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In this work we discuss a new SUð3ÞC ⊗ SUð3ÞL ⊗ Uð1ÞX ⊗ Uð1ÞN (3-3-1-1) gauge model that
overhauls the theoretical and phenomenological aspects of the known 3-3-1 models. Additionally, we
derive the outcome of the 3-3-1-1 model from precise electroweak bounds to dark matter observables. We
firstly advocate that if the B − L number is conserved as the electric charge, the extension of the standard
model gauge symmetry to the 3-3-1-1 one provides a minimal, self-contained framework that unifies all the
weak, electromagnetic, and B − L interactions, apart from the strong interaction. The W parity (similar to
the R parity) arises as a remnant subgroup of the broken 3-3-1-1 symmetry. The mass spectra of the scalar
and gauge sectors are diagonalized when the scale of the 3-3-1-1 breaking is compatible to that of the
ordinary 3-3-1 breaking. All the interactions of the gauge bosons with the fermions and scalars are
obtained. The standard model Higgs (H) and gauge (Z) bosons are realized at the weak scales with
consistent masses despite their respective mixings with the heavier particles. The 3-3-1-1 model provides
two forms of dark matter that are stabilized by W-parity conservation: one fermion which may be either a
Majorana or Dirac fermion, and one complex scalar. We conclude that in the fermion dark matter setup the
Z2 gauge-boson resonance sets the dark matter observables, whereas in the scalar one the Higgs portal
dictates them. The standard model Glashow-Iliopoulos-Maiani mechanism works in the model because of
W-parity conservation. Hence, the dangerous flavor-changing neutral currents due to the ordinary
and exotic quark mixing are suppressed, while those coming from the nonuniversal couplings of the
Z2 and ZN gauge bosons are easily evaded. Indeed, the K0 − K̄0 and B0

s − B̄0
s mixings limit mZ2;N

>
2.037 TeV and mZ2;N

> 2.291 TeV, respectively, while the LEPII searches provide a rather close bound,
mZ2;N

> 2.737 TeV. The violation of Cabibbo-Kobayashi-Maskawa unitarity due to the loop effects of the
Z2 and ZN gauge bosons is negligible.
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I. INTRODUCTION

The standard model [1] has been extremely successful.
However, it describes only about 5% of the mass-energy
density of our Universe. What remains is roughly 25% dark
matter and 70% dark energy, which lies beyond the standard
model. In addition, the standard model cannot explain the
nonzero smallmasses andmixing of the neutrinos, thematter-
antimatter asymmetry of the Universe, and the inflationary
expansion of the early Universe. On the theoretical side, the
standardmodel cannot show how theHiggsmass is stabilized
against radiative corrections, whatmakes electric charge exist
in discrete amounts, and why there are only three generations
of fermions observed in nature.

Among the standard model’s extensions that attempt to
address these issues, the recently proposed SUð3ÞC ⊗
SUð3ÞL ⊗ Uð1ÞX ⊗ Uð1ÞN (3-3-1-1) gauge model has
the following interesting features [2]. (i) The theory arises
as a necessary consequence of the 3-3-1 models [3–5] that
respects the conservation of lepton and baryon numbers.
(ii) The B − L number is naturally gauged because it is a
combination of the SUð3ÞL and Uð1ÞN charges. And, the
resulting theory yields a unification of the electroweak and
B − L interactions, apart from the strong interaction.
(iii) The right-handed neutrinos emerge as fundamental
fermion constituents, and consequently the small masses of
the active neutrinos are generated by the type I seesaw
mechanism. (iv)W parity—which has a similar form to the
R parity in supersymmetry—naturally arises as a conserved
remnant subgroup of the broken 3-3-1-1 gauge symmetry.
(v) Dark matter automatically exists in the model and is
stabilized due to W parity. It is the lightest particle among
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the new particles which characteristically have incorrect
lepton numbers, transforming as odd fields under W parity
(so-calledW particles). The dark matter candidate may be a
neutral fermion (N) or a neutral complex scalar (H0).
The 3-3-1-1 model includes all the good features of the

