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We investigate the quark number fluctuations up to the fourth order in the matter composed of two light
flavor quarks with isospin symmetry and at finite temperature and finite chemical potential using the
Dyson-Schwinger equation approach of QCD. In order to solve the quark gap equation, we approximate the
dressed quark-gluon vertex with the bare one and adopt both the Maris-Tandy model and the infrared
constant (Qin-Chang) model for the dressed gluon propagator. Our results indicate that the second, third,
and fourth order fluctuations of net quark number all diverge at the critical endpoint (CEP). Around the
CEP, the second order fluctuation possesses obvious pump while the third and fourth order ones exhibit
distinct wiggles between positive and negative. For the Maris-Tandy model and the Qin-Chang model, we
give the pseudocritical temperature at zero quark chemical potential as Tc ¼ 146 MeV and 150 MeV, and
locate the CEP at ðμqE; TEÞ ¼ ð120; 124Þ MeV and (124,129) MeV, respectively. In addition, our results
manifest that the fluctuations are insensitive to the details of the model, but the location of the CEP shifts to
low chemical potential and high temperature as the confinement length scale increases.
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I. INTRODUCTION

It is well known that the main objective of the study on
QCD phase transitions is to make clear the phase structure
of strong interaction matter at finite temperature and/or
finite chemical potential [1–4]. Since the critical endpoint
(CEP) is a special state which separates the regions of
first-order phase transition and crossover (or second-order
phase transition), it becomes then the current focus of the
theoretical and experimental investigations [1,2,5,6]. Many
criteria, for instance, the disappearance of two minima of
the thermodynamical potential, the chiral susceptibility, the
disappearance of the S-shape relation between baryon
chemical potential (related to the quark chemical potential
simply with μq ¼ μB=3) and baryon number density
(related to the quark number density simply with
ρq ¼ 3ρB), the fluctuations of conserved charges, finite-
size scaling, thermal conductivity, and so on, have been
proposed (see, for example, Refs. [7–14]). Amongst them,
the fluctuations can provide essential information about the
effective degrees of freedom and their possible quasipar-
ticle nature of the multiparticle system. It is also well
known that the fluctuations are sensitive to the critical
behaviors of the QCD matter, and thus can be taken as
useful probes in exploring the QCD phase diagram,
especially locating the CEP. What is more, the fluctuations
can be extracted through experiments with event by event

analysis [10,12,15,16] which have been widely imple-
mented in experimental researches (see, for instance,
Refs. [5,6,17–20]), so they provide a direct connection
between experiment and theory [1].
On the theoretical side, great efforts have been made to

investigate properties of the fluctuations. Lattice QCD
simulations have given the temperature dependence of
the fluctuations of conserved charges [21–35]. The results
show that the second order fluctuation experiences a rapid
enhancement as the temperature increased and the higher
order fluctuations exhibit a peak or a peak-valley structure
which indicates that the system undergoes a continuous
phase transition. However, the lattice QCD simulations
cannot be extended to large chemical potential region in
principle because of the “sign problem.” In this case,
continuum field theoretical analysis becomes a powerful
tool which could work without such a handicap. Then plenty
of works have been carried out in the Polyakov-loop
extended Nambu–Jona-Lasinio (PNJL) model [36–39],
Polyakov-loop extended quark meson (PQM) model
[40–42], the hadron resonance gas (HRG) model [43–45],
and other effective models [46,47]. Moreover, the Dyson-
Schwinger equation approach of QCD [48] has also been
taken to calculate the quark number susceptibility [49–51],
which is a measure of the quark number fluctuation. For the
case at finite temperature and zero chemical potential, almost
all these model calculations gave similar results as those
obtained in lattice QCD simulations.*yxliu@pku.edu.cn
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However, only quite limited works studied the case at
both finite temperature and finite density (chemical poten-
tial) [32,33,38,41]. Based on these works, the researches of
the fluctuations of the conserved charges at finite chemical
potential are still quite far away from reaching the essential
information of the CEP at present. In this sense, it is
imperative to investigate this topic in continuum field
theories, especially those with solid QCD foundations.
Dyson-Schwinger (DS) equations of QCD [48,52–54]

