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The point-form version of the Bakamjian-Thomas construction is applied to the description of several
semileptonic decays of mesons. Weak form factors are extracted without ambiguity for pseudoscalar-to-
pseudoscalar as well as for pseudoscalar-to-vector transitions of mesons from the most general covariant
decomposition of the weak current. No manifestation of cluster-separability violation appears in the form
of nonphysical contributions to the structure of such a current, in contrast to what happens in the
electromagnetic case. Moreover, no frame dependence is observed when we extract the form factors from
the most general covariant decomposition of the current, which contrasts with analogous front-form
calculations that involve vector mesons in the transition. We present our results for heavy-light meson
decays, i.e. B → D, as well as for B and D mesons decaying into π, ρ and Kð�Þ, and perform a numerical
comparison with the analogous front-form approach. Differences between point and front forms that are not
seen in the heavy-quark limit of qQ̄ systems appear. These differences are attributed to the different role
that the nonvalence contributions play in the description of hadronic reactions in each form. It is argued
how contributions from missing Z graphs can be estimated.
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I. INTRODUCTION

From the three prominent forms of relativistic
Hamiltonian dynamics presented by Dirac [1], the point
form (PF) is the least explored. However, it possesses
virtues that are worth exploiting for the study of relativistic
composite systems. One of the most important features is
that of the 10 generators of the Poincaré algebra; those
forming the Lorentz subgroup, rotations and boosts, are
kinematic (free of interactions). This is to be contrasted
to the most familiar instant form (IF), where the boost
operators make changes of reference frames challenging,
since they carry interaction terms (they are dynamical).
This is particularly problematic in quantum field theories,
where the number of particles is not conserved.1 The front
form (FF), despite being the form with the larger kinemati-
cal group (containing seven generators), has the drawback
that rotations are interaction dependent, and thus it makes
the addition of angular momentum of relativistic interacting
particles troublesome [3,4].
In the last few years, a considerable number of articles

have been written with the goal of developing a new
formalism able to describe the structure of hadrons—or,
more generally, of relativistic bound states—in terms of the
properties of their constituents by using the point form
of relativistic quantum mechanics (PFRQM) (cf. [5–18]).
Relativistic quantum mechanics, unlike quantum field
theory, considers a restricted number of degrees of freedom.

Poincaré invariance is ensured in this formalism by using
the Bakamjian-Thomas construction [3,19,20]. Its point-
form version introduces a free velocity operator, that is
multiplied by the interacting mass operator and leads to an
interaction-dependent four-momentum operator [3,10].
Using a coupled-channel approach for that mass operator,
we can describe the physical process from which invariant
amplitudes and hadronic currents can be calculated.
An appropriate description of the structure of the current

poses several problems, and it is not straightforward to
derive electroweak currents with all the required properties.
Two basic features are Poincaré covariance and cluster
separability [3,21–23]. Our formalism in PFRQM has
helped to understand the electroweak structure of hadrons
in several ways. It was initially applied to calculate the
spectrum and decay widths of vector and axial-vector
mesons within the chiral constituent quark model [5,6].
Later, electromagnetic properties of spin-0 and spin-1
two-body bound states with equal-constituent masses were
studied [7–9]. More recently, the relativistic multichannel
formalism was extended to unequal-mass constituents and
to weak decay form factors in the timelike momentum
transfer region [11–13]. An additional condition that has to
be satisfied by systems of unequal-constituent masses is to
respect the heavy-quark symmetry predictions in the
extreme case in which one of the masses is infinitely
heavier than the other [24–26]. It was shown that our
approach respects the required heavy-quark symmetry
predictions [11,16]; i.e. relations between electromagnetic
and weak form factors appear in the limit mQ → ∞. This
guarantees that the formalism is general enough to be
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instant-form boosts becomes rather intractable.
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applied to systems of arbitrary constituent masses, and
gives us the freedom to apply it to heavy-to-heavy, heavy-
to-light and light-to-light meson transitions. The main goal
of this paper is to provide the result of the application of our
formalism to all these cases. Reference [11] provides the
basis and the main motivation for the present work.
There is a second important issue we would like to

address. It is known that the Bakamjian-Thomas construc-
tion produces problems related to cluster separability [3],
which enter the calculation of form factors and may lead to
unphysical contributions in the electromagnetic current
[7,9,10]. It was observed in [11] that this is not the case
in timelike processes, such as the weak decays we are going
to consider in this work.Weak form factors can be extracted
unambiguously and there is no need to introduce any
additional spurious contribution to ensure the required
covariant properties of the hadronic currents. This does
not mean, however, that the cluster problem is not present.
The cluster problem is intrinsic to the Bakamjian-Thomas
construction and we do not know any relativistic quantum
mechanical approach that eliminates the cluster problem
completely [27].
The need for additional covariants in spacelike processes

is similar to the occurrence within the covariant light-front
formulation of Carbonell et al. [28], in which the orienta-
tion of the light front has to be considered explicitly in
order to render the front-form approach manifestly covar-
iant. In fact, comparisons between the point- and the front-
form electromagnetic form factors show that the number of
needed spurious contributions in spin-0 and spin-1 two-
body systems coincides in the PF and FF cases [9,29].
In FF, one way to cure this problem is the introduction of
pair-creation currents [30–34], such as the so-called Z
graphs. This is particularly necessary in FF when one
considers timelike processes, where it is not possible to use
the very convenient qþ ¼ 0. For qþ > 0, additional cova-
riants associated with zero modes are necessary in order to
provide the appropriate Lorentz structure of the weak
current and a certain frame dependence of the form factors
is encountered in processes that involve spin-1 mesons
when the latter are considered as simple valence qq̄ bound
states [33–39]. These problems are closely related to
the violation of rotational invariance in the calculation of
one-body-current matrix elements in FF.
As mentioned above, in PF we do not encounter

