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Phenomenology of the 3-3-1-1 model
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In this work we discuss a new SU(3). ® SU(3), ® U(1)y ® U(1), (3-3-1-1) gauge model that
overhauls the theoretical and phenomenological aspects of the known 3-3-1 models. Additionally, we
derive the outcome of the 3-3-1-1 model from precise electroweak bounds to dark matter observables. We
firstly advocate that if the B — L number is conserved as the electric charge, the extension of the standard
model gauge symmetry to the 3-3-1-1 one provides a minimal, self-contained framework that unifies all the
weak, electromagnetic, and B — L interactions, apart from the strong interaction. The W parity (similar to
the R parity) arises as a remnant subgroup of the broken 3-3-1-1 symmetry. The mass spectra of the scalar
and gauge sectors are diagonalized when the scale of the 3-3-1-1 breaking is compatible to that of the
ordinary 3-3-1 breaking. All the interactions of the gauge bosons with the fermions and scalars are
obtained. The standard model Higgs (H) and gauge (Z) bosons are realized at the weak scales with
consistent masses despite their respective mixings with the heavier particles. The 3-3-1-1 model provides
two forms of dark matter that are stabilized by W-parity conservation: one fermion which may be either a
Majorana or Dirac fermion, and one complex scalar. We conclude that in the fermion dark matter setup the
Z, gauge-boson resonance sets the dark matter observables, whereas in the scalar one the Higgs portal
dictates them. The standard model Glashow-Iliopoulos-Maiani mechanism works in the model because of
W-parity conservation. Hence, the dangerous flavor-changing neutral currents due to the ordinary
and exotic quark mixing are suppressed, while those coming from the nonuniversal couplings of the
Z, and Z, gauge bosons are easily evaded. Indeed, the K — K and B? — BY mixings limit mgz,, >
2.037 TeV and mz,, > 2.291 TeV, respectively, while the LEPII searches provide a rather close bound,
my,, > 2.737 TeV. The violation of Cabibbo-Kobayashi-Maskawa unitarity due to the loop effects of the

Z, and Zy gauge bosons is negligible.
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I. INTRODUCTION

The standard model [1] has been extremely successful.
However, it describes only about 5% of the mass-energy
density of our Universe. What remains is roughly 25% dark
matter and 70% dark energy, which lies beyond the standard
model. In addition, the standard model cannot explain the
nonzero small masses and mixing of the neutrinos, the matter-
antimatter asymmetry of the Universe, and the inflationary
expansion of the early Universe. On the theoretical side, the
standard model cannot show how the Higgs mass is stabilized
against radiative corrections, what makes electric charge exist
in discrete amounts, and why there are only three generations
of fermions observed in nature.
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Among the standard model’s extensions that attempt to
address these issues, the recently proposed SU(3), ®
SU(3), ® U(1)y ® U(1)y (3-3-1-1) gauge model has
the following interesting features [2]. (i) The theory arises
as a necessary consequence of the 3-3-1 models [3-5] that
respects the conservation of lepton and baryon numbers.
(ii) The B — L number is naturally gauged because it is a
combination of the SU(3), and U(1), charges. And, the
resulting theory yields a unification of the electroweak and
B — L interactions, apart from the strong interaction.
(iii) The right-handed neutrinos emerge as fundamental
fermion constituents, and consequently the small masses of
the active neutrinos are generated by the type I seesaw
mechanism. (iv) W parity—which has a similar form to the
R parity in supersymmetry—naturally arises as a conserved
remnant subgroup of the broken 3-3-1-1 gauge symmetry.
(v) Dark matter automatically exists in the model and is
stabilized due to W parity. It is the lightest particle among
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the new particles which characteristically have incorrect
lepton numbers, transforming as odd fields under W parity
(so-called W particles). The dark matter candidate may be a
neutral fermion (N) or a neutral complex scalar (H').

The 3-3-1-1 model includes all the good features of the
3-3-1 models. The number of fermion families is just
three, a consequence of anomaly cancellation and the
QCD asymptotic freedom condition [6]. The third quark
generation transforms differently under SU(3), than the
first two. This explains why the top quark is uncharacter-
istically heavy [7]. The strong CP problem is solved by
just its particle content with an appropriate Peccei-Quinn
symmetry [8]. The electric charge quantization is due
to a special structure of the gauge symmetry and the
fermion content [9]. Additionally, the model also provides
the mentioned dark matter candidates similarly to
Refs. [10,11]. The 3-3-1-1 model can solve the potential
issues of the 3-3-1 models because the unwanted inter-
actions and vacuums that lead to the dangerous tree-level
flavor-changing neutral currents (FCNCs) [12] as well as
the CPT violation [13] are all suppressed due to W-parity
conservation [2].

In a previous paper [2] the 3-3-1-1 model and its direct
consequence—dark matter—was proposed. In the current
work, we will deliver a detailed study of this new model.
Particularly, we consider the new physics consequences
besides the dark matter that are implied by the new
extended sectors beyond those of the 3-3-1 model.
These sectors include the new neutral gauge boson (C)
associated with U(1),, and the new scalar (¢) required for
the total U(1), breaking with necessary mass generations.
The total U(1), breaking that consequently breaks the
B — L symmetry—where B — L is a residual charge related
to the N charge and a SU(3); generator—can happen close
to the 3-3-1 breaking scale of order TeV. This leads to a
finite mixing and an interesting interplay between the new
neutral gauge bosons—such as the Z’ of the 3-3-1 model—
and the C of U(1),. Notice that our previous work only
considered a special case when the B — L breaking scale
was very high [similar to the grand unified theory (GUT)
scale] [14], so that the new physics beyond the ordinary
3-3-1 symmetry was decoupled, neglecting its imprint at
low energy [2]. Indeed, the stability of the proton is already
ensured by the 3-3-1-1 gauge symmetry; there is no reason
why this scale is not present at the 3-3-1 scale. Similarly to
the new neutral gauge bosons, there is an interesting mixing
among the new neutral scalars that is used to break the
3-3-1 and B — L symmetries.

It is interesting to note that the new scalars and new
gauge bosons as well as the new fermions can give
significant contributions to the production and decay of
the standard model Higgs boson. They might also modify
the well-measured standard model couplings, such as those
of the photon and W and Z bosons with the fermions. There
exist hadronic FCNCs due to the contribution of the new
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neutral gauge bosons. These gauge bosons can also take
part in electron-positron collisions [such as those at LEPII
and the International Linear Collider (ILC)] as well as in
dark matter observables. The presence of the new neutral
gauge bosons also induces the apparent violation of
Cabibbo-Kobayashi-Maskawa (CKM) unitarity. In some
cases, the new scalar responsible for the U(1), breaking
may act as an inflaton. The decays of some new particles
can solve the matter-antimatter asymmetry via leptogenesis
mechanisms.

The scope of this work is as follows. The 3-3-1-1 model
is calculated in detail, namely, the scalar potential and the
gauge-boson sector are in a general case diagonalized. All
the interactions of the gauge bosons with the fermions as
well as with the scalars are derived. The new physics
processes arising from the FCNCs, the LEPII Collider, the
violation of CKM unitarity, and dark matter observables are
analyzed. Particularly, we perform a phenomenological
study of the dark matter, taking into account the current
data as well as the new contributions of the physics at
A ~ w that were seen in Ref. [2]. The constraints on the new
gauge-boson and dark matter masses are also obtained.

The rest of this work is organized as follows. In Sec. II,
we give a review of the model. Sections III and IV are
devoted, respectively, to the scalar and gauge sectors. In
Sec. V we obtain all the gauge interactions of the fermions
and scalars. Section VI aims at studying the new physics
processes and constraints. Finally, we summarize our
results and make concluding remarks in Sec. VIL

II. A REVIEW OF THE 3-3-1-1 MODEL
The 3-3-1-1 model [2] is based on the gauge symmetry

SUB)c ® SUB), @ U(l)x @ U(1)y, (1)

where the first three groups are the ordinary gauge
symmetry of the 3-3-1 models [3-5], while the last one
is a necessary gauge extension of the 3-3-1 models that
respects the conservation of lepton (L) and baryon (B)
numbers. Indeed, the 3-3-1 and B — L symmetries do not
commute and are not algebraically closed. To be concrete,
for a lepton triplet (see below) we have B—L =
diag(—1,—1,0), which does not commute with the
SU(3), generators as T; = 14, for i =4,5,6,7. It is easily
checked that

[B - L, T4 :l: lTs] - :F(T4 :l: lTs) Sé 0,

The nonclosed algebras can be deduced from the fact that in
order for B — L to be some generator of SU(3),, we must
have a linear combination B — L = x;T; (i = 1,2,3,...,8)
and thus Tr(B — L) = 0, which is invalid for the lepton
triplet, Tr(B — L) = =2 # 0 (and even for other particle
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multiplets). In other words, B — L and T; by themselves do
not make a symmetry on which we can base our theory.
Therefore, to have a closed algebra, we must introduce at
least a new Abelian charge N so that B — L is a residual
symmetry of the closed group SU(3), ® U(1)y, ie.,
B —L =x;T; +yN, where the embedding coefficients
x;,y # 0 are given below. [The existence of N can also
be understood by a current-algebra approach for 7; and
B — L—similarly to the case of the hypercharge Y—when
we combine SU(2), with U(1), to create the SU(2); ®
U(1), electroweak symmetry.] Note that N cannot be
identified as X (which defines the electric charge operator)
because they generally differ for the particle multiplets
(see below); thus, they are independent charges. In fact, the
normal Lagrangian of the 3-3-1 models (including the
gauge interactions, minimal Yukawa Lagrangian, and
minimal scalar potential) always preserves a U(1)y
Abelian symmetry that, along with SU(3),, realizes
B — L as a conserved (noncommuting) residual charge;
this has been investigated in the literature and given in
terms of B = Band L = bTg + L, where b is dependent on
the 3-3-1 model class and N = B — £ [2,15]. Note also that
a violation in N due to some unwanted interaction, by
contrast, would lead to a corresponding violation in B — L,
and vice versa. Because T; are gauged charges, B — L and
N must be gauged charges [by contrast, T; ~ (B — L) — yN
are global, which is incorrect]. The gauging of B — L is a
consequence of the fact that B— L and SU(3), do not
commute (which is unlike the standard model case). The
theory is only consistent if it includes U(1)y as a gauge
symmetry, which also necessarily makes the resulting
theory free from all the nontrivial leptonic and baryonic
anomalies [2]. Otherwise, the 3-3-1 models must contain
(abnormal) interactions that explicitly violate B — L (or N).
Equivalently, the 3-3-1 models only survive if B—L
(which is actually recognized as an approximate symmetry)
is not a symmetry of such theories, which was explicitly
shown in Ref. [16]. Thus, assuming that the B — L charge is
conserved (a condition that is respected by experiment, the
standard model, and even the typical 3-3-1 models [1,3-5]),
the Abelian factor U(1), must be included so that the
algebras are closed, which is necessary in order to have a
self-consistent theory. Apart from the strong interaction
with the SU(3). group, the SU(3), ® U(1)y ® U(1)y
framework thus presents a unification of the electroweak
and B — L interactions, in the same manner that the
standard model electroweak theory does for the weak
and electromagnetic interactions.

The two Abelian factors of the 3-3-1-1 symmetry
associated with the SU(3), group correspondingly deter-
mine the electric charge Q and the B — L operators as
residual symmetries, given by

1 2
=T;——=Ts+ X, B—-L=——Ts+N, 2
0 3 NG 8 NG 8 (2)
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where T;(i = 1,2,3,...,8),and X and N are the charges of
SU(3),, U(1)y and U(1)y, respectively [the SU(3).
charges will be denoted by #;]. Note that the above
definitions of Q and B — L embed the 3-3-1 model with
neutral fermions [5] in the theory considered. However, the
coefficients of Tg might be different depending on which
class of the 3-3-1 models it is embedded in [15].

The conserved charge Q is responsible for the electro-
magnetic interaction, whereas B — L must be broken so that
the U(1), gauge boson gets a large enough mass to escape
from the detectors. Indeed, B — L is broken down to a
parity (i.e., a Z, symmetry),

pP— (_])3(B—L)+2s _ (_1)—2\/§T8+3N+2s’ (3)

which consequently makes “incorrect B — L particles”
stable, providing dark matter candidates [2]. We see that
this R parity is a residual symmetry of the broken SU(3), ®
U(1), gauge symmetry, which is unlike the R symmetry in
supersymmetry [17]. That being said, the parity P auto-
matically exists, and due to its nature it will play an
important role in the model in addition to stabilizing the
dark matter candidates, as is shown throughout the paper.

The fermion content of the 3-3-1-1 model that is
anomaly free is given as [2]

Var
YaL = €ar
(NaR)C

Var ™~ (1, 1,0, —1),

~(1,3,-1/3,-2/3), (4

e~ (1,1,-1,-1), (5)

daL

—UgL
D alL

Qo = ~(3,3%,0,0),

usp

Q3L = d3L
UL

~(3,3,1/3,2/3), (6)

ugg ~ (3.1,2/3.1/3),  dug~(3.1.-1/3,1/3), (7

Ur~(3,1,2/3,4/3), Dy~ (3,1,-1/3,-2/3), (8)

where the quantum numbers located in parentheses are
defined using the gauge symmetries (SU(3)., SU(3),,
U(1)y, U(1),), respectively. The family indices are a =
1,2,3 and a = 1,2.

The exotic fermions N, U, and D have been included to
complete the fundamental representations of the SU(3),
group, respectively. By the embedding, their electric
charges take the usual values, Q(Ny) =0, Q(U) = 2/3,
and Q(D) = —1/3. However, their B — L charges take the
values [B—L|(Ng)=0, [B—L](U)=4/3, and [B—L](D)=
—2/3, which are abnormal in comparison to those of the

075021-3



DONG et al.
TABLE 1.

PHYSICAL REVIEW D 90, 075021 (2014)

The W parity (P) separates the model particles into two classes: (i) W particles that possess P = —1, and (ii) ordinary

particles that have P = +1. The first class includes a large portion of the new particles, while the second class is dominated by the

standard model particles.

N

Partice v e wu d G y W Z C m2 pi2 x3 ¢ N U D X Y n  p3s xia
L 1 1.0 0 O O O 0 0 O 0 o -2 o0 -1 1 1 1 -1 =1 1
P + + + + + + + + + o+ + + + = = = = = = = =

standard model particles. These exotic fermions (and the
associated bosons) have ordinary baryon numbers; how-
ever, they possess anomalous lepton numbers and are P odd
(see Table I for details) [2]. Such particles are generally
called wrong-lepton particles (or W particles for short) and
the parity P is thus called W parity. All other particles of the
model, including the standard model ones (which either
have both ordinary baryon and lepton numbers, or only
differ from the ordinary lepton number by an even lepton
number, such as the ¢ scalar given below) are even under W
parity, and they can be considered as ordinary particles.