are believed to be one of the continuous field theory method
that could describe both the dynamical chiral symmetry
breaking (DCSB) and the confinement, simultaneously
[55]. It has produced many meaningful and instructive
results on QCD phase transitions including the possibility of
the existence and its location of the CEP [7,49,56–61] and
hadron structures [54,62–68]. Such a powerful approach has
also been implemented to study the quark number suscep-
tibility at finite temperature. The obtained results manifest
that the DS equations can successfully describe the confine-
ment and the DCSB at low temperature and the correspond-
ing phase transitions with increasing temperature.
Inspired by the successes of the DS equation approach,

we further study in this paper the quark number density
fluctuations up to the fourth order in the matter, which is
composed of up and down quarks with isospin symmetry, at
not only finite temperature but also finite chemical poten-
tial, and locate the CEP of the QCD phase transitions. The
obtained results are compared with those obtained in lattice
QCD calculations and other phenomenological models.
Especially, we translate the variation behaviors of the
fluctuations into those of the experimental quantities which
can be taken as the signatures of the CEP [12,19,20]. To
show the universality of the results, we take both the Maris-
Tandy (MT) model and the infrared constant (Qin-Chang,
QC) model [63,69–74] for the gluon propagator in our
calculations. Furthermore, we also discuss the effect of the
model parameters on the phase diagram, especially, the
location of the CEP.
This article is organized as follows. In Sec. II, we describe

briefly the formalism of the thermodynamical fluctuations
and the Dyson-Schwinger equations. In Sec. III we give our
numerical results of the fluctuations up to the fourth order at
finite temperature and finite chemical potential, and extract
the QCD phase diagram and the location of the CEP. At the
end of this section, the parameter dependence of the results is
investigated. In Sec. IV, we present our summary and some
remarks.

II. DYSON-SCHWINGER EQUATIONS APPROACH

Consider a grand ensemble composed of particles whose
chemical potential is μX, the partition function, or the
generating functional in terms of the field operators j0 ¼
n̂ðxÞ ¼ q̄ðxÞγ0qðxÞ [the total particle number NX ≔R
d4xn̂ðxÞ� is usually written as

Ξ½μX;T� ¼
Z

D½q̄; q; Aμ; ω̄;ω�

× exp

�
−β

Z
d4xðH0 − n̂ðxÞμXÞ

�
; ð1Þ

where β ¼ 1=T with T being the temperature of the system.
Then the so-called grand thermodynamical potential reads,

Ω½μX;T� ¼ −
1

β
lnΞ½μX;T�: ð2Þ

Thus the expectation value of the total particle number is
obtained as

−
δΩ½μX;T�

δμX
¼

Z
d4xhn̂ðxÞi ¼ NX; ð3Þ

where h� � �i and � � � denote the ensemble averages. If doing
the derivative of Eq. (3) over the chemical potential μX, we
have

1

β

∂NX

∂μX ¼ N2
X − NX

2 ¼ ðNX − NXÞ2 ≡ χX2VT
3: ð4Þ

Namely, χX2 is related to the fluctuation of the conserved
charge δNX ¼ NX − NX as

χX2 ¼ 1

VT3
δN2

X: ð5Þ

Similarly, one could obtain the higher order fluctuations as
follows

χX3 ¼ 1

VT3
δN3

X; ð6Þ

χX4 ¼ 1

VT3
ðδN4

X − 3δN2
X
2Þ; ð7Þ

χXY11 ¼ 1

VT3
δNXδNY; ð8Þ

where X and Y stand for different conserved charges.
Generally, the thermodynamical potential can be

expanded as the Taylor series of the chemical potentials
of the conserved charges. The coefficients of the Taylor
expansion correspond to the fluctuations, i.e.,

χXYZ���ijk��� ¼ −
Tiþjþkþ���

VT4

∂iþjþkþ���Ω½T; μX; μY; μZ; � � ��
∂μiX∂μjY∂μkZ � � �

; ð9Þ

where μX; μY; μZ; � � � stands for the chemical potential of
the conserved charge X; Y; Z; � � �, respectively. In what
follows, since we only study the quark number fluctuations,
the superscript of χ is suppressed unless stated. In principle,
one can derive the fluctuations according to Eq. (9) if the
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thermodynamical potential is available. However, some-
times one could not have the exact expression of the
thermodynamical potential due to the complexity of
the nonperurbative QCD. In this case, as we will see the
particle number can still be easily calculated, thus one can
start with Eq. (3), equivalently.
The second order fluctuation χ2 can be taken as an

effective criterion of the phase transition similar with the
chiral susceptibility χc which is defined as the derivative of
the chiral condensate hq̄qi to the current quark massm, i.e.,
χc ¼ − ∂hq̄qi

