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Supersymmetric theories with a Uð1ÞR symmetry have Dirac gauginos, solve the supersymmetric flavor
and CP problems, and have distinctive collider signatures. However, when supergravity is included, the
Uð1ÞR must be broken, adding small Majorana mass terms which split the mass of the two components of
the Dirac gaugino and lead to oscillations between Uð1ÞR charge eigenstates. We present a general study of
fermion-antifermion oscillations in this system, including the effects of decays and CP violation. We
consider the effects of such oscillations in the case where the two Uð1ÞR charge eigenstates can decay into
the same final state and show that Oð1Þ CP violation is allowed. In the case of decays into final states
containing leptons, such CP violation can be observed as a same-sign dilepton asymmetry.
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I. INTRODUCTION

The Universe provides clear evidence for CP violation
beyond the standard model (SM). Assuming cosmological
inflation erases any initial asymmetry, the asymmetry
between matter and antimatter must arise due to a non-
equilibrium microphysical process called baryogenesis,
which requires CP and baryon number violation, that
creates the observed asymmetry of 10−8 between quarks
and antiquarks. While the SM weak interactions violate
baryon number via nonperturbative processes which are
fairly rapid at high temperature [1], the effects of SM CP
violation are suppressed in the early Universe, and new
sources of CP violation are needed to explain baryogenesis
[2]. However, any new sources of CP violation are strongly
constrained by searches for electric dipole moments
(EDMs) (see, e.g., Ref. [3]). For example, in the minimal
supersymmetric standard model (MSSM), electron and
quark EDMs are generated at one-loop level. Con-
sequently, unless the superpartners are very heavy, the
CP-violating phases in the soft supersymmetry (SUSY)-
breaking terms of the MSSM Lagrangian are tightly limited
by the null results of EDM experiments [4]. Addressing this
by assuming CP conservation in the SUSY-breaking terms
is ad hoc and limits the possibilities for baryogenesis.
Similar considerations apply for flavor-changing neutral
currents.
One model that circumvents the fine-tuning of CP-

violating and flavor-changing terms in the SUSY
Lagrangian is the R-symmetric MSSM [5]. This model
is an extension of the MSSM in which there is a global
Uð1ÞR symmetry [6]. The superpartners of fermions and
gauge fields have R charges of þ1. This charge assignment
forbids Majorana masses for the gauginos. Therefore,

EDMs through neutralino exchange can only be induced
at higher than one-loop order, greatly reducing the con-
straints on the CP-violating phases in the Lagrangian. To
give mass to the gauginos, one needs to add an extra adjoint
field with R charge −1 for each of the MSSM gauginos to
allow for Dirac masses. Each gaugino is then paired with its
partner to form a Dirac spinor [7]. This scenario has a
plausible short-distance origin. Mediating supersymmetry
breaking to the MSSM by the nonvanishing expectation
value of the D term of a hidden Uð1Þ gauge field leads to
Uð1ÞR-preserving Dirac gaugino masses [8,9]. If the sector
which mediates supersymmetry breaking does not contain a
gauge singlet field with a nonvanishing F term, then
Majorana gaugino masses and other Uð1ÞR-symmetry-
breaking soft supersymmetry-breaking terms are suppressed.
The Uð1ÞR symmetry is expected to be only an approxi-

mate symmetry in locally supersymmetric theories because
it is always broken by the gravitino mass, and anomaly
mediation will produce small Uð1ÞR-breaking Majorana
mass terms for the gauginos [10]. These Majorana masses
produce a small mass splitting between different linear
combinations of particle and antiparticle states [the
eigenstates of Uð1ÞR with opposite eigenvalues] that make
up the Dirac spinor. Since the Uð1ÞR symmetry is only
approximate, the gaugino in this setup is therefore called a
pseudo-Dirac fermion. The mass splitting causes oscilla-
tions between the two R charge eigenstates in a way similar
to neutral meson oscillations. Oscillations of pseudo-Dirac
neutralinos have been considered in Ref. [11]. Another
example of pseudo-Dirac fermion oscillation that arises in
the context of R-symmetric SUSY is mesino-antimesino
oscillation [12]. Pseudo-Dirac fermion oscillations have
also been extensively considered in the context of neutrinos
[13]. However, the CP violation found in these systems due
to oscillations among the three (or more) generations of
neutrinos [14] is different from the particle-antiparticle
oscillations that we will consider.
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CP violation in particle-antiparticle oscillations can
occur if both states decay into common final states. In
Ref. [11] CP violation in neutralino oscillations was not
considered since it was assumed that there were no final
states common to both R charge eigenstates. However,
there can be common final states when one allows for
Uð1ÞR-violating interactions for both the neutralino and its
Dirac partner.
In this paper we study CP violation in pseudo-Dirac

fermion oscillations. For a concrete example with distinc-
tive phenomenology, we consider a pseudo-Dirac gluino
which is the lightest MSSM superpartner (besides the
gravitino), decaying via R-parity violation. We show that,
depending on the parameters of the model, there can be
Oð1Þ CP violation in the oscillations. We also comment on
ways to observe the CP violation from these oscillations,
e.g., as a same-sign dilepton asymmetry.
The organization of this paper is as follows. In Sec. II we

set up the formalism to describe pseudo-Dirac fermion
oscillations. In Sec. III we give the details of our model and
compute the CP violation from interference between
mixing and decay in pseudo-Dirac gluino oscillations in
Sec. IV. A set of benchmark parameters of the model that
lead to an interesting signal of CP violation is given in
Sec. V. Section VI contains concluding remarks on this and
variant scenarios.

II. PSEUDO-DIRAC FERMION OSCILLATIONS

Before considering a specific model, we demonstrate
how the addition of a small Majorana mass to a theory with
an otherwise Dirac fermion results in particle-antiparticle
oscillations and obtain the Hamiltonian relevant to this two-
state system. As CP violation in pseudo-Dirac fermion
oscillations has not been previously discussed in the
literature, we give a detailed treatment of the formalism
here. To introduce these oscillations, we use the two-
component Weyl spinor techniques laid out in Ref. [15].
In a realistic supersymmetric theory, the pseudo-Dirac

fermion could be a neutral mesino [12], a neutralino as
considered in Ref. [11], or a gluino. Reference [11] briefly
mentions gluino oscillations but claims that any macro-
scopic coherent oscillations would be destroyed due to
strong interactions with the detector. However, both the
gluino and its Dirac partner are color octet fermions with
identical strong interactions. Therefore, as explained in the
Appendix, the coherence of the two R charge states is not
affected by scattering due to strong interactions or gluino
hadronization, and such oscillations could be observable.
For a concrete simple example of pseudo-Dirac fermion
oscillations, we will consider the oscillations of a Dirac
gluino here.
We start with a pair of left-handed, color octet Weyl

spinors, λα and Oα, where α ¼ 1, 2 is the spinor index. We
identify λ with the usual gluino of the MSSM and O with
the fermion component of a color adjoint chiral superfield

containing its Dirac partner, the octino. Under Uð1ÞR
symmetry, λ and O have opposite charges, R ¼ þ1 and
−1, respectively. If the Uð1ÞR is exactly conserved by the
mass terms, λ and O pair up to form a Dirac fermion,

−Lmass ¼
1

2
ðλαOαÞ

�
0 mD

mD 0

��
λα

Oα

�
þ H:c:

¼ 1

2
mDðλαOα þOαλαÞ þ H:c:

¼ mDλOþm�
Dλ

†O†: ð1Þ
We are free to rotate λ andO such that the Dirac massmD is
real, and we do so. The Weyl spinors can be expressed in
terms of creation and annihilation operators,

λαðxÞ ¼
X
s

Z
d3p

ð2πÞ3=2 ffiffiffiffiffiffiffiffi
2Ep

p ½xαðp; sÞaspe−ip·x

þ yαðp; sÞbs†p eip·x�; ð2aÞ

OαðxÞ ¼
X
s

Z
d3p

ð2πÞ3=2 ffiffiffiffiffiffiffiffi
2Ep

p ½xαðp; sÞbspe−ip·x

þ yαðp; sÞas†p eip·x�; ð2bÞ

where Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

D

p
. x and y are momentum space

solutions of the Dirac equation. Particle and antiparticle
states are created by as†p and bs†p respectively,

jp; s;ψi≡ ð2πÞ3=2as†p j0i; jp; s; ψ̄i≡ ð2πÞ3=2bs†p j0i: ð3Þ

Suppressing the spin index, we use jψi and jψ̄i to label the
states as p → 0. jψi carriesUð1ÞR charge R ¼ −1while jψ̄i
has R ¼ þ1.