Let us recall that the neutral fermions N,z might have
left-handed counterparts, N,;, which transform as singlets
under any gauge symmetry group including U(1),. In this
way, the N,; are truly sterile, which is unlike the v,z
usually considered in the literature. Interestingly, the sterile
fermions N,; are W particles like the N ;. If the N,,; are
not included, the N, are Majorana fermions. Otherwise,
the presence of the N, yields N, r as generic fermions
(which may be Dirac ones). Further, we will exploit this
matter by deriving the dark matter observables for the cases
of the Dirac or Majorana fermions.

To break the gauge symmetry and generate the masses
for the particles in a correct way, the 3-3-1-1 model needs
the following scalar multiplets [2]:

7
n=1m
n
Py
p=1 s
Py
e
X=1x

e
¢ ~(1,1,0.2), (9)

with the vacuum expectation values (VEVs) that conserve
Q and P being given by, respectively,

~(1,3,-1/3,1/3),

~(1,3,2/3,1/3),

~(1,3,-1/3,-2/3),

1 . oo
<’7>:\/§(u70’0) ’ <p>_\/§<0’ ’0) ’
1 T 1

The VEVs of 7, p, and y only break SU(3)- ® SU(3), ®
U(l)y ® U(1)y to SU3). ® U(1), ® U(1)z_;, which
leaves the B — L invariant. The ¢ breaks U(1), as well as
the B — L that defines the W parity, U(1)z_, — P, with the
form as given in [2]. It also provides the mass for the U(1),
gauge boson as well as the Majorana masses for v,5. Note
that p3, 13, and y;, are the W particles, while the others
including ¢ are not (i.e., they are ordinary particles). The
electrically neutral fields #3 and y; cannot develop a VEV
due to W-parity conservation. To be consistent with the
standard model, we suppose u, v < w, A.

Up to the gauge fixing and ghost terms, the Lagrangian
of the 3-3-1-1 model is given by

D>

fermion multiplets

1 1 1 1
- Z Gi;u/G/iw - ZAim/A}iw - Z BMDBMD - Z C”UCFV

- V(pv’/I’Z?(ﬁ) +£Yukawa’ (11)

VipD, U+ >

scalar multiplets

(D*®)"(D,®)

with the covariant derivative
DM = 8ﬂ + igstiGiﬂ + igTiAi,u + ngXB” + igNNCﬂ, (12)
and the field strength tensors

Gi/w = ayGiu - aIJGi[l - gsfijijﬂka
Ai;w = ayAiu - 6UAi[l - gfijkAjﬂAkl/’
B, :8”By—awa Cu :ﬁﬂcb—aycﬂ. (13)

W denotes the fermion multiplets, such as y,;, Qsr, Uyg,
and so on, whereas ® stands for scalar multiplets ¢, 7, p,
and y. The coupling constants (g, g9, gx, gn) and the gauge
bosons (Gj,, A, B,,C,) are defined as coupled to the
generators (¢;, T;, X, N), respectively. It is noted that in a
mass basis the W* bosons are associated with T ,, the
photon y is associated with Q, and the Z, Z' are associated
with generators that are orthogonal to Q. All these fields,
including C and the gluons G, are even under W parity.
However, the new non-Hermitian gauge bosons—X%* as
coupled to Ty45 and Y* as coupled to T¢;—are the W
particles.

The scalar potential and Yukawa Lagrangian mentioned
above are obtained as follows [2]:
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Lyukawa = BpWarpesr + hoyWarnvpr + 1, 05rvord + hY Q3 Up + hD001 2" Dig
+ h4 Qs g + hiQ31pdur + haaQuri*dag + hitq Qurp* uar + Hoe., (14)

V(p.n. ) = 130" p + wax 'y + 13nn + 41 (p"p)?* + 22 "x)* + 23 (n'n)?
+ 2" p) 0" x) + 25 (p"p) (' n) + A6 (xx) (1)
+ 20" 0) G'p) + s (p™n) (' p) + 20 (e ') (nx) + (Fe™ P nmpu, + Hee.)
PGP D)+ 410(DTB) (pTp) + 211 (@TP) T x) + Aa () (). (15)

Because of the 3-3-1-1 gauge symmetry, the Yukawa
Lagrangian and scalar potential take the standard forms
that contain no lepton-number-violating interactions.

If such violating interactions as well as nonzero VEVs of
n3 and y; were present (as in the 3-3-1 model), they would
be the sources for the hadronic FCNCs at tree level [12].
The FCNC problem is partially solved by the 3-3-1-1
symmetry and W-parity conservation. Also, the presence of
the 73 and y; VEVs would imply a mass hierarchy between
the real and imaginary components of the X gauge boson
due to their different mixings with the neutral gauge
bosons. This leads to CPT violation, which is experimen-
tally unacceptable [13]. The CPT violation encountered
with the 3-3-1 model is thus solved by the 3-3-1-1
symmetry and W-parity conservation as well.

Table I lists all the model particles with their parity
values explicitly provided. The lepton numbers have also
been included for convenience. However, the baryon
numbers are not listed since they can be obtained as
usual (all the quarks u, d, U, and D have B =1/3,
whereas the other particles have B = 0). As shown in
Ref. [2], the X° gauge boson cannot be dark matter.
However, the neutral fermion (a combination of N, fields)
or the neutral complex scalar (a combination of ng and )((1)
fields) can be dark matter depending on which one of
them is the lightest wrong-lepton particle, in agreement
with Ref. [11].

The fermion masses that are obtained from the Yukawa
Lagrangian after the gauge symmetry breaking have been
presented in Ref. [2] in detail. Below, we will calculate the
masses and physical states of the scalar and gauge boson
sectors when the A scale of the U(1), breaking is
comparable to the @ scale of the 3-3-1 breaking, which
was neglected in Ref. [2]. Also, all the gauge interactions of
fermions and scalars as well as the constraints on the new
physics are derived. We stress again that in the regime A >
o the B — L and 3-3-1 symmetries decouple, whereas—
when these scales become comparable—the new physics
associated with the B — L and that of the 3-3-1 model are
correlated, possibly at the TeV scale, all of which may be
proven at the LHC or ILC.

ITI. SCALAR SECTOR

Since W parity is conserved, only the neutral scalar fields
that are even under this parity symmetry can develop the
VEVs given in Eq. (10). We expand the fields around these
VEVs as

[e) O§||x
S

Sy+iAy (16)

X
Il
<
+
AN
Il
oG o
_|_
N

=0 +x=

Sk o o

V2

Sy + iAy

b=+ = Vo

A
NG + (17)
where in each expansion the first and last terms are denoted
as the VEVs and physical fields, respectively. Note that
S1234 and Ay ,534 are W even, while those with primed
signs, S’ 3 and A’ 5, are W odd. There is no mixing between
the W-even and W-odd fields due to W-parity conservation.
On the other hand, the f parameter in the scalar potential
can be complex (the remaining parameters, such as the y*’s
and A’s, are all real). However, its phase can be removed by
redefining the fields 7, p, y appropriately. Consequently, the
scalar potential conserves the CP symmetry. Assuming that
the CP symmetry is also conserved by the vacuum, the
VEVs and f can simultaneously be considered as the real
parameters. There is no mixing between the scalars (CP
even) and pseudoscalars (CP odd) due to CP conservation.

To find the mass spectra of the scalar fields, let us expand
all the terms of the potential up to the second-order
contributions of the fields:
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)

ui(p'p) = mi((p

[SS]

W' x) = 3 (%
Ll2
w3(n'n) = 13 (7
A2
w(p'p) = p? (7

T _ A4
M )* =2 {7

+
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2

lu1<2
ST+ AT + 85+ A3

)

ST+AT+ 87+ A{%)

>,2

S2+A2
+ 08, +pipT +pips + 22 2),

() + ()T + 0T (p) +p"p)

+wSs + 33 +

+uS; +n5n3 +

S2 + A2

AS
+AS; + =

2

A
+ A287 + A3S, + 5 (S + A7) + interaction] :

2 AR 2 o+ + S5 +43 . .
LpTp)? = T + v S5+ S, + v plpT o305 + > -+ interaction |,
4 S/2 A/2 SZ A2
ML) =2 %—l— 0*S + @S5 + o? ()6)(2* + -1 A ;_ 31 3) —|—interaction],
- 4 SZ A2 SIZ A/Z
Aa(nn)? = 1 Z+ ST+ ulS, +u <115772’ + -1 A4 —; s 3) + interaction],
Vo’ w? v ST+ AP 4 85+ 43
Ap'p) (' x) _/14[ 1 +753 +752+W’5253+ 5 ()(2)(2++ 1 1 ) : 3)
a) S35+ A3 . .
7 p + p3 3 —+ T -+ 1nteraction s
2.2 2 2 S2 AZ S/2 A/2
As(p'p SU”+—S1+ﬂSZ+vuslsZ+2< s lz3+ 3>
u? S5+ A3 . .
+ 5 p1 P+ p3 Py + 5 -+ Interaction | ,
2,2 2 2 S2 AZ S/2 A/Z
Jela2)(nn) = 4| 5=+ w”s3+uwssg+2< e “;3+ 3)
u? S’12+A’12+S’§‘+A§ . .
+—= 112 )( + -+ 1nteraction |,
2 2
Z(p"x) (') = (v5 + wp3)(@p3 + vy3) + interaction,
/1 . .
As(p'n)(n'p) = 5 (vng + upy)(upi + vn3) + interaction,

0] . u . u . @
Jole ) ) = do 5 84+ i) 45 (51 = i) 551 +ia) + 5

2

!

%, — iA}) | + interaction,
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. . szz vA? Av? 52 4+ A2
Aol @) (pTp) = /110[ n 2 —— 95 +TS4 + vAS, Sy + — > ( 3 )
A? 83+ A3
+— > <pl pT +pips + 5 ) + interaction],
. Ao?  wA? Aw? 52 + A2
M) 'x) :/111[ 1 + > S5 + 5 S4+a)AS3S4+ > < 7 )
A2 ST+ AT+ 85 +A% . .
+— x5+ 5 - + interaction | ,
AZ 2 u 2 A 2 52 +A2
(@) (n'n) —/112[ 1 S1+—S4+MASS4+2< 3 )
2 S2 —|—A2 +S/2 +A/2
7( : : > 3 3) + interaction],

va)
fem" Py, pux, +He. = [ (8,83 — AyAs—pi x5 — p3xy)
! \/_ \/_ \/_ f \/_ IR

(8183 —A1A; = 85185 + A/IAQ)‘F (818, = A Ay =y pf — ﬂfﬂf)] + interaction.

+ R R
ﬁ V2

The scalar potential—which is the sum of all the above terms—can be rearranged as
V(pv X ¢) = Vmin + Vlinear + vmass + Vinteractionv (18)

where the interactions stored in Veacion d0 N0t need to be explicitly obtained. V;, contains the terms that are independent
of the scalar fields,

2 2 2 A2 et e 4 A4
me M12+ﬂ2a; +M3u2+ﬂ 7+’1 +ﬂ /1214 +’12
V2? v u? u2w2 V2 A2 ) 2 uzA2 Uvw
22 A2 /12 + 12 A2 /12 ,
+ 4 4 + 5 4 10 4 + 11 4 4 + f \/E

which only contributes to the vacuum energy; it does not affect the physical processes.
Viinear includes all the terms that linearly depend on the scalar fields,

1 1 2 1
Vlinear = Sl Mﬂ% “F /131/[3 + 5/15147_)2 + E/Iéuwz + X/T—fl)(l) + 5/112MA2:|

1 1
+ S, v,u1+/1111 += /141160 + = /1514 v+\/f—fua)+f Az}

A4 As A
+S; wﬂ2+/12a) —|—va +2a) +£f —&—l Az]

[ 1
+S4 M2A+/1A3 +511002A+5211Aw2+5112AM2:|. (19)

Because of the gauge invariance, the coefficients vanish,

2 A

vt + Ao +2/14va)2—|— Asu v+§f +20 10 vA? =0, (20)
A A 2 A

o3 + o’ +§4a)v2 +§6a)u2 +\£_fuv +%wA2 =0, (21)
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1 1 2 1

up3 + Azu’ +5/15u02+§/16uw2+\/7_fv(u+§/1]2u1&2 =0, (22)
2 L I 2 b s

H +/IA +§/110’U +§ﬂ”w +§j.12bt = O, (23)

which is also the condition of potential minimization,

ov. ov oV oV
—=—=——=-—=0. 24

ou Ov OJw OA (24)
The 3-3-1-1 gauge symmetry will be broken in the correct way and the potential will be bounded from below if we impose
u? <0, //L%’M < 0,4 > 0,4,,3 > 0, and other necessary conditions for A, 5 ... 1,. In this case, the equations for the potential

minimization above give a unique, nonzero solution for the VEVs (u, v, », A).
V mass consists of all the terms in the potential that quadratically depend on the scalar fields. It can be decomposed into

Vinass = Vit £ V8 oo + Vs + Viass + Vinasss (25)

where the first term includes all the mass terms of the charged scalars, while the remaining terms belong to the neutral
scalars with each term for a distinct group of fields characterized by the W and CP parities, as mentioned before.
The mass spectrum of the charged scalars is given by

oo A 1 1 1
s = s (W34 A + 202 + 22U 4 ”A2 3y (13 A + S350 + 2 Ao’ + 5 A
2 2
)
+(pipv +p¥p§)<u1+/1w + 50’ + 5 /15” +ﬂA2> +37(vxi+wp§)(ﬂxz++wp3+)
g
E(U’h +up1)(up1++vn2+)—fﬂ(p3x2 +p3x3) — f\/—(’hpl + 13 p7)- (26)

From the potential-minimization conditions, we extract y%, ,u%, and y% and substitute them into the above expression to yield

A fu _ _ Ag fw _ _
VﬁfsrfedZ(l— >v + wp3) (v + wpt +(———>v +up7)(vnd + up’
> Ve (012 +wp3)(vr; +wp3) + 5 N (ony + upy)(vi; + upy)
A7 fu ) 5 N (/18 fw) _
=(=- v+ )H7H + (= - v> + u?)H-HYT, 27
(2 \/sz ( ) 4554 2 ﬁvu ( ) 5 ( )

where we have defined

b = v +ops HE = vy + upy (28)
The fields H{, HE by themselves are physical charged scalars with masses given by, respectively,
A fu g fo
m2 —<—7— >112—|—a)2, m> —<—— 2+ u?). 29
= (3 )P0 = (5 )0 ) (29)
The field that is orthogonal to Hs, Gi, = @, has zero mass and can be identified as the Goldstone boson of the W+
u=+v
gauge boson. Similarly, the field that is orthogonal to Hy, G5 = % is massless and can be identified as the Goldstone
vt

boson of the new Y* gauge boson.
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For the neutral scalar fields, we start with the A group,

1 1 1
Vﬁlass A2 (//;“1‘223” +4/15’U +4/1660 + /1]2A2>

1 1 1
—|—A2<2 +2l]v —|—4/14a) —|—4/15u +1)A2>

1 Y
+A?<2+2/1 i“vuf: 2+ A2> (30)

+A2<2+2/1A2+ /1101) + )«110) + /11214)

{/’%AZA3 {/%A As— {/“%
——L(@—F@ ﬂ)(Ua)A1+ua)A2+uvA3>2
2V2 Vit? £ v20? + i2a?)
(31)

AA,

with the help of the potential-minimization conditions.
Therefore, we have a physical pseudoscalar field with a

corresponding mass,
2 S (v uo w
m3 \/5( » + ” + a))'

(32)

V@A + uwA, + uvA;

A ,
Vil + v?o? + vt o?