∂m . According to Eq. (5), it is expected that χ2
goes to divergence if the system undergoes a first-order
phase transition. Moreover, the correlation length ξ also
diverges since it can be related to χ2, i.e., χ2 ∼ ξ2−η where η
is a small and positive number [75].
In this work, we consider a quark system composed of u

and d quarks with exact isospin symmetry, and set μu ¼
μd ¼ μ for simplicity. We suppose that the system is
uniform, i.e., N̄ ¼ Vn with n being the particle number
density. Then, the fluctuations could be derived from the
certain order derivatives of nðμ; TÞ. In terms of the quark
propagator, we can derive the expression of nðμ; TÞ as

nðμ; TÞ ¼ 2NcNfZ2

Z
∞

−∞

d3~p
ð2πÞ3 f1ð~p; μ; TÞ; ð10Þ

f1ð~p; μ; TÞ ¼
T
2

X∞
m¼−∞

trDð−γ4Sð ~ωm; ~pÞÞ; ð11Þ

where Z2 is the quark wave-function normalization
constant, Nc ¼ 3 is the color number, Nf ¼ 2 is the flavor
number, Sð ~ωm; ~pÞ is the quark propagator, and the sum-
mation is taken over the Matsubara frequencies
( ~ωm ¼ ωm þ iμ ¼ ð2mþ 1ÞπT þ iμ, m ∈ Z). According
to its Lorentz structure, the quark propagator can be
expressed as

Sð ~ωm; ~pÞ−1 ¼ i~γ · ~pAð ~ω2
m; ~p2Þ

þ iγ4 ~ωmCð ~ω2
m; ~p2Þ þ Bð ~ω2

m; ~p2Þ; ð12Þ

where A, B, and C are scalar functions. Thus we can rewrite
f1ð~p; μ; TÞ in terms of the scalar functions A, B, and C as

f1ð~p; μ; TÞ ¼ T
X∞

m¼−∞

�
1=C

μþ E − iωm
þ 1=C
μ − E − iωm

�
; ð13Þ

where E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2ðA=CÞ2 þ ðB=CÞ2

p
. For ideal quark gas,

i.e., A ¼ C ¼ 1 and B equals the quark mass, Eq. (13) is
exactly the sum of the quark and antiquark Fermi distri-
butions [57]. For the quark system with interaction, the
scalar functions A, B, and C are modified from that of the
idea quark gas. These scalar functions can be determined
by solving the gap equation, i.e., the Dyson-Schwinger
equation for the quark propagator,

Sð ~ωn; ~pÞ−1 ¼ i~γ · ~pþ iγ4 ~ωn þm0 þ Σð ~ωn; ~pÞ; ð14Þ

Σð ~ωn; ~pÞ ¼ T
X∞

m¼−∞

Z
d3~q
ð2πÞ3 g

2Dμνð~p − ~q;Ωnm;T; μÞ

×
λa

2
γμSð ~ωm; ~qÞ

λa

2
Γνð ~ωm; ~q; ~ωn; ~pÞ; ð15Þ

where Ωnm ¼ ωn − ωm, Dμν is the dressed-gluon propa-
gator, and Γν is the dressed quark-gluon vertex. The gap
equation is closed if the dressed gluon propagator and the
dressed quark-gluon vertex are specified. In this work, we
take the rainbow approximation, i.e.,

Γνð ~ωm; ~q; ~ωn; ~pÞ ¼ γν: ð16Þ

For the dressed gluon propagator, one can solve its DS
equation which couples with the quark’s gap equation and
involves the 3-gluon vertex, the 4-gluon vertex, and the
ghost. To solve these coupled and unclosed equations, one
needs a subtle truncation scheme which makes the calcu-
lation very complicated. After some simplification, e.g.,
neglecting the gluon vertex and the ghost, solving the
coupled equations becomes feasible [60,76]. However, in
this work, we adopt the effective model which keeps the
main feature of the gluon propagator and makes the
calculation much simpler.
Formally, the dressed gluon propagator can be decom-

posed as the transverse and longitudinal parts, i.e.,

g2Dμνð~k;ΩnmÞ ¼ PT
μνDTð~k2;Ω2

nmÞ þ PL
μνDLð~k2;Ω2

nmÞ;
ð17Þ

where PT;L
μν are the transverse and longitudinal projection

operators, respectively, as

PT
μν ¼

8<
:

