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We investigate the compatibility of pure gravity mediation (or minimal split supersymmetry) with
chaotic inflation models in supergravity. We find that an approximate Z2 parity of the inflaton is useful to
suppress gravitino production from the thermal bath and to obtain consistent inflation dynamics. We
discuss the production of the lightest supersymmetric particle through the decay of the inflaton with
approximate Z2 symmetry, and we find that a large gravitino mass is favored in order to avoid
overproduction of the lightest supersymmetric particle, while a lower gravitino mass requires the tuning
of parameters. This may explain why a gravitino mass of Oð100Þ TeV rather than Oð100Þ GeV may be
natural.
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I. INTRODUCTION

High-scale supersymmetry (SUSY) with the gravitino
mass m3=2 ¼ Oð100Þ TeV is one of the most interesting
models beyond the standard model. It not only explains the
observed Higgs boson mass mh ≃ 126 GeV [1,2] by stop-
and top-loop radiative corrections [3–5], but also it is free
from serious phenomenological and gravitino problems
thanks to large sfermion and gravitino masses, msfermion≃
m3=2 ¼ Oð100Þ TeV. Among high-scale SUSY models,
pure gravity mediation (PGM) [6–8] is a particularly
attractive scenario, because we do not need to introduce
the Polonyi field to generate gaugino masses [9,10] and the
SUSY-invariant mass (so-called μ) term of Higgs multiplets
[11,12] in the minimal SUSY standard model (MSSM).
Thus, the model is completely free from the cosmological
Polonyi problem [13,14] (see also the minimal split SUSY
[15], whose basic structure is identical to PGM).1

On the other hand, chaotic inflation [18] is one of the
most attractive cosmic inflation scenarios [19,20]. It is free
from the initial condition problem [21]; that is, inflation
takes place for generic initial conditions of the inflaton field
and the space-time. Chaotic inflation has been successfully
realized in supergravity (SUGRA) [22].
In this paper, we investigate the compatibility of PGM

with chaotic inflation. We show that in PGM, the inflaton
should have a Z2-odd parity to suppress the reheating
temperature, thus avoiding gravitino overproduction from
the thermal bath [23–26]. We also show that the Z2

symmetry is helpful for the inflaton to have consistent
dynamics without tuning the parameters in the inflaton
sector.

We argue that, in order for the inflaton to decay, the Z2

symmetry is softly broken by a small amount. We discuss
the reheating process assuming the small breaking of the Z2

symmetry, paying attention to the gravitino overproduction
problem. It is known that the inflaton, in general, decays
into gravitinos, and this leads to the overproduction of the
lightest SUSY particle (LSP) [27–32]. We consider the LSP
to be stable and a candidate for dark matter (DM) in the
universe. We discuss how the overproduction of the LSP
can be avoided. Assuming that leptogenesis [33] (for a
review, see Ref. [34]) is responsible for the origin of the
baryon asymmetry in the universe, we show that our
solution to the above problem suggests a gravitino mass
far larger than the electroweak scale, m3=2 ≳Oð100Þ TeV,
while fine-tuning the parameters in the SUSY-breaking
sector and the MSSM sector is required for a smaller
gravitino mass. We note that we do not use any constraints
from the successful big bang nucleosynthesis (BBN) to
derive the natural lower bound on the gravitino mass.
This may answer a fundamental question for high scale

SUSY: why high-scale SUSY with m3=2 ¼ Oð100Þ TeV is
natural, but not so-called “natural SUSY” with m3=2 ¼
Oð100Þ GeV. The gravitino mass was in fact expected to be
Oð100Þ GeV before the Large Hadron Collider, because
the electroweak scale is naturally obtained, without tuning
parameters in the MSSM, when m3=2 ¼ Oð100Þ GeV. In
the landscape point of view [35–38], it seems difficult to
understand howm3=2 ¼ Oð100Þ TeV can be natural. As we
show in this paper, the gravitino mass of Oð100Þ GeV
requires fine-tuning to avoid LSP overproduction; other-
wise, the DM density of the present universe would be
outside the anthropic window [39,40]. Thus, m3=2 ¼
Oð100Þ TeV may be as plausible as m3=2 ¼ Oð100Þ GeV
(see Fig. 1 for the schematic picture).
This paper is organized as follows. In the next section,

we review chaotic inflation models in supergravity and
show that the inflaton should have a Z2-odd parity in PGM.

1High-scale SUSY models are also discussed in Refs. [16,17].
In Ref. [16], a mediation scale other than the Planck scale is
introduced to generate soft scalar masses, and hence soft masses
have a broader range than in the case of PGM. In Ref. [17], the
Polonyi field is introduced to generate the μ term, and, hence, it is
essentially different from the PGM.
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In Sec. III, we discuss the decay of the inflaton into
gravitinos and show how LSP overproduction can be
avoided. We show that the solution to the LSP over-
production problem favors a gravitino mass far larger than
the electroweak scale and that smaller gravitino masses
require tuning of the parameters. The last section is devoted
to discussion and conclusions.

II. CHAOTIC INFLATION MODEL IN
SUPERGRAVITY

Chaotic inflation [18] is an attractive inflation model
because it is free from the initial condition problem [21]:
Inflation takes place for generic initial conditions of the
inflaton field and the space-time. In this section, we review
chaotic inflation in SUGRA, proposed in Ref. [22]. We first
discuss the inflaton dynamics in the chaotic inflation model
in SUGRA. Then, we show that the inflaton should have a
Z2-odd parity in PGM. In order for the inflaton to decay, we
assume that the Z2 symmetry is explicitly broken by a small
value of a spurious field E. Then, we discuss the decay of
the inflaton into MSSM fields.