covariance problems of this kind in the current for timelike
momentum transfers and there is no need for introducing
spurious contributions. Thus, it is now interesting to
consider a detailed numerical comparison between the
point- and the front-form results for timelike processes.
For this comparison, we choose the light-front quark model
of Ref. [39], and use the same harmonic-oscillator wave
function and adopt the same harmonic-oscillator and mass
parameters. Nonvalence contributions are not considered
explicitly in this work, nor in the work of Ref. [39]. Since

nonvalence contributions enter differently in every form of
dynamics, it is expected that considering the meson as a
valence quark-antiquark pair only must result in different
resulting form factors as well.
The purpose of this paper is therefore twofold: on the one

hand we apply the PFRQM approach to several particular
cases of semileptonic decays using the harmonic-oscillator
wave function that was used in previous works and obtain
results that can be compared with experiments and with
other approaches. With this we do not intend to make
accurate predictions, but rather to explore the applicability
of our PFRQM approach to a broader range of reactions.
On the other hand, we perform a numerical comparison
with an analogous front-form approach in which, as in our
case, no additional nonvalence contributions are considered
explicitly. Our purpose is to pose the question about the
different role that nonvalence contributions such as Z
graphs play in each role. The encountered differences
reflect the fact that effects coming from vacuum fluctua-
tions have to be treated differently in each form.
This article is organized as follows. Section II condenses

the most important steps in the procedure used by the
PFRQM approach and applies it to the process of a general
weak semileptonic decay. In Sec. III we present and
analyze our numerical results obtained in several particular
cases for pseudoscalar mesons decaying into a pseudosca-
lar meson (P → P) as well as to vector mesons (P → V).
We compare our results with the analogous front-form
approach and discuss the encountered numerical differences.
Conclusions and outlook are presented in Sec. IV. Two
important concepts of this formalism, velocity states and
vertex operators, are presented in Appendixes A and B,
respectively.

II. RELATIVISTIC MULTICHANNEL
FORMALISM AND HADRON CURRENTS

The starting point of the derivation of currents and form
factors in PFRQM is the physical processes in which such
form factors are measured. In this work we examine
semileptonic decays of mesons. In order to describe the
processes in a fully Poincaré-invariant way, a multichannel
version of the Bakamjian-Thomas construction [3,19] is
employed. In the point-form version of the Bakamjian-
Thomas construction the four-momentum operator
factorizes into an interacting mass operator and a free
four-velocity operator:

P̂μ ¼ P̂μ
free þ P̂μ

int ¼ M̂V̂μ
free ¼ ðM̂free þ M̂intÞV̂μ

free: ð1Þ

The four-velocity operator is free of interactions and is
defined by V̂μ

free≔P̂μ
free=M̂free ¼ P̂μ=M̂. It describes the

overall motion of the system. The mass operator M̂, which
depends on internal variables only, is the quantity of
interest, since it contains the information of the internal
structure of the system.

MARÍA GÓMEZ-ROCHA PHYSICAL REVIEW D 90, 076003 (2014)

076003-2



The procedure to calculate invariant amplitudes of
hadronic reactions, from which currents and form factors
can be extracted, has been elaborately explained throughout
several works, in which both electromagnetic and weak
decays are considered (see [7,8,11] for illustration, and
[9,16] for deep details). We summarize here the most
important steps that are required for the study of the
processes in which we are interested, and will refer to
the more extended literature when necessary.
We will consider P → P meson transitions as well as

P → V meson transitions.

A. Derivation of the optical potential and
identification of hadronic currents

Our point-form approach is a coupled-channel formalism
for a Bakamjian-Thomas mass operator formulated in the

point form of Hamiltonian dynamics. Due to the form of
Eq. (1) the problem reduces to solving an eigenvalue
equation for the mass operator M̂:

M̂jψi ¼ mjψi; ð2Þ

where M̂ is the coupled channel mass operator for the
Bakamjian-Thomas construction in its point-form version.
For a weak process of a meson α decaying into another
meson α0 the mass operator M̂ needs—at least—four
channels. They are needed in order to account for two
possible time-ordered contributions, which are depicted
in Fig. 1:

M̂ ¼

0
BBBBB@

M̂conf
qq̄ 0 K̂q0q̄W→qq̄ K̂qq̄Weν̄e→qq̄

0 M̂conf
q0q̄eν̄e K̂q0q̄W→q0q̄eν̄e K̂qq̄Weν̄e→q0q̄eν̄e

K̂†
q0q̄W→qq̄ K̂†

q0q̄W→q0q̄eν̄e
M̂conf

q0q̄W 0

K̂†
qq̄Weν̄e→qq̄ K̂†

qq̄Weν̄e→q0q̄eν̄e
0 M̂conf

qq̄Weν̄e

1
CCCCCA: ð3Þ

The mass eigenstate jψi on which M̂ acts is a direct sum
of jψqq̄i, jψq0q̄eν̄ei, jψq0q̄Wi and jψqq̄Weν̄ei Hilbert spaces. In
point form it is convenient to use a velocity-states basis
[28,40,41], defined in Eq. (A1). The nondiagonal elements
of M̂ are vertex operators, K̂† and K̂, that describe the
emission and absorption of the exchangedW boson, respec-
tively. They are appropriately related to the weak interaction
Lagrangian density through Eq. (B1) (see Refs. [10,42] and
Appendix B). The instantaneous confining qq̄ interaction is
included in the diagonal elements of the matrix, which are
denoted by “conf” (see [8,11]). For instance,