0; μ and=or ν ¼ 4;

δij −
~ki~kj
~k2

; μ; ν ¼ 1; 2; 3;
ð18Þ

PL
μν ¼ δμν −

kμkν
k2

− PT
μν; ð19Þ

and the DT;L are the gluon dressing functions,

DT ¼ Dð~k2 þ Ω2
nmÞ; ð20Þ

DL ¼ Dð~k2 þΩ2
nm þm2

gÞ; ð21Þ

where mg is the gluon Debye mass which depends on
temperature, i.e.,m2

gðTÞ ¼ ð16=5ÞT2 [61,71,77]. The scalar
function is modeled as two parts,

DðsÞ ¼ DIRðsÞ þ 4πF ðsÞαpQCDðsÞ: ð22Þ
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The second part expresses the one-loop perturbative result
which dominates the ultraviolet behavior of the interaction,

F ðsÞαpQCDðsÞ ¼
2πγmð1 − e−s=4m

2
t Þ

ln½τ þ ð1þ s=Λ2
QCDÞ2�

; ð23Þ

where τ ¼ e2 − 1, mt ¼ 0.5 GeV, the anomalous dimen-
sion γm ¼ 12=ð33 − 2NfÞwith Nf ¼ 4, and the QCD scale

Λ
Nf¼4

QCD ¼ 0.234 GeV. The infrared part can have many
forms. In this work, we take two typical ones, i.e., the
Maris-Tandy (MT) model [69] and the Qin-Chang (QC)
model [63], which read

DMT
IR ðsÞ ¼ 4π2D

ω6
se−s=ω

2

; ð24Þ

DQC
IR ðsÞ ¼ 8π2D

ω4
e−s=ω

2

; ð25Þ

where ω and D are the interaction width and strength,
respectively. Note that in the infrared region the MT model
vanishes, while the QC one goes to a constant. Recent
lattice QCD simulations and gauge field theory analysis
prefer the QC model [70–74]. However, we consider both
the two forms and look through the model dependence in
this work.
To make the model more practical, we consider the

temperature dependence of the infrared interaction
strength. Note that the temperature serves a energy scale
to suppress the infrared interaction because of the running
behavior of the QCD coupling constant. So it is natural that
the infrared strength of the interaction decreases logarithmi-
cally when the temperature is high enough. Following
Ref. [61], we take a simple ansatz as

DðTÞ ¼
�
D; T < Tp;

a
bþln½T=ΛQCD� ; T > Tp;

ð26Þ

where Tp is a scale below which nonperturbative effects
associated with confinement and DCSB are not materially
influenced by the thermal screening [61]. The parameters a
and b are determined by two constraints:DðTpÞ ¼ D at Tp;
the quark thermal mass satisfiesmT ¼ 0.8T when T ≳ 2Tc,
which is consistent with the results given in lattice QCD
simulation [78]. Herein, we set Tp ¼ 1.3Tc at which the
strong correlation among quarks decreases drastically [61].
The two main parameters D and ω in our models are

chosen as those reproducing the masses and form factors of
π, ρ, K, ϕ, and ω mesons in vacuum. Calculations show
that these observables are insensitive to the variation of
ω ∈ ½0.3; 0.5� GeV in the MT model [56] and ω ∈
½0.4; 0.6� GeV in the QC model [63] as long as Dω ¼
const. Following Ref. [63], we choose ðDωÞ1=3 ¼ 0.72
with ω ¼ 0.4 GeV for MTmodel and ðDωÞ1=3 ¼ 0.80with
ω ¼ 0.5 GeV for QC model. We will also analyze how the

parameter ω affects the results. The renormalization point is
fixed at ζ ¼ 19 GeV as Refs. [69,79], and the correspond-
ing current quark mass is taken as mu ¼ md ¼ 5.5 MeV.