A. Supergravity chaotic inflation model

In SUGRA, the scalar potential is given by the Kahler
potentialKðϕi;ϕ�īÞ and the superpotentialWðϕiÞ, where ϕi

and ϕ�ī are chiral multiplets and their conjugate antichiral
multiplets, respectively. The scalar potential is given by

V ¼ eK½KīiDiWDīW
� − 3jWj2�;

DiW ≡Wi þ KiW; ð1Þ

where subscripts i and ī denote derivatives with respect to
ϕi and ϕ�ī, respectively. Kīi is the inverse of the matrix Kiī.
Here and hereafter, we use a unit of the reduced Planck
mass Mpl ≃ 2.4 × 1018 GeV as unity.
Chaotic inflation requires a large field value of the

inflaton during inflation. With the large field value, it

seems to be difficult for the slow-roll inflation to take place
in SUGRA, because of the exponential factor in the scalar
potential, eK . This problem was naturally solved in
Ref. [22] by assuming a shift symmetry of the inflaton
chiral multiplet Φ,

Φ → Φþ iC; ð2Þ

where C is a real number. The inflaton is identified with the
imaginary scalar component of Φ, ϕ≡ ffiffiffi

2
p

ImΦ. The
exponential factor vanishes for ϕ, and hence the slow-roll
inflation is naturally realized for a large field value of ϕ.
Note that the chiral multiplet Φ must have a vanishing R
charge to be consistent with the shift symmetry.
The inflaton potential is obtained by softly breaking the

shift symmetry in the superpotential,2

W ¼ mXΦ; ð3Þ

where X is a chiral multiplet with an R charge of 2. The
explicit breaking of the shift symmetry is expressed by the
parameterm. Here, we have eliminated the term allowed by
the R symmetry, W ⊃ M2X, where M is a constant, by the
redefinition Φ → Φ −M2=m.
Let us discuss the inflaton dynamics. The Kahler

potential consistent with the shift symmetry is given by

K ¼ cðΦþ Φ†Þ þ 1

2
ðΦþ Φ†Þ2 þ XX† þ � � � ; ð4Þ

where � � � denotes higher-dimensional terms, which we
neglect for simplicity. The scalar potential is given by

Vðϕ; σÞ ¼ expðσ2 þ
ffiffiffi
2

p
cσÞ 1

2
m2ðϕ2 þ σ2Þ; ð5Þ

where σ is the real scalar component of Φ, σ ≡ ffiffiffi
2

p
ReΦ.

Since X is stabilized near the origin during inflation by a
Hubble-induced mass term, we have set X ¼ 0 [22]. Given
ϕ ≫ 1, the scalar potential is minimized for σ ¼ −c=

ffiffiffi
2

p
.

Thus, the scalar potential of ϕ during inflation is given by

V infðϕÞ≃ 1

2
m2

effϕ
2; meff ≡m × e−c

2=4: ð6Þ

The observed magnitude of the curvature perturbation,
Pζ ≃ 2.2 × 10−9 [45], determines meff as

meff ≃ 6.0 × 10−6 ¼ 1.5 × 1013 GeV; ð7Þ

where we have assumed that the number of e-foldings
corresponding to the pivot scale of 0.002 Mpc−1 is as large
as 50–60.

1 0 1 2 3 4 5

Log10 m3 2 TeV

D
is

tr
ib

ut
io

n
of

m
3

2
Low-energy bias by

electroweak scale
High-energy bias by
LSP overproduction

?

?

?

FIG. 1 (color online). A sketch of possible distributions of the
gravitino mass.

2For discussion on the shift symmetry breaking in the Kahler
potential, see Refs. [41–44].
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After inflation, extrema of the potential are given by

∂V
∂ϕ∝ϕ¼ 0;

∂V
∂σ ∝ σ

�
σ2þ cffiffiffi

2
p σþ1

�
þϕ2

�
σþ cffiffiffi

2
p

�
¼ 0:

ð8Þ

For c2 < 8, Eq. (8) has a unique solution at the origin.
For c2 > 8, Eq. (8) has three solutions for σ. One of
the solutions, σ ¼ 0, is the minimum with a vanishing
potential, and another solution, σ ¼ −c=ð2 ffiffiffi

2
p Þ−

sgnðcÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2=8 − 1

p
, is a local minimum with a nonvanishing

potential. The other is a local maximum. Because σ is
trapped at σ ¼ −c=

ffiffiffi
2

p
for large ϕ values, σ moves to the

local minimum with a nonvanishing potential as ϕ becomes
small, which prevents the inflation from ending. Thus, it is
required that c2 < 8.
Around the origin, the mass of the inflaton is larger than

meff . Since c2 < 8, the mass of the inflaton at the origin,m,
is within the range of3

1.5 × 1013 GeV ¼ meff ≤ m < e2meff ¼ 1.1 × 1014 GeV:

ð9Þ

B. Motivation of a Z2 symmetry

Let us consider possible couplings of the inflaton to the
MSSM particles. We first note that the field X has an R
charge of 2. This is mandatory because the inflaton
multiplet Φ must possess a shift symmetry, so its R charge
must vanish. On the other hand, in PGM, the Higgsino
Dirac mass term, called the μ term, is generated by the tree-
level coupling of the Higgs multiplets to the R symmetry
breaking [11,12]. This ensures that the μ term is of the same
order as the soft scalar mass term, i.e., the gravitino mass.
This mechanism requires the combinationHuHd, whereHu
and Hd are the up- and down- type Higgs multiplets, to
have vanishing charges under any symmetry. Therefore, the
following superpotential term is not forbidden by the R
symmetry,:

W ⊃ gXHuHd; ð10Þ

where g is a constant.
The inflaton decays into Higgs pairs through the cou-

pling in Eq. (10). The resultant reheating temperature is

TRH ¼ 1.5 × 109 GeV
g
m

�
m

1.5 × 1013 GeV

�
1=2

: ð11Þ

For g ¼ Oð1Þ, the reheating temperature is so high that too
many gravitinos are produced through thermal scatterings
[23–26]. The coupling gmust be strongly suppressed [22].4

The suppression is easily achieved if X andΦ are odd under
a Z2 symmetry.5 We note that the Z2 symmetry is also
helpful to ensure successful inflaton dynamics. As we have
mentioned in the previous subsection, the superpotential
term of W ⊃ M2X is allowed by the R symmetry. The
constant M is expected to be of order 1 without the Z2

symmetry. As we shift Φ, Φ → Φ −M2=m, to eliminate the
superpotential term, a large linear term in the Kahler
potential, cðΦþ Φ†Þ in Eq. (4), is induced. However, for
inflation to end, the constant c in Eq. (4) must be smaller
than

ffiffiffi
8

p
, which requires tuning of the parameters in the

Kahler potential. We can easily avoid the tuning if we have
the Z2 symmetry.
Taking those problems seriously, we assume, throughout

this paper, a Z2 symmetry under which X and Φ are odd. In
order for the inflaton to decay into the MSSM particles, we
assume that the Z2 symmetry is broken by a small amount,
which we express by a spurious field E.6 Here, the spurion
E is odd under the Z2 symmetry and a nonvanishing value
of E represents the Z2 symmetry breaking. In Table I, we
summarize Z2 and R charges of Φ, X, E, and the
combination HuHd.

C. Decay of the inflaton into MSSM fields

Based on the assumption of the broken Z2 symmetry, we
consider the following superpotential and Kahler potential
for the inflaton and the MSSM sectors:

W ¼ XðmΦ − EÞ þ a1EXHuHd þWMSSM þW0;

K ¼ XX† þ 1

2
ðΦþ Φ†Þ2 þQQ†; ð12Þ

where WMSSM is the superpotential of the MSSM, W0 ¼
m3=2 is the constant term, Q denotes MSSM fields

3This range is slightly widened by taking higher-dimensional
terms into account in the Kahler potential. Even if the mass of the
inflaton is as large as 1014 GeV and, hence, the decay of the
inflaton after inflation produces particles with extremely large
momenta, the decay products thermalize soon after their pro-
duction [46]. Thus, the standard estimation of the reheating
temperature in the following discussion is valid.

4If g is not suppressed, the F term of X strongly depends on
HuHd. The HuHd direction works as a waterfall field in the
hybrid inflation [47], and thus inflation ends for jϕj ≫ 1. This
changes the prediction on the spectral index and the tensor
fraction. We note that during the waterfall phase, the instability of
Hu and Hd grows and the reheating temperature becomes
extremely high.

5The Z2 symmetry is consistent with the shift symmetry given
in Eq. (2). g can be also suppressed if HuHd carries a Peccei-
Quinn charge. For the PGM model with Peccei-Quinn symmetry,
see Refs. [48,49].

6Alternatively, the inflaton can decay into MSSM fields if
MSSM fields are also charged under the Z2 symmetry [50,51].
We do not consider this possibility in this paper.
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collectively, and a1 is an order 1 coefficient. We take m to
be real without loss of generality. To be concrete, we have
assumed the minimal form of the Kahler potential. For
clarity, we shift Φ as Φ → Φþ E=m. Then the super-
potential and the Kahler potential is given by

W ¼ mXΦþ a1EXHuHd þWMSSM þW0;

K ¼ XX† þ 1

2
ðΦþ Φ†Þ2 þ cðΦþ Φ†Þ þQQ†; ð13Þ

where c≡ ðE þ E†Þ=m is a real constant. For a successful
inflation, c must be smaller than

ffiffiffi
8

p
, which indicates

that jEj < OðmÞ.
Let us discuss the decay of the inflaton into MSSM

fields. First, the inflaton decays into Higgs pairs through
the coupling in the superpotential in Eq. (12) with the
width

Γðϕ → HuHdÞ ¼
1

4π
ja1Ej2m: ð14Þ

Second, if a nonvanishing superpotential of MSSM
fields exists, the inflaton automatically decays through
the linear term of the inflaton field in the Kahler potential
[31,32]. Assuming the presence of right-handed neutrinos
with Majorana masses to explain the neutrino mass [52],
dominant decay modes are provided by the following
superpotential:

W ¼ ytQ3ū3Hu þ
1

2
MNNN; ð15Þ

whereQ3, ū3, andN are the third-generation quark doublet,
the third-generation up-type quark, and a right-handed
neutrino, respectively. yt and MN are the top Yukawa
coupling and right-handed neutrino mass, respectively. For
simplicity, we assume that only one right-handed neutrino
is lighter than the inflaton. Decay widths of the inflaton by
these interactions are

