that are present in the plasma. In Ref. [10] (see
also the footnote of Ref. [7]), we have computed this
integral for the equilibrium one-particle distribution func-
tion to reproduce the equation of the chiral anomaly and
check that it does not receive thermal corrections. However,
there the fermion dispersion relation was taken at order
Oðℏ0Þ, which is not completely consistent, as ℏ corrections
also affect the fermion dispersion law. It is still possible to
show that the chiral anomaly equation is not affected if the
ℏ correction to the fermion dispersion law is taken into
account. In order to do so, we proceed as in Ref. [10], and
define a sphere of radius Δ centered at p ¼ 0 to evaluate
Eq. (40). The nonzero divergence of the current can then be
interpreted as arising from the flux of fermions that cross
the surface S2ðΔÞ defined by that sphere. Then, taking the
Δ → 0 limit,
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∂n
∂t þ∇ · j ¼ e2ℏ lim

Δ→0

Z
S2ðΔÞ

dS
ð2πℏÞ3 ·ΩfpE ·B: ð41Þ

In thermal equilibrium, the distribution functions for
right- and left-handed fermions and antifermions read

fR;Lp ¼ 1

exp ½1T ðp ∓ eℏ B·p
2p2 − μR;LÞ� þ 1

; ð42Þ

f̄L;Rp ¼ 1

exp ½1T ðp� eℏ B·p
2p2 þ μR;LÞ� þ 1

: ð43Þ

The computation of the chiral anomaly equation can be
exactly done with the new dispersion relation. Details are
given in the Appendix. The divergence of the axial current
jμA ¼ jμR − jμL is easily derived to obtain

∂μj
μ
A ¼ e2

2π2ℏ2
E · B ¼ 2α

πℏ
E · B; ð44Þ

which agrees exactly with the same result if we would have
ignored the quantum corrections to the fermion dispersion
law; see Ref. [10]. The same calculation reveals that these
corrections do not affect the gauge anomaly—that is, that
the electromagnetic (or any vectorial) current is conserved.

IV. ON-SHELL EFFECTIVE FIELD THEORY

The semiclassical diagonalization performed in Sec. II
should have a counterpart in a quantum field theoretical
framework. In fact, it is possible to disentangle the particle
and antiparticle degrees of freedom using effective field
theory (EFT) techniques. In this section, we introduce an
EFT for almost on-shell massless fermions and antifer-
mions, which is basically obtained by integrating out all the
off-shell modes. Therefore, we call it on-shell effective field
theory (OSEFT). It is aimed to be used for the description
of processes dominated by on-shell fermions in an ultra-
relativistic plasma. In this work, we will restrict ourselves
to show that with this EFT one can have an independent
check of the particle and antiparticle dispersion relations
written in Eqs. (25), (26), leaving further developments for
a future work [22]. We will also see that the methods of
Ref. [8] could also be used to derive the chiral transport
equation without any reference to a well-defined Fermi
surface. We are inspired by many other EFTs: in particular,
by the large-energy effective theory (LEET), as formulated
in Ref. [23], and by the high-density effective theory
(HDET) of Refs. [24,25], which is, however, only valid
at finite density and T ¼ 0. In order to simplify notation,
we will again work in natural units ℏ ¼ 1.
Let us consider a relativistic electromagnetic plasma

close to thermal equilibrium, at temperature T, and com-
posed by massless fermions. The propagation of an on-shell
fermion is in principle described by its energy E ¼ p and

the lightlike four-velocity vμ ¼ ð1; vÞ, where v is the three-
dimensional unit vector, in such a way that pμ ¼ pvμ. The
four-momentum of a fermion which is nearly on-shell can
be written as

qμ ¼ pvμ þ kμ; ð45Þ

where kμ is the residual momentum, i.e. the part of the
momentum which makes qμ off shell. Requiring that q2 be
small is equivalent to demanding that v · k ≪ p and
k2 ≪ q2. These constraints basically impose that the com-
ponent of the three-momentum orthogonal to v is k⊥ ≪ p.
A similar decomposition of the momentum for almost

on-shell antifermions can be done as follows:

qμ ¼ −p ~vμ þ kμ; ð46Þ

where ~vμ ¼ ð1;−vÞ.
We define the particle/antiparticle projectors

P�v ¼
1� α · v

2
; αi ¼ γ0γi; ð47Þ

where in the Dirac representation αi is given by Eq. (2).
With the usual projector relations

P2
�v ¼ P�v; P�vP∓v ¼ 0; Pþv þ P−v ¼ 1;

ð48Þ

we can write the Dirac field as

ψvðxÞ ¼ e−ipv·xðPþvχþvðxÞ þ P−vH1
−vðxÞÞ

þeip~v·xðP−vξ−vðxÞ þ PþvH2þvðxÞÞ; ð49Þ

where we have factored out the dependence on p, so the
particle/antiparticle fields appearing on the right-hand side
of Eq. (49) only depend on the residual momentum.
Ifwewant to describeonly fermions and antifermionswith

arbitrary velocity directions, the corresponding Lagrangian
can then be written as a sum over different velocities,