III. NUMERICAL RESULTS AND DISCUSSION

Figure 1 illustrates the calculated second and fourth
order quark number fluctuations at zero quark chemical
potential and finite temperature. It is noticed that the second
order fluctuation experiences a rapid growth as the temper-
ature increases. Its derivative with respect to the temper-
ature exhibits exactly the same appearance of the fourth
order fluctuation shown in the lower panel of Fig. 1. The
temperature for the derivative or the fourth order fluctuation
to take its maximum is 146(150) MeV in the MT (QC)
model. We obtain then the pseudocritical temperature Tc ¼
146ð150Þ MeV in the MT (QC) model. Lattice QCD gave
different pseudocritical temperatures with different calcu-
lation schemes, typically, Tc ∈ ½140; 160� MeV for light
quark system (see, for example, Refs. [23–26,29,30]). It is
apparent that our results of the pseudocritical temperature
agree nicely with those obtained in lattice QCD. Moreover,
the calculated temperature dependent behaviors of the
fluctuations also agree with those obtained in lattice
QCD [22,23,30] (marked by data points in Fig. 1) in a
quite large domain, especially, around the pseudocritical
temperature.
One can also read from the figure that, as the temperature

gets very high, the second order fluctuation approaches the

FIG. 1 (color online). The second and fourth order fluctuations
in the MT model with ωMT ¼ 0.4 GeV and the QC model with
ωQC ¼ 0.5 GeV. The lattice QCD results (taken from
Refs. [22,23,30] and denoted by data points with error bars)
are also displayed for comparison.
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Stefan–Boltzmann (SB) limit, i.e., χSB2 ¼ 1, and the fourth
order one decreases to a small value. Moreover, the results
with the two models of the gluon propagator give almost
the same result. Such features can be easily understood
as follows. According to Eq. (26), the infrared interaction
strength is screened at high temperature so that only the
ultraviolet part dominates the interaction. As a conse-
quence, the two models actually degenerate into the same
form derived from perturbation theory [see Eq. (22)].
Another characteristic of the fluctuations shown in Fig. 1

is that both the second and fourth order fluctuations at
lower temperature are negative with small magnitudes.
At zero chemical potential, the second order fluctuation is
actually the quark number susceptibility which measures
the response of the quark number density to quark chemical
potential. A negative value means that the quark number
density is negative under the perturbation of the external
source, or in other words, the external source is impossible
to excite quarks. Thus, such a feature of the fluctuation at
low temperature is related to the quark confinement. On the
other hand, the negative fluctuations can be understood
from the viewpoint of the quark spectral function. The
axiom of reflection positivity states that the propagator for
an asymptotic quark must have a positive definite Källen-
Lehmann spectral representation. The positivity violation
of the quark spectral function means that quarks have to be
somehow confined, and thus serves as a sufficient condition
for quark confinement [58,80]. According to Eqs. (10)
and (11), the quark number density can be calculated by the
quark propagator. Then, using the quark spectral represen-
tation, the fluctuations can be expressed from the quark
spectral function. Actually, the negative fluctuations reflect
the nonpositive definite quark spectral function. Namely,
the system is confined at low temperature.
Next we discuss the fluctuation ratios which are very

important because they are related to the experimental
statistical variance, skewness, and kurtosis (denoted by σ,
S, and κ, respectively). Explicitly, we have

Sσ ¼ χ3
χ2

; κσ2 ¼ χ4
χ2

: ð27Þ

So the ratios can serve as a bridge connecting theoretical
results and experimental data [1,12,19–21,46]. Another
advantage of the ratios is that they cancel the volume
effects. The obtained temperature dependence of χ4=χ2 at
zero chemical potential is shown in Fig. 2, where lattice
QCD results are also presented as a comparison. It can be
noticed that with increasing temperature the ratio χ4=χ2
increases for T < Tc while decreases for T > Tc. At very
high temperature, the ratio goes to the SB limit. Meanwhile,
the ratios given by the two interaction models exhibit the
same behavior which is consistent with that obtained in
lattice QCD.
The above results illustrate that the DS equation

approach is as powerful to describe the quark number

fluctuations at finite temperature and zero chemical poten-
tial as lattice QCD and effective models (see, for example,
Refs. [37,40,42]). We then extend our calculations to the
cases at finite temperature and finite chemical potential.
Figure 3 displays the variation behaviors of the second
order fluctuation with respect to temperature and chemical
potential in different conditions. The upper panels of Fig. 3
show that for μ > 0 the fluctuation χ2 exhibits a bulge
which grows and becomes a peak with increasing chemical
potential. Meanwhile, the peak goes sharper and shifts to

FIG. 2 (color online). The temperature dependence of the ratio
of the second to fourth order fluctuations in the MT model with
ωMT ¼ 0.4 GeV and the QC model with ωQC ¼ 0.5 GeV. For
comparison, the lattice QCD results (taken from Ref. [22]) are
denoted by data points.