Γðϕ → Q3ū3HuÞ ¼
3

128π3
c2y2t m3;

Γðϕ → NNÞ ¼ 1

16π
c2mM2

N: ð16Þ

Third, the inflaton couples with gauge multiplets through
radiative corrections [32]. Radiative corrections induce
couplings of the inflaton in kinetic functions,7

�
1

g2
þ i

θYM
8π2

þ 1

16π2
cΦðTG − TMÞ

�
WαWα; ð17Þ

where g, θYM, andWα are the gauge-coupling constant, the
theta angle, and the field-strength superfield, respectively.
TG is the Dynkin index of the adjoint representation and
TM is the total Dynkin index of matter fields. The decay
width of the inflaton into the gauge multiplet V by the
gauge kinetic function is given by

Γðϕ → VVÞ ¼ α2

256π3
NGðTG − TMÞ2c2m3; ð18Þ

where α ¼ g2=4π and NG is the number of the generator of
the gauge symmetry. Because of the suppression by a one-
loop factor, this decay mode is subdominant in the MSSM.
As we will see, however, this decay mode plays an
important role in considering the decay of the inflaton
into the SUSY-breaking sector in Sec. III.
In Fig. 2, we show the relation between the reheating

temperature TRH ≡ 0.2
ffiffiffiffiffiffiffi
Γtot

p
and the parameter c, where

Γtot is the total decay width of the inflaton. Here, we assume
a1 ¼ 1 and that E is real.
Let us put a restriction on the reheating temperature,

which is crucial for the discussion on the gravitino problem

TABLE I. Z2 and R charges of Φ, X, E, and the combination
HuHd.

Φ X E HuHd

Z2 − − − þ
R 0 2 0 0

10 4 0.001 0.01 0.1 1
10 4

10 6

10 8

10 10

10 12

10 14

c m

T R
H

G
eV

TRH 106 GeV

TRH 2 109 GeV

TRH

TRH Br NN

m meffe
c2 4 , MN m 2

FIG. 2 (color online). The solid line shows the reheating
temperature for a given parameter c. The dashed line shows
the reheating temperature multiplied by the branching ratio of the
inflaton into the right-handed neutrino.

7When one moves on to the Einstein frame and canonicalizes
fields, one encounters inflaton-dependent chiral rotations of
fermion fields. Thus, in the Einstein frame with canonical
normalization for matter and gauge fields, the shift symmetry
also involves chiral rotations of fermion fields, which is anoma-
lous. The coupling in Eq. (17) can be understood as the
counterterm for the anomaly.
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in the next section. Throughout this paper, we assume that
leptogenesis [33] is responsible for the origin of the baryon
asymmetry of the universe. Thermal leptogenesis requires
TRH ≳ 2 × 109 GeV [53,54], therefore c≳ 0.7 is required.
Since the inflaton decays into the right-handed neutrino,
nonthermal leptogenesis [55–57] is also possible.8 In Fig. 2,
we also show TRH × Brðϕ → NNÞ by a dashed line. Here, it
is assumed that MN ¼ m=2, so that the decay width of the
inflaton into the right-handed neutrino is at a maximum.
Nonthermal leptogenesis requires TRH × Brðϕ → NNÞ×
ð2MN=mÞ≳ 106 GeV [56,59], and hence c≳ 0.008.
In the following, we require at least TRH×

Brðϕ → NNÞ × ð2MN=mÞ > 106 GeV, that is, c > 0.008,
so that nonthermal leptogenesis is possible. We also
consider the more severe constraint from the successful
thermal leptogenesis, TRH > 2 × 109 GeV; that is, c > 0.7.
This constraint should be satisfied when MN ≪ m and,
hence, Brðϕ → NNÞ × ð2MN=mÞ is suppressed.

III. THE GRAVITINO PROBLEM AND
GRAVITINO MASS

It is known that gravitinos are, in general, produced
through the decay of the inflaton, which results in over-
production of the LSP [27–32]. In this section, we first
discuss how gravitinos are produced from the decay of the
inflaton. Then we discuss how a large gravitino mass is
required in order to avoid LSP overproduction.

A. Review of the decay of the inflaton into gravitinos

Let us consider the simplest SUSY-breaking model with
the following (effective) superpotential:

W ¼ μ2Z; ð19Þ

where μ2 ¼ ffiffiffi
3

p
m3=2 is the SUSY-breaking scale and Z is

the SUSY-breaking field. Since the SUSY-breaking field Z
does not obtain its mass from the superpotential, it should
obtain its mass from the Kahler potential; otherwise, the
SUSY-breaking field would obtain a large amplitude in the
early universe, causing the cosmological Polonyi problem
[13,14]. The Kahler potential term that yields the mass term
is

K ¼ −
1

Λ2
ZZ†ZZ† ¼ −

m2
Z

12m2
3=2

ZZ†ZZ†; ð20Þ

where Λ ≪ 1 is an energy scale and mZ is the mass of the
scalar component of Z. This term is provided by the
interaction of the SUSY-breaking field with other fields
in the SUSY-breaking sector. The inflaton, in general,

decays into those fields in the SUSY-breaking sector, as is
the case with MSSM fields. Since the SUSY-breaking
sector fields couple to the SUSY-breaking field Z, they
eventually decay into the gravitino. We examine this issue
for concrete examples later.
The inflaton also decays into a pair of gravitinos through

the mass mixing between the inflaton and the scalar
component of the SUSY-breaking field Z [27]. For the
Kahler potential and superpotential in Eq. (13), the mass
mixing is given by