A. Hamiltonian

In the nonrelativistic limit, the Hamiltonian in the ðψ ; ψ̄Þ
basis can be written as

Hs0;s
ij ≡ hp → 0; s0; ij − Lmassjp → 0; s; ji; ð4Þ

where i, j ¼ ψ , ψ̄ and Lmass is given in Eq. (1). Using
the integral representations for λ and O from Eq. (2), the
Hamiltonian becomes

HD ¼
�
mD 0

0 mD

�
; ð5Þ

using yαðp; s0Þxαðp; sÞ ¼ mDδs;s0 and suppressing the trivial
dependence on spin and color. We have used the subscript
D here to emphasize that this is the Hamiltonian in the
Dirac [conserved Uð1ÞR] case.
Next, we allow for the Uð1ÞR symmetry to be slightly

broken. This allows for small Majorana mass terms in the
Lagrangian
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−δLmass ¼
1

2
ðmλλλþmOOOÞ þ H:c:; ð6Þ

where we have suppressed the spinor indices. The
Hamiltonian resulting from the Majorana mass terms can
be found in the same way as in the Dirac case. The full
Hamiltonian in the nonrelativistic limit, corresponding to
Lmass þ δLmass, is

H ¼ HD þ δH ¼
�
mD mM

m�
M mD

�
; ð7Þ

where we have defined mM ≡ ðm�
λ þmOÞ=2. The eigen-

values of this Hamiltonian are

M1;2 ¼ mD � jmMj; ð8Þ

corresponding to the eigenstates

jψi � e−iϕjψ̄iffiffiffi
2

p ; ð9Þ

with ϕ ¼ argðmMÞ.

B. Interactions

Now we would like to examine what happens to the
Hamiltonian when we allow for interactions of the Weyl
fermions, in particular if they are allowed to decay. As a
simple example, we consider a toy model which captures
the essential physics. For now, we consider the case where λ
and O have Yukawa couplings to a fermion d̄ and a
complex scalar ϕ which are both fundamentals under color
SUð3Þ,

Lint ¼ −ϕ�ðyλλa þ yOOaÞtad̄þ H:c:; ð10Þ

where ta is a generator in the fundamental of SUð3Þ
normalized so that trðtatbÞ ¼ δab=2 and a labels the color
of the adjoints. We will take d̄ to be massless. If both yλ and
yO are nonzero, Lint breaks the Uð1ÞR.
With these interactions, the tree-level masses of jψi and

jψ̄i (M1;2) are modified (and possibly complex). As shown
in Ref. [15], they are given by values of

ffiffiffi
s

p
that satisfy

det ½s1 − ð1 − ΞTÞ−1ðmþ ΩÞ × ð1 − ΞÞ−1ðm̄þ Ω̄Þ� ¼ 0:

ð11Þ
In the expression above, m is the tree-level fermion mass
matrix in the λ, O basis,

m ¼
�

mλ mD

mD mO

�
; ð12Þ

and m̄ ¼ m�. Ξ andΩ are chirality-preserving and -flipping
self-energy functions, respectively. They are shown in

Fig. 1 along with the related functions ΞT and Ω̄. Note
that these represent the finite pieces of the two-point
functions (in some renormalization scheme); infinities in
Ω are absorbed by mass counterterms, while those in Ξ are
removed by wave function renormalization.
Corrections to the mass matrices are fixed by Eq. (11) at

leading order to be

mj1-loop ¼ mþΩþ 1

2
ðmΞþ ΞTmÞ;

m̄j1-loop ¼ m̄þ Ω̄þ 1

2
ðm̄ΞT þ Ξm̄Þ: ð13Þ

Armed with these expressions for the corrections to the
mass matrices, we are ready to find the Hamiltonian for our
toy model at one loop.
In the toy model,Ω ∝ md̄, which we take to be vanishing

so we are free to ignore Ω and Ω̄. In the MS scheme, the
elements of Ξ, given by the diagram shown in Fig. 2, are

Ξij¼
yiy�j

4ð4πÞ2
��

1−
m2

ϕ

p2

�Z
1

0

dx log
Δ
Q2

−
m2

ϕ

p2

�
1− log

m2
ϕ

Q2

��
;

ð14Þ

FIG. 1. Definitions of the self-energy functions for i, j ¼ λ, O.
The shaded circles represent the sum of all one-particle irreduc-
ible, connected Feynman diagrams. External legs are amputated.
α and β are spinor indices. Arrows (and dots) denote left- or right-
handed chiralities.

FIG. 2. The one-loop contribution to Ξ for i, j ¼ λ, O arising
from the Yukawa interaction in Eq. (10). Contributions to the
chirality-flipping two-point function Ω are proportional to md̄,
which we neglect.
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with

Δ ¼ xm2
ϕ − xð1 − xÞp2; ð15Þ

where p is the momentum flowing through the diagram,Q2

is the renormalization scale, and i, j ¼ λ, O.
If m2

ϕ < p2, there are on-shell intermediate states that
give rise to an imaginary part in the loop integral for Ξij,

ℑ

�
Ξij

yiy�j

�
¼ 1

ð4πÞ2
π

4

�
1 −

m2
ϕ

p2

�2

θðp2 −m2
ϕÞ: ð16Þ

ðΞTÞij is obtained from Ξij through the relation
ðΞTÞij ¼ Ξ⋆

ij, where ⋆ means taking the complex conjugate
of the Lagrangian parameters but not of integrals over loop
momenta. We express the one-loop mass matrices in
Eq. (13) in terms of the elements of Ξ and ΞT which we
use to find the Hamiltonian at one loop and to leading order
in mλ;O=mD using Eq. (7),

H ¼
�
mD þ δD mM þ δM

m�
M þ δ�M mD þ δD

�
; ð17Þ

with

δD ¼ mD

4
ðΞλλ þ ΞOO þ ΞT

λλ þ ΞT
OOÞ;

δM ¼ mD

2
ðΞOλ þ ΞT

λOÞ;

δ�M ¼ mD

2
ðΞλO þ ΞT

OλÞ; ð18Þ

where we evaluate the one-loop diagrams at the scale of the
fermion masses, p2 ≃m2