FIG. 3 (color online). The variation behaviors of the second
order fluctuation with respect to temperature at several values of
the quark chemical potentials (upper panels) and those with
respect to quark chemical potential at several values of the
temperature (lower panels). For the two cases, the left panel
shows the result in the MT model with ωMT ¼ 0.4 GeV, and the
right panel in the QC model with ωQC ¼ 0.5 GeV.

QUARK NUMBER FLUCTUATIONS AT FINITE … PHYSICAL REVIEW D 90, 076006 (2014)

076006-5



lower temperature. At high chemical potential, the peak
evolves into a singularity. This behavior is consistent
with that given in the effective model [38]. From the
lower panels of Fig. 3, one can recognize that χ2 goes
to nearly-divergent at μ ¼ 120ð124Þ MeV when T ¼
125ð130Þ MeV in the MT (QC) model. At higher temper-
ature, the very sharp peak smears to a wide hump locating
at lower chemical potential. Whereas, at lower temperature,
e.g., T ¼ 120ð125Þ MeV for the MT (QC) model, χ2 gains
two separate divergent points at different chemical poten-
tials (denoted by dashed lines in the lower panels of Fig. 3).
In such a case, χ2 breaks into the left and right branches
which extend to the low and high chemical potential
regions, respectively. In the low chemical potential region,
the system is characterized by DCSB and thus stays in
the Nambu phase. In the high chemical potential region, the
chiral symmetry is restored, and the system thus stays in the
Wigner phase. It is noticed that the two branches overlap
with each other in the region μ ∈ ½132; 143� MeV for the
MT model. In the domain, the Nambu and Wigner phases
coexist, which means that the phase transition is a first
order one. Recalling that the system undergoes crossover at
low chemical potential and high temperature, we find that
there exists a CEP which separates the crossover and the
first order phase transition in the T–μ plane. Then, we
obtain the CEP locating at ðμqE; TEÞ ¼ ð120; 124Þ MeV and
(124,129) MeV in the MT and QC model, respectively.
It is believed that the higher order fluctuations are more

sensitive to the critical behaviors of the QCD thermody-
namics [11–14]. Figure 4 shows the variation behaviors of
the third and fourth order quark number fluctuations with
respect to quark chemical potential at several temperatures.
From the upper panels, we find that the third order

fluctuation changes its sign at the critical point, which is
consistent with the results given in Refs. [11,38]. Since χ4
can be expressed as the derivative of χ3 to chemical
potential, the global minimum of χ4 corresponds to the
zero (or sign-changing) point of χ3 (compare the lower
panels with the upper ones in Fig. 4). As the temperature
goes closer to that of the CEP, the wiggles of the fluctuations
becomes sharper. At the CEP, both χ3 and χ4 diverge. Thus,
tracking their singularity locations, we can locate the CEP.
For T < TE, e.g., T ¼ 120ð125Þ MeV in the MT (QC)
model, both χ3 and χ4 possess two separate singular points at
the same chemical potentials as χ2 (see the dash lines in
Fig. 4). According to Eq. (9), this can be easily understood
because the higher fluctuation has to diverge if the lower one
diverges at some temperature and chemical potential.
Figure 5 displays the variation behaviors of the ratios of

the high to low order fluctuations, e.g., χ3=χ2 and χ4=χ2. It is
found that the ratios behave as the same as the third and
fourth order fluctuations do (shown in Fig. 4). Nevertheless,
χ3=χ2 and χ4=χ2 have much larger amplitudes than χ3 and
χ4, which means that the experimental quantities [see
Eq. (27)] are very sensitive to the critical behaviors. As
we know that the divergence of the fluctuations in thermal
equilibrium at the critical point arises from the divergence of
the correlation length [75], while our calculation has not yet
involved any nonequilibrium effects. In fact, the critical
slowing down effect can reduce the growth of the correlation
length, and in turn the fluctuations, in experiments (see, e.g.,
Ref. [81]). Therefore, the divergences of these quantities at
theCEP statemaybe smeared into sharppeaks in experiments
and can then be taken as practical signatures of the CEP.
Analyzing the characteristics of the fluctuations in the

T–μ plane, we can chart the QCD phase diagram.