3-3-1 models. The number of fermion families is just
three, a consequence of anomaly cancellation and the
QCD asymptotic freedom condition [6]. The third quark
generation transforms differently under SUð3ÞL than the
first two. This explains why the top quark is uncharacter-
istically heavy [7]. The strong CP problem is solved by
just its particle content with an appropriate Peccei-Quinn
symmetry [8]. The electric charge quantization is due
to a special structure of the gauge symmetry and the
fermion content [9]. Additionally, the model also provides
the mentioned dark matter candidates similarly to
Refs. [10,11]. The 3-3-1-1 model can solve the potential
issues of the 3-3-1 models because the unwanted inter-
actions and vacuums that lead to the dangerous tree-level
flavor-changing neutral currents (FCNCs) [12] as well as
the CPT violation [13] are all suppressed due to W-parity
conservation [2].
In a previous paper [2] the 3-3-1-1 model and its direct

consequence—dark matter—was proposed. In the current
work, we will deliver a detailed study of this new model.
Particularly, we consider the new physics consequences
besides the dark matter that are implied by the new
extended sectors beyond those of the 3-3-1 model.
These sectors include the new neutral gauge boson (C)
associated with Uð1ÞN , and the new scalar (ϕ) required for
the total Uð1ÞN breaking with necessary mass generations.
The total Uð1ÞN breaking that consequently breaks the
B − L symmetry—where B − L is a residual charge related
to the N charge and a SUð3ÞL generator—can happen close
to the 3-3-1 breaking scale of order TeV. This leads to a
finite mixing and an interesting interplay between the new
neutral gauge bosons—such as the Z0 of the 3-3-1 model—
and the C of Uð1ÞN . Notice that our previous work only
considered a special case when the B − L breaking scale
was very high [similar to the grand unified theory (GUT)
scale] [14], so that the new physics beyond the ordinary
3-3-1 symmetry was decoupled, neglecting its imprint at
low energy [2]. Indeed, the stability of the proton is already
ensured by the 3-3-1-1 gauge symmetry; there is no reason
why this scale is not present at the 3-3-1 scale. Similarly to
the new neutral gauge bosons, there is an interesting mixing
among the new neutral scalars that is used to break the
3-3-1 and B − L symmetries.
It is interesting to note that the new scalars and new

gauge bosons as well as the new fermions can give
significant contributions to the production and decay of
the standard model Higgs boson. They might also modify
the well-measured standard model couplings, such as those
of the photon andW and Z bosons with the fermions. There
exist hadronic FCNCs due to the contribution of the new

neutral gauge bosons. These gauge bosons can also take
part in electron-positron collisions [such as those at LEPII
and the International Linear Collider (ILC)] as well as in
dark matter observables. The presence of the new neutral
gauge bosons also induces the apparent violation of
Cabibbo-Kobayashi-Maskawa (CKM) unitarity. In some
cases, the new scalar responsible for the Uð1ÞN breaking
may act as an inflaton. The decays of some new particles
can solve the matter-antimatter asymmetry via leptogenesis
mechanisms.
The scope of this work is as follows. The 3-3-1-1 model

is calculated in detail, namely, the scalar potential and the
gauge-boson sector are in a general case diagonalized. All
the interactions of the gauge bosons with the fermions as
well as with the scalars are derived. The new physics
processes arising from the FCNCs, the LEPII Collider, the
violation of CKM unitarity, and dark matter observables are
analyzed. Particularly, we perform a phenomenological
study of the dark matter, taking into account the current
data as well as the new contributions of the physics at
Λ ∼ ω that were seen in Ref. [2]. The constraints on the new
gauge-boson and dark matter masses are also obtained.
The rest of this work is organized as follows. In Sec. II,

we give a review of the model. Sections III and IV are
devoted, respectively, to the scalar and gauge sectors. In
Sec. V we obtain all the gauge interactions of the fermions
and scalars. Section VI aims at studying the new physics
processes and constraints. Finally, we summarize our
results and make concluding remarks in Sec. VII.