D. The dispersive parts of δD and
δð�ÞM are corrections to the Dirac and Majorana masses,
respectively, while the absorptive parts arising from on-
shell intermediate states are related to the decays of the
pseudo-Dirac fermions. As in the purely Dirac case, mD is
multiplicatively renormalized while the Majorana masses
pick up corrections proportional to the Dirac mass times a
Uð1ÞR-breaking combination of couplings.
We can separate the Hamiltonian into its dispersive and

absorptive parts in the standard way,1

H ¼ M −
i
2
Γ; ð19Þ

where we set

M ¼
�
MD MM

M�
M MD

�
: ð20Þ

MD and MM are given by mD and mM plus the dispersive
parts of the one-loop corrections in Eq. (18), with the
renormalization condition that the pseudo-Dirac fermions
have pole masses MD � jMMj (in the limit that the width
difference can be ignored). Since we have rotated λ and O
so thatmD is real,MD is real. From the structure of the one-
loop corrections in Eq. (18),MD ≃mD, and we expect that
in the absence of fine-tuning

jMMj≳ jyλy�Oj
ð4πÞ2 MD: ð21Þ

The absorptive part of the Hamiltonian is

Γ≃MD

64π

�
1 −

m2
ϕ

M2
D

�2

×

 
jyλj2 þ jyOj2 2yλy�O

2y�λyO jyλj2 þ jyOj2

!
: ð22Þ

As written, there are three phases in H, but only one
combination is physical since we have the freedom to
remove two. For example, we can rotate one linear
combination of λ and O so that MM is real (another linear
combination was rotated to makeMD real), and by rotating
ϕ†d̄ we can make yλ or yO real but not necessarily both
simultaneously.

C. Oscillations

The form of H in Eq. (19) is the same as the two-state
Hamiltonians relevant to neutral meson mixing. Therefore,
we can simply adapt the same formalism to study the
oscillations of the pseudo-Dirac fermions. We briefly
review some of this formalism from Ref. [16]. For a more
general treatment of oscillations, see Ref. [17].
In terms of the states jψi and jψ̄i defined in Eq. (3), the

eigenstates of H are

jψHi ¼ pjψi − qjψ̄i; jψLi ¼ pjψi þ qjψ̄i; ð23Þ

with eigenvalues ωH;L. The subscripts H and L refer to the
heavy and light mass states respectively with masses mH;L,
and �

q
p

�
2

¼ M�
12 − ði=2ÞΓ�

12

M12 − ði=2ÞΓ12

; ð24Þ

where M12 and Γ12 are the 1–2 elements of M and Γ. CP
violation in mixing occurs when jq=pj ≠ 1. The mass and
width differences Δm and ΔΓ between the two eigenstates
are

Δm ¼ mH −mL ¼ ℜðωH − ωLÞ;
ΔΓ ¼ ΓH − ΓL ¼ −2ℑðωH − ωLÞ; ð25Þ

1The form of the Hamiltonian we will arrive at differs from the
Hamiltonian in Eq. (7) of Ref. [11].
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where

ωH − ωL ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
M12 −

i
2
Γ12

��
M�

12 −
i
2
Γ�
12

�s
: ð26Þ

A state that is initially pure jψi or jψ̄i evolves in time to a
mixture of both states due to oscillations as2

jψðtÞi ¼ gþðtÞjψi −
q
p
g−ðtÞjψ̄i;

jψ̄ðtÞi ¼ gþðtÞjψ̄i −
p
q
g−ðtÞjψi; ð27Þ

where

g�ðtÞ ¼
1

2
ðe−imHt−1

2
ΓHt � e−imLt−1

2
ΓLtÞ: ð28Þ

To characterize the oscillations, it is often useful to
define two dimensionless parameters,

x≡ Δm
Γ

; y≡ ΔΓ
2Γ

: ð29Þ

If x ≪ 1, the states decay before oscillating, while if x ≫ 1,
the states rapidly oscillate before decaying, making it
difficult to observe oscillation signatures. The effects of
oscillations are maximized for x ∼ 1. For jyj near unity (as
defined jyj ≤ 1), one of the two states can be rapidly
depleted before the other decays, as is the case in the kaon
system. If jyj ≪ 1, neither state is preferentially depleted
over the other.

III. SPECIFIC EXAMPLE

A. UV theory

We work with a nearly Uð1ÞR symmetric SUSY model.
The left-handed gauginos and the scalar superpartners of
left-handed fermions have R charge þ1, while the SM
particles haveR charge 0. We take the SM left-handedWeyl
fermions qi, ūi, d̄i, li, ēi to be components of left chiral
superfields Φqi , Φūi , Φd̄i , Φli , Φēi . The gluino λ is the
fermion component of the QCD field strength superfield
Wα

c . We assume the gluino to be the lightest superpartner
other than the gravitino. For the gluino to get a Uð1ÞR
preserving Dirac mass, we introduce a left chiral, color
adjoint superfield ΦO of which the fermion componentO is
the Dirac partner of the gluino. For simplicity, we do not

discuss the Higgs or the electroweak sectors in this work,
but we note that it is possible to build a viable model with
an extended Higgs sector and/or lepton number violation
which preserves the Uð1ÞR symmetry [5,18]. To allow
nongauge interactions for ΦO, we introduce superfields ΦD̄
and ΦD, transforming under the SM gauge group in the
same way as d̄ and d̄� respectively. We show the field
content of the model that is most relevant to our study in
Table I.
These fields have a superpotential mass term and

interactions

Z
d2θμDΦD̄ΦD þ yΦD̄ΦOΦD þ g0iΦd̄iΦOΦD þ H:c:;

ð30Þ

where μD is assumed to be very large, of order a TeV or
higher. We neglect the possibility of mixing between the
ordinary down quarks and the fermion components of
ΦD̄, ΦD.
We assume that the gluino is the lightest R-charged

particle and decays via Uð1ÞR symmetry violation. Uð1ÞR
symmetry must be broken by supergravity, and we will
assume that R-parity is also broken. There is an extensive
literature on R-parity-violating interactions and their phe-
nomenological constraints [19,20]. In this example, to
ensure proton stability, we will assume that baryon number
is conserved. We include the following R-parity and
Uð1ÞR-symmetry-violating superpotential terms:

Z
d2θyijkΦliΦqjΦd̄k þ y0ijΦliΦqjΦD̄

þ y00ijΦēiΦūjΦD þ H:c: ð31Þ

TABLE I. Part of the particle content of the model with
quantum numbers under the SM gauge group and Uð1ÞR. All
fermions are left-handed Weyl spinors. λ is the gluino, and O is
the octino. The ϕd̄ fields are scalar superpartners of SM quarks,
and ϕD, ϕD̄ are superpartners of exotic heavy vectorlike quarks.
The fields qi, ūi, d̄i, li, ēi are SM fermions, and i is a generational
index.

Field SUð3Þ SUð2Þ Uð1Þ Uð1ÞR
qi 3 2 1=6 0
ūi 3̄ 1 −2=3 0
d̄i 3̄ 1 1=3 0
li 1 2 −1=2 0
ēi 1 1 1 0
λ 8 1 0 þ1
O 8 1 0 −1
ϕd̄i 3̄ 1 1=3 þ1
ϕD̄ 3̄ 1 1=3 þ1
ϕD 3 1 −1=3 þ1

2Note that in Ref. [11] the case of neutralino oscillations with
fairly long lifetimes was discussed, and it was claimed that an
oscillating decay rate could be an interesting consequence. Our
analysis shows that in the absence of CP violation the decay rate
does not oscillate in the rest frame, and therefore, by Lorentz
invariance, will not oscillate for boosted particles either. Instead it
is possible for the particle content of the final states to oscillate.
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The first two terms leave the linear combination R − L
unbroken, where L is lepton number, and the third term
leaves Rþ L unbroken.
We do not discuss a specific SUSY-breaking model here

but assume that SUSY is broken in a hidden sector which
communicates with the visible sector at the messenger scale
ΛM. Supersymmetry breaking is incorporated via spurions
W0