If u,v, > 0, we have f < 0 so that the squared mass is
always positive. We realize that A4 is massless and can be
identified as the Goldstone boson of the new neutral gauge
boson C of U(1)y. The remaining massless fields are
orthogonal to A as follows:

G, — MAI - UA2
G, — —uv(vA| + uA;) + o(u* + v*)A; (33)

\/(uzvz T 2@? —|—u2a)2)(u2 ¥ Uz)'
They are the Goldstone bosons of the neutral gauge bosons
Z and Z', respectively (where Z is standard model-like
while Z’ is 3-3-1 model-like).

For the A’ group, we have

2
A _anf(fa L, 5 Ao A6 o A 4o
VmaSS—A1<2+2/12a) +4v +4u +4coA

1 Ay A A
A2 A = 62 + 2L A2
—|—3<2+22w+4v+4 +4
JU

A
+loAA + 2

\/i 173 4
(B LI (i)
2\2 J2uw ViZ + o2 ’

(Al — ud})?

PHYSICAL REVIEW D 90, 075021 (2014)

by using the minimization conditions. Hence, a physical W-
odd pseudoscalar and its mass have the form

WAL — uA Ao 1 fo
A= 3 1’ 2/ 9 2 2 .
[Eta? 4 (2 V2uw (™ + %)
Similarly, for the S’ group we obtain
' 1/ 1 fo @Sy + uS)\?
1A — M 2 2 3 1 . (35
s =3 (2 mw)w +o )(u2+wz (35)

which yields a physical W-odd scalar with a corresponding
mass,

(34)

oSy + uS' A 1 fo
S e

Some remarks are in order:

(1) We see that the scalar S’ and pseudoscalar A’ have
the same mass. They can be identified as the real and
imaginary components of a physical neutral com-
plex field:

S+ A 1 0
\/— \/7 (u)(l + 0)773),

with the mass

H/O =

(2) The field that is
1

Vil +o?
tified as the Goldstone boson of the new neutral non-
Hermitian gauge boson X°.
Finally, there remains the S group of the W-even, real
scalar fields. Using the potential-minimization conditions,
we have

1 uw
VS =1{2 2 SZ ) 2 _ SQ
mass (3” 2\/— ) (17) 2\/§f7j)2
1 1
+ | ho* ———= )S2+</1 uv +—— w)SS
(2 2\/§fa) 3 5 \/Ef 192

1 1
+ | Aguw+—fv | S1S3+ | hov+—fu |S,S
(6 \/jf) 193 (4 \/§f> 2093
+AA2S421+/112MAS1S4+/1107JA5254+/11160AS3S4

S

orthogonal to H', G% =
(wy — un3*), is massless and can be iden-

—1(3 S, S S>M2 5
_2 1 2 3 4 S S3 5

Sy

(37)

where
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2A3u? —\szf% /lsuv—I—\%fa) /15ua)+\/%fv Apul

e Asuv + s fo 2007 =54 Jyov+ s fu dgvA 38)
U deuw L v+ Lfu 2007 — L fm 200
AIQMA ﬂ]oﬂA AHQ)A 2/1A2

In Ref. [2], the physical states were derived when the
B — L-breaking scale is as large as the GUT scale, for
example, so that S, is completely decoupled from the
remaining three scalars of the 3-3-1 model. In this work we
consider the possible B — L interactions that might happen
at the TeV scale, like those of the 3-3-1 model that are
characterized by the @ and f scales. Therefore, let us
assume that A is at the same order as f,w and all are
sufficiently large in comparison to the weak scales u, v so
that the new physics is safe [2], i.e.,

—f~o~A>u~uw. (39)

Notice that all the physical scalar fields that have been
found so far are new particles with corresponding masses
given at the w or \/|fw| scale.

The mass matrix (38) will provide a small eigenvalue for
the mass of the standard model Higgs boson, whereas the
remaining eigenvalues will be large enough to be identified
as the corresponding masses of the new neutral scalars. To
see this explicitly, it is appropriate to consider the leading-
order contributions of the mass matrix (38). Imposing
Eq. (39) and keeping only the terms that are proportional to
(w, A, f)?, we have the result

1 rvw 1
1 | ruw
Milo=| 7 TV (40)
0 0 2&2602 A.] 1 Cl)A
0 0 ﬂ'l 1 OOA 2/1A2

The 2 x 2 matrix in the first diagonal box gives a zero
eigenvalue with the corresponding eigenstate

MSI + USz

\/uz—i—vz.

This state is identified as the standard model Higgs boson.
The remaining eigenvalue is

) __Jofu v\ o,
My, = \/§<11+u> ", (42)

which corresponds to a new, heavy neutral scalar:

m, =0, H= (41)

_ —USl + MS2

H, = .
Ve

|
The 2 x 2 matrix in the second diagonal box provides two

heavy eigenstates with masses at the w scale given by,
respectively,
Hz = C¢S3 + S¢S4,

m%{Z = )QCUZ + ﬂAZ

— Bt + (3~ 24)0PA? + A% ~ 0,
H3 = —S(/,S3 + C¢S4,

m%_h = 120)2 + /1A2

+ \//I%w“ + (2] = 2440)0* A + PA* ~ 0,
where the mixing angle is given by

/111a)A
by ="—""5—>. 44
AN = e (44)

We have adopted the notations s, = sinx,c, = cosx,
t, = tan x, and so forth, for any angle x (such as ¢), which
we use throughout this paper.

We see that at the leading order, the standard model-like
Higgs boson has a vanishing mass. Hence, when consid-
ering the next-to-leading-order contribution, its generated
mass is small due to the perturbative expansion. In fact, we
can write the general mass matrix M3 in a new basis of the
states (H,H,,H,, H3). Since the mass of the standard
model-like Higgs boson is much smaller than those of the
new particles, the resulting mass matrix will have a seesaw-
like form [18] that can transparently be diagonalized.
Indeed, by putting

u _ v 0 0
Sl H u’+0? w?+0?
H L 0 0
iz =U Hl , U= u? 402 w402 ,
S3 H2 0 0 Cp =S,
4 3 0 0 Sy Cq
(45)
the mass matrix (38) in the new basis is
A X B X
M?:UW@U:( . 3), (46)
B3 Cix
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uv[v? (24 —As) +u*(—243+4s)]

w02
SN (V2 A0+ 1P A1)+ (\/me/+v2(u/14+u2w/16)
41 4/1 2 2/1 ¢ ?
AEZ” 1+:2_i:)_2uv 5’ BTE \/Lt2+vz R (47)
—\/foq,uv+cv,A(1/'2/1|0+u2/1]2)—s(,,(u(vz/14+u2/16)
\/u2+1;2
and C is a 3 x 3 matrix with corresponding components given by
co— V21 (1 4+ v*)2w + 4P 03 (A + A3 — As)
! 2uv(u? + v?) '
Co G = 25,uvA(dig = App) + cq,[\/zf(uz — %) + 2uvw(dy — Ag)]
12 21 zm ’
Cor = Cur = V2[5, (= + 07) + 2uvfe, Mg = Aia) + 5,0(=As + )]
B 2V + v? ’
c,fuv
Ca = 2s3AA% 4 2¢,, (— 2(/;5560 + s,0A; + cq,wz/iz),
2 2 Juv 2 2
Cy3 = C3p = (¢, — 5,)0MAyy + 2¢,5, m—l—iA -l |,
fsuv 5
Cyy=-— N +2¢,A(c, AN = s,041) + 255,07 A,. (48)

Because —f ~ @ ~ A > u ~ v, we achieve the seesaw form
for M2, where ||C|| ~ @? > ||B|| ~ uw > ||A]| ~ u?, with
||A]] = \/Tr(ATA), and so forth. Therefore, the standard

model-like Higgs boson obtains a mass given by the seesaw
formula [18],

om3 = A — BC™'BT ~ O(u?,1?), (49)

which is realized at the weak scales in spite of the large
scales w, A, and f (see below). The standard model-like
Higgs boson is given by

H,
H+6H=H-BC'| H,
Hj

(50)

The physical heavy scalars are orthogonal to this light state,
and their masses change negligibly compared to their
leading-order values.

The mass of the standard model-like Higgs boson can be
approximated as

Jaut + Asu?v? + Aot
u? + 02

2
5m%,:2< +m3+m%w+m§£2>,

(51)

I
where the mass parameters m, m;, and m, are given by

1
(A3, —422,) (vV* + u?)
+ ﬂ.]zuz(l] 1),6142 — 21]0)421)2 + ﬂ]]ﬂ4ﬂ2)

[—A2 Ao u* — A(Agu® + A40°)?

2
m0=—

+ A1ov? (A11d6U* = A1oAav* + A1 A40?)], (52)
o N2ur[(Aihin = 2246)u° + (hokin = 2424)77]
b (A1) = 44d) (u® + 07) ’
(53)
22 2,2
m} = a (54)

(A3, — 424,) (u® + v?)

Because the quantity f/o is finite, the Higgs mass ém?,
depends only on the weak scales u* and v?, as stated. We
will evaluate the Higgs mass and assign om% =
(125 GeV)? as measured by the LHC [19,20]. For this
purpose, let us assume u = v and @ = —f, which leads to
dm% = (A3 +As+ A ) u? +2m3 —2m? +2m3 = du’. (55)
Here, 1 is a function of only the A’s, which can easily
be achieved with the help of Egs. (52), (53), and (54)
for the respective mj,,. In addition, we have
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u? + v* = (246 GeV)?
from the mass of the W boson, as shown below. Hence, we
identify 6m?%, = /_1(% GeV)? = (125 GeV)?, which yields
A= (1221?)2 =0.5. This is an expected value for the
effective self-interacting scalar coupling.

In summary, we have the 11 Higgs bosons (H?, A°,
HY, 5, His, H'*%%), as well as the nine Goldstone bosons
correspondmg to the nine massive gauge bosons (G;;, G,
GY”, Gz, GY, G2). Because of the constraints
u, v << w,\,—f, the standard model-like Higgs boson
(~H) is light, with a mass at the weak scales, whereas
all the new Higgs bosons are heavy, with masses at the o,
A, or —f scales. In the calculations below, we will ignore
the mixing effects of the standard model Higgs boson H
with the new particles H;,3 (where the mixing angles
defined by BC™! are typically proportional to 2 < 1, which
is actually small). Therefore, we have found the physical
states H, H,, H,, H;. Denoting t3 = v/u and taking the
effective limit u/w, v/w < 1, the physical scalar states are
related to the gauge states as follows:

p

()= (5,
(6.)=(5,
(o
(6

Jie, u= 24—; GeV, which is given

)=
) (5

p'Sv
H' =,

Gy =y, Gx =11,

Gy =A;,Gc = Ay (56)

As mentioned, the mixings of the standard model Higgs
boson H with the new scalars H,; are proportional to
|

gu

[eauge
8

mass —

PHYSICAL REVIEW D 90, 075021 (2014)

u/w, where the proportional coefficients depend on the
couplings of the scalar potential. Since the strengths of the
scalar self-couplings are mostly unknown, these coeffi-
cients are undefined as well. Therefore, if the coefficients
are small (as expected), the new physics effects via the
mixings can be neglected, similar to the gauge-boson sector
discussed below. Otherwise, it is important to note that the
leading-order new physics effects must include the
O({u,v}/{w,A,—f}) corrections to the couplings of
the standard model Higgs boson due to the mixing with
the new scalars, as well as the modifications of the H
interactions to the new physics processes via the new
scalars (H,,3). In this case, the mixing parameters as
determined by BC~' have to be taken into account.
However, it is also noted that even for the proportional
coefficients of order unity (like a scalar self-coupling in the
large strength regime), the modifications to the standard
model Higgs couplings are around |Ax|=u/w ~ 0.1,
which easily satisfies the x; bounds, as presented
in Ref. [1].

We remind the reader that—apart from H’, which will be
identified as a viable dark matter candidate—the remaining
scalars in this model should be sufficiently heavy in order
to obey the bounds coming from the muon anomalous
magnetic moment [21].

IV. GAUGE SECTOR

The gauge bosons obtain masses when the scalar fields
develop VEVs. Therefore, their mass Lagrangian is given
by

gauge __
»Cmass -

> (DH(@)'(D,(®)).

[

(57)

Substituting the scalar multiplets 7, p, y, and ¢ with their
covariant derivatives, gauge charges, and VEVs (given
above), we get

Cu? 2 2 : +1— 0% y 0,
Ay, + f = 0By 3 INC, )+ 2W W 2K X
2

O a4t 2\ saws W oy
+T 3 \/—+§tX ﬂ+§tN w) T2V, T2ty

2w? 2A 2 4
n g;" K— \/%ﬂ S ixBy =3 1nC, ) XY 4 2X0*X°”} + 23 A2C2, (58)

where we have defined ty =%, ty =%, and

9’ g

+ Alﬂ:FiA2M 0,05 __ A4uq:iA5u F_ AGﬂZFiAM
W;l - ’ H - ) )/ . (59)

V2 V2 V2
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The mass Lagrangian can be rewritten as

7

[eauge

mass —

2 2
1
(u? + v )WHW- + % (0 + @)Yy~ + % (12 + 0?)XOX0 4 2 (AsAsBOM2| .