Vmix ¼
ffiffiffi
3

p
cm3=2mZX† þ H:c: ð21Þ

at around Z ¼ Φ ¼ X ¼ 0. The mixing angle between the
inflaton and the SUSY-breaking field is given by

θ ¼
ffiffiffi
3

2

r
c

m3=2m

m2
Z −m2

: ð22Þ

The coupling between the scalar component of Z and the
gravitino, that is, the Goldstino ψ , is given by the Kahler
potential in Eq. (20) as

L ¼ −
ffiffiffi
3

p

6

m2
Z

m3=2
Z†ψψ þ H:c: ð23Þ

From Eqs. (22) and (23), we obtain the decay width of the
inflaton decaying into a pair of gravitinos,

Γðϕ → 2ψ3=2Þ ¼
c2

64π
m3

�
m2

Z

m2
Z −m2

�
2

≃
� c2

64πm
3 ðmZ ≫ mÞ

c2
64π

m4
Z

m ðmZ ≪ mÞ:
ð24Þ

The decay width is of the same order as that of the inflaton
decaying into MSSM fields if mZ ≫ m.
Now it is clear that the inflaton, in general, decays into

gravitinos. The gravitino eventually decays into the LSP.
The density parameter of the LSP is given by

ΩLSPh2 ≃
X
f

nfBrðϕ → fÞ 3TRH

4m
mLSP

3.6 × 10−9 GeV
: ð25Þ

Here, f denotes decay modes and nf is the number of
gravitinos produced per decay mode. For example, nf ¼ 2
for f ¼ 2ψ3=2.

B. The gravitino problem in a strongly coupled
SUSY-breaking model

We first discuss a strongly coupled SUSY-breaking
model. To be concrete, let us consider the SUð5Þ SUSY-
breaking model [60,61]. The model is composed of a
SUð5Þ gauge theory with 10 and 5̄ representations. Because

8Leptogenesis from inflaton decay is also discussed in
Ref. [58], where the mechanism of generating the lepton
asymmetry depends on the grand unification scale spectrum.
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there is no parameter except for the gauge coupling, Λ and
μ are as large as the dynamical scale of the SUð5Þ gauge
theory, Λ5. Assuming a naive dimensional analysis [62,63],
the Kahler potentials and superpotentials are evaluated as

W ¼ c1
Λ2
5

4π
Z;

K ¼ ZZ† − c2
16π2

Λ2
5

ZZ†ZZ†; ð26Þ

where c1 and c2 are order 1 coefficients and Z is a
composite field responsible for the SUSY breaking.
Here, we have assumed that only one composite field
has a nonvanishing SUSY-breaking F term, for simplicity.
As shown in Eq. (18), the inflaton decays into the SUð5Þ

gauge multiplet V5 through the kinetic function if the
dynamical scale is small enough, m≳ 2Λ5. Here, we
assume that masses of hadrons of the SUð5Þ gauge theory
are as large as Λ5. The decay rate is given by

Γðϕ → V5V5Þ ¼
27α25
32π2

c2m3; ð27Þ

where α5 is the fine structure constant of the SUð5Þ gauge
theory. Note that this decay rate is of the same order as the
decay rate into MSSM particles [see Eqs. (14) and (16)],
and hidden hadrons eventually decay into gravitinos.
Even if the decay mode is kinematically closed,

m≲ 2Λ5, the direct decay into gravitinos is unsuppressed
because mZ ∼ Λ5 ≳m [see Eq. (24)]. Thus, the decay of
the inflaton inevitably produces gravitinos, and the result-
ant density parameter of the LSP is

ΩLSPh2 ≃ TRH

m
mLSP

3.6 × 10−9 GeV
: ð28Þ

The universe is overclosed by the LSP unless

mLSP ≲ 10 MeV
m

1.5 × 1013 GeV
106 GeV
TRH

: ð29Þ

When mLSP is so small, however, thermally produced LSPs
overclose the universe (recall the Lee-Weinberg bound
[64]) unless the LSP is degenerated with a charged SUSY
particle. Such a light charged SUSY particle is already
excluded by various experiments.9 We will not consider the
strongly coupled SUSY-breaking model below.

C. The gravitino problem in a SUSY-breaking model
with weak coupling

The origin of the failure of the strongly coupled SUSY-
breaking model is that the decay of the inflaton either into

gravitinos or into SUSY-breaking sector fields is unsup-
pressed. Note that simultaneous suppression of these two
decay modes is achieved by realizing the following
hierarchy:

mZ ≪ m ≪ mSUSY-breaking; ð30Þ

where mSUSY-breaking is the mass scale of SUSY-breaking
sector fields. We show in this subsection that this hierarchy
is easily achieved if the SUSY-breaking sector involves
weak couplings [65].
To be concrete, let us consider the Izawa-Yanagida-

Intriligator-Thomas SUSY-breaking model [66,67] with the
SUð2Þ gauge theory. We introduce four fundamental
representations of the SUð2Þ, Qiði ¼ 1–4Þ. Below the
dynamical scale of the SUð2Þ, Λ2, the theory is described
by meson fields with the deformed moduli constraint [68]

Wdyn ¼ 4πΞ
�
PfMij −

Λ2
2

16π2

�
; ð31Þ

whereMij ¼ −Mji ∼QiQj=Λ2 are meson fields and Ξ is a
Lagrange multiplier field. Pf denotes the Pfaffian over
indices i; j. Here, we again assume a naive dimensional
analysis and put order 1 coefficients to unity. It can be seen
that there are flat directions, in which PfMij ¼ Λ2

2=16π
2.