FIG. 5 (color online). The quark chemical potential dependence
of the ratio of the third to second order fluctuations at several
temperatures (upper panels) and that of the fourth to second order
fluctuations (lower panels). The left panels show the results in the
MT model with ωMT ¼ 0.4 GeV, and the right panels in the QC
model with ωQC ¼ 0.5 GeV.

FIG. 4 (color online). The variation behaviors of the third (upper
panels) and fourth (lower panels) order fluctuations against quark
chemical potential at several temperatures. The left panels show the
results in theMTmodel withωMT ¼ 0.4 GeV, and the right panels
in the QC model with ωQC ¼ 0.5 GeV.

XIAN-YIN XIN, SI-XUE QIN, AND YU-XIN LIU PHYSICAL REVIEW D 90, 076006 (2014)

076006-6



The obtained results in the two interaction models are
illustrated in Fig. 6. It is shown that the system undergoes
crossover in high temperature and low chemical potential
region, while first order phase transition in the low temper-
ature and high chemical potential region. This means that
there exists a CEP in the T–μ plane. The pseudocritical
temperature at zero quark chemical potential is Tcðμq ¼
0Þ ¼ 146ð150Þ MeV in the MT (QC) model. The CEP
locates at ðμqE; TEÞ ¼ ð120; 124Þ MeV and (124,129) MeV
in the MT and QC model, respectively. It is noticed that the
two models both give μqE=TE ≈ 1, which agrees with that
obtained by analyzing the chiral susceptibility in the DS
equation approach [7]. Moreover, this result is also con-
sistent with those given in other approaches, e.g., the
elliptic flow data analysis [82] and the nonlocal NJL model
[83,84]. Besides, although lattice QCD calculations have
not yet given certain conclusion on the location or even the
existence of the CEP [31], the ones with reweighting
technique [85] or Taylor expansion method [86] or canoni-
cal ensemble approach [9] gave the similar results, and
others with reweighting technique [87] or Taylor expansion
method [27,28,88] gave smaller values, i.e., μqE=TE∼
ð0.4; 0.7Þ.
In our calculations, we adopt two different models, i.e.,

the MT model and the QC model, for the dressed gluon
propagator. The above description indicates that the results
obtained in the two models are very close to each other
except for some quantitative differences. This can be
understood as follows. Both the MT model and the QC
model preserve the one-loop renormalization-group behav-
ior of QCD [63] [see Eq. (22)]. From Eqs. (24) and (25) we
can see that the main difference between the two models
lies only in the deep infrared domain: The MT model
vanishes when the gluon momentum goes to zero while the
QC one to a finite constant. However, because of the energy
scale resulted from the finite temperature, the dressed gluon

propagator in the deep infrared domain has a very weak
effect on the effective interaction. Thus, the behaviors of
the system become insensitive to the model details in the
deep infrared domain.
With the constraint Dω ¼ const, the two models still

have a free parameter ω. It is then interesting to investigate
the effect of the parameter on the phase diagram. We have
then performed calculations with various values of ω. Since
the phase diagram can be featured with the pseudocritical
temperature Tc and the location of the CEP (see Fig. 6), we
list these quantities in Table I. It is found that, with
increasing ω, the pseudocritical temperature Tc gets lower
and the ratio μqE=TE becomes larger with the CEP rotating
to the μ-axis. This is consistent with that given by analyzing
the chiral susceptibility in the DS equation approach [7]. It
is known that the parameter ω characterizes the interaction
width in the momentum space. Then, one can introduce a
confinement length scale in the coordinate space, i.e.,
rω ¼ 1=ω. If ω → 0, then rω → ∞ and the interaction
model is actually the constant model, which can be
expressed as δ4ðkÞ in the momentum space [89]. In such
a case, the CEP locates at ðμqE; TEÞ ¼ ð0; TcÞ, i.e., on the
T-axis [90]. On the contrary, if ω → ∞, then rω → 0 and
the interaction model becomes the contact interaction
model, i.e., the NJL-type model. Many NJL-type calcu-
lations have shown that μqE=TE takes large values (see, for
example, Refs. [8,36,91]). Our interaction models are
interpolations between these two limits. Our results indi-
cate that different methods give distinct locations of the
CEP because they have different intrinsic confinement
length scales. Recalling the discussion in Ref. [92], one
can understand the underlying mechanism of such a
variation feature as follows. As mentioned above and in
Ref. [7], with decreasing ω, the confinement length
between quarks becomes larger, and thus the binding
energy of baryons (more generally, hadrons) gets larger.
It takes then more energy to release quarks from the color
singlet system (DCSB phase or DCSB/DCS coexistence
phase), so that TE and Tc (for not only the deconfinement
but also the chiral phase transitions) get higher as ω
decreases. On the other hand, increasing the confinement
length scale plays the same role as increasing the density of