α and X, where W0
α is the expectation value of a hidden

sector Uð1Þ gauge field strength and X is the expectation
value of a hidden sector chiral superfield. We set

W0
α ¼ Dθα; X ¼ Fθ2; ð32Þ

whereD and F are SUSY-breaking order parameters which
are Uð1ÞR neutral. We assume that X transforms non-
trivially under some symmetry of the SUSY-breaking
sector. Because X is not a singlet, there can be no
Uð1ÞR-symmetry-violating Majorana gaugino mass terms
from spurions such as

R
d2θðX=ΛMÞWαWα where Wα is a

SM gauge field strength superfield. The Dirac gluino mass
arises from the spurion term

Z
d2θ

cW0
α

ΛM
Wα

cΦO þ H:c:; ð33Þ

where c is a dimensionless parameter, giving

mD ¼ cD
ΛM

: ð34Þ

Majorana mass terms for the gauginos and scalar ϕD, ϕD̄
mixing will be generated from anomaly mediation [10],
which gives, e.g., a Majorana gluino mass,

mλ ¼
βs
gs

m3=2; ð35Þ

and scalar mass mixing term,

m3=2μDϕDϕD̄ þ H:c:; ð36Þ

where βs is the beta function for the QCD coupling gs.
m3=2 ∼ ðDþ FÞ=MPl is the gravitino mass with MPl the
Planck scale. Note that we must assume that m3=2 is small
in order to have an approximate Uð1ÞR symmetry, so ΛM
must be well below the Planck scale. The spurion X can
give rise to SUSY-breaking scalar masses via operators

Z
d4θ

X†X
Λ2
M

ðcijΦ†
d̄i
Φd̄j þ ciΦ

†
D̄Φd̄i

þ cD̄Φ
†
D̄ΦD̄ þ cDΦ

†
DΦDÞ; ð37Þ

where cij, ci, cD, cD̄ are dimensionless parameters. We will
assume a modest hierarchy of supersymmetry-breaking
terms,

D < F; ð38Þ

so that in general scalar masses are larger than gaugino
masses. A Majorana mass term for O could arise from a
Uð1ÞR-violating superpotential term,

Z
d2θmOΦ2

O þ H:c: ð39Þ

Note that, as we assume all Uð1ÞR-violating terms are
small,

mO ≪ mD: ð40Þ

A possible explanation for the small size of this term is that
O could be part of an approximately N ¼ 2 supersym-
metric gauge or gauge/Higgs sector [7,9,21].
Supersymmetry breaking may also provide the supersoft

terms [9]Z
d2θ

W0αW0
α

Λ2
M

ðcOOΦ2
O þ cDD̄ΦDΦD̄ þ cDd̄iΦDΦd̄iÞ þH:c:;

ð41Þ

where cOO, cDD̄, cDd̄i are dimensionless parameters. These
give scalar mass mixing terms, including

ðB2
DD̄ϕDϕD̄ þ B2

Dd̄i
ϕDϕd̄iÞ þ H:c:; ð42Þ

with

B2
DD̄ ¼ cDD̄D

2

Λ2
M

; B2
Dd̄i

¼ cDd̄iD
2

Λ2
M

: ð43Þ

Our assumption of relatively large F term contributions
to scalar masses solves the negative scalar mass squared
problem [22] and preserves theUð1ÞR solution to the SUSY
CP problem but does not address the SUSY flavor
problem. We assume the latter is addressed by an approxi-
mate flavor symmetry of the messenger interactions,
leading to

cij ¼ cd̄δij þ small ð44Þ

and

ci; cDd̄i ≪ cd̄: ð45Þ

Thus, the ϕd̄k are nearly degenerate, with mass squared

m2
ϕ̄dk

≈
cd̄F

2

Λ2
M

: ð46Þ

We assume
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μD >
F
ΛM

ð47Þ

so that ϕD, ϕD̄ are nearly degenerate with mass μD. We also
note that there is a supersymmetry-breaking mixing term
between the ϕd̄k and ϕD̄,

L ⊃ − ~m2
kϕd̄kϕ

�̄
D þ H:c:; ð48Þ

with

~m2
k ¼

ckF2

Λ2
M

ð49Þ

assumed to be small.
The supersymmetric gauge interactions contain the

Yukawa couplings

L ⊃ −
ffiffiffi
2

p
gsd̄iλataϕ�̄

di
þ H:c:; ð50Þ

and the superpotential terms contain the interactions

L ⊃ −g0id̄iOataϕD − yijkliqjϕd̄k

− y0ijliqjϕD̄ − y00ijē
�
i ū

�
jϕ

�
D þ H:c: ð51Þ

While the flavor-violating terms, B2
Dd̄k

and ~m2
k can be

suppressed at tree level by a flavor symmetry as we assume
they are generated at one-loop and proportional to
yijky0ijB

2
DD̄ and yijky0ij respectively.

B. Effective four-fermion theory for gluino decays

Now we assume that all the squarks are heavy and can be
integrated out. Using a mass insertion approximation for
the small scalar mixing terms and neglecting the gravitino
mass, the resulting effective four-fermion Lagrangian for
the gluino interactions is approximately

Leff ¼ Gijkλliqjd̄k þG0
ijkOliqjd̄k

þ G00
ijkOē�i ū

�
j d̄k þ G000

ijkλē
�
i ū

�
j d̄k þ H:c:; ð52Þ

where we have suppressed color indices and

Gijk ¼
ffiffiffi
2

p
gsyijk
m2

ϕd̄

; G0
ijk ¼

g0ky
0
ijB

2
DD̄

μ4D
;

G00
ijk ¼

g0ky
00
ij

μ2D
; G000

ijk ¼
ffiffiffi
2

p
gsy00ijð ~m2

kB
2
DD̄ þ μ2DB

2
Dd̄k

Þ
m2

ϕd̄
μ4D

:

ð53Þ

We have assumed a flavor symmetry such that B2
Dd̄k

and ~m2
k

are loop suppressed, so we might expect that G000
ijk is

somewhat smaller than the others.

C. Pseudo-Dirac gluino oscillations

In this section we use the machinery from Sec. II with
our specific model. In the toy model, the scalar field ϕ was
light so that the gluino decayed to a scalar and a fermion.
However, in this specific model, the squarks are heavier
than the gluino, so the relevant decays are to three-body
final states through the four-fermion operators in Eq. (52).
Therefore, the one-loop corrections to the gluino self-
energy (as seen in Fig. 2) are real. Absorptive contributions
to the Hamiltonian occur at two-loop order through dia-
grams like the one shown in Fig. 3. We continue to ignore
the chirality-flipping two-point functions, Ω, since they are
proportional to light fermion masses.
For simplicity we will consider an example where there

are only two relevant four-fermion operators, assuming that
G211 ≡ ~Gλ and G0

211 ≡ ~GO dominate in Eq. (52),3 leading
to the effective Lagrangian

Leff ¼ ~Gλλd̄q1l2 þ ~GOOd̄q1l2 þ H:c:; ð54Þ

suppressing gauge indices.
The imaginary part of the diagram in Fig. 3 is found to be

ℑ

�
Ξij

~Gi
~G�
j

�
¼ 2p4

3ð16πÞ3 ð55Þ

for i, j ¼ λ, O. Following the discussion in Sec. II, in the
presence of these interactions, the Hamiltonian for the
pseudo-Dirac gluino is

H ¼ M −
i
2
Γ; ð56Þ

with

M ¼
�
MD MM

M�
M MD

�
;