Mconf
qq̄W jv; ~kW; μW ; ~kα; μα; αi
¼ ðωkW

þ ωkα
Þjv; ~kW; μW ; ~kα; μα; αi; ð4Þ

where μ
α
denotes the spin orientation of the confined qq̄

bound state and α represents the remaining discrete quantum

numbers necessary to specify it uniquely. The energy of the
qq̄ bound state with quantum numbers α and mass mα is
represented by ωkα

and expressed below Eq. (A3).
Underlined velocities, momenta and spin projections dis-
tinguish states with a confined qq̄ pair from thosewith a free
qq̄ pair, which are not underlined.
The system of equations (2) can be transformed into an

equation for jψqq̄i by means of a Feshbach reduction,
leading to the required expression for the optical potential
that describes the entire process of the W-boson exchange,
including both time-ordered contributions (cf. Fig. 1):

ðM̂conf
qq̄ þ V̂qq̄→q0q̄eν̄e

opt ðmÞÞjψqq̄i ¼ mjψqq̄i; ð5Þ

where

FIG. 1. Time-ordered contributions to the semileptonic decay of a meson α to α0.
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V̂qq̄→q0q̄eν̄e
opt ðmÞ¼K̂q0q̄W→q0q̄eν̄eðm−Mconf

q0q̄WÞ−1K̂†
q0q̄W→qq̄

þK̂qq̄Weν̄e→q0q̄eν̄eðm−M̂conf
qq̄Weν̄eÞ−1K̂†

qq̄Weν̄e→qq̄:

ð6Þ

On-shell matrix elements of such optical potential have
the structure of the invariant α → α0ð�Þeν̄e decay amplitude
resulting from leading-order covariant perturbation theory.

The calculation requires the insertion, in the appropriate
places, of the spectral decomposition of the unity operators,
written in the velocity-states basis (cf. Appendix A). Since
the calculation is tedious, it is not presented here in detail.
We refer to Ref. [16] for technicalities, where the required
matrix elements are given explicitly. From the structure of
the invariant decay amplitude it is straightforward to
identify the microscopic hadron current:

hv0; ~k0e; μ0e; ~k
0
ν̄e ;

~k0α0 ; μ0α0 ; α
0jV̂bd̄→cd̄eν̄e

opt ðmÞj~kα; μα; αios
¼ v0δ3ð~v0 − ~vÞ ð2πÞ3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðωk0e þ ωk0ν̄e
þ ωk0

α0
Þ3

q ffiffiffiffiffiffiffi
ω3
kα

q
×

e2

2sin2ϑw
Vcb

1

2
ūμ0

e
ð~k0eÞγμð1 − γ5Þvμ0

ν̄e
ð~k0ν̄eÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

jμνe→eð~k0e;μ0e;~k
0
ν̄e
;μ0

ν̄e
Þ

ð−gμνÞ
ðk0e þ k0̄νeÞ2 −m2

W

1

2
Jνα→α0 ð~k

0
α0 ; μ0α0 ;

~kα; μαÞ; ð7Þ

where ϑw is the electroweak mixing angle, e the elementary electric charge and Vcb the Cabibbo-Kobayashi-Maskawa
matrix element occurring at theWbc vertex. Note that the covariant structure of theW propagator is only achieved when the
sum of both time-ordering contributions in Fig. 1 are considered [16].
The semileptonic current extracted from Eq. (7) in the cases of a P → P transition has the structure

Jνα→α0 ð~k
0
α0 ; ~kα ¼ ~0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωkα

ωk0
α0

p
4π

Z
d3 ~k0q̄
2ωkq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω~k0

q0
þ ω~k0q̄

ωk0
q0
þ ωk0q̄

vuut ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω~kq

ω~kq̄

ω~k0
q0
ω~k0q̄

s � X
μq;μ0q0¼�1

2

ūμ0
q0
ð~k0q0 Þγνð1 − γ5Þuμqð~kqÞ

×D1=2
μqμ

0
q0

�
RW

� ~k0q̄
mq̄

; Bcðv0q0q̄Þ
�
R−1
W

� ~k0q0
mq0

; Bcðv0q0q̄Þ
��	

ψ�
α0 ðj~~k

0
q̄jÞψαðj~~kq̄jÞ; ð8Þ

and for P → V transitions2

Jνα→α0� ð~k
0
α0� ; μ0α0� ;

~kα ¼ ~0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωkα

ωk0
α0�

p
4π

Z
d3 ~k0q̄
2ωkq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω~k0

q0
þ ω~k0q̄

ωk0
q0
þ ωk0q̄

vuut ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω~kq

ω~kq̄

ω~k0
q0
ω~k0q̄

s � X
μb;μ0q0 ; ~μ

0
q0 ; ~μ

0
q̄¼�1

2

ūμ0
q0
ð~k0q0 Þγνð1 − γ5Þuμqð~kqÞ

×
ffiffiffi
2

p
ð−1Þ12−μqC1μ0

α0�
1
2
~μ0
q0

1
2
~μ0q̄
D1=2

~μ0
q0μ

0
q0

�
R−1
W

� ~k0q0
mq0

; Bcðv0q0q̄Þ
��

D1=2
~μ0q̄−μq

×

�
R−1
W

� ~k0q̄
mq̄

; B−1
c ðv0q0q̄Þ

��	
ψ�
α0� ðj~~k

0
q̄jÞψαðj~~kq̄jÞ: ð9Þ

The procedure presented here yields expressions for the
hadronic currents that satisfy the required covariant proper-
ties; i.e. they transform as four-vectors. The proof requires
us to transform the velocity states to the physical momenta
via a canonical boost BcðvÞ [8].
In order to proceed to extract the form factors by using

the obtained current matrix elements we need to specify the

system kinematics. We make the most natural choice, in
which a meson α, initially at rest, decays into a meson α0
moving in the x direction with momenta κα0 :

kα ¼

0
B@

mα

0

0

0

1
CA and kα0 ¼

0
BBB@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

α0 þ κ2α0
q

κα0
0

0

1
CCCA ð10Þ

2In the sequel, an asterisk is used to label a meson with total
spin 1.
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with