PHYSICAL REVIEW D 90, 075021 (2014)

As
A
; (60)

C

where the Lorentz indices have been omitted and should be understood. The squared-mass matrix of the neutral gauge

bosons is found to be

2

u —7)2

1 + 0%

2V3
2
w9 A s vt de?)
2 _ tx(ur420%) (=202 +a?))
3 3V3
3 33

The non-Hermitian gauge bosons W=, X*% and Y* by
themselves are physical fields with the corresponding
masses

1 1
my :Zgz(uz_i_vz)’ my :Zgz(uz_i_wz)’

1
my = 170 + o) (61)
Because of the constraints u,v <<w, Wwe have

my <K my = my. W is identified as the standard model
W boson, which implies
u? + v* = (246 GeV)>. (62)
The X and Y fields are the new gauge bosons with large
masses at the w scale.
The neutral gauge bosons (A3, Ag, B,C) mix via the

mass matrix M. It is easily checked that M? has a zero
eigenvalue with a corresponding eigenstate,

V3 Ix
mi =0, u _\/TTZ‘%(<IXA3M_%A8M+B#>’

(63)

which are independent of the VEVs and identified as those
of the photon (notice that all the other eigenvalues of M?
are nonzero). The independence of the VEVs for the photon
field and its mass is a consequence of electric-charge
conservation [22]. With this at hand, electromagnetic
vertices can be calculated that result in the form

—-eQ(f)fr"fA,, where the electromagnetic coupling

%tﬁ(uz +4v? + 0?)

—Ztxiy(u? = 2(0? + @?))

tx (P =2(1*+aw?))

iy (P 4207)
3

ty (u?—v?)
3

ty (1 +0v> +4a?)

3v3
—%txtN(Mz - 2(7)2 + 602))

3V3

3, (u? + v + 4(0* + 9A?))

constant is identified as e = gsy, with the sine of the
Weinberg angle given by [22]

\/§l‘x

Sy = ———. 64

e (64)
The photon field can be rewritten as

A Ay 1Ay By (65)

\/57 gx’

which is identical to the electric-charge operator expression
in Eq. (2) if one replaces its generators by the correspond-
ing gauge bosons over couplings (namely, Q is replaced by
Ay/e, T; by A;,/g, and X by B, /gx). Hence, A, can be
obtained from Q without using M?. The mass eigenstate A,
depends on just A3, Ag,, and B,, whereas the new gauge
boson C, does not give any contribution, which stems from
electric-charge conservation as well [22].

To identify the physical gauge bosons, we first rewrite
the photon field in the form

e g

2
A= syhs + ey (—f/—WgAg +/ —%WB>, (66)

where we have used 1y = /3sy /+/3 — 4s%,. In the above
expression, the combination in parentheses (- - -) is just the
field that is associated with the weak hypercharge

Y=- % Tg + X. The standard model Z boson is therefore

identified as

t £
Z = cyhs — sy (—\%Ag +4/ —;VB>, (67)
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which is orthogonal to A, as usual. The 3-3-1 model Z’
boson, which is a new neutral boson, is orthogonal to the
field that is coupled to the hypercharge Y (and thus it is
orthogonal to both the A and Z bosons),

2 t
Z’:\/l—?WAg—k%B. (68)
|
As A
Ag Z
B = Ul Z’ . U] -
c c w

In this new basis, the mass matrix M? becomes

0 0
M? =UM*U, = ( )

PHYSICAL REVIEW D 90, 075021 (2014)

Hence, we can work in a new basis of the form
(A,Z,Z',C), where the photon is a physical particle and
is decoupled, while the other fields Z, Z’, and C mix among
themselves.

The mass matrix M? can be diagonalized via several

steps. In the first step, we change the basis
to (A3,A8, B, C) - (A, Za Zla C)a
Sw Cw 0 0
— sty 1-% o
v Vi ’ (69)
2 2
=% sy /1= b0
0 0 0 1
0 M 0

where the 11 component is the zero mass of the photon (which is decoupled), while M’? is a 3 x 3 mass submatrix of Z, Z/,

and C,
2 2 2
mz Mz Mzc
M?=|m, my m.
2 2 2
Mzc Mzc Mc
(3+412) (?+0?) \/3+41%((3=212 ) u?—(3+41%)v?) \/3+ary (1P —0?)
2(3+4%) 6(3+13) 3y/3+1%
2 2 2,2 2,2 22,2 22,2 232 .2 2,2 2,2 2 2
g V345 (320w~ (3+413)v°)  (3-283)2uP+(3+413)*v* +4(3+13 )’ w ty ((3=215)u”+(3+415 ) v* +4(3+13 ) w”)
- A 2 )
2 6(3+1y) 18(3+1y) 9\/3+t§(
\/3+42 1y (u—0? tn((3-22)u+(3+42) v +4(3+12 ) *
)(N(2 ) N(( x) ( x)2 ( x) ) %t]zv(uz+1)2 +4(w2+9A2)>
34/3+1y 94/3+ty

Because of the conditions, u,v < w, A, we have
mz, mk,., mhe < m, m%,zc, m%. Hence, in the second
step, the mass matrix M'> (or M'?) can be diagonalized
by using the seesaw formula [18] to separate the light state
(Z) from the heavy states (Z’, C). We denote the new basis
as (A, Z,, 2',C), so that A and Z, are physical fields and are
decoupled while the rest mix,

A A

Z Z

7/ = U2 z! ’

C C
0 O 0

M2 — UgM/zUz =10 m%l 0 |, (71)
0 0 M/l2

|
where M”? is a 2 x 2 mass submatrix of the Z’,C heavy
states, while my is the mass of the Z; light state. By virtue
of the seesaw approximation, we have

1 0 0
U,=|0 1 €1,
0 —& 1

2 2
mz = my

2 2 2
£ mzz M~ mz. Mzc
- N s\ 2 m2 )
mzc zZ'c c

£ is a two-component vector given by
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(c/‘]:—

VA% + 330226 — 3)u® + (45 + 3)1?] + F? (u? + 7))

PHYSICAL REVIEW D 90, 075021 (2014)

<1,

£ - 3/ 415 + 3(u? + v?)

<1,
8A2(1% + 3)% %1y

4% (1% + 3)*w?

which is suppressed at the leading order u, v < w, A. The Z;, Z’, and C fields are standard model-like, 3-3-1 model-like,
and U(1)y-like gauge bosons, respectively. To be concrete, we write Z;, =Z —&,Z' —&,C, 2/ =Z7'+&,Z, and
C = C + &,Z, which differ from the Z, Z', and C fields by only small mixing terms, respectively.

Moreover, with the help of ty = v/3sy//3 — 452, we have

/3 =452 [v2 = copu® 55 (u? + 02 52, ut+0v?
&1 == 4ct W[ 22W + ul 2 )} ) 2 (74)
Cyy 0} 9A 2Acyty A

We realize that the first term in &£; is just the mixing angle of Z-Z' in the 3-3-1 model with right-handed neutrinos,
to = /3 — 453, (cowu® — v?)/(4cl,@?) [22], when A > w. Using v% = u® + v> = (246 GeV)? (which is the fixed weak

scale) as well as 0 < u?, v? < v2

) 4 ()] o

4¢3y w 9 \ A

where the second term in each set of brackets is negligible
since A 2 w. Therefore, the £; bounds and the &, param-
eter can be approximated as

—-35x107° <& <3x1073,

& = 0014( L) (%) ~ 104 (76)
2 — Y. tN A s

provided that s, =0231, fy~1, A~w, and
w > 3.198 TeV, as given from the p parameter below.
With such small values for the £, , mixing parameters, their
corrections to the couplings of the Z boson—such as the
well-measured Zff ones (due to the mixing with the new
Z',C gauge bosons)—can be neglected [1]. (However,
notice that they can be changed due to the one-loop effects
of 7', C as well as those of the non-Hermitian X, Y gauge
bosons accompanied by the corresponding new fermions,
which subsequently give the constraints on their masses
and the gy coupling. A detailed study of this matter is out of
the scope of this work, and it should be addressed else-
where). Even the modifications of the Z interactions (due to
the mixings) to the new physics processes via the Z', C
bosons are negligible, which will be explicitly shown when

|

2

, v < vy, the £, parameter is bounded by

I L ()53 ()] 75

. “w
4cy

|
some of these processes are mentioned at the end of this
work. Therefore, except for an evaluation of the mentioned
p parameter, we will use only the leading-order terms
below. In other words, the mixing of Z with the Z', C
bosons can be neglected, so that my =my, Z;=Z,
Z'=Z7" and C=C.

For the final step, it is easily to diagonalize M"? (or M"?)
to obtain the remaining two physical states, denoted by Z,
and Zy, such that

A A 1 0 0 O
Z Z 01 0 0
- U3 N U3 - N
Z/ 22 0 O Cé —Sé
C ZN 0 0 Srf Cé:
M"? = UM Uy = diag(0, m3 . m3 ,m3 ). (77)

The mixing angle and new masses are given by

- 4\/ 3 + l%(tNCl)z (78)

t 9
% 3+ 2)a? — 48 (w? 4 9A?)

my = 1%3 (3 + 13)@* + 41y (0” + 9A?) + \/((3 + 13)0* — 415 (@* + 9A?))? +16(3 + 13) iy 0*), (79)
my, = fz—g ((3+ B)a? + 48, (0 +902) =\ /(3 + A)a? — 48 (@ +9A2)) + 16(3 + ) Rya?). (80)
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It is noteworthy that the mixing of the 3-3-1 model Z’' boson
and the U(1), C boson is finite and may be large since
w ~ A. Z, and Zy are heavy particles with masses at the @
scale.

In summary, the physical fields are related to the gauge
states as

As A
A Z
Sl=ul 7' . (81)
B Z
c Zy
where
U=U,U,Us=U,Us,
Sw Cw O 0
Sw Swiw t%/v %A/
| V3 Cé\/l‘? ‘Sf\/l—?
w Gy ! tw
Cw I—T —Sw 1—? Cﬁﬁ _Séﬁ
0 0 S‘: CC
(82)

The approximation above is given at the leading order
{u?,v*}/{w* A’} < 1, and this means that the standard
model Z boson by itself is a physical field (Z = Z;) that
does not mix with the new neutral gauge bosons, Z,
and Zy.

The next-to-leading-order term (&) gives a contribution
to the p parameter obtained by

p= iy
ciymy,
my 2 2 \T /2
=77 _ E(mZm2o)T =1+ E(mz,mzc)" /m7. (83)
Here, notice that my, = cymy and m% ~ 20 To
have a numerical value, letus putu = v = 246 / ) GeV
and w = A. Hence, the deviation is
5s%t% u? u?
Ap=p-1="N 0 ~0236—, 84
p=r 187a w* o’ (84)

where we have used s%,v =0.231 and a = 1/128 [1]. From
the experimental data Ap < 0.0007 [1], we have u/w <
0.0544 or w > 3.198 TeV (provided that u =246/
V2 GeV, as mentioned). Therefore, the value of w is on
the TeV scale, as expected.
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V. INTERACTIONS

A. Fermion—gauge boson interaction

The interactions of fermions with gauge bosons are
derived from the Lagrangian

‘Cfermion = \Tliy/‘DM\II, (85)

where U runs on all the fermion multiplets of the model.
The covan’ant derivative as defined in Eq. (12) can be
rewritten as D, = d, +ig,G, + igP,, where G, = t,G,,
and P, =TA;, + tXXB +tyNC, (note that tX = gx/g,
In = gn/9)- Expanding the Lagrangian, we find

‘Cfcrmion = \i]zyﬂaﬂql - gs\Tl}/ﬂGﬂ\Il - g\i}y”P”\Il, (86)

where the first term is kinematic whereas the last two terms
give rise to the strong, electroweak, and B — L interactions
of the fermions.

Notice that the SU(3). generators, #;, are equal to 0 for
leptons and for quarks ¢, where ¢ indicates all the quarks
of the model suchas g = u,d, c,s,t,b,D;,, U. Hence, the
interactions of gluons with fermions as given by the second
term of Eq. (86) yield

_ Y A
-9,9Y7"G, ¥ = —g,q. 1" 51 q1.Giy — 95qr?" 5’ qrGiy

Ai
A qGiw (87)

= —g,qr" )

which takes the usual form (i.e., only the colored particles
have strong interactions).
Let us separate P = PC 4+ PNC, where

PCC =T A 4+ TA, + T4A, + TsAs + TeAg + T4,
PNC = T3A5 + TyAg + tyXB + 1y NC. (88)

Hence, the last term of Eq. (86) can be rewritten as
—gUy P,V = —gUyt PCCW — gyt PYCU. (89)

Here, the first term provides the interactions of the non-
Hermitian gauge bosons WF, X%% and Y* with the
fermions, while the last term leads to the interactions of
the neutral gauge bosons A, Z;, Z,, and Z, with the
fermions.

Substituting the gauge states from Eq. (59) into PCC,
we get
PCC _ LT+W+ L +y0 1

= + U X"+

V2 V2 V2

where the raising and lowering operators are defined as

V+Y~+He., (90)

T*=T,+iT,, U*=T,+iTs, Vi=T¢+iT,. (91)
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Notice that 7+, U*, and V* vanish for the right-handed fermion singlets. Therefore, the interactions of the non-Hermitian
gauge bosons with fermions are obtained as

o7 9 = _
=g PRV = =TS (T W+ UK+ VY He
9 = 9 =z 9 = _
= _7§\I]LyﬂT+\I]LW;r - E\I]L]/ﬂUJr\I]LXS - 7§\I]L]/”V+\PLYﬂ + H.C.
= Ty Wi+ JI¥X0 + I3, + He., (92)

where the currents associated with the corresponding non-Hermitian gauge bosons are given by

_ = g _ _
Ji = ——=U prTT, = == (D 7" e, + it y'dy),
w V2 LY L \/i( aL?" €aL L7'dar)
ow_ 9 = 9 (= = D
JX = _7§\IILV”U+‘I/L = _ﬁ( V' Nog + U3 7"Up = Doy dor),
g = g 5 D
Iy = _7§‘IILV”V+‘I’L = _\ﬁ( a?"Nag + ds 7" Up + Dapy'ttar). (93)

The interactions of the W boson are similar to those of the standard model, while the new interactions with the X and Y
bosons are like those of the ordinary 3-3-1 model.
Substituting the gauge states given by Eq. (81) into PNC, we have

1 1 3—4s3, 5%
PYC = 51,04, +J(T3 - sw0)Z, +o {%(\/ 3 st e _4S%VX +seewinN| 2,

1 3 —4s?, 5% > ]
+—|-s Ty + X) + ceewtyN| Zy, 94
o [V ) w24, (94)

For this expression, we have used 1y = v/3sy/+/3 — 4st, and Q = T3 — Tg/ V/3 + X. The interactions of the neutral gauge
bosons with fermions are given by
Sw

= - - - 3 —4s?
—gly PNCW = — g5, Tyt QUA, — LTyt (T3 = 53,0)0Z, —L Tyt | ¢, =
guy' P, gsw¥r*Q ,,CWY(s swQ) oy e 3 I8 i
g = 3—4s2, 5%,
— LGy | =5 T X tyN|UZy,. 95
cw 4 { s,:( 3 3t 3—4s3, T egewin N ©5)

2

X> +S§CWINN:| WZZ/J

Three remarks are in order. where
(1) With the help of e = gsy, the interactions of

photons with fermions take the normal form, Ga(f) = Ts(f1) — 253,0(f). G(f) =T5(f1)
—gswUr*QUA, = —eQ(f)fr'fA,.  (96) %8)
where f indicates any fermion of the model. Therefore, the interactions of Z take the normal
(2) The interactions of Z with fermions can be rewritten form. For convenience, the couplings of Z with

as fermions are given in Table II.
(3) It is noteworthy that the interactions of Z, with
_ 9 Ty (T — 52 0)VZ, fermions are identical to those of Zy if one makes
Cw the replacements c; — —s;, s — c; in the Z,
g ’ interactions, and vice versa. Thus, we only need
T oow ! [T5(fe) = sw@(f)lfe to obtain the interactions of either Z, or Zy; the

T a2 remainders are straightforward.