To fix the flat directions, let us introduce five singlet
chiral multiplets, Za (a ¼ 1–5), and assume the following
superpotential:

Wtree ¼ λca;ijZaQiQj; ð32Þ

where λ and ca;ij are constants. To simplify our discussion,
we assume a global SOð5Þ symmetry under which Za and
Qi are the vector and spinor representation of the SOð5Þ
symmetry. ca;ij should be the appropriate Clebsch-Gordan
coefficients. Adding Eqs. (31) and (32), we obtain the
effective superpotential

W ¼ λ

4π
Λ2ZaMa þ 4πΞ

�
MaMa þM2 −

Λ2
2

16π2

�
; ð33Þ

where we take linear combinations of meson fields and
form a vector representation of the SOð5Þ, Ma (a ¼ 1–5).
M is the remaining independent linear combination. Now,
flat directions are fixed and the vacuum is given by
Za ¼ Ma ¼ 0, M ¼ Λ2=4π.
To break the SUSY, we add an additional singlet chiral

multiplet Z and add the superpotential

ΔW ¼ yZcijQiQj; ð34Þ

where y is a constant and cij is an appropriate Clebsch-
Gordan coefficient, to form a singlet of the SOð5Þ. Adding
Eqs. (33) and (34), we obtain the superpotential

9In PGM, the photino LSP of a mass of Oð10Þ MeV is
naturally obtained if m3=2 ¼ Oð1Þ GeV. In this case, however,
the electroweak symmetry-breaking scale is also Oð1Þ GeV.
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W¼ y
4π

Λ2ZMþ λ

4π
Λ2ZaMaþ4πΞ

�
MaMaþM2−

Λ2
2

16π2

�
:

ð35Þ

Assuming y ≪ λ, the vacuum is given by Za ≃Ma ≃ 0,
M ≃ Λ2=4π. The F term of Z is nonzero and, hence, the
SUSY is spontaneously broken.
Let us discuss the decay of the inflaton into the SUSY-

breaking sector. If the dynamical scale is small enough,
m≳ 2Λ2, the inflaton decays into gauge multiplets of the
SUð2Þ, as shown in Eq. (18). The decay rate and nf are

Γðϕ→ V2V2Þ ¼
3α22
16π3

c2m3ðfor m> 2Λ2Þ; nV2V2
≥ 4;

ð36Þ

where α2 is the fine structure constant of the SUð2Þ gauge
theory. As in the case of the SUð5Þ model, for m > 2Λ2,
this decay mode is as dominant as decay modes into MSSM
fields, and, hence, the gravitino is overproduced.
Ifm < 2Λ2, on the other hand, the mass of the inflaton is

not far above the dynamical scale, and, hence, we can treat
the decay of the inflaton into SUSY-breaking sector fields
as composite fields. The decay rate through mass terms in
Eq. (35) and nf are

Γðϕ → ZaMaÞ ¼
5

16π
c2m

�
λ

4π
Λ2

�
2
�
for m > 2

λ

4π
Λ2

�
;

nZaMa
¼ 4;

Γðϕ → ZMÞ ¼ 1

16π
c2m

�
y
4π

Λ2

�
2

ðfor m > Λ2Þ;

nZM ¼ 4: ð37Þ

To be conservative, we assume that λ≃ 4π. In this case, the
decay into ZaMa is kinematically forbidden.
Now, we are at the point of showing that the desired

hierarchy in Eq. (30) can be realized. After integrating out
Za,Ma, andM, we are left with the effective superpotential

Weff ¼
y

16π2
c3Λ2

2Z; ð38Þ

where c3 ¼ 1 is a constant, which we leave as a free
parameter for later convenience. The dynamical scale Λ2 is
related to the gravitino mass as

Λ2 ¼ 31=4m1=2
3=24πy

−1=2c−1=23

¼ 2.6 × 1012 GeVy−1=2
�

m3=2

10 TeV

�
1=2

c−1=23 : ð39Þ

The mass of the scalar component of Z is given by the
Kahler potential

K ¼ −
y4

16π2Λ2
2

ZZ†ZZ†; ð40Þ

and is as large as

mZ ¼ 2y3

ð4πÞ3 Λ2c3 ¼ 2.6 × 109 GeVy5=2
�

m3=2

10 TeV

�
1=2

c1=23 :

ð41Þ

It can be seen that the hierarchy in Eq. (30) is achieved for
small y, and, hence, the overproduction of the LSP is
avoided.
For a small y, however, the scalar component of Z is light

and the oscillation of the scalar Z is induced in the
early universe [65]. The oscillation eventually decays into
gravitinos, which may lead to overproduction of the LSP.
Let us estimate the abundance of the LSP from this
contribution. The potential of the scalar component of Z
during inflation is given by