κ2α0 ¼
1

4m2
α
ðm2

α þm2
α0 − q2Þ2 −m2

α0 : ð11Þ

The modulus of the α0 meson center-of-mass momentum
κα0 ¼ j~kα0 j is thus restricted by 0 ≤ κ2α0 ≤ ðm2

α −m2
α0 Þ2=ð4m2

αÞ. The allowed values of the 4-momentum transfer
squared are then

0 ≤ q2 ≤ ðmα −mα0 Þ2: ð12Þ

B. Form factors

Form factors are obtained by equating matrix elements
of the obtained hadronic currents to their most general

decomposition in terms of covariants and Lorentz-invariant
functions. An appropriate decomposition of the P → P
current can be written as [43]

Jνα→α0 ð~p0
α0 ; ~pα

Þ ¼
�
ðp

α
þ p0

α0 Þν −
m2

α −m2
α0

q2
qν
�
F1ðq2Þ

þm2
α −m2

α0

q2
qνF0ðq2Þ; ð13Þ

where q ¼ ðp
α
− p

α0 Þ is the timelike, 4-momentum trans-
fer. And

Jνα→α0� ð~p0
α0� ; σ

0
α0� ; ~pα

Þ ¼ 2iϵνμρσ

mα þmα0�
ϵ�μð~p0

α0� ; σ
0
α0� Þp0

α0�ρpασ
Vðq2Þ − ðmα þmα0� Þϵ�νð~p0

α0� ; σ
0
α0� ÞA1ðq2Þ

þ ϵ�ð~p0
α0� ; σ

0
α0� Þ · q

mα þmα0�
ðp

α
þ p0

α0� ÞνA2ðq2Þ þ 2mα0�
ϵ�ð~p0

α0� ; σ
0
α0� Þ · q

q2
qνA3ðq2Þ

− 2mα0�
ϵ�ð~p0

α0� ; σ
0
α0� Þ · q

q2
qνA0ðq2Þ; ð14Þ

in the P → V case [43]. ϵ�ð~p0
α0� ; σ

0
α0� Þ is the polarization

4-vector of the α0� meson and A3ðq2Þ the linear
combination

A3ðq2Þ ¼
mα þmα0�

2mα0�
A1ðq2Þ −

mα −mα0�

2mα0�
A2ðq2Þ: ð15Þ

With the kinematics adopted in Eq. (10) the polarization
vectors read

ϵð~k0α0� ;�1Þ ¼ 1ffiffiffi
2

p

0
B@∓ κα0�

mα0�
;∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
κα0�

mα0�

�
2

s
;−i; 0

1
CA;

ϵð~k0α0� ; 0Þ ¼ ð0; 0; 0; 1Þ: ð16Þ

The calculation of the form factors requires the insertion
of the expressions found in Eq. (8) and in Eq. (9) in the left-
hand sides of Eqs. (13) and (14), respectively (see Ref. [11]
for details). Note that Eq. (14) expresses a system of four
equations with four unknowns for every polarization vector
ϵð~k; μÞ, where μ can be 1, −1 or 0. The kinematics used
in Eq. (10) leads to ten nonvanishing matrix elements,
namely J2ð0Þ, J3ð0Þ, Jμð�1Þ, μ ¼ 0; 1; 2; 3, where
Jνðμ0

α0� Þ≔Jνα→α0� ð~k
0
α0� ; μ0α0� ;

~kαÞ. Since Jμð1Þ and Jμð−1Þ
are simply related by a space reflection one is left with
six matrix elements of the current, from which only four are

independent. Consequently, the form factors are deter-
mined uniquely.
This is an important achievement, since analogous

calculations in the front form of dynamics fail in the
attempt to extract the form factors unambiguously in
P → V meson transitions. Difficulties originated by viola-
tion of rotational invariance in the front form make the
description of the dynamics of spin-1 mesons troublesome.
We will refer to this issue later.
It was demonstrated and explained in [11] that in

timelike processes there is no manifestation of cluster
separability violation that may appear in the form of
nonphysical contribution to the decomposition of the
current. That occurred, by contrast, in the electromagnetic
case [7,8], and the problem was attributed to the cluster-
separability violation caused by the Bakamjian-Thomas
construction [3].
We are now in the position to present our numerical

results for several weak decays and discuss the comparison
with analogous results in the front form of dynamics.