Ry =sw QR Y2, The interactions of Z, and Zy with fermions can be

_ 9 a2z itten in a common form similar to that of Z. Therefore

= =5 —fra(f) = g (FrslfZ,. (97)  rewn ' ’
2ey 7" Y AV the last two terms of Eq. (95) yield
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TABLE II. The couplings of Z with fermions.

PHYSICAL REVIEW D 90, 075021 (2014)

TABLE IV. The couplings of Zy with fermions.

f g\f) g f W' () g ()
N, 0 0 e, — ;‘:\(}% - %cchtN - %/;—inv + %c,’chtN
Z: _;%_—E;V%V _;% N, - \/'% +2ceopty \/S% —Zceepty
U _2431 j%v 0 U, ;f;;—i%%—}— fesewty 2\/;—5_7%” —fceewty
D, 35w 0 Uy ——;ﬁ% + ceepty - —2\7% + %céthN
d, ;ﬁ%—}—%cécwt,\, 2%—%C§CWIN
~ L P lg () = 4 (sl 2, J RAVET e e
2cy 3 6 Cwin 2 3ar T3CCwin
_L}‘ Wl N _ N U $:3-753) + 2ceewt :jciv—w_gc cwt
217 (9" (f) = 93" (NrslfZnu. (99) sy fimas VI Va3
D, —%—%Cfc‘wl‘]\/ —\/‘%—F%cécwt}v
where
giz (f) = ‘e Sy 5(fL) The interactions of Z, and Z, with fermions are listed in
3 —4s%, Tables III and IV, respectively.
\/§c c 2sccwt
+ ( 3 _64;%/ i/g N) Ty(f1). B. Scalar-gauge boson interaction

+2szcwty(B = L)(f),

Zy _ Do
Gav = Gav(cg = =8¢, 5 = cg). (100)
TABLE III.  The couplings of Z, with fermions.
7 z
f 9y (f) 94> (f)
ceCoy 5 CeCow 1
v > —38sCyl 38sCwt
a 234, 3 ETWIN /iy 3w
c:(1-4s3) 5 ce 1
e SUw) _sg et — i Lseept
a 2\ /3-45, 3STWIN 2\/3-4s;, t3secwin
o2 " 2
N W 25ecpt - _Zs5.cpt
a \/3—4S$V+3 cEwiN \ids, 3CETWIN
c:(3-8s3) 1 ce 1
u — w4 Lot = —Lseept
a 6y iy, | 35ECWIN 23453, 3TETWIN
ce(342s3) ceCow 1
u : seCwt : Lszept
3 oy/ia, T SECWIN /a3l
3-2s2) [ 1
d B2 4 Lot -2 — S secwt
@ 6y/ias, | 35ECWIN 234, 3TETWIN
ceq/3—4s3 :
d3 M"‘S CWtN (754‘15 CWtN
6 € 2 /3-45, | 3¢
:(3=7s2,) cec? 2
U ol P — = — Zseoyt
i, | Sl V34, 3TETWIN
3-5s2,) 2 cecl )
D B 2 ot — ssscpt
@ 3\/3-45, 3 ETWIN /345, t3sewin

The interactions of gauge bosons with scalars arise from

'Cscalar = (D”(P)T(DM(I)), (101)

where ® runs on all the scalar multiplets of the model. From
Egs. (16) and (17), @ has the common form ® = (®) + ¢’
Moreover, the covariant derivative has the form D, = 0ﬂ +
igP, = 0, + ig(PSC + PYC) (see the previous subsection
for details). Notice that the strong interaction vanishes
because the scalars are colorless. Substituting all of these
into the Lagrangian, we have

TABLE V. The interactions of a non-Hermitian gauge boson
with two scalars.

Vertex Coupling Vertex Coupling
WiH; 0 H, -l WiH0' A 5
viH"0 H; - YiH; O H o
YiH; O H, — oy YiH; O A %
XOH 9" H; - X0H'd" ey
X0H'd" H, g x0m'd" A o
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TABLE VI. The interactions of a neutral gauge boson with two scalars.
Vertex Coupling Vertex Coupling
“<>u U
AﬂH;(‘) H3 ie A”HIH Hy ie
Z,H 0 Hy — i, Z,H: 0 Hs igeay
utta 4 cw M-S 5 2cy
e SH C:(fz—czwsz) tNSeCo,
243 — 2yt e A
W . —Cowee : _ZH . reelcg=cawsy) | ysee
+ CowCe IS + S\Cp 2wy NS£Cop
Zy Hy O Hj lg(CWm+ ) Zy,H3 0 Hj lg[zgw\/3—4—s$v i
,9” ™ . Cwee  InSe M 95 ¢ Cwee 2tySe
Z,,H'0 H lg(\/s—Ts%V 3) Zz;lHaA 2 (m"‘ 3 )
V4 H+3”H_ ) (& + ﬁ) VA H_3”H+ i [_Si(c/zj_czws/z;) + [N(,';:L'z/i]
Nu't4 4 9 cwm 3 Nu'ls 5 9 ZCW\/3—4X€V 3
7 H/(gﬂH/* lg( CySe + ZNQ) 7 H((:;”A M( —CwSe + ZIN('g)
Ny V-4, 3 Ny 2\ 34, 3
oH —Sg(c/z;—(fzws/zi) INCeCop
ZN;tHl a A g[ ZCW\/3—4S%V + 3 ]

Lo = (049)7(9,9") + [ig(9"®")"(P,(®)) + H.c]
+ g(P) PHP,(P)
+ [ig(6#®')*(P,®') + H.c]
+ [¢*(®)P*P, P + H.e] + FP PP, Y. (102)

The terms in the first and second lines are, respectively, the
kinematic, scalar-gauge mixing, and mass terms, which are
not relevant to this analysis. The third and fourth lines
includes all the interactions of three and four fields among
the scalars and gauge bosons that we are interested in.

To calculate the interactions, we need to present ¢ and
P, in terms of the physical fields. Indeed, the gauge part
takes the form P, = P + PJC, where its terms have
already been obtained in Egs. (90) and (94), respectively.
On the other hand, the physical scalars are related to the
gauge states by Eq. (56). Let us work in a basis where all
the Goldstone bosons are gauged away. In this unitary
gauge, the scalar multiplets are given by

TABLE VII. The interactions of a scalar with two non-Hermi-
tian gauge bosons.

Vertex Coupling Vertex Coupling
H,XOXO" e, H3XOX"" _Zag,
HyYty- e, HyYty- —ges,
HW+W- AV HXOX* L,
Hy WX £ H, XX — Ly
HY* Y~ s, HYty- e,
HzX0y+ Lﬁ? 529 H WY+ an

7 \/ii(cﬂH —spH| + ispA)
n=10 |+ spHy ;
0 H'
0 csHY
r=1\% +<\/¢§(sﬂH+cﬂH1+icﬂA)>,
0 Hj(
0 0
=10 1]+ 0 ,
> \/LE(CQHZ —s,H3)
A s,Hy+c,Hj

b=—+ (103)

V2 V2

TABLE VIII. The interactions of a scalar with a non-Hermitian
gauge boson and a neutral gauge boson.
Vertex Coupling
— 2 CwCe 2tys¢
H3W=Z, g usﬂ(—\/sw—ﬁ"" )
— 2 Cws, 2tyce
H3W~Zy g usﬂ(——\/%—f— L)
H'X'Z Fu
4ey
1x0 Fuo_ < 2ty
HXZ2 2( 2CW\/W+3S£)
0 2u S 2t,
e Eleve Al
HYTA %
HyY*Z — (14253
- P (1=2cw)e; 2tns¢
H;Y"Z, & [? \/;VZT;W + =5
sz+ZN QZTD[_ (1-2cop)s; %}

Qe /345, 3
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TABLE IX. The interactions of a scalar with two neutral gauge bosons.

Vertex Coupling

H,Z,Z, 4Ag2t,2\,sq,5§ + a)cq,,gz(\/gvvf%s%v + 2’” s5)2

H>ZnZy 4Ag2t,2\,s¢c§ + wcq,gz(— \/% A c,;:)2

HyZ,Zy ANGP 138 52e + 2a)c(/)g2(\/c3w_cTi%/ + 2 s0) (= \/C;V_S%%V + 2 e,

H5Z,7Z, 4AthNcq,95 a)sq,gz(\/j”f%a/ + 2\%‘?5)2

HyZyZy 4AP1c, c: —wswgz(—\/c%—l—z%cﬁ)z

HyZ>Zy ANG 13 ¢, 82; = 205,9°( :W_ifa +35e) (= \/C;V:Tw + 5 c)

HZZ LV

HZ,Z, gz[ucﬂ(—zcwc\z/‘”;é‘?‘; + 2502 + vsﬂ(izc \%IYTW +25:)?

HZyZy 9%“%(#% +%e)? + Usﬁ(ﬁ + % )]

Hzz, %[“Q}(#ﬁw+%s§) - vs/’(m"‘%vs&)]

HZZy %[ucﬁ(%—i—%cé) vsﬂ(ﬁ—i—%c:]

HZ,Zy 2g2[ucﬁ(#;?+ . g)(\"/zi;i_‘%+ ce) + US/;(W+ Rk 5)(ﬁ;§——@ + 2]
H,Z,Z, gﬁ—us,;(%—l—t—'vsf)z + UCF(W—F%%) ]

H\ZyZy 92[_usﬁ(ﬁ+ ce)® + UCﬂ(ﬁ-‘r%Nc,é)Z]

H\ZZ, ~ £ [us 3o S + 5 50 vplo i + )]

H\ZZy —%[usﬁ(ﬁ—i- ce) +Ucﬁ(ﬁ+%’cf)]

H\Z,Zy 292[—%(% +4 5)(“—2\/% + %) + vc,,(“—g\/T +4 5)(W +%cy)]

Notice that in each expansion above for the multiplet
® =n,p,x, P, the first term is identified as (), while the
second term is ®' with the physical fields explicitly
displayed. The notations for the scalar multiplets including
the gauge bosons in this unitary gauge have conveniently
been kept unchanged.

The interactions of one gauge boson with two scalars
arise from

ig((?”@’)T(Pﬂ@’) +H.c. = ig(@”(I)’)T(PECQ’)
+ ig(o*®')"(PYC€®') + H.c..
(104)
Substituting all the known multiplets into this expression

gives us the values in Tables Vand VI. We note that AOB =
A(OB) — (0A)B is frequently used.

The interactions of one scalar with two gauge bosons are
given by

G (®)P*P, D + H.c. = g () PCHPICD + ¢ ()
X (PCCMP}:IC + PNC”PSC)CI)’
+ ¢*(®) PN PO’ 4 H.c..
(105)
These interactions are listed in Tables VII, VIII, and IX,
corresponding to the terms on the rhs, respectively.

The interactions of two scalars and two gauge bosons are
derived from

g2(D/T P”Py P = g2 (I)/’r PCCMPEC(I)/
+ 92@/'}' (PCCﬂP;I:IC + PNC”PSC)(I)/

+ g T PN PRCY (106)

which give us the values in Tables X, XI, and XII,
respectively.
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TABLE X. The interactions of two non-Hermitian gauge
bosons and two scalars.

Vertex Coupling Vertex Coupling
XX H, H, e XX HsHy C52
XOX" H,H ~Z 52 Y*Y~H,H, £e2
Y+Y-H;H, £s2 Y+Y-H,H,  $2p
WHW-H! H; g XX HYH; £
XOXOH Hy z YtY-H}H; g
WrW-HH < WrW-H, H, g
WHWw-AA < Y*Y-HH £
YtY-H H, e Y+tY-HH, Ly
Yry-AA e X°Y*H5H s
XY+ H3 H, qu Cop XY+t H; A 124’% Cop
WtY-H} Hy Lep W-XHH} 35555
W-X"H,\H{ Lcp WX AH ey
X XOHH e X% XH H, 255
X" X°HH, s X" X°AA 452
YtY-H:H; £ X XOH"H' g
Y*Y-H"H' g WY HH' L
WHY-H,H' 55555 WY~ AH' s
W-XH? H' l

VI. NEW PHYSICS EFFECTS AND CONSTRAINTS

A. Dark matter: complex scalar H’'

The spectrum of scalar particles in the model contains an
electrically neutral particle H' that is odd under W parity.
Because the W parity symmetry is exact and unbroken by
the VEVs, H' is stabilized and thus cannot decay if it is the
lightest of the W particles. In this regime we obtain the relic
density of H' at the present time and derive some constraints
on its mass. Such a scalar is within the context of the so-
called Higgs portal, which has been intensively exploited in
the literature [23,24] due to its interaction with the standard
model Higgs boson via the scalar-potential regime. We will
show that H' can be a viable dark matter candidate that
yields the correct abundance (Qh* = 0.11-0.12) and obeys
the direct-detection bounds [25].