VðZÞ ¼ a2H2
inf jZj2 þm2

ZjZj2 − ð2
ffiffiffi
3

p
m2

3=2Z þ H:c:Þ;
ð42Þ

where Hinf is the Hubble scale during inflation and a2 is an
order 1 constant, which we assume to be positive. Since
Hinf ≃ 1014 GeV is larger than mZ for the parameter of
interest, the Hubble-induced mass term traps Z to its origin
during inflation. After inflation, as the Hubble scale drops
below mZ, Z begins its oscillation around the origin,

Z0 ¼ 2
ffiffiffi
3

p
m2

3=2=m
2
Z ¼ 1.2 × 108 GeVy−5

m3=2

10 TeV
c−13 ;

ð43Þ

with an initial amplitude Zi ¼ Z0. As anticipated, the
amplitude is larger for smaller y. The LSP abundance
originating from the oscillation of Z is given by

Ωosch2 ¼
TRH

4mZ

Z2
i

M2
pl

mLSP

3.6 × 10−9 GeV
: ð44Þ

Let us show how a large gravitino mass is required. In
Fig. 3, we show the constraint on m3=2 and y. Here, we
assume that c ¼ 0.7 (i.e., thermal leptogenesis is possible)
and mLSP ¼ 3 × 10−3m3=2. In the red-shaded region
(ΩSUSYh2 > 0.1), the universe is overclosed by the LSP
due to the decay of the inflaton into SUSY-breaking sector
fields [see Eqs. (36) and (37)]. The right edge of this region
is determined by the kinematical threshold, m ¼ Λ2. In the
blue-shaded region (Ω3=2h2 > 0.1), the decay of the infla-
ton into a pair of gravitinos causes the overclosure. In the
yellow-shaded region (Ωosch2 > 0.1), the oscillation of the
SUSY-breaking field leads to the overclosure. In Fig. 4, we
show the same constraint for c ¼ 0.008 (i.e., nonthermal
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leptogenesis is possible). From both figures, we see the
constraint on the gravitino mass,10

m3=2 > Oð100Þ TeV: ð45Þ

It is remarkable that the constraint in Eq. (45) coincides
with what is expected in PGM [6–8].
Let us discuss how we can avoid the constraint on the

gravitino mass. First, we have assumed that mLSP ¼ 3 ×
10−3m3=2 to obtain the constraint, since it is determined by
the anomaly mediation [9,10]. However, a lower mass for
the LSP can be obtained by canceling the anomaly-
mediated contribution, using the Higgsino threshold cor-
rection [9]. In Fig. 5, we show the constraint on m3=2 and y
for ðc;mLSPÞ ¼ ð0.7; 3 × 10−6m3=2Þ. It can be seen that
regions with m3=2 ¼ Oð10Þ TeV are allowed.
Let us compare the plausibility of m3=2 ¼ Oð10Þ TeV

with that of m3=2 ¼ Oð100Þ TeV in the landscape point of
view. Since we have no knowledge about the distribution of
parameters in the landscape, the following discussions are
based on our naive expectations. We note that different
assumptions about the distributions lead to different
conclusions.

For the electroweak scale, m3=2 ¼ Oð10Þ TeV would be
more natural than m3=2 ¼ Oð100Þ TeV by a factor of
ð100 TeVÞ2=ð10 TeVÞ2 ¼ 100. Because the LSP mass is
a complex parameter, mLSP ¼ 3 × 10−6m3=2 would require
tuning of ð3 × 10−6=3 × 10−3Þ2 ∼ 10−6. Thus, we naively
expect that the region with m3=2 ¼ Oð100Þ TeV may be
more natural than the region with m3=2 ¼ Oð10Þ TeV.
Second, to simplify our discussion, we have assumed the

SOð5Þ symmetric Izawa-Yanagida-Intriligator-Thomas
model. Without the SOð5Þ symmetry, c3 in Eq. (38) is a
constant that is determined by coupling constants in the
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FIG. 4 (color online). Same as for Fig. 3 but with c ¼ 0.008,
c3 ¼ 1, and mLSP ¼ 3 × 10−3m3=2.
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FIG. 5 (color online). Same as for Fig. 3 but with c ¼ 0.7,
c3 ¼ 1, and mLSP ¼ 3 × 10−6m3=2.
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FIG. 3 (color online). Constraint on the gravitino massm3=2 and
the coupling of the SUSY-breaking field y. In the red-shaded
region (ΩSUSYh2 > 0.1), the blue-shaded region (Ω3=2h2 > 0.1),
and the yellow-shaded region (Ωosch2 > 0.1), the universe is
overclosed by the LSP due to the decay of the inflaton into SUSY-
breaking sector fields, that of the inflaton into gravitino pairs, and
that of the SUSY-breaking field into gravitinos, respectively. We
assume c ¼ 0.7, c3 ¼ 1, and mLSP ¼ 3 × 10−3m3=2.