III. NUMERICAL STUDIES

The method presented here to derive hadronic currents
and to extract form factors has been tested in [11]. The
work presented in Ref. [11] extended the application of the
PF formalism to the weak interaction, and considered
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mesons with different constituent-quark masses. Those
studies allowed us to see, in a comprehensive way, how
the predictions of heavy-quark symmetry arise when one of
the quark masses increases asymptotically. As predicted by
heavy-quark symmetry, electromagnetic and weak form
factors are related in the exact limit mq → ∞. Such
examinations provided analytic evidence for the expected
connection between these two types of interactions, and
consequently, a sign of reliability for our treatment of
relativistic composite systems of different constituent
masses. Reference [11] focused on the study of heavy-
quark symmetry as well as on cluster-separability proper-
ties of this point-form approach. For that purpose the same
harmonic-oscillator wave function with parameter
a ¼ 0.55 GeV was used for all numerical studies.
In the present work, however, we want to test the

PFRQM approach in another way. We introduce a flavor
dependence in the wave function, by assuming a different
harmonic-oscillator parameter for each meson. Even taking
into account this flavor dependence, the model remains
very simple. Thus, it might not be sophisticated enough to
establish quantitative predictions which could be compared
with experiments. Nonetheless, it is necessary to carry out
such calculations for several decays in order to understand
how the point-form approach compares with other
approaches and to learn at least qualitatively how the
transition form factors depend on the kind of transition
considered. Numerical studies within such a simple model
will serve as our starting point for future developments
in PFRQM.
We are particularly interested in comparisons with front-

form results and in the role of nonvalence contributions in
the description of currents and form factors. In front form,
such nonvalence contributions turn out to become impor-
tant when one goes from spacelike to timelike momentum
transfers, and thus they may play a role in the point-form
approach as well. For timelike momentum transfer
it is not possible to use the qþ ¼ 0 frame in front form.
As a consequence, nonvalence configurations leading to
Z-graph contributions (quark-antiquark pairs created from
the vacuum) can occur. Such Z-graph contributions have
been analyzed in Ref. [34]. Applying analytic continuation
(q⊥ → iq⊥) from the spacelike to the timelike momentum
transfer region to the transition from factors calculated in a
qþ ¼ 0 frame for spacelike momentum transfers, it is
shown that the outcome is the same as the results from
a direct calculation of the decay form factors in the timelike

region (where qþ ≠ 0), provided that the Z-graphs con-
tributions are appropriately taken into account. The impor-
tance of the Z-graph contributions decreases with
increasing the mass of the heavy quark and it vanishes
in the heavy-quark limit, since an infinitely heavy quark-
antiquark pair cannot be produced out of the vacuum [33].
The numerical values obtained for the Isgur-Wise function
within the point-form approach agree with those obtained
within the analogous front-form quark model [11].
As soon as the decay form factors are calculated for finite
physical masses of the heavy quarks, differences between
the point- and front-form approach must appear.
Another—but related—particular issue we would like to

address in the context of these comparisons concerns the
frame dependence that appears in the calculation of form
factors of P → V transitions in the front-form approach. In
the light-front quark model of Ref. [39], the authors choose
a frame in which the momentum transfer is purely
longitudinal, i.e. q⊥ ¼ 0, q2 ¼ qþq−. Working in this
way, form factors of processes that involve vector mesons
cannot be extracted unambiguously, and the form factors
exhibit a dependence on whether the daughter meson goes
in the positive or negative z direction. On the other hand, it
was shown in Ref. [11] that in the point form there is no
frame dependence of the form factors in timelike processes
and they can be determined unambiguously from the
different components of the current.
In order to quantify all these differences, let us define

first the wave function and the parameters employed in
these numerical studies.

A. Meson wave function

The form factors are solely determined by the qq̄ bound-
state wave function and the constituent quark masses. One
is free to use any model wave function obtained from a
particular bound-state problem. We choose the harmonic-
oscillator wave function defined as

ψðκÞ ¼ 2

π
1
4a

3
2

exp

�
−

κ2

2a2

�
; ð17Þ

which allows us for a direct comparison with Ref. [39]. The
numerical results presented here have been computed using
the model parameters quoted in Table I, which have been
taken from Ref. [39] as well.

TABLE I. Harmonic-oscillator parameters and quark masses (in GeV) used for the calculation of transition form
factors in this work. They were determined in Ref. [39] by fitting the wave functions to the experimental values for
the decay constants. The Cabibbo-Kobayashi-Maskawa matrix element jVcbj as well as the physical meson masses
are those quoted by the Particle Data Group [44].

aπ aρ aK aK� aD aD� aB aB� mu;d mb mc ms

0.33 0.30 0.38 0.31 0.46 0.47 0.55 0.55 0.25 4.8 1.6 0.40
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B. P → P transitions

For pseudoscalar-to-pseudoscalar transitions, in order to
allow for comparison with other works, besides F0ðq2Þ and
F1ðq2Þ, also f−ðq2Þ is depicted for all computed decays.
f−ðq2Þ and fþðq2Þ are defined by

Jμðp1; p2Þ ¼ fþðq2Þðp1 þ p2Þμ þ f−ðq2Þðp1 − p2Þμ;
ð18Þ

where p1 and p2 are the initial and final meson 4-momenta.
Their relation with F0ðq2Þ and F1ðq2Þ is given by

F1ðq2Þ ¼ fþðq2Þ;

F0ðq2Þ ¼ fþðq2Þ þ
q2

mα
2 −mα0

2
f−ðq2Þ:

ð19Þ

The values at q2 ¼ 0 for F1ð0Þ, or equivalently for fþð0Þ,
are shown in Table II together with the results obtained
within the light-front quark model [39]. For heavy-to-heavy
transitions, i.e. B → D, as well as for B → π transitions,
both FF and PF results seem to agree quite well, whereas
they differ slightly for D → πðKÞ.
We do not have a definitive explanation for this fact, but

we suspect that these differences are due to the different
way in which Z graphs and other nonvalence contributions
enter the form factors in either approach. There is a
particular frame, namely the qþ ¼ 0 frame, in the front

form, where Z graphs disappear. In point form a particular
qþ ¼ 0 frame can be realized for lepton-hadron scattering
by taking the limit of infinitely large Mandelstam s, which
corresponds to the infinite-momentum frame of the hadron
(cf. [14,15]). This explains, e.g., the equality of our point-
form results for electromagnetic meson form factors (for
q2 < 0) with corresponding front-form results [8,11]. In the
qþ ¼ 0 frame however, weak decays cannot take place,
since the process is necessarily timelike (q2 ¼ qþq−−
q⊥ > 0) or lightlike at the point for maximal recoil
(q2 ¼ 0). In the light-front quark model of Ref. [39], the
calculations are done in a frame where the momentum
transfer is purely longitudinal, this is q⊥ ¼ 0, q2 ¼ qþq−.
At q2 ¼ 0 either qþ or q− must vanish which corresponds
to the daughter meson going either in the þ or in the −z
direction, respectively. Since the pseudoscalar decay
form factors do not depend on whether the daughter meson
goes into the þ or −z direction, one can assume qþ ¼ 0.
This implies, however, that Z contributions vanish at the
maximum recoil point. For q2 > 0 there is, however, no
argument to exclude Z-graph contributions in the
decay form factors. In point form one does not even have
an argument at qþ ¼ 0 (apart from the mass of the
produced QQ̄ pair) that Z graphs should vanish.
A quantitative estimate of the Z-graph contribution is not

within the scope of this work. We have seen, however, in
the previous work of Ref. [11] that the point-form results
reproduce the front-form ones exactly in the heavy-quark
limit. One can therefore expect that for heavy-to-heavy
transitions point-form and front-form results show a greater
resemblance than for heavy-to-light transitions. For heavy-
to-light processes nonvalence contributions are expected to
be more important. It is thus not surprising that the results
differ in both approaches. In the D → K and D → π cases,
point- and front-form results differ considerably, the front-
form results being somewhat closer to the experimental
data [44].
Another resemblance with the front-form results is

that f−ðq2Þ ∼ −fþðq2Þ for B → π and to a lesser
extent for D → π (cf. Figs. 2 and 3). Near zero recoil

TABLE II. F1ð0Þ, or equivalently fþð0Þ, form factor for
P → P transitions, corresponding to Figs. 2–3, obtained in front
form (FF) and in point form (PF).

Decay FF [39] PF [this work] Experiment [44]

B → D 0.70 0.68 � � �
B → π 0.26 0.26 � � �
D → π 0.64 0.57 0.661� 0.022
D → K 0.75 0.68 0.727� 0.011

2 4 6 8 10
q 2 GeV 2

0.4

0.2
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0.4

0.6

0.8

1.0

B D

f q 2
F 0 q 2

F1 q 2

5 10 15 20 25
q 2 GeV 2

0.4

0.2

0.2

0.4

0.6

0.8

1.0

B

f q 2
F 0 q 2

F1 q 2

FIG. 2 (color online). B → D and B → π transition form factors in the whole range 0 ≤ q2 ≤ ðMB −MDðπÞÞ2. Parameters for the quark
masses and harmonic-oscillator wave functions are taken from Table I. For the meson masses the current values given by the Particle
Data Group have been taken [44].
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(where q2 is maximal) heavy-quark symmetry predicts
ðfþ þ f−ÞBðDÞπ ∼ 1ffiffiffiffiffiffiffiffiffimBðDÞ

p . In our case we have

ðfþ þ f−ÞBπqmax
∼ 0.22; ðfþ þ f−ÞDπ

qmax
∼ 0.43; ð20Þ

whereas 1=
ffiffiffiffiffiffiffi
mB

p ∼ 0.43 and 1=
ffiffiffiffiffiffiffi
mD

p ∼ 0.73.
In order to get an idea of the reliability of the results as a

function of the quality of the wave function, we have
recomputed the above given results using a unique param-
eter a ¼ 0.42 GeV, which is the average of the values
considered in this work. The form factors F1 at q2 ¼ 0 are
given in Table III. One can appreciate a considerable
difference with respect to those given in Table II, as a
consequence of the need for distinguishing the meson
considered.

C. P → V transitions

The comparison for transitions that involve mesons with
spin is more interesting. In the light-front quark model [39],
the form factors for P → V meson transitions extracted in
the q⊥ ¼ 0 frame exhibit a certain frame dependence. For a
given q2, the form factors depend on whether the recoiling
daughter moves in the positive “þ” or negative “−” z
direction relative to the parent meson. In the light-front
quark model the results for the form factors are larger in the
“þ” frame than in the “−” one. The exact vanishing of Z
graphs at q2 ¼ 0 in the “þ” frame is taken as an argument
in Ref. [39] to conclude that Z graphs are less important in
the “þ” frame than in the “−” frame.
In Table IV results for both frames together with the

point-form results obtained in this work are given at
q2 ¼ 0. The authors of [39] interpret the difference between
the results at q2 ¼ 0 in the “þ” and “−” frames as a

measure for the Z-graph contribution present in the “−”
frame. In the point form all timelike form factors can be
extracted without ambiguity and no frame dependence
appears in our description of weak decays. Again, the
scope of this work does not allow us to give a precise
estimate of Z-graph contributions. One could perhaps guess
that they are of the same order of magnitude as the
difference between “þ” and “−” frames in front form.
In Tables IV–VII our form-factor results at q2 ¼ 0 are

compared with those of Ref. [39] for several decays. One
observes that the results obtained in the point form for
A0ð0Þ, A1ð0Þ and A2ð0Þ are very similar in all the computed
transitions, whereas they differ notably in the front form.
There seems to be a good agreement between both
approaches for Vð0Þ and A0ð0Þ. For these two form factors
one sees that for the heavy-to-heavy transition the point-
form result lies between the obtained ones in the front form
in the “þ” and “−” frames, being closer to the “þ” one.