Γ≃
�Γ0 0

0 Γ0

�

þ M5
D

12ð8πÞ3
� j ~Gλj2 þ j ~GOj2 2 ~G�

λ
~GO

2 ~Gλ
~G�
O j ~Gλj2 þ j ~GOj2

�
: ð57Þ

Γ0 represents possible contributions to the decay width that
involve λ (or possiblyO) that do not arise from operators in
Eq. (54) and do not break the Uð1ÞR symmetry, such as
decays to a gluon and gravitino. The masses in M are the
renormalized two-loop values such that the gluino and
octino form nearly Dirac fermions with massesMD � jMMj

3Becuase of our assumption of a flavor symmetry, we expect
that G000

ijk is loop suppressed. Since CP-violating effects involving
the lepton singlet final state are proportional to G00G000, this
makes the lepton doublet final state that we have chosen more
interesting.
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(ignoring any width difference). The Dirac mass is multi-
plicatively renormalized from its tree-level value in
Eq. (34), leading to MD ≃mD. At tree level the
Majorana mass, MM, is m�

λ þmO from Eqs. (35) and
(39). It also receives one-loop contributions proportional to
the Dirac mass and Uð1ÞR-violating terms,

δM ∼
gsg0k
ð4πÞ2

�
~m2
kB

2
DD̄ þ μ2DB

2
Dd̄k

μ4D

�
MD: ð58Þ

Since we have assumed a flavor symmetry so that B2
Dd̄k

and
~m2
k are loop suppressed, this is effectively a two-loop

contribution to the mass.

IV. CP VIOLATION IN PSEUDO-DIRAC
FERMION OSCILLATIONS

Particle-antiparticle oscillations can enhance the observ-
able effects of CP-violating phases, via interference
between the phases in oscillations and decay amplitudes.
Here we consider a possible charge asymmetry between
like-sign dimuons that may be produced in gluino decays as
a possibly observable example. Like-sign dileptons are a
standard SUSY signal [23,24] and can exhibit a charge
asymmetry at a pp collider like the LHC when the squarks
are lighter than the gluino [24], while in our scenario the
gluino is lighter than the squarks. Since the interactions that
produce a pair of pseudo-Dirac gluinos conserve Uð1ÞR,
initially a pair of R ¼ þ1 and R ¼ −1 states are produced.
We denote the amplitude for a state with Uð1ÞR charge R to
decay to μ� as M�

R . Note that Mþ
þ can arise from the

couplings G2jk, G000
2jk in Eq. (52), while M−

− can arise from
their Hermitian conjugates. At tree level, and neglecting
final-state interactions, we expect no direct CP violation
and may assume

M−
− ¼ Mþ

þ�: ð59Þ

Similarly, Mþ
− is proportional to the couplings G0

2jk, G
00
2jk

and M−þ to their conjugates. Assuming no direct CP
violation gives

Mþ
− ¼ M−þ�: ð60Þ

CP violation due to interference between a decay with
mixing and without mixing is only possible when either R
charge state can decay into an indistinguishable final state.
Since the G, G0 operators tend to produce different
helicities than the G00, G000 operators, CP violation from
interference will be maximized when either the G-G0 or the
G00-G000 pair dominate and when the quark flavor depend-
ence of the different couplings is the same. In the following
analysis, we assume that the final states produced by the
Mþ

þ decay amplitudes are indistinguishable from those
produced by the Mþ

− amplitudes, and the final states from
M−þ are indistinguishable from those due to M−

−.
Using Eq. (27), we find that a state with R ¼ þ1 at t ¼ 0

decays into μ� at time t with an amplitude of

A�þðtÞ ¼ gþðtÞM�þ −
p
q
g−ðtÞM�

− ; ð61Þ

and an initial R ¼ −1 state decays into μ� at time t with an
amplitude of

A�
−ðtÞ ¼ gþðtÞM�

− −
q
p
g−ðtÞM�þ: ð62Þ

It is possible that the oscillation length is too short to be
directly observable for gluino decays. However, interfer-
ence between decays with and without mixing can still
produce sizable observable CP violation when the oscil-
lation and decay times are similar. Assuming initial
incoherent production of a pair of gluinos with opposite
R charges, the number of resulting like-sign pairs of
positively charged muons, Nþþ, vs negatively charged
muons, N−−, where

N�� ∝
�Z

∞

0

dtjA�þðtÞj2
�
×

�Z
∞

0

dtjA�
−ðtÞj2

�
; ð63Þ

can exhibit a nonzero asymmetry,

A≡ Nþþ − N−−

Nþþ þ N−− : ð64Þ

Also of interest is the total fraction of same-sign muon
decays,

R≡ Nþþ þ N−−

Nþ− þ N−þ þ Nþþ þ N−− ; ð65Þ

where we calculate the number of opposite-sign muon
decays in an analogous way to Eq. (63). Below, we show
approximate expressions for A and R in some physically
relevant limits.
If the total decay width of the pseudo-Dirac particles is

dominated by final states that do not include muons and do

FIG. 3. Two-loop corrections to the two-point functions, Ξij,
for i, j ¼ λ, O, that arise due to the couplings in Eq. (54).
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not break the Uð1ÞR, then we can ignore the width differ-
ence between the states, ΔΓ, and take jq=pj ¼ 1. This
corresponds to Γ0 ≫ Γ in Eq. (57). Then the asymmetry
can be expressed as

A≃ 4xrð1 − r2Þ sin β
ð1þ x2Þ2ð1þ r2Þ2 − ð1 − r2Þ2 − 4x2r2sin2β

; ð66Þ

where x is related to the mass difference as in Eq. (29) and
we assume no direct CP violation as in Eqs. (59) and (60).
We have defined a reparametrization-invariant phase,

β≡ arg

�
q
p
Mþ

þ
Mþ

−

�
; ð67Þ

and a ratio of amplitudes,

r≡ jMþ
þj

jMþ
− j

: ð68Þ

In the same limit, the ratio of same-sign muon decays is

R≃ 1

2

�
1 −

ð1 − r2Þ2
ð1þ x2Þ2ð1þ r2Þ2 − 4x2r2sin2β

�
: ð69Þ

For x≳ r, as we would expect without fine-tuning, the
product of the asymmetry and the fraction of same-sign
decays is approximately

A × R≃ 2xr sin β
ðx2 þ 1Þ2 : ð70Þ

In the benchmark model we will consider in Sec. V, the
final states involving muons common to both R ¼ �1
states dominate the total width, which corresponds to Γ0 ≪
Γ in Eq. (57), and we can no longer ignore the width
difference or the deviation of jp=qj from unity. In this case,
ΔΓ, jp=qj − 1 ∝ r. For r < 2MM=Γ, which we expect is
the case in the absence of fine-tuning, we can write the
asymmetry as

A≃ 4r
x

�
x2 þ 3

x2 þ 2

�
sin β ð71Þ

and the fraction of same-sign decays as

R≃ x2

2

x2 þ 2

ðx2 þ 1Þ2 : ð72Þ

The asymmetries that we have expressed above can be
significant for a fairly wide range of parameters, and the
product of the asymmetry and the fraction of same-sign
decays is typically of order xr sin β. We also note that when
r is close to one A is suppressed for any value of ΔΓ
and jp=qj.