FIG. 6 (color online). The QCD phase diagram obtained with
the fluctuation criterion. The lower curves stand for the result in
the MT model with ωMT ¼ 0.4 GeV, and the upper curves in the
QC model with ωQC ¼ 0.5 GeV.

TABLE I. The pseudocritical temperature Tc and the location
of the CEP ðμqE; TEÞ calculated with several values of the
parameter ω (dimensional quantities are given in GeV).

Model ðDωÞ1=3 ω Tc ðμqE; TEÞ μqE=TE

0.72 0.40 0.146 (0.120,0.124) 0.97
MT 0.72 0.45 0.132 (0.220,0.098) 2.24

0.72 0.50 0.124 (0.281,0.070) 4.01
0.80 0.40 0.173 (0.075,0.165) 0.45

QC 0.80 0.50 0.150 (0.124,0.129) 0.96
0.80 0.60 0.131 (0.201,0.099) 2.03
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the system, it compensates then the effect of increasing the
chemical potential. Therefore, μqE (also for both the decon-
finement and the chiral phase transitions) decreases due to
the compensation.

IV. SUMMARY AND REMARKS

Using the Dyson-Schwinger equations approach, we
have calculated the quark number fluctuations up to the
fourth order in the matter composed of two light flavor
quarks with isospin symmetry and at not only finite
temperature but also finite chemical potential. The obtained
behaviors of the fluctuations at finite temperature and zero
chemical potential are consistent with the lattice QCD
results. With the MT model and the QC model, we obtain
the pseudocritical temperature Tc ¼ 146 MeV and
150 Mev, respectively, which are also consistent with the
recent lattice QCD result. Then, we extend our calculations
to cases at finite temperature and finite chemical potential.
We found that the second order fluctuation exhibits a hump
in low chemical potential and high temperature region, and
involves singularities in high chemical potential and low
temperature region. Meanwhile, the higher order fluctua-
tions oscillate and diverge in the corresponding regions,
respectively. These behaviors are the same as those of the
chiral susceptibility. So the fluctuations can be taken as a
criterion of the phase transition and the location of the CEP.
We locate then the CEP at the point with μqE=TE ∼ 1, which
is in nice agreement with the experimental estimate and the
lattice QCD results. Moreover, we also find that the
experimental quantities which are related to the fluctuation
ratios, are very sensitive to the critical behaviors. For

searching the CEP, the fluctuations can bridge theories
and experiments.
In our calculations, we take two models (the MT model

and the QC model) for the dressed gluon propagator. Our
obtained results indicate that the fluctuations and the
location of the CEP are almost independent of the deep
infrared detail of the interaction. We also analyze the
dependence of the results on the model parameter. It is
found that the location of the CEP depends strongly on the
confinement length scale: The CEP rotates to the chemical
potential axis with decreasing confinement length scale.
In this work we adopted the rainbow approximation as

the first step. Even though the rainbow approximation
could partially describe the hadron spectrum, its drawback
is also outstanding, e.g., it fails to explain the mass splitting
of the vector and axial-vector mesons and also violates the
Ward–Green–Takahashi identities. It would then be ben-
eficial to calculate the fluctuations with the Ball-Chiu
vertex [93] or the more realistic anomalous chromomag-
netic moment vertex [94–96]. Additionally, it would also be
interesting to extend our calculations to extract the critical
exponents of the fluctuations. The related investigations are
under progress.
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