Lf ¼
X
v

Lfv; ð50Þ

with

Lfv ¼ ψ̄viDψv ¼ ψ̄vði∂ − eAÞψv: ð51Þ

Further, using that

ψ̄þvðxÞγμψþvðxÞ ¼ vμψ̄þvðxÞγ0ψþvðxÞ; ð52Þ

ψ̄−vðxÞγμψ−vðxÞ ¼ ~vμψ̄−vðxÞγ0ψ−vðxÞ; ð53Þ

ψ̄�vðxÞγμψ∓vðxÞ ¼ ψ̄�vðxÞγμ⊥ψ∓vðxÞ; ð54Þ
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where γμ⊥ ¼ ð0; γi − viv · γÞ, one can write

Lf ¼
X
v

ðχ̄þvðxÞiγ0v ·DχþvðxÞ þ H̄1
−vðxÞγ0ð2pþ i ~v ·DÞH1

−vðxÞ þ χ̄þvðxÞiD⊥H1
−vðxÞ þ H̄1

−vðxÞiD⊥χþvðxÞÞ

þ
X
v

ðξ̄−vðxÞiγ0 ~v ·Dξ−vðxÞ þ H̄2þvðxÞγ0ð−2pþ iv ·DÞH2þvðxÞ þ ξ̄−vðxÞiD⊥H2þvðxÞ þ H̄2þvðxÞiD⊥ξ−vðxÞÞ; ð55Þ

where we have defined D⊥ ¼ γμ⊥Dμ, and we have kept
only the terms of the Lagrangian which respect energy-
momentum conservation.
It is now possible to integrate out theH1

−v andH2þv fields
by using their classical equations of motion. Using

ð2pþ i ~v ·DÞH1
−v þ iγ0D⊥χþv ¼ 0; ð56Þ

ð−2pþ iv ·DÞH2þv þ iγ0D⊥ξ−v ¼ 0; ð57Þ

one can solve for H1
−v

H1
−vðxÞ ¼ −

iγ0

2pþ i ~v ·D
D⊥χþv

¼ −
iγ0

2p

X∞
n¼0

�
−i

~v ·D
2p

�
n
D⊥χþvðxÞ; ð58Þ

and for H2þv

H2þvðxÞ ¼ −
iγ0

−2pþ iv ·D
D⊥ξ−v

¼ iγ0

2p

X∞
n¼0

�
i
v ·D
2p

�
n
D⊥ξ−vðxÞ: ð59Þ

Substituting the lowest-order solutions of H1
−v; H2þv into

the Lagrangian Eq. (55), we end up with

Lf ¼
X
v

�
χ†þvðxÞiv ·DχþvðxÞ − χ†þvðxÞ

ðD⊥Þ2
2p

χþvðxÞ
�

þ
X
v

�
ξ†−vðxÞi ~v ·Dξ−vðxÞ þ ξ†−vðxÞ ðD⊥Þ2

2p
ξ−vðxÞ

�
;

where fermion and antifermion degrees of freedom are
totally decoupled.
The dispersion laws can be derived by taking into

account that

ðD⊥Þ2 ¼ ðD⊥Þ2 þ eΣ · vB · v; ð60Þ

where D⊥ ¼ ð0;D − vðv · DÞÞ. Noting that ϵq ≡ q0 ¼ pþ
k∥ þ k2⊥=ð2pÞ þ � � � and that q=q0 ¼ v þ k⊥=pþ � � �, we
can then write the dispersion relation for the fermions as

ϵq ¼ q − eλ
B · q̂
2q

þO
�
1

q2

�
; ð61Þ

where λ is the value of the helicity. Please note that a similar
dispersion law was found for fermions close to the Fermi
surface in Ref. [8] using the HDET, where in that
case p ¼ μ.
In Ref. [8], the HDET has been used to derive the chiral

kinetic theory valid close to the Fermi surface. The fact that
the effective field theory we have just derived keeps the
same structure as that of HDET, both for fermions and for
antifermions, suggests that the same methods and results of
Ref. [8] could be used to derive Eq. (37) from a quantum
field theoretical framework. To this aim, one defines a
Wigner transform of the two-point function, which depends
only on the residual momentum. After performing a
derivative expansion, the equation obeyed by the Wigner
transform (identified with the classical distribution func-
tion) agrees with Eq. (37) when computed to order
Oð1=μ2Þ. While in Ref. [8] the proof required the existence
of a Fermi surface, here we note that it could be extended to
more general situations if one uses the OSEFT.
It would be very interesting to check that the OSEFT is

able to reproduce the results of different physical quantities
which are dominated by on-shell charged fermions in an
electromagnetic relativistic plasma. We leave a further
deeper study of this EFT for future work [22].