V. BENCHMARK MODEL ESTIMATES

Here we give sample parameters which allow for sizable
CP violation in gluino decays. The distinctive final state
that the gluino decays into through Leff in Eq. (54), μjj, is
subject to leptoquark searches at the LHC [25].4 The very
strong constraints from CMS on second-generation lep-
toquarks using 20 fb−1 of 8 TeV data [28] suggest that a
gluino that decays with an Oð1Þ branching fraction to this
final state should be heavy enough to be out of reach at
8 TeV. We therefore choose a benchmark gluino mass of
1.6 TeV, out of the reach of this search as well as standard
SUSY searches involving missing energy. At next-to-
leading order in QCD including next-to-leading-logarithmic
threshold corrections, assuming the squarks are decoupled,
the cross section for a 1.6 TeV Dirac gluino pair production
in pp collisions is 16 fb (0.4 fb) at 13 TeV (8 TeV) center-of-
mass energy, with an uncertainty on the order of 15%–20%
[29], which is in agreement with the limit from Ref. [28]
given a 100% branching to μjj.
The following estimate shows that we do not expect an

observably long lifetime for the gluino unless x ≫ 1, in
which case CP violation from interference between mixing
and decay becomes suppressed. The mass splitting from
anomaly mediation is proportional to the gravitino mass,
while the rate for decay into a gluon and gravitino is
inversely proportional to the square of the gravitino mass.
We cannot take the mass splitting to be small without taking
the gravitino light or fine-tuning; however, if we take the
gravitino mass to be too small, the gluinowill decay too fast
to oscillate. The rate for a gluino of mass MD to decay to a
gluon and gravitino is [30]

Γg ~G ¼ M5
D

12M2
Plm

2
3=2

; ð73Þ

which gives Γg ~G ∼ 60 eV for a 1.6 TeV gluino mass and
10 eV gravitino. From Eq. (35), a gravitino mass of 10 eV
would give a mass splitting from anomaly mediation of
about 0.4 eV. We therefore can only have comparable
oscillation and decay rates when the gravitino is heavier
than a few eV and the gluino width is greater than about
an eV.
We consider a gluino width of 300 eV and assume the

gravitino branching fraction is small so that the decays are
dominated by the effective operators of Eq. (54). For a
1.6 TeV gluino, this width corresponds to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j ~Gλj2 þ j ~GOj2

q
∼

1

ð21 TeVÞ2 : ð74Þ

4This scenario could lead to a llþ jets signal for l ¼ e, μ, τ,
an intriguing possibility in light of recent excesses in leptoquark
[26] and right-handed charged gauge boson [27] searches.
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Taking μD ¼ 5 TeV, mϕd̄
¼ 4 TeV, jg01j ¼ jy021j ¼ 0.3,

y211 ¼ 0.02, and jB2
DD̄j ¼ ð1.25 TeVÞ2 gives

j ~Gλj ¼
1

ð21 TeVÞ2 ; j ~GOj ¼
1

ð56 TeVÞ2 : ð75Þ

Given scalar masses of this size, these values of the
R-parity-violating couplings y211 and y021 are in agreement
with limits from charged pion decays and neutrino
scattering [20]. The ratio r is

r ¼ jMþ
þj

jMþ
− j

¼ j ~GOj
j ~Gλj

¼ 0.14: ð76Þ

We work in a basis where we have rotated the Majorana
mass to be real. The phase ϕΓ ≡ argΓ12 is a free parameter
and is related to the physical phase in this basis as
ϕΓ ≃ β þ π. Loop corrections to the Uð1ÞR-breaking gau-
gino mass splitting are effectively at the two-loop level, due
to our assumption of a flavor symmetry suppressing ~mk and
BDd̄k , and are of order rΓ. This means that without fine-
tuning MM ≃ xΓ=2≳ rΓ. The particular value, however,
depends on the gravitino mass and is a free parameter.
Taking the mass splitting to be 200 eV and ϕΓ ¼ −π=3
gives a dimuon asymmetry

A≃ 0.8 ð77Þ

and a fraction of same-sign events of R≃ 0.25. Given the
production cross sections above, we therefore expect about
400 (2) same-sign muon pair events in 100 fb−1 of data at

13 TeV (20 fb−1 at 8 TeV). This event rate could allow for
Oð10%Þ asymmetries to be probed.
In Fig. 4, we show the asymmetry for the parameters

specified above, allowing the mass splitting to vary, as well
as the approximate expression for the asymmetry from
Eq. (71). We also show the product of the asymmetry and
the ratio of same-sign decays and the product of the
approximate expressions in Eqs. (71) and (72).
Note that assuming this gluino mass splitting is domi-

nated by the anomaly-mediated contribution gives a grav-
itino mass of about 5 keV, which could make the gravitino
an interesting warm dark matter candidate. A 5 keV
gravitino mass gives a branching fraction for the gluino
to gluon plus gravitino of 0.8 × 10−6.

VI. SUMMARY AND OUTLOOK

This paper is the first to study the possibility of CP
violation in the decays of oscillating pseudo-Dirac fer-
mions. We set up the effective Hamiltonian and show that it
takes the same form as the one used for decays of
oscillating mesons. We then consider a particular example,
chosen to have the distinctive signature of an asymmetry
between pairs of positively and negatively charged muons
produced from gluino decays. Similar phenomena are
possible for a pseudo-Dirac neutralino. We note that order
1 asymmetries in like-sign dilepton events are possible.
Another possibility for heavy decaying pseudo-Dirac

fermions is a supersymmetric theory [not necessarily
containing an approximate Uð1ÞR symmetry or pseudo-
Dirac gauginos] with squarks as the lightest superpartners,
in which case the squarks may hadronize as mesinos before
they decay via R-parity violation. CP violation from
interference between oscillation and decays would be a
generic feature of mesino decays as well.
Besides the unusual signature, our example was motivated

by the Uð1ÞR symmetry solution to the SUSY CP problem
and the potential to obtain large CP violation for baryo-
genesis which is not constrained by electric dipole moments.
If the lightest particle of the MSSM (besides the gravitino) is
a pseudo-Dirac fermion which decays primarily via R-parity
violation, CP violation in the decays could produce either a
baryon asymmetry or a lepton asymmetry which gets
converted by anomalous weak processes into a baryon
asymmetry. If such a particle could also be produced in a
collider, then the CP violation responsible for baryogenesis
could potentially be directly observed.
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FIG. 4 (color online). The same-sign dimuon asymmetry, A, of
pseudo Dirac gluino decays as defined in Eq. (64) (upper/black
solid curve) and the approximate expression for A in Eq. (71)
(upper/black dashed curve) along with the product of A and the
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solid curve) and the product of the approximate expressions for A
[Eq. (71)] and R [Eq. (72)] (lower/red dashed curve) as functions
of 2MM=Γ≃ x ¼ Δm=Γ. We have taken Γ ¼ 300 eV, r ¼ 0.14,
and ϕΓ ¼ −π=3.
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APPENDIX: STRONG INTERACTIONS
AND DECOHERENCE

Whether strong interactions decohere the color adjoint
fermions can be analyzed by considering the time evolution
of the density matrix (see Ref. [31] for a detailed derivation
and discussion of this formalism),

ρ ¼
X

i;j¼ψ ;ψ̄

jiihjj; ðA1Þ

which normally evolves in time as

∂ρ
∂t ¼ −i½H; ρ�; ðA2Þ

where H is the Hamiltonian. Including scattering off of
sources of color charge (e.g., quarks, ψq → ψq and
ψ̄q → ψ̄q) modifies the evolution equation to

∂ρ
∂t ¼ −i½H; ρ� − κ

2
½N; ½N; ρ��: ðA3Þ

κ > 0 parameterizes the strength of the interaction and N is
a matrix given by N ¼ diagð1;�1Þ. The sign of the last
term in N is determined by the transformation of the
interaction Lagrangian under charge conjugation, C, of

only the color adjoints in question, ψ↔ψ̄ , Lint → �Lint. If
this is a minus sign, the interactions can distinguish
between particle and antiparticle, and the last term of
Eq. (A3) becomes

½N; ½N; ρ�� ∝
�

0 ρψψ̄
ρψ̄ψ 0

�
: ðA4Þ

This causes decoherence and can suppress oscillations.
However, if the interactions cannot tell the difference
between ψ and ψ̄ , then N is the identity matrix, so the
last term in Eq. (A3) vanishes, and coherent oscillations
can occur.
In the case we consider, the interactions can be written

simply as

Lint ¼ igsψ̄TaγμψJaμ: ðA5Þ

where Ta is a generator in the adjoint of SU(3), Jaμ is a
source of color charge, and a ¼ 1;…; 8. Acting with C on
ψ and ψ̄ alone,

Lint → −igsψ̄ðTaÞTγμψJaμ: ðA6Þ

Since ψ and ψ̄ are in the adjoint representation, Ta is
antisymmetric, and Lint → Lint. Thus, strong rescatterings
do not decohere pseudo-Dirac gluinos, and they can
undergo oscillations in the same way as (pseudo-Dirac)
electroweak gauginos.