TABLE III. F1ð0Þ, or equivalently fþð0Þ, form factor obtained
for P → P transitions, using the same oscillator parameter
a ¼ 0.42 GeV.

B → D B → π D → π D → K

0.37 0.32 0.64 0.71

0.5 1.0 1.5
q 2 GeV 2
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0.4

0.6

0.8

1.0

K

f q 2

F 0 q 2

F1 q 2

0.5 1.0 1.5 2.0 2.5 3.0
q 2 GeV 2

0.4
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0.4

0.6

0.8

1.0

f q 2

F 0 q 2

F1 q 2

FIG. 3 (color online). Same as in Fig. 2 for D → K and D → π transition form factors.

TABLE IV. Form factors at q2 ¼ 0 for the B → D� transition
obtained within the light-front quark model in Ref. [39] (FF) in
the frames where the recoiling daughter moves in the positive z
direction (“þ” frame) and negative z direction (“−” frame) in
comparison with the results obtained in the point form (PF).

B → D� Vð0Þ A0ð0Þ A1ð0Þ A2ð0Þ
FF [39] in the “þ” frame 0.78 0.73 0.68 0.61
FF [39] in the “−” frame 0.62 0.58 0.59 0.61
PF (this work) 0.76 0.72 0.72 0.72

TABLE V. Form factors at q2 ¼ 0 for the D → K� transition
obtained within the light-form quark model (FF) in the frame
where the recoiling daughter moves in the positive z direction, i.e.
“þ” frame, and in the point form (PF) of relativistic quantum
mechanics.

D → K� Vð0Þ A0ð0Þ A1ð0Þ A2ð0Þ
FF [39] 0.87 0.71 0.62 0.46
PF [this work] 0.87 0.70 0.71 0.73
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A1ð0Þ and A2ð0Þ turn out to be larger in the point form in
all cases.
For the whole q2 range, i.e. 0 ≤ q2 ≤ ðmα −mα0 Þ2, the

form factors Vðq2Þ, A0ðq2Þ, A1ðq2Þ and A2ðq2Þ are depicted
in Figs. 4–7. If one compares with the corresponding plots
in Ref. [39] the observations made already for q2 ¼ 0 are
confirmed. For the B decays our form factors resemble very
much those of Ref. [39] (in the “þ” frame) with A2ðq2Þ
showing the biggest deviations. For D decays larger
differences can be observed, in particular for A1ðq2Þ and

A2ðq2Þ, but the qualitative features of the form factors are
still quite similar. This discrepancy is, of course, foresee-
able since the point- and front-form approaches are not
equivalent as long as one does not include nonvalence
contributions. The equivalence is only reached in the
heavy-quark limit, where the same Isgur-Wise function
is obtained [11].

IV. CONCLUSIONS AND OUTLOOK

We have applied the PFRQM approach to several weak
decays. Numerical results have been given that can be
compared with experiments and with other approaches, e.g.
the analogous calculation in front form considered herein.
While the harmonic-oscillator wave function, Eq. (17), still
might be too simple to make quantitative predictions that
can be compared with experiments, it has served as a first
step in the understanding of our point-form approach by
means of numerical studies that allow for direct
comparisons.
While in the front form the obtained results for P → V

transitions exhibit a certain dependence on the reference
frame, i.e. on whether the recoiling daughter moves in the
positive or negative z direction relative to the parent meson,
in the point form all form factors are determined
unambiguously.

TABLE VI. Same comparison as in Table V but for the B → ρ
transition.

B → ρ Vð0Þ A0ð0Þ A1ð0Þ A2ð0Þ
FF [39] 0.30 0.28 0.20 0.18
PF [this work] 0.31 0.28 0.27 0.26

TABLE VII. Same comparison as in Table V but for the D → ρ
transition.

D → ρ Vð0Þ A0ð0Þ A1ð0Þ A2ð0Þ
FF [39] 0.78 0.63 0.51 0.34
PF [this work] 0.80 0.63 0.64 0.64
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q 2 GeV 2
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0.6

0.8

1.0

B D

A1 q 2

A 0 q 2

2 4 6 8 10
q 2 GeV 2

0.2

0.4

0.6

0.8

1.0

B D

A 2 q 2

V q 2

FIG. 4 (color online). B → D� transition form factors in the whole range 0 ≤ q2 ≤ ðMB −MD� Þ2. Parameters for the quark masses and
harmonic-oscillator wave functions are taken from Table I. For the meson masses the current values given by the Particle Data Group are
taken [44].
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FIG. 5 (color online). Same as in Fig. 4 for D → K� transition form factors.
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Furthermore, in contrast to what happened using the
approach in the electromagnetic case [7,9], we are able to
extract all form factors of mesons with spin 0 decaying into
mesons of spin 0 and to spin 1 without the need for
introducing any nonphysical contribution—spurious form
factor—to correct covariant deficiencies of the current.
In the heavy-quark limit, as was shown in Ref. [11],