In the early Universe, H' was in thermal equilibrium with
the standard model particles. As the Universe expanded and
cooled down, it reached a point where the temperature was

PHYSICAL REVIEW D 90, 075021 (2014)

roughly equal to the H’ mass, which prevented the
production of H’ particles via the annihilation of the
standard model particles; only annihilations between H’
particles occurred. However, as the Universe keeps expand-
ing, there is a point where the H’ particles can no longer
annihilate themselves into the standard model particles—
the so-called freeze-out. In this way, the H’' particles
leftover from the freeze-out populate the Universe today.
In order to find the relic density of a dark matter particle
one would need to solve the Boltzmann equation [26],
which we will do for the fermion dark matter case.
However, since H’ is a scalar dark matter particle there
are only s-wave contributions to the annihilation cross
section, and thus the abundance can be approximated as

(107)

Here, (ov,y) is the thermal average over the cross section
for two H’’s annihilating into standard model particles
multiplied by the relative velocity between the two H’
particles.

For dark matter masses below my /2 the Higgs portal is
quite constrained, as discussed in Refs. [23,24]. For dark
matter masses larger than the Higgs mass the annihilation
channel H'H' — HH plays a major role in determining the
abundance. Therefore, we will focus on the Higgs portal in
order to estimate the abundance and derive a bound on the
scalar dark matter candidate. That being said, the inter-
action of H' with H is obtained as follows:

A
‘cH’—H — <35+l3>H2H/*H/ (108)
The scattering amplitude for H'H' — HH is
iM(HH' — HH) = i(As 4+ 22;) = id.  (109)

It is also noted that there may be other contributions to A’
mediated by the Higgs H, the new scalars, and the new
gauge bosons. However, such corrections are subleading,
with the assumptions that the A’ coupling is of order unity
and that H' is heavy enough. Therefore, the differential
cross section in the center-of-mass frame is given by

do  |M(H'H — HH)P[k| 1
aQ 647%s|p| 2’

(110)

where H' has energy and momentum H'(E, p), and thus
H"™(E,—p). Also, the two outgoing Higgs bosons possess
H(E.k) and H(E,—k). The coefficient 1 is due to the
creation of the two identical particles. Thus, we
have /s = 2E.

From the experimental side, the dark matter is non-
relativistic (v ~ 1073¢). We approximate
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TABLE XI. The interactions of two scalars with a non-Hermitian gauge boson and a neutral gauge boson.

Vertex Coupling Vertex Coupling
H H;WTA ge/2 AH;WTA ige/2
HH;W*Z L (cw—1) AH;W+Z 2 (e = 1)

— 1.2 cgC 2tys - 1.2 —5:C 2tyce
HH;W*Z, Gy e HHSW*Zy 295 ot )
HH-W*+Z 2 ree(ci=sheaw) v e ] H H-W+7 2[—.95(6/2,—sf}czw) Lo ]

1Hs W22 I G oy, 3 5¢C2 1Hs oo 2ew /iy, 3 €O

— 7+ . 9 CE(C/Z}—S?]CZW> N S . 5 —.\‘:(c?}—s/ziczw) iy
AHSW*Z, [ﬁm‘k 5 seCop] AHSW*Zy ! [T‘W\/%T?V +F ey
H:H;X°A V2gec H:H{X°Z L5 (4¢3, -3

sH) 5 5474 22 w

5 Cw
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where v is the velocity of the dark matter given in natural
units, v < 1. We also have

Mg v

Pl =—F—=
V1=1?

1
= mH/v<1 —|—vz> = my.

2

The Einstein relation implies

(111)

(112)

|l_é| = \/Ez—m%,z\/m

v?) — m%i

2 2
~ |1 +v2_m_;1:m,,,<1 +5 -5 s ) (113)
My, 2myy,

Therefore, the differential cross section takes the form

do

P (145 — "y )

2m

# (114)

aQ 64r*4m2, (1 + v )my2v’
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TABLE XII. The interactions of two scalars with two neutral TABLE XII. (Continued)
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It is clear that the rhs is independent of the solid angle,
where dQ = dg sin 0d6. Hence, integrating over the total
space is the same as multiplying by 4z, ¢ = j—ng =
4r j—gz. Because the relative velocity between the two dark

matter particles is v, = 2v, we find out

ﬂ/zmH/(l +v_2 mz )

2 Zmz,

OV = 4m.2v
el 6424m2, (1 + v*)mpy2v

_A L my
647rm%{, 2 Zm%,, '

Taking the thermal average over both sides, we get

1?1 (1¥) m
~ L AT E P B
(ovr) 64 mé, ( 2 2m? > (116)

(115)

Notice that (v*) = 57~ (Where xp = % = 20) is given at
the freeze-out temperature [26]. As mentioned before, we

are in the regime m3; < m2,; thus,

(@ \2,[1328TeV\?
(o) = (150 GeV) 4 ( i > '

The relic density of the dark matter (H’) satisfies the
Boltzmann equation with the solution given by Qg h*=
91pb —0.11. It follows that

(avrel> -

(117)

(ov,) =1 pb.  Since
2 =1 pb, we get

1 <1.328 TeV>2 .

mpyy

(150 Gev)
(118)

which leads to the condition for the mass of the dark
matter H’,

my = A x 1.328 TeV. (119)
To conclude, H' is a dark matter particle if it has a mass
my = 1.328 TeV, provided that / = 1. In the context of
the Higgs portal, for the couplings of order unity the direct-

detection bounds demand dark matter masses at the TeV
order (see Refs. [23,24]). Therefore, this scalar is a viable

N v, I- N

N v, It N

FIG. 1.
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dark matter candidate that provides the right abundance and
obeys the direct-detection bounds. Hereafter, we will focus
our attention on the neutral fermion of the model, which is a
natural dark matter candidate because it can be easily
chosen to be the lightest particle among the W-odd particles
under the parity symmetry discussed previously.

B. Dark matter: Dirac vs Majorana fermions

Among the neutral fermions N, the lightest one will be
denoted as N, which should not be confused with the
U(1),y charge or the subscripts of the Zy gauge boson, the
gy gauge coupling, and the ¢y parameter. The neutrino and
charged lepton that directly couple to this neutral fermion
(N) via the X and Y gauge bosons are denoted as v and [,
respectively. There remain two other flavors of neutrinos
and charged leptons, which are denoted as v, and [,
respectively. In this section we will not dwell on unnec-
essary details regarding the abundance and direct-detection
computation. In Fig. 1 we show the diagrams that con-
tribute to the abundance and direct-detection signals of the
fermion candidate N. Surely, the diagram that contributes
to the direct-detection signal is actually the #-channel
diagram on the right side of Fig. 1.

As will be explicitly shown at the end of Sec. VIE, the
modifications to the couplings of the Z and Z, ; gauge
bosons with fermions due to the mixing effects (Z with
Z, ) are so small that they can be neglected in this
analysis. Similarly, the modifications to the Z, yZH cou-
plings due to these mixings as well as the neutral scalar
mixings (H with H|, ;) are negligible.

In addition, it is well known that the interactions of Z,
and Zy are exchangeable and only differ by the replace-
ment (c; — —sg 5z = c¢), respectively. Therefore, given
that these massive gauge bosons (Z, y) are active particles
(i.e., their scales and couplings are equivalent), they play
similar roles in new physical processes (some of these can
also be seen in subsequent sections). Hence, for simplicity
we might consider one particle (Z,) to be active (which
dominantly sets the dark matter observables), while the
other one (Zy) almost decouples (which gives negligible
contributions). For this aim, we first assume that A > @ but
not too large, so that our postulate regarding the A scale,
(i.e., that it is comparable to ) still holds. Hence, we

V’ l_7 Va’ lC_l7 q? Z

ZI

Vll+7 VO? l;’qﬁH

Diagrams that contribute to the abundance of the neutral fermion. The diagram depicting a neutral fermion scattering off nuclei

can be immediately found because it is just the ¢ channel of the right panel, mediated by the Z’'-type gauge bosons (Z, and Zy). The Z,-
mediated processes are the most relevant ones though, as we shall see later.
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choose A = 10 TeV and vary @ below this value so that
0.1 <w/A <1 (shown in detail in the cases below). In
addition to w and A, the Z, y, masses as well as their mixing
angle (¢) still depend on their respective gauge couplings. g
and gy were fixed via the electromagnetic coupling e and
the Weinberg angle, whereas gy is unknown. But, we could

demand ay =L < 1 or |gy| < 21/7 so that this interaction
is perturbative. Without loss of generality, we set
0<ty<2rm/g= S\/—W— =543. When 1ty is large,

a
ty < 5.43, we have mz, > my, and the mixing is small,

cw o _ 0146 0P
=— <1, as
3y/3—452,1y A v A ’

Eq. (78). This is the case considered for the relic density
of the fermion candidate as a function of its mass (m), and
ty = 5.43 is taken into account. Notice that the dark matter
annihilation is via s channels mediated by Z,,. The

2
while that of Zy, is —2%— =

s—my

lye = — given from

contribution of Z, is like XL

_mZ ’

Z Z
9y 1 2 : 2 2 ’
Tw TR where s = 4mj ~ mz, < mz . Therefore, Zy

gives a smaller contribution of order w?/A? which almost
vanishes, whereas the relic density is sensitive to Z,.
Provided that the relic density of the dark matter attains
the right value, we consider the contributions of both Z,
and Zy. This is done by varying 0 <ty <5.43 and
—r/2 < £ <0 [from Eq. (78)]. When ty < 5.43, Z, domi-
nates the annihilation, as given above. But when ¢y is
decreased to 1y = 2\/§—V-VT§V% =0.219% or & = —z /4 [which
is the pole of 7,; as obtained from Eq. (78)], m,, becomes
comparable to my, and Z, and Zy possess equivalent
gauge couplings due to the large mixing. In this case, the Z,
and Zy bosons give simultaneous dominant contributions
to the dark matter annihilation despite the fact that v < A.
Finally, when 7y is approximately zero, ty =0, the Zy
boson governs the annihilation cross section, while the
contribution of Z, is negligible. The regime where Zy
dominantly contributes to dark matter annihilation is very
narrow since it is bounded by the maximal mixing value at
ty = 0.219@/A, which is close to zero due to @ < A. On

PHYSICAL REVIEW D 90, 075021 (2014)

the other hand, the regime where Z, dominates dark matter
annihilation covers most of the range of ty. This is the
reason why Z, was predicted to govern dark matter
observables while Zy was almost neglected, provided that
@ < A. It is also clear from the above analysis that Z, and
Zy can have a large mixing in spite of a small w/A, given
that 1y = 0.219w/A. On the other hand, the large regime

ty < 5.43 implies that these gauge bosons can slightly mix,

2 . .
by = — 2102 1 evenif w/A is close to one. Below, we
'3 ty A

will display detailed computations for all the cases
mentioned.

If the candidate N is a Dirac fermion, it has both vector
and axial-vector couplings with the neutral gauge bosons.
The abundance is shown in Fig. 2. (In this figure and the
following ones, w is sometimes denoted as w.) It is clear
from Fig. 2 that the gauge boson Z, overwhelms the
remaining annihilation channels, in agreement with
Ref. [10], and the resonance at mgy, /2 is crucial in
determining the abundance. Moreover, we see that the
mass regions 100-200 GeV for v = 3 TeV, 100-500 GeV
for w =5 TeV, or 100-1000 GeV for @ = 7 TeV provide
the right abundance. Additionally, in the left panel of Fig. 3
we show the region of the parameter space cos(&) x
the neutral fermion mass that yields the right abundance,
where £ is the Z, and Z, mixing angle. When this angle
goes to zero the coupling Z,-quarks decreases, which
causes the scattering cross section to rapidly decrease, as
shown in the right panel of Fig. 3. There and throughout
this work we let the cosine of this mixing angle run from
zero to unity. [Correspondingly, & (zy) runs from —z/2 (0)
to 0 (5.43)]. As for the Majorana case, the overall
abundance is enhanced and hence we find a larger region
of the parameter space that yields the right abundance, as
can seen in Fig. 4.

As for the direct-detection signal, the Dirac fermion
dark matter candidates give rise to spin-independent
(vector) and spin-dependent (axial-vector) scattering cross
sections. But, due to the A> enhancement that is typical of
heavy targets used in direct-detection experiments, the

10’ 10"

mz=1.18 TeV . .
Mon=71.18 TeV Dirac Fermion

mz =1.96 TeV
ma=71.8 TeV

Z,Resonance

Dirac Fermion mze=2.71 TeV Dirac Fermion

man=72.7 TeV

Z,Resonance Z,Resonance

Y Axis Title

WIMP UNSTABLE

WIMP UNSTABLE
WIMP UNSTABLE

A=10TeV
107 T T T T

T T T
600 800 1,000 1,200

M, (GeV)

T
400

FIG. 2 (color online).

500 2,500

1,000
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1,500 2,000 1,000 1,500

My (GeV)

2,000

Abundance of the Dirac fermion N as a function of its mass for different scales of the symmetry breaking. The

shaded region is excluded for inducing weakly interacting massive particle (WIMP) decay such as N — Xv. One can clearly see that the
Z, resonance plays a major role in the annihilation computation. See text for more details.
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Left: The mixing angle x fermion mass plane that yields the right abundance for a Dirac fermion. The

discontinuity in the plots is due to the Z, resonance which pushes down the overall abundance. Right: Spin-independent scattering cross
section in terms of the Dirac fermion mass for different values of the symmetry breaking. One can easily conclude that the current LUX
bounds require w 2 5 TeV. The mixing angle & is free to float in our analyses. As the mixing angle goes to zero (cos { — 1) the coupling

Z,-quarks decreases, as seen in Table IV.
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FIG. 4 (color online).

Abundance of the Majorana fermion N as a function of its mass for different scales of the symmetry breaking.

The shaded region is excluded from inducing WIMP decay such as N — Xv. One can clearly see that the Z, resonance plays a major role

in the annihilation computation. See text for more details.

spin-independent bounds are the most stringent ones. This
can be seen in Fig. 3. On the other hand, the Majorana
fermions have zero vector current. This is because the
current of a fermion is equal to the current of an anti-
fermion, but if one applies the Majorana condition
(y = w°) one finds that the vector current must vanish
(which has also been used for the abundance computation
mentioned above). Therefore, only the spin-dependent
bounds apply, which we show in Fig. 5. The LUX
Collaboration has not reported their spin-dependent bounds
yet, so the strongest constraints come from XENON100
[27]. One should conclude from Fig. 5 that the XENON100
bounds are quite loose for the Majorana fermion.