[1] V. Kuzmin, V. Rubakov, and M. Shaposhnikov, Phys. Lett.
155B, 36 (1985).

[2] P. Huet and E. Sather, Phys. Rev. D 51, 379 (1995); M.
Gavela, P. Hernandez, J. Orloff, O. Pene, and C. Quimbay,
Nucl. Phys. B430, 382 (1994).

[3] M. Pospelov and A. Ritz, Ann. Phys. 318, 119 (2005); V.
Cirigliano, S. Profumo, and M. J. Ramsey-Musolf, J. High
Energy Phys. 07 (2006) 002; L. Fromme, S. J. Huber, and
M. Seniuch, J. High Energy Phys. 11 (2006) 038; D. E.
Morrissey and M. J. Ramsey-Musolf, New J. Phys. 14,
125003 (2012); D. McKeen, M. Pospelov, and A. Ritz,
Phys. Rev. D 86, 113004 (2012); 87, 113002 (2013); S.
Ipek, Phys. Rev. D 89, 073012 (2014); J. R. Ellis, J. S. Lee,
and A. Pilaftsis, J. High Energy Phys. 10 (2008) 049.

[4] J. Baron et al. (ACME Collaboration), Science 343, 269
(2014); W. Griffith, M. Swallows, T. Loftus, M. Romalis, B.
Heckel, and E. Fortson, Phys. Rev. Lett. 102, 101601
(2009); C. Baker et al., Phys. Rev. Lett. 97, 131801 (2006).

[5] L. Hall and L. Randall, Nucl. Phys. B352, 289 (1991); G. D.
Kribs, E. Poppitz, and N. Weiner, Phys. Rev. D 78, 055010
(2008); E. Dudas, M. Goodsell, L. Heurtier, and P.
Tziveloglou, Nucl. Phys. B884, 632 (2014).

[6] P. Fayet, Nucl. Phys. B90, 104 (1975).
[7] P. Fayet, Nucl. Phys. B113, 135 (1976).
[8] M. Dine and D. MacIntire, Phys. Rev. D 46, 2594 (1992).
[9] P. J. Fox, A. E. Nelson, and N. Weiner, J. High Energy Phys.

08 (2002) 035.
[10] L. Randall and R. Sundrum, Nucl. Phys. B557, 79 (1999);

G. F. Giudice, M. A. Luty, H. Murayama, and R. Rattazzi,
J. High Energy Phys. 12 (1998) 027.

[11] Y. Grossman, B. Shakya, and Y. Tsai, Phys. Rev. D 88,
035026 (2013).

[12] U. Sarid and S. D. Thomas, Phys. Rev. Lett. 85, 1178
(2000); J. Berger, C. Csaki, Y. Grossman, and B.
Heidenreich, Eur. Phys. J. C 73, 2408 (2013).

[13] S. M. Bilenky and S. T. Petcov, Rev. Mod. Phys. 59, 671
(1987); L. Wolfenstein, Nucl. Phys. B186, 147 (1981); S.
Petcov, Phys. Lett. 110B, 245 (1982); M. Kobayashi and
C. Lim, Phys. Rev. D 64, 013003 (2001); J. Schechter and
J. W. F. Valle, Phys. Rev. D 22, 2227 (1980).

[14] S. Bray, J. S. Lee, and A. Pilaftsis, Nucl. Phys. B786, 95
(2007).

[15] H. K. Dreiner, H. E. Haber, and S. P. Martin, Phys. Rep. 494,
1 (2010).

CP VIOLATION IN PSEUDO-DIRAC FERMION … PHYSICAL REVIEW D 90, 076005 (2014)

076005-11

http://dx.doi.org/10.1016/0370-2693(85)91028-7
http://dx.doi.org/10.1016/0370-2693(85)91028-7
http://dx.doi.org/10.1103/PhysRevD.51.379
http://dx.doi.org/10.1016/0550-3213(94)00410-2
http://dx.doi.org/10.1016/j.aop.2005.04.002
http://dx.doi.org/10.1088/1126-6708/2006/07/002
http://dx.doi.org/10.1088/1126-6708/2006/07/002
http://dx.doi.org/10.1088/1126-6708/2006/11/038
http://dx.doi.org/10.1088/1367-2630/14/12/125003
http://dx.doi.org/10.1088/1367-2630/14/12/125003
http://dx.doi.org/10.1103/PhysRevD.86.113004
http://dx.doi.org/10.1103/PhysRevD.87.113002
http://dx.doi.org/10.1103/PhysRevD.89.073012
http://dx.doi.org/10.1088/1126-6708/2008/10/049
http://dx.doi.org/10.1126/science.1248213
http://dx.doi.org/10.1126/science.1248213
http://dx.doi.org/10.1103/PhysRevLett.102.101601
http://dx.doi.org/10.1103/PhysRevLett.102.101601
http://dx.doi.org/10.1103/PhysRevLett.97.131801
http://dx.doi.org/10.1016/0550-3213(91)90444-3
http://dx.doi.org/10.1103/PhysRevD.78.055010
http://dx.doi.org/10.1103/PhysRevD.78.055010
http://dx.doi.org/10.1016/j.nuclphysb.2014.05.005
http://dx.doi.org/10.1016/0550-3213(75)90636-7
http://dx.doi.org/10.1016/0550-3213(76)90458-2
http://dx.doi.org/10.1103/PhysRevD.46.2594
http://dx.doi.org/10.1088/1126-6708/2002/08/035
http://dx.doi.org/10.1088/1126-6708/2002/08/035
http://dx.doi.org/10.1016/S0550-3213(99)00359-4
http://dx.doi.org/10.1088/1126-6708/1998/12/027
http://dx.doi.org/10.1103/PhysRevD.88.035026
http://dx.doi.org/10.1103/PhysRevD.88.035026
http://dx.doi.org/10.1103/PhysRevLett.85.1178
http://dx.doi.org/10.1103/PhysRevLett.85.1178
http://dx.doi.org/10.1140/epjc/s10052-013-2408-8
http://dx.doi.org/10.1103/RevModPhys.59.671
http://dx.doi.org/10.1103/RevModPhys.59.671
http://dx.doi.org/10.1016/0550-3213(81)90096-1
http://dx.doi.org/10.1016/0370-2693(82)91246-1
http://dx.doi.org/10.1103/PhysRevD.64.013003
http://dx.doi.org/10.1103/PhysRevD.22.2227
http://dx.doi.org/10.1016/j.nuclphysb.2007.07.002
http://dx.doi.org/10.1016/j.nuclphysb.2007.07.002
http://dx.doi.org/10.1016/j.physrep.2010.05.002
http://dx.doi.org/10.1016/j.physrep.2010.05.002


[16] J. Beringer et al. (Particle Data Group), Phys. Rev. D 86,
010001 (2012).