point-form and front-form calculations yield the same
numerical result for the Isgur-Wise function. This equiv-
alence is possible because in the heavy-quark limit non-
valence contributions, such as Z graphs, vanish. Numerical
comparisons of our outcome with analogous front-form
calculations show that the results obtained from both
approaches do not coincide exactly outside the limit.
This is not surprising. Nonvalence contributions such as
Z graphs cannot be present in the mQ → ∞ limit. On the
other hand, such Z-graph contributions as well as other
vacuum-induced currents do not exist in the front form,
even for finite masses if one choose the qþ ¼ 0 frame,
since momentum conservation imposes the “þ” sum of
momenta at every vertex to be positive. Such kind of
nonvalence contributions cannot be excluded, however, in
the point form. As long as nonvalence contributions are not
calculated explicitly, the point- and the front-form
approaches cannot be equivalent.
From the coincidence of both approaches in the heavy-

quark limit we conclude that the apparent discrepancy
between the point and the front forms outside of the

heavy-quark limit must be due to the different way in
which vacuum-induced currents enter the description in
every form of dynamics.
All this is relevant in order to explore the effect of

introducing additional degrees of freedom in the approach.
It is the subject of future work to introduce Z-graph
contributions explicitly in the coupled channel approach
and to investigate how they affect the form factors (for
recent advances in this direction, see [14]). Similar studies
on this subject were carried out in the front form [34]. Like
in Ref. [34] an estimate on Z-graph contributions within
our approach could be obtained by calculating the tran-
sition form factors in the spacelike region, where one can
go into the infinite-momentum frame and continue those
results analytically to the timelike momentum-transfer
region. The work presented here poses the starting point
for this goal. Studies concerning weak decays in the
spacelike region and its analytic continuation have been
initiated recently in [15,16].
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APPENDIX A: VELOCITY STATES

An n-particle velocity state jv; ~k1; μ1; ~k2; μ2;…; ~kn; μni is
defined through an overall velocity v and n individual
momenta and spin projections f~ki; μig, such thatP

n
i¼1

~ki ¼ 0. A velocity state represents an n-particle
system in the rest frame that is boosted to a frame with
a total 4-velocity v (vμvμ ¼ 1) by means of a canonical
boost BcðvÞ [3]:

jv;~k1;μ1;~k2;μ2;…;~kn;μni≔ÛBcðvÞj~k1;μ1;~k2;μ2;…;~kn;μni:
ðA1Þ

They satisfy the orthogonality and completeness rela-
tions [5]:

hv0; ~k01; μ01; ~k02; μ02;…; ~k0n; μ0njv; ~k1; μ1; ~k2; μ2;…; ~kn; μni

¼ v0δ3ð~v0 − ~vÞ ð2πÞ32ωkn

ðPn
i¼1 ωkiÞ3

�Yn−1
i¼1

ð2πÞ32ωkiδ
3ð~k0i − ~kiÞ

�

×

�Yn
i¼1

δμ0iμi

�
ðA2Þ

and

11;…;n ¼
Xj1

μ1¼−j1

…
Xjn

μn¼−jn

Z
d3v

ð2πÞ3v0

�Yn−1
i¼1

d3ki
ð2πÞ32ωki

�

×
ðPn

i¼1 ωkiÞ3
2ωkn

jv; ~k1; μ1; ~k2; μ2;…; ~kn; μnihv; ~k1; μ1; ~k2; μ2;…; ~kn; μnj; ðA3Þ

with mi, ωki≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

i þ ~k2i

q
, and ji, being the mass, the energy, and the spin of the ith particle, respectively.

Velocity states transform under Lorentz transformations Λ as

ÛΛjv; ~k1; μ1; ~k2; μ2;…; ~kn; μni

¼
X

μ0
1
;μ0

2
;…;μ0n

�Yn
i¼1

Dji
μ0iμi

½RWðv;ΛÞ�
	
jΛv;RWðv;ΛÞk







!
1; μ

0
1;RWðv;ΛÞk






!

2; μ
0
2;…;RWðv;ΛÞk







!
n; μ

0
ni; ðA4Þ

with the Wigner-rotation matrix

RWðv;ΛÞ ¼ B−1
c ðΛvÞΛBcðvÞ; ðA5Þ

where

BcðvÞ ¼
�

v0 vT

v 1þ v0−1
v2 vvT

�
: ðA6Þ

APPENDIX B: VERTEX OPERATORS

The creation and annihilation of particles is introduced in
this framework by means of vertex operators K̂ that are
specified by the velocity-state representation and an appro-
priate relation to the pertinent field-theoretical interaction-
Lagrangian density L̂int. In this work, L̂int corresponds to
the Lagrangian density of the weak interaction. Due to
velocity conservation that follows from the point-form
version of the Bakamjian-Thomas construction, one is
led to define matrix elements of K̂ by [10,42]

hv; ~k1; μ1;…; ~knþ1; μnþ1jK̂†jv; ~k1; μ1; ~k2; μ2;…; ~kn; μni ¼ hv; ~k1; μ1; ~k2; μ2;…; ~kn; μnjK̂jv; ~k1; μ1;…; ~knþ1; μnþ1i�

¼ N nþ1;nv0δ3ð~v − ~v0Þhv; ~k1; μ1;…; ~knþ1; μnþ1jL̂intð0ÞfðΔmÞjv; ~k1; μ1; ~k2; μ2;…; ~kn; μni; ðB1Þ

whereN nþ1;n ¼ ð2πÞ3= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M0

nþ1M
0
n

p
,M0

n ¼
P

k
i¼1 ωi and fðΔm ¼ M0

nþ1 −M0
nÞ denotes a vertex form factor that can be

introduced in order to account for (part of) the neglected off-diagonal velocity contributions and to regulate integrals.
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