C. Monojet and dijet bounds

Monojet and dijet resonances have been searched for at
the Tevatron, ATLAS, and CMS, with null results so far.
Such signals have been intensively exploited in the liter-
ature. In particular, the dijet bounds are not sensitive to

either the dark matter mass or to the Z,-dark matter
couplings, but they are quite sensitive to the Z,-quarks
couplings. In Ref. [28] lower bounds (namely,
M, ~ 1.7 TeV) were found for dark matter masses smaller
than 500 GeV and under the assumption that the Z' boson
couples similarly to the standard model Z boson. One
might notice that the Z, gauge boson couples similarly to
the Z boson. Therefore, the bounds found in Ref. [28] apply
here to some extent since the couplings are not precisely
identical. That being said, the result shown in the leftmost
panel of Fig. 2 might be in tension with the existing dijet
bounds. The remaining plots do obey the dijet bounds since
they are obtained at Z, masses greater than 1.7 TeV. It is
important to keep in mind that the collider bounds derived
from simplified models are more comprehensive than the
ones that use an effective-operator approach, because the
production cross sections that use an effective operator
either overestimate or underestimate the collider bounds,
as discussed in Refs. [29,30]. Concerning the monojet
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Left: The mixing angle x fermion mass plane that yields the right abundance for a Majorana fermion. Right:

Spin-dependent scattering cross section in terms of the Majorana fermion mass for different values of the symmetry breaking. One can
easily conclude that the current XENON100 bounds are rather loose.

bounds, it has been shown that the current direct-detection
limits coming from LUX are typically more stringent.
Therefore, we will not refer to the monojet bounds
hereafter.

D. FCNCs

The fermions get masses from the Yukawa interactions
when the scalar fields develop VEVs, as presented in
Ref. [2]. Due to W-parity conservation, the up quarks (u,)
do not mix with U and the down quarks (d,) do not mix
with D, (recall that the exotic quarks are W odd while the
ordinary quarks are W even). The exotic quarks gain large
masses at the @ scale and become decoupled, whereas the
ordinary quarks mix among themselves via a mass
Lagrangian of the form

Lud  — —ilgm", upr — dymé, dyp + Hee., (120)
where

mhy =l ==

mé, = —thau, mé, = —ihgv. (121)

V2 V2

The mass matrices m" = {m",} and m® = {m¢?,} can be
diagonalized to yield physical states and masses,

up = VLlL<uCt)z’ Up = VMR(MCI)£’

dp =V (dsb), dr = Var(dsb)g, (122)
VZLm”VuR = diag(m,,, m., m,),
Vi, miV g = diag(my, mg, my), (123)

where u = {u,} and d = {d,}. The CKM matrix [31] is
defined as VCKM = VZL VdL'

All the mixing matrices V,;, V., Viur, Var, and Vegum
are unitary. The Glashow-Iliopoulos-Maiani (GIM)
mechanism [32] of the standard model works in this
model, which is a consequence of W-parity conservation.
Let us note that in the 3-3-1 model with right-handed
neutrinos, the ordinary quarks and exotic quarks that have
different 73 weak isospins mix (which is due to the
unwanted nonzero VEVs of 79 and y!, as well as the
lepton-number-violating interactions Qs; yu g, Q3.nUk,
Q3.PDars Qarx*dars Qartl"Dpg, and Qyrp*Ug and their
Hermitian conjugation, which directly couple ordinary
quarks to exotic quarks via mass terms [33]). Hence, in
that model the dangerous tree-level FCNCs of the Z
boson are due to the nonunitarity of the mixing matrices
listed above (V,1,Va,Vur,Var)- Even the dangerous
FCNCs come from the one-loop contributions of the W
boson due to the nonunitarity of the CKM matrix
(Vckwm)- Therefore, the standard model GIM mechanism
does not work. This will be analyzed at the end of this
subsection.

In this model, the tree-level FCNCs happen only with the
new gauge bosons Z, and Zy (notice that there is a
negligible contribution coming from the Z boson due to
the mixing with Z, y, as explicitly shown below). This is
due to the nonuniversal property of quark representations
under SU(3),, i.e., the third quark generation differs from
the first two generations. Indeed, from Eq. (95) for the
interactions of Z,,, the right-handed flavors () are
conserved since Ts =0, X = Q, and N = B — L, which
are universal for ordinary up and down quarks. But the left-
handed flavors (¥ ) change due to the fact that T differs
for quark triplets and antitriplets. [Note that X and N are
related to T’y by Eq. (2); the source for the FCNCs is due to
Tg only since T’ is also universal for ordinary up and down
quarks for the same reason as the flavor-conserved Z
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current.] The interactions that lead to flavor changing can
be derived from Eq. (95) as

Lr, =V " TsV; (9222, + INZn,),

( 1 N 2tN>
=—g| et 502,
92 g\ ¢ e :\@

gn = Ga(ce = =g 8¢ = cg), (124)
where U, indicates all ordinary left-handed quarks. We can
rewrite

Ly, = (agy*Tup + dry'Tadr) (9220, + 9nZn,)
= [a " (Vi TV )u, + Zi/L?’”(VjiLTdVdL)dIL]

X (92 2oy + INZwy) (125)
where ' = (u,c,t), d =(d,s,b), and T,=T,=

%diag(—l,—l,l). Hence, the tree-level FCNCs are

described by the Lagrangian

i} P
Lrene = ‘I;'LVHQ}L ﬁ (VqL)3i(VqL)3j(92Z2;4 + gNZN/z)

(i # ). (126)
where we have denoted ¢ as either u or d.

The FCNCs lead to hadronic mixings, such as K — K°,
DY —D° BY— B and BY—BY, caused by the pairs
(¢i-q;) = (d,s), (u,c), (d,b), and (s,b), respectively.
These mixings are described by the effective interactions
obtained from the above Lagrangian via Z, y exchanges,

eff — (A M 21 % \% 2 g% g/2V
fone = (@) §[( )3 (Var)sjl m—2+—2 .

The strongest constraint comes from the K°— K°
mixing [1],

1 % 2 g% 912\/ 1
g[(VdL)31(VdL)32] L <(104TV)2' (128)

z, Mz,

Assuming that u, is flavor diagonal, the CKM matrix is just
Var (e, Vegm = Var). Therefore, |(Vi,)31(Var)s| =
3.6 x 107 [1] and we have

5B, 9w
my my — 2TeV’

(129)

This gives constraints on the mass and coupling of the new
neutral gauge bosons,
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mZZ.N > go N X 2 TeV. (130)
There is another bound coming from the B — BY mixing
that is given by [1]

1

(100 TeV)?" (131)

1 % | 0
ZI(v* Vv 2( 22 4 IN )
3[( ar)32(Vaw)ss <m%z+m%N

In this case, the CKM factor is [(Vi;)3(Var)ss|=
3.9 x 1072 [1]. Therefore, we have

2 2
9 9N 1
e 132
\/ m, * myz 225 TeV (132)
which implies
Mgz, > gon X 2.25 TeV. (133)

To be concrete, suppose that Z, and Zy have approx-
imately equal masses and fy = gy/g = 1 so thatthe B — L
interaction strength is equivalent to that of the weak
interaction. From Eq. (129), we get

my, & mz, > 2.037 TeV, (134)
while the relation (132) yields
my, R myz, > 2291 TeV. (135)

Here, we have used ¢*> = 4za/s3,, with s3, = 0.231 and
a=1/128. This is in good agreement with the recent
bound reported in Ref. [34]. Notice that we have used
myz, 3> my, in the dark matter subsections, which translates
to mz, 2 1 TeV.

Finally, let us give some remarks on the FCNCs due to
the mixing effect of the neutral gauge bosons. In this case,
the Lagrangian (124) is changed by the replacement

92 Loy + INZny = 9121y + D2Zoy + INZNys (136)
where
\/gg '1)2 - C2Wu2
= CEyrss o —Ey) = ~ VIV T wi”,
g1 92(05 - 158 = 2) 40?4/ )
(137)

Correspondingly, the effective interactions for the FCNCs
given by Eq. (127) are also changed by the replacement

2 2 2 2 2
9 9N 91 92 IN
—2+—2—>—2+—2+—2. (138)

mzz I’I’lZN mzl mZZ mZN

Let us compare the new contribution with the existing one,
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gi/m3,

R= @)+ (Gl

(139)

It is sufficient to consider two cases: A > w and A ~ . For
the first case, R is similar to (becomes) the 3-3-1 model
with right-handed neutrinos,

2 m2 1 2 _ 2)2 1 2
:g;/ ?2_4%<_4(”_W> <0.0025,
g/mz, Aoy o (u”+v%)  Ac \@
(140)

which is very small. Above, we have used m%lz

PO +17)/(4h). ml, = /(B -as}). 0=
u? + v* = (246 GeV)?, and @ > 3.198 TeV as derived
from the p parameter. For the second case, the contributions
of Z, and Z, are equivalent. So, the first remark is that
R~ (g1/ @ n)(me,, [m7,) ~ E15(m3, /m7) ~ (u*]a?)x
(w?/u*) = u?/w?, which starts at the (u/w)?> order and
must be small too. Indeed, let us show this explicitly:

27,2
R< gl/mz1
2|929N|/(mZ2mZN)
B 1 (v? = cyyu?)?
8C:‘}’,V[N|S2§|\/ 3— 4S%;V a)A(MZ + 1}2)
- 1 v
8C€VtN‘S2§|\/ 3 — 4S%V (,UA
= (.00076, (141)

provided that ty = 1, & = —7/4 (s, is finite due to the
large mixing of Z, and Zj, and thus such a value could be
chosen), and A = w = 3.198 TeV. Above, we have also
used myz my, =2g*cyiywl/\/3 —4s},, which can be
derived from Egs. (79) and (80), the expression (78) for
the £ mixing angle, and m%l as approximated before. In
summary, the mixing effects with the Z boson do not affect
the FCNCs.

For the sake of completeness, let us point out the
dangerous FCNCs of the Z boson due to the mixing of
the ordinary quarks and exotic quarks that happens in the
3-3-1 model with right-handed neutrinos, which should be
suppressed. The mixing matrices are redefined as
(uuuzU)f g =V g(uctT)] g and (dydyd3DyD)] p=
VdL_R(dszS){’R, so that the 4 x 4 mass matrix of up
quarks (u,, U) and the 5 x 5 mass matrix of down quarks
(d,,D,) are diagonalized [33]. The Lagrangian that
describes the FCNCs of the Z boson is given by
(i)ﬁZ]?L}’”‘I}L(VZL)li<VqL)1ij where I =4 for V,
and a plus sign is applied, but / =4, 5 for V, and a
minus sign is applied. (Note, however, that the right chiral
currents of Z, do not flavor change since 73 = 0 for any
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right-handed fermion.) All of these lead to the effective
interactions for the hadronic mixings due to the exchange
of the Z boson,

1
- 2 * 2
(Q;LyﬂQ;L) [(VqL)Ii(VqL)Ij] 22

(142)

where we have used m2 = ¢*(u* + v?)/(4c3,), and we
note that v =u®+ 0> = (246 GeV)?.. In the 3-3-1
model with right-handed neutrinos, the Lagrangian for
the FCNCs of the Z' boson is easily obtained as
ﬁé;LYﬂQ}L% [V(;LVqL]ijZ//v where [VZLVuL]ij =

(Vi)si(Vaur)sj =3 (Vi )u(Var)s,  and [V, Vg ],=
(Vir)si(Va)s; +%(V§L),i(VdL)1j. Hence, the effective
interactions for the hadronic mixings due to the Z’ con-
tribution are given by

_ 1
(q;LY”Q;L)Z[V:;LVqL]%jpv (143)

where we have adopted m2, = 39_2:?%” w? [22]. Since the weak
scale v, in Eq. (142) is too low in comparison to the
3-3-1 scale w in Eq. (143), it is clear that if the mixing of
the ordinary quarks and exotic quarks is similar in size to that
of the ordinary quarks, (V,);:(Var)i~ (Vir)si(Var)s)s
the FCNCs due to the Z boson (142) are too large
(~@?/v3, ~ 107 times the one coming from Z’ or the bound
for the K° — K° mixing); as such, the theory is invalid.
Hence, the FCNCs due to the ordinary and exotic quark
mixing are more dangerous than those coming from the
nonuniversal interactions of the Z' boson. To avoid the
large FCNCs, one must assume [(V;;);(Vo);l <
|(Vir)3i(Vgr)s,| [and that the FCNCs of Z' are domi-
nated by the ordinary quark mixing, [V:;L Valii=
(Vi1)3i(Vgr)3;l. Indeed, the K° — K° mixing constrains
Eq. (142) to be

(Vi) n(Var)pl S 1072 (144)

This mixing of the exotic and ordinary quarks is much smaller
than the smallest mixing element (about 5 x 1073) of the
ordinary quark flavors from the CKM matrix [1]. Therefore,
the 3-3-1-1 gauge symmetry as well as the resulting W parity
provide a more natural framework that not only solves these
problems (including the large FCNCs, the unitarity of the
CKM matrix, the lepton and baryon number symmetries, and
the CPT theorem, which have strictly been proven by
experiment [1]), but it also gives the small neutrino masses
and dark matter candidates.
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E. LEPII searches for Z, and Zy

LEPII searches for new neutral gauge bosons via the
channel ete™ — ff, where f is any ordinary fermion [35].
In this model, the new physics effect in such a process is
due to the dominant contribution of the Z, and Z, gauge
bosons, which are s-channel exchanges for f # e. The
effective interaction for these contributions can be derived
[with the help of Eq. (99)] as

2
off 9
Ligpy =

Jel[fr,(ai (f)PL
(145)

M’”(C‘L( )P+ aR( )Pr

)Pr)f]

where the chiral couplings are given by

2m?
Cymy
+a ( (I =2,.Zy),

ag (f) ==
(146)
Let us study a particular process for f =,

ete™ — utu~. The chiral couplings can be obtained from
Tables III and 1V as

V4 i C§C2W 2
ai’*(e,) = 72 3 4S%V - gsgcth,
2
z CeSw
ag’(e,) = —

—— — S¢Cyl
5 ECWENS
\/3—4SW

Zn 7y
arr = aL,R(Ccf

The effective interaction can be rewritten as

2 Tad% (N2 [aZ¥(e)]?
g <[ L ()] +{ L § ) >(é7"PL€)(ﬁmPLu)

eff
‘CLEPZ -

(148)

apR(f) = ape(f) = al's(f) + a

TR() X (=€ 5z + Erce).
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where the last three terms differ from the first one only in
chiral structures.

Notice that LEPII searches for such chiral interactions
and gives several constraints on the respective couplings,
which are commonly given at the order of a few TeV [35].
Therefore, let us choose a typical value,

It is noted that this value, 6 TeV, is also a bound derived for
the case of the U(1),_; gauge boson [36].