[17] M. Martone and D. J. Robinson, Phys. Rev. D 85, 045006
(2012); A. Pilaftsis, Nucl. Phys. B504, 61 (1997).

[18] C. Frugiuele, T. Gregoire, P. Kumar, and E. Ponton, J. High
Energy Phys. 05 (2013) 012; E. Bertuzzo, C. Frugiuele,
T. Gregoire, and E. Ponton, arXiv:1402.5432; R. Davies,
J. March-Russell, and M. McCullough, J. High Energy Phys.
04 (2011) 108; C. Frugiuele and T. Gregoire, Phys. Rev. D
85, 015016 (2012); C. Frugiuele, T. Gregoire, P. Kumar, and
E. Ponton, J. High Energy Phys. 03 (2013) 156; F. Riva, C.
Biggio, and A. Pomarol, J. High Energy Phys. 02 (2013) 081.

[19] J. R. Ellis, G. Gelmini, C. Jarlskog, G. G. Ross, and J. Valle,
Phys. Lett. 150B, 142 (1985); G. G. Ross and J. Valle, Phys.
Lett. 151B, 375 (1985).

[20] R. Barbier et al., Phys. Rep. 420, 1 (2005).
[21] P. Fayet, Phys. Lett. 142B, 263 (1984).
[22] C. Csaki, J. Goodman, R. Pavesi, and Y. Shirman, Phys.

Rev. D 89, 055005 (2014); K. Benakli and M. Goodsell,
Nucl. Phys. B816, 185 (2009); B840, 1 (2010).

[23] R. M. Barnett, J. F. Gunion, and H. E. Haber, Phys. Lett. B
315, 349 (1993); M. Guchait and D. Roy, Phys. Rev. D 52,
133 (1995).

[24] H. Baer, X. Tata, and J. Woodside, Phys. Rev. D 45, 142
(1992); H. Baer, C.-h. Chen, F. Paige, and X. Tata, Phys.
Rev. D 53, 6241 (1996).

[25] J. A. Evans and Y. Kats, Proc. Sci., EPS-HEP2013 (2013)
287.

[26] CMS Collaboration, Report No. CMS-PAS-EXO-12-041
(2014), http://cds.cern.ch/record/1742179/files/EXO‑12‑041‑
pas.pdf.

[27] V. Khachatryan et al. (CMS Collaboration), arXiv:1407.3683.
[28] CMS Collaboration, Report No. CMS-PAS-EXO-12-042

(2013), http://cds.cern.ch/record/1542374/files/EXO‑12‑042‑
pas.pdf.

[29] W. Beenakker, R. Hopker, M. Spira, and P. Zerwas, Nucl.
Phys. B492, 51 (1997); A. Kulesza and L. Motyka, Phys.
Rev. Lett. 102, 111802 (2009); Phys. Rev. D 80, 095004
(2009); W. Beenakker, S. Brensing, M. Krämer, A. Kulesza,
E. Laenen, and I. Niessen, J. High Energy Phys. 12 (2009)
041; W. Beenakker, S. Brensing, M. Krämer, A. Kulesza,
E. Laenen, L. Motyka, and I. Niessen, Int. J. Mod. Phys. A
26, 2637 (2011).

[30] M. D. Goodsell and P. Tziveloglou, arXiv:1407.5076.
[31] S. Tulin, H.-B. Yu, and K. M. Zurek, J. Cosmol. Astropart.

Phys. 05 (2012) 013.

SEYDA IPEK, DAVID MCKEEN, AND ANN E. NELSON PHYSICAL REVIEW D 90, 076005 (2014)

076005-12

http://dx.doi.org/10.1103/PhysRevD.86.010001
http://dx.doi.org/10.1103/PhysRevD.86.010001
http://dx.doi.org/10.1103/PhysRevD.85.045006
http://dx.doi.org/10.1103/PhysRevD.85.045006
http://dx.doi.org/10.1016/S0550-3213(97)00469-0
http://dx.doi.org/10.1007/JHEP05(2013)012
http://dx.doi.org/10.1007/JHEP05(2013)012
http://arXiv.org/abs/1402.5432
http://dx.doi.org/10.1007/JHEP04(2011)108
http://dx.doi.org/10.1007/JHEP04(2011)108
http://dx.doi.org/10.1103/PhysRevD.85.015016
http://dx.doi.org/10.1103/PhysRevD.85.015016
http://dx.doi.org/10.1007/JHEP03(2013)156
http://dx.doi.org/10.1007/JHEP02(2013)081
http://dx.doi.org/10.1016/0370-2693(85)90157-1
http://dx.doi.org/10.1016/0370-2693(85)91658-2
http://dx.doi.org/10.1016/0370-2693(85)91658-2
http://dx.doi.org/10.1016/j.physrep.2005.08.006
http://dx.doi.org/10.1016/0370-2693(84)91195-X
http://dx.doi.org/10.1103/PhysRevD.89.055005
http://dx.doi.org/10.1103/PhysRevD.89.055005
http://dx.doi.org/10.1016/j.nuclphysb.2009.03.002
http://dx.doi.org/10.1016/j.nuclphysb.2010.06.018
http://dx.doi.org/10.1016/0370-2693(93)91623-U
http://dx.doi.org/10.1016/0370-2693(93)91623-U
http://dx.doi.org/10.1103/PhysRevD.52.133
http://dx.doi.org/10.1103/PhysRevD.52.133
http://dx.doi.org/10.1103/PhysRevD.45.142
http://dx.doi.org/10.1103/PhysRevD.45.142
http://dx.doi.org/10.1103/PhysRevD.53.6241
http://dx.doi.org/10.1103/PhysRevD.53.6241
http://cds.cern.ch/record/1742179/files/EXO-12-041-pas.pdf
http://cds.cern.ch/record/1742179/files/EXO-12-041-pas.pdf
http://cds.cern.ch/record/1742179/files/EXO-12-041-pas.pdf
http://cds.cern.ch/record/1742179/files/EXO-12-041-pas.pdf
http://cds.cern.ch/record/1742179/files/EXO-12-041-pas.pdf
http://arXiv.org/abs/1407.3683
http://cds.cern.ch/record/1542374/files/EXO-12-042-pas.pdf
http://cds.cern.ch/record/1542374/files/EXO-12-042-pas.pdf
http://cds.cern.ch/record/1542374/files/EXO-12-042-pas.pdf
http://cds.cern.ch/record/1542374/files/EXO-12-042-pas.pdf
http://cds.cern.ch/record/1542374/files/EXO-12-042-pas.pdf
http://dx.doi.org/10.1016/S0550-3213(97)80027-2
http://dx.doi.org/10.1016/S0550-3213(97)80027-2
http://dx.doi.org/10.1103/PhysRevLett.102.111802
http://dx.doi.org/10.1103/PhysRevLett.102.111802
http://dx.doi.org/10.1103/PhysRevD.80.095004
http://dx.doi.org/10.1103/PhysRevD.80.095004
http://dx.doi.org/10.1088/1126-6708/2009/12/041
http://dx.doi.org/10.1088/1126-6708/2009/12/041
http://dx.doi.org/10.1142/S0217751X11053560
http://dx.doi.org/10.1142/S0217751X11053560
http://arXiv.org/abs/1407.5076
http://dx.doi.org/10.1088/1475-7516/2012/05/013
http://dx.doi.org/10.1088/1475-7516/2012/05/013