V. Summary

We have presented a derivation of the Son and Yamamoto
chiral transport approach. The proof is based on performing
a diagonalization of the quantumDirac Hamiltonian to order
OðℏÞ and deducing from it the leading quantum corrections
to the classical equations of motion, and then to the
associated transport theory. In this process, the Berry
connection appears modifying the particle’s action and also
the canonical PB structure of the theory. While several
authors realized that a diagonalization procedure can explain
the origin of the Berry connection in the particle’s action,
they forgot that the same diagonalization procedure leads to
a modification of the particle’s dispersion law. This is a
situation that also occurs in many condensed matter systems,
see e.g. Refs. [26–28], where a completely analogous
correction, proportional to the magnetic field, emerges.
We would like to recall once more that the modified
dispersion relation (25), (26) is required, not only for the
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consistency of the semiclassical approach to OðℏÞ, but also
to correctly reproduce the anomalous hard thermal loop
action at finite temperature and density [8,10].
We have also developed an effective theory approach for

the relevant fermionic degrees of freedomof a plasma that are
almost on shell. The OSEFT provides a powerful scheme to
study the dynamics of fermions and antifermions on equal
footing. Using the OSEFT, we have computed the fermion
dispersion relation in a much simpler way than the semi-
classical diagonalization of the Dirac’s Hamiltonian,
allowing for a systematic expansion to obtain next-to-
leading-order corrections. Thermal and finite density effects
could be studied with it using the standard machinery of
thermal quantum field theory.Here,wehave only pointed out
that it can also be used to derive the chiral transport equation,
following the same line of reasoning presented in Ref. [8].
We have also settled the basis for a more general

derivation of quantum corrections for massive fermions,
where the Berry curvature also depends on the massm. The
study of the massive case has already started in Ref. [18],
although in that reference the quantum correction to the
dispersion relation (13) was obviated. In the massive case,
an analogous semiclassical transport equation could be
derived, after defining a classical spin vector, together with
its classical equations of motion [14].
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Note added.—Recently, Ref. [29] appeared, where a
modified dispersion relation is obtained for chiral fermions
from the path integral, thus correcting the previous
diagonalization in Ref. [7]. The dispersion relation is
identical to the one derived here for the particular case
of m ¼ 0.

APPENDIX: CHIRAL ANOMALY

We detail the computation of the chiral anomaly in a
thermal relativistic plasma. The divergence of the fermion
current reads

∂μjμ ¼ e2ℏ lim
Δ→0

Z
S2ðΔÞ

dS
ð2πℏÞ3 ·ΩfpE ·B; ðA1Þ

with fp being the distribution function of the particular
fermion species (42) and (43), which already takes

into account the modified dispersion laws in Eqs. (25)
and (26).
The surface integral is performed around the singular

point p ¼ 0 on a two-sphere of radius Δ. Afterwards,
the limit Δ → 0 should be taken to reach the singular
point, where the level crossing responsible for the anomaly
takes place [30]. The integral is expressed in spherical
coordinates as

∂μjμ ¼ e2ℏE ·B lim
Δ→0

Z
Δ2 sin θdθdφ

ð2πℏÞ3
λ

2Δ2

×

�
exp

�
1

T

�
Δ − λeℏ

B cos θ
2Δ

∓ μ

��
þ 1

�
−1
;

ðA2Þ

where the sign of the helicity and the chemical potential
should be chosen in accordance with the helicity and charge
of the fermion. The azimuthal integral can be trivially done,
and the polar angle is traded for x≡ cos θ:

∂μjμ ¼�e2

ℏ2

1

8π2
E ·B

× lim
Δ→0

Z
1

−1
dx

h
exp

	
βΔ∓ γ

x
Δ
∓ α



þ1

i
−1
; ðA3Þ

where we have called β ¼ 1=T, α ¼ μ=T, and γ ¼ eℏB=2T
for simplicity.
The integral can be exactly done:

IΔðα; β; γÞ≡
Z

1

−1
dx

h
exp

	
βΔ − γ

x
Δ
− α



þ 1

i
−1

¼ 2þ Δ
γ
log

�
1þ e−αþβΔ−γ=Δ

1þ e−αþβΔþγ=Δ

�
; ðA4Þ

with the reflection property IΔðα; β;−γÞ ¼ IΔðα; β; γÞ.
The limit Δ → 0 can now be performed:

lim
Δ→0

IΔð�α; β;�γÞ ¼ 1: ðA5Þ

We are now ready to combine all fermion species to form
the divergence of the axial current:

∂μj
μ
A ¼ ∂μj

μ
R − ∂μj

μ
L

¼ e2

8π2ℏ2
E · B½IRΔ¼0 − ð−ĪLΔ¼0Þ − ð−ILΔ¼0Þ þ ĪRΔ¼0�

¼ e2

2π2ℏ2
E · B; ðA6Þ

where the notation represents the contribution of right-
handed fermions, left-handed antifermions, left-handed
fermions, and right-handed antifermions, in that order.
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