II. A REVIEW OF THE 3-3-1-1 MODEL

The 3-3-1-1 model [2] is based on the gauge symmetry

SUð3ÞC ⊗ SUð3ÞL ⊗ Uð1ÞX ⊗ Uð1ÞN; ð1Þ

where the first three groups are the ordinary gauge
symmetry of the 3-3-1 models [3–5], while the last one
is a necessary gauge extension of the 3-3-1 models that
respects the conservation of lepton (L) and baryon (B)
numbers. Indeed, the 3-3-1 and B − L symmetries do not
commute and are not algebraically closed. To be concrete,
for a lepton triplet (see below) we have B − L ¼
diagð−1;−1; 0Þ, which does not commute with the
SUð3ÞL generators as Ti ¼ 1

2
λi for i ¼ 4; 5; 6; 7. It is easily

checked that

½B − L; T4 � iT5� ¼ ∓ðT4 � iT5Þ ≠ 0;

½B − L; T6 � iT7� ¼ ∓ðT6 � iT7Þ ≠ 0:

The nonclosed algebras can be deduced from the fact that in
order for B − L to be some generator of SUð3ÞL, we must
have a linear combination B − L ¼ xiTi (i ¼ 1; 2; 3;…; 8)
and thus TrðB − LÞ ¼ 0, which is invalid for the lepton
triplet, TrðB − LÞ ¼ −2 ≠ 0 (and even for other particle
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multiplets). In other words, B − L and Ti by themselves do
not make a symmetry on which we can base our theory.
Therefore, to have a closed algebra, we must introduce at
least a new Abelian charge N so that B − L is a residual
symmetry of the closed group SUð3ÞL ⊗ Uð1ÞN , i.e.,
B − L ¼ xiTi þ yN, where the embedding coefficients
xi; y ≠ 0 are given below. [The existence of N can also
be understood by a current-algebra approach for Ti and
B − L—similarly to the case of the hypercharge Y—when
we combine SUð2ÞL with Uð1ÞQ to create the SUð2ÞL ⊗
Uð1ÞY electroweak symmetry.] Note that N cannot be
identified as X (which defines the electric charge operator)
because they generally differ for the particle multiplets
(see below); thus, they are independent charges. In fact, the
normal Lagrangian of the 3-3-1 models (including the
gauge interactions, minimal Yukawa Lagrangian, and
minimal scalar potential) always preserves a Uð1ÞN
Abelian symmetry that, along with SUð3ÞL, realizes
B − L as a conserved (noncommuting) residual charge;
this has been investigated in the literature and given in
terms of B ¼ B and L ¼ bT8 þ L, where b is dependent on
the 3-3-1 model class and N ¼ B − L [2,15]. Note also that
a violation in N due to some unwanted interaction, by
contrast, would lead to a corresponding violation in B − L,
and vice versa. Because Ti are gauged charges, B − L and
N must be gauged charges [by contrast, Ti ∼ ðB − LÞ − yN
are global, which is incorrect]. The gauging of B − L is a
consequence of the fact that B − L and SUð3ÞL do not
commute (which is unlike the standard model case). The
theory is only consistent if it includes Uð1ÞN as a gauge
symmetry, which also necessarily makes the resulting
theory free from all the nontrivial leptonic and baryonic
anomalies [2]. Otherwise, the 3-3-1 models must contain
(abnormal) interactions that explicitly violate B − L (or N).
Equivalently, the 3-3-1 models only survive if B − L
(which is actually recognized as an approximate symmetry)
is not a symmetry of such theories, which was explicitly
shown in Ref. [16]. Thus, assuming that the B − L charge is
conserved (a condition that is respected by experiment, the
standard model, and even the typical 3-3-1 models [1,3–5]),
the Abelian factor Uð1ÞN must be included so that the
algebras are closed, which is necessary in order to have a
self-consistent theory. Apart from the strong interaction
with the SUð3