10A similar conclusion is derived in Ref. [69], where the BBN
constraints are used. Notice that we have obtained Eq. (45) solely
from constraints on the LSP DM density.
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SUSY-breaking model. If there is fine-tuned cancellation
between condensation of hidden quarks that couple to the
SUSY-breaking field, c3 can be much smaller than Oð1Þ.
This cancellation further separates the SUSY-breaking
scale from the dynamical scale. For given m3=2 and y,
the constraints shown in Figs. 3 and 4 are relaxed. In Fig. 6,
we show the constraint for ðc; c3Þ ¼ ð1.4; 10−2Þ. It can be
seen that the region with m3=2 ¼ Oð1Þ TeV survives.
Let us again naively compare the plausibility of m3=2 ¼

Oð1Þ TeV with that of m3=2 ¼ Oð100Þ TeV. For the
electroweak scale, m3=2 ¼ Oð1Þ TeV would be more natu-
ral than m3=2 ¼ Oð100Þ TeV by a factor of ð100 TeVÞ2=
ð1 TeVÞ2 ¼ 104. On the other hand, since c3 is a complex
parameter, c3 ¼ 10−2 would require fine-tuning of 10−4.
These two regions, m3=2 ¼ Oð1Þ TeV and Oð100Þ TeV,
may be equally plausible.
Third, we have assumed the minimal form of the Kahler

potential. By considering higher-dimensional terms in the
Kahler potential and tuning their coefficients, the decay of
the inflaton into the SUSY-breaking sector can be sup-
pressed. In principle, the gravitino mass of Oð100Þ GeV
survives because of the tuning. However, to suppress all the
decay modes, all the coefficients of the higher-dimensional
terms must be carefully chosen; this may require more
fine-tuning.
We should stress, finally, that all of the above arguments

are merely a sketch of the kinds of fine-tuning that are
needed to ensure that the gravitino mass is below
Oð100Þ TeV. Because we do not know the distributions
of relevant parameters in landscape, it is impossible for us
to draw any definite conclusions of the most plausible
gravitino mass. However, the present analysis shows that it
is not necessarily surprising if the gravitino mass is of
Oð100Þ TeV, even if the SUSY-breaking scale is at

a low energy in order to obtain the electroweak scale
naturally.

IV. DISCUSSION AND CONCLUSION

In this paper, we have investigated the compatibility of
PGMwith chaotic inflation in supergravity. We have shown
that the inflaton should have a Z2-odd parity to suppress the
reheating temperature, thus avoiding gravitino overproduc-
tion from the thermal bath in PGM. We have also shown
that the Z2 symmetry is helpful for the inflaton to have
consistent dynamics without tuning the parameters in the
inflaton sector.
We assume that, in order for the inflaton to decay, the Z2

symmetry is broken by a small amount. We have discussed
the reheating process and the gravitino problem under the
assumption of a small breaking of the Z2 symmetry.
We have discussed how gravitino overproduction by the
decay of the inflaton can be avoided, and we have shown
that the solution to the overproduction problem favors a
gravitino mass far larger than the electroweak scale,
m3=2 ≳Oð100Þ TeV.
This consideration gives a new insight into the fine-

tuning problem in the high-scale SUSY. It is usually
assumed that the gravitino mass ofOð100Þ GeV is natural,
because the electroweak scale is obtained without tuning
the parameters in the MSSM. It is hard to understand how
a gravitino mass of Oð100Þ TeV can be natural. However,
as we have shown in this paper, the gravitino mass of
Oð100Þ GeV requires an amount of fine-tuning to avoid
LSP overproduction. Therefore, it may be natural to have
high-scale SUSY with a gravitino mass Oð100Þ TeV.
In this paper, in order to suppress the reheating temper-

ature, we have assumed a Z2 symmetry. Another option is
to assume the spatial separation of the inflaton sector and
the MSSM sector in a higher-dimensional theory. Our
discussion of the LSP overproduction is also applicable to
this case.
We should note that we can replace the inflaton mass m

in Eq. (12) by a vacuum expectation value of some field.
Consider a B-L gauge symmetry, for example, that is
broken by a vacuum expectation value of a chiral multiplet
S with a B-L charge ofþ1. We assume that X carries a B-L
charge of −1; f so that the following superpotential is
allowed [70]:

W ¼ kΦSX; khSi ¼ m: ð46Þ

The Yukawa coupling k represents a shift symmetry
breaking. We may take k ¼ Oð0.1Þ and hSi ¼ Oð10−4Þ
as an example. The unwanted linear term W ¼ M2X is
replaced by W ¼ MhSiX, and the required condition
M2 ¼ MhSi≲m may be explained by M≲ 0.1 without
the Z2 symmetry.
In this paper, we have assumed that mLSP ¼

Oð10−3Þm3=2, which is true in the case of PGM. In general
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FIG. 6 (color online). Same as for Fig. 3 but with c ¼ 0.7,
c3 ¼ 10−2, and mLSP ¼ 3 × 10−3m3=2.
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gravity mediation models with a singlet SUSY-breaking
field (i.e., a Polonyi field), the LSP mass is expected to be
of the same order as the gravitino mass. If this is the case,
thermally produced LSPs will easily overclose the universe
unless the reheating temperature is far smaller than the LSP
mass. For TRH ≳ 106 GeV, the gravitino mass smaller than
107 GeV is excluded.
Finally, let us comment on other inflation models. The

lower bound on the gravitino mass in Eq. (45) is basically
obtained from the condition that masses of SUSY-breaking
sector fields are larger than the inflaton mass. Thus, for
models with the inflation mass of Oð1013Þ GeV, a similar
bound to that on the gravitino mass in Eq. (45) will be
obtained. On the contrary, if models have the maximal
reheating temperature, the lower bound on the gravitino
mass may be obtained [71] so that enough LSPs are

produced through the gravitino production in the thermal
bath to explain the DM density.
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