Similar to the previous subsection, we suppose that Z,
and Zy have approximately equal masses (mz, ~ mz ) and
ty = 1. The above constraint leads to

m22 ~ mZN > 2737 TeV. (150)

This bound is in good agreement with the limit in
the previous subsection via the FCNCs and the ones
given in the literature [34]. As we previously emphasized,
in the dark matter subsections we have adopted
mz, > my,, and therefore in this regime a bound on my, ~
TeV arises.

Finally, let us discuss the contribution of the mixing
effects of the neutral gauge bosons to the above process.
When the mixing is turned on, the interacting Lagrangian
of the neutral gauge bosons takes the form

fy”[aL (f)PL +aR (f)PR}fZlﬂ’ lII,Z,N
and the (chiral) couplings of the neutral gauge bosons
are correspondingly changed as follows:

where

— —5];S§ - —52),
X (51C§+525§),
(151)

We realize that the second term in each expression is the &; , correction corresponding to the existing couplings due to the
mixing, which can be neglected because of the small values of £ ,, as given in Eq. (76). Indeed, for the concerned process

etem = utys,
leptons). With the Z; couplings, we have

a?(ea)(ccf — &8 — -&)

let us consider the ratios of the corrections to the respective existing couplings for f = e, (the charged

at(eq)

aiz (ea)(c-f - =& 5 = -&,)

- 1
_‘\/3—4%

az(eq)

4
WIN e | <243 % 103, (152)
3C2W

’ ! st <243 %1073, (153)

V3= 4sW
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which are easily obtained with the help of Eq. (76), 53, = 0.231, and A ~ @ > 3.198 TeV. Similarly, for the Z, couplings,

we have
af(eq) x (5105+g2sf)‘ ‘ flcé +4‘f2S4’ <504 x 1073, (154)
ar’(eq) 345, ™ Sey NS¢
e e ) ' brce 6% | 5045107, (155)
az(e,) : T3 InSe

where we notice that the mixing angle of the Z' and C
gauge bosons is bounded by —z/4 <& <0 if fy > 0,
or by 0 <¢é<x/4 if ty <0. The corrections to the
Zy couplings are small as well. Therefore, the mixing
effects of the neutral gauge bosons do not affect the
standard model ete™ — utu~ process or our results
given above with the Z, , exchanges in the absence of
the mixing.

F. Radiative g decays involving Z, ; and the
violation of CKM unitarity

CKM unitarity implies >, , V5 Vg = 6,0 and
Y oi—uciViygViar = 644, where the elements of the
CKM matrix Vg =V, Vy)yy @ =u, ¢, t and
d =d, s, b) are defined as before. The standard model
calculations have provided a very good agreement with the
above relations [1]. However, if there is a possible
deviation, it is the sign for the violation of CKM unitarity.
|

3 m?,
Bawn = =gz 2 it

1=Z,.Zy "1

2
3—4sy,

<m )@ 1)y - Gl Gl

Focusing on the first row,
yields [1]

the experimental bound

Acku=1= > [Vl? <107, (156)

d'=d.s.b

This violation can give the constraints on the new neutral
Z, y gauge bosons as a result of their loop effects that
contribute to Acgy-

Indeed, the Acky deviation is derived from the one-loop
radiative corrections via the new Z, y and W bosons to
quark p-decay amplitudes from which the V4, V,,, and
V., elements are extracted, including muon decay which
normalizes the quark f-decay amplitudes. These have
previously been studied in other theories (such as in
Ref. [37], where similar respective diagrams for quark
and muon f decays were displayed). Generalizing the
results in Ref. [37], the deviation is obtained as

(157)

where the lepton and quark couplings are given in the physical basis of the left chiral fields when coupled to Z, y, i.e.,

_/LV”g}Lf'LIM, with G =-2 VfLaL(f)VfL, which gives

g
(géL)n =( tle)ll = _aai(ea)v ( Zz)ll =
gcfx/3 4sW 9 C,:C%V
G2 = ——
Cw 3— 4s

(ggzv)n = (Q§Z>11(C§ — —Sg 8¢ > Ce).

gc§\/3 4sW

—gs§\/3 4sW

Cw

AN

2
+§s§thN> |(Var)s |

(158)

Notice that the mixing effect of the neutral gauge bosons (Z with Z, ) do not affect these processes, as was explicitly

pointed out in the previous subsection.
Therefore, we have

_ 3¢ mW CeCowy
ACKM_ 4 2m
Zy

m2 2 2
3 2cW\/3—4s%V 3

3-5s2
cg( SW)]+(Zz—>ZN;Cz:—>—Sc?Sz:—’%)' (159)

3cwn/3—4s%,

We consider two typical cases: A > w and A ~ w. In the first case, Zy does not contribute, i.e., the second term above
vanishes, and £ = 0. Therefore, this is the case of the 3-3-1 model with right-handed neutrinos. We have
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2 2
Ackat = —0.0033 ¥ 1n (ﬂ) : (160)
m

mz, %Z
Using the bound (156) and my, = 80.4 GeV, the Z, mass is
constrained by mz, > 200 GeV. In fact, the Z, mass should
be in the Te'V range due to the other constraints given above.
For example, by taking my, > 1 TeV, we get Acgm <
1074, Consequently, this case gives a very small contribu-
tion to the violation of CKM unitarity and thus the model
easily evades the experimental bound. In the second case,
assuming that the new neutral gauge bosons have approx-
imately equal masses (mz, = my ) and ty = 1, we derive

5 5 (161)

Zyn Zyn

2 2
Acry = —0.0143 W ln< My )

Using the bound (156) we have m3 =mj3 > 600 GeV.
The model in this case easily evades the experimental bound
too. To conclude, the new neutral gauge bosons Z, y give a
negligible contribution to the violation of CKM unitarity.

VII. DISCUSSION AND CONCLUSION

In the standard model, the fermions come in generations,
with each subsequent generation being a replication of the
former. The gauge anomaly is cancelled out over every
generation. Thus, on this theoretical ground the number of
generations can be arbitrary. This may be due to the
fact that the SU(2), anomaly trivially vanishes for any
chiral fermion representation. If the SU(2), is minimally
extended to SU(3), with a corresponding enlargement of
the lepton and quark representations (i.e., the doublets are
enlarged to triplets/antitriplets while the singlets remain the
same, but for some cases the lepton singlets are put into the
corresponding triplets/antitriplets as well), the new SU(3),
anomaly generally does not vanish for each nontrivial
representation. Subsequently, this constrains the generation
number to be an integer multiple of three—the fundamental
color number—in order to cancel the anomaly over the total
fermion content, which provides a partial solution to the
number of fermion generations. Aside from this feature,
some very fundamental aspects of the standard model can
also be understood by the presence of the SU(3), that
causes the electric-charge quantization [9], the Peccei-
Quinn-like symmetry for the strong CP problem [8], and
the oddly heavy top quark [7]. On the other hand, the B — L
number and electric charge Q operators do not commute,
and they are also algebraically nonclosed with respect to
the SU(3), generators. If we suppose that B—L is
conserved similarly to Q, such a SU(3), theory is only
manifest if it includes two extra Abelian factors so that all
the algebras are closed, and the resulting gauge symmetry
SU(3), ® U(1)y ® U(1), yields a unification of the
weak, electromagnetic, and B — L interactions [apart from
the strong interaction from the SU(3). gauge group].
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Besides the B and L symmetries, some very fundamental
matters of the 3-3-1 model can also be understood by
this setup.

Firstly, the breakdown of the 3-3-1-1 gauge symmetry
produces a conserved Z, subgroup (as a remnant) called W
parity—similar to R parity in supersymmetry—that plays
an important role and provides insights into the present
model. The lightest wrong-lepton particle is stabilized due
to W-parity conservation, which is responsible for dark
matter. Two dark matter particles have been recognized: a
neutral complex scalar H’ and a neutral fermion N of either
Dirac or Majorana nature. The GIM mechanism for the
standard model currents works in this model due to
W-parity conservation, while the new FCNCs are strictly
suppressed. In fact, the experimental bounds can be easily
evaded, with the expected masses for the new neutral gauge
bosons Z,y being a few TeV. Because of W-parity
conservation, the new neutral non-Hermitian gauge boson
X does not mix with the neutral Z;,, gauge bosons.
Hence, there is no mass splitting within the real and
imaginary components of X that ensures the conservation
of CPT symmetry. These problems of the 3-3-1 model with
right-handed neutrinos have been solved.

We have shown that the B — L interactions can coexist
with the new 3-3-1 interactions at the TeV scale. To realize
this, the scales of the 3-3-1-1 and 3-3-1 breakings are taken
to be at the same energy scale A ~ w. In this regime, the
scalar potential has been diagonalized. The number of
Goldstone bosons matches the number of massive gauge
bosons. There are 11 physical scalar fields, one of which is
identified as the standard model Higgs boson. The new
physical scalar fields HY , 5, A°, Hy s, and H"* are heavy,

with masses at the w, A, or \/|wf| scale. There is a finite
mixing between the Higgs scalars—S, for the U(1)y
breaking and S5 for the 3-3-1 breaking—that gives two
physical fields, H, 5. The standard model Higgs boson is
light with a mass at the weak scale due to the seesaw-
type mechanism associated with the little hierarchy
u,v < w,\,—f. The Higgs mass gets the correct value
of 125 GeV provided that the effective coupling 4= 0.5,
with the assumption u = v, @ = —f. All of the physical
scalar fields are W even, except for H' and H, (the W
particles), which are W odd.

In the proposed regime A ~ w the gauge sector has been
diagonalized, and we recognize the standard model gauge
bosons W+, A, and Z. Moreover, we have six new gauge
bosons: X% Y% and Z, y. Although the Z boson mixes
with the new neutral gauge bosons, it is light due to a
seesaw-type mechanism in the gauge sector. In order to
reproduce the standard model W-boson mass, we have
constrained u* + v*> = (246 GeV)?2. From the experimen-
tal bound on the p parameter, we get w > 3.198 TeV
provided that A = @ and u = v. There is a finite mixing
between the U(1), gauge boson and the Z’ of the 3-3-1
model that produces two physical states by diagonalization:
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the 3-3-1-like gauge boson Z, and the U(1),-like gauge
boson Z). All the gauge bosons are W even except for X
and Y, which are the W particles. The new neutral complex
gauge boson X cannot be a dark matter candidate because it
annihilates into standard model particles before the thermal
equilibrium process has ended [2].

All the interactions of the gauge bosons with the
fermions and scalars have been obtained. The result shows
that every interaction conserves W parity. The correspond-
ing standard model interactions are recovered. The new
interactions as well as their implications for phenomeno-
logical processes of new physics are rich and warrant
further studies. In this paper, some of the new interactions
have been used for analyzing the new FCNCs, the LEPII
Collider, the violation of CKM unitarity, and fermionic
dark matter observables. Because of the seesaw-type
mixing suppression between the light and heavy states
—namely between the Z and new Z, 5 gauge bosons, as
well as between the H and new H | ,; Higgs bosons—the
mixing effects are radically small. It has been explicitly
pointed out that the new physics effects via these mixings
in the gauge sector can to be safely neglected. For the
scalar sector, the new physics effects via these mixings are
also negligible, and were disregarded for most cases
involving small scalar self-couplings (see the main text
for more details). The scalar self-couplings would give
considerable contributions if they were stronger, but they
are still within the current bounds. The accuracy of the
standard model Higgs mechanism (if it is the case) could
give some constraints on these mixing effects.

Supposing that the scalar dark matter H’ dominantly
annihilates into the standard model Higgs boson H via
the Higgs portal, the relic density of H' has been calcu-
lated. The correct experimental value is obtained if
mpy = 1.328 TeV, where it is assumed that the H*H' —
HH coupling is equal to unity, A/ = 1. When the neutral
fermion is a Dirac particle, we conclude that a @ scale of the
symmetry breaking greater than ~5 TeV is required in
order to obey the LUX2013 bounds. On the other hand,
when the neutral fermion is a Majorana particle the direct-
detection bounds are quite loose and a larger region of the
parameter space has been found that yields the right
abundance. The fermion dark matter observables are
governed by the Z, gauge boson provided that A > w.
Only if gy < g with A ~ w either the A is smaller than the
@ (which is hardly occurred) with gy ~ g, the Zy con-
tribution becomes comparable to that of the Z, boson.

We have shown that the CKM matrix is unitary and the
ordinary GIM mechanism of the standard model works in
this model due to W-parity conservation. We have also
discussed the fact that this mechanism does not work in the
3-3-1 model with right-handed neutrinos, and in such a case
the tree-level FCNCs due to the ordinary and exotic quark
mixing are more dangerous than those coming from the
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nonuniversal couplings of the Z, y gauge bosons. All the
FCNCs associated with the Z boson due to the above
fermion mixing are prevented because of W-parity con-
servation. The new FCNCs coupled to Z,, are highly
suppressed as well. In fact, the FCNCs due to Z, y can be
present, but they can be easily evaded by the new physics in
the TeV range. Using the current bound on the K° — K°
system, we have shown that my, = > 2.037 TeV under the
assumption that Z, and Zy have approximately equal
masses and that 7y = 1 (i.e., the B — L interaction strength
is equal to that of the weak interaction). For the B — B?
system, the bound is mz,, > 2.291 TeV, under the same
assumptions as in the previous case. For the hierarchical
masses of Z, and Zy, the smaller mass will take a smaller
bound, e.g., mz, > g, x 2 TeV, corresponding to the K° —
K system, where g, is the reduced gauge coupling that has
a natural value smaller than unity.

The new neutral currents in the model are now detected
by the experiments. We have calculated the contributions of
Z, and Zy—which dominate the corrections of the new
physics—to the process ete™ — utu~ at the LEPII
Collider. From the experimental bounds, we have shown
that my, > 2.737 TeV provided that these gauge bosons
have approximately equal masses and that ty = 1.
Similarly, for the hierarchal Z, and Zy masses, the smaller
mass will possess a smaller bound than the above result.
Moreover, we have also indicated that the violation of
CKM unitarity due to the one-loop effects of the new
neutral gauge bosons Z, y are negligible if the Z, ,, masses
are in the TeV range, which is expected.

Finally, the 3-3-1-1 model—which unifies the electro-
weak and B — L interactions along with the strong inter-
action—is a self-consistent extension of the standard model
that solves the potential problems of the 3-3-1 model,
namely, the consistency of the B, L, and CPT symmetries,
and the large FCNCs. The new physics of the 3-3-1-1
model is interesting, possibly appearing in the TeV region.
For all of these reasons, we believe that the 3-3-1-1 model
is a compelling theory that warrants much experimental
attention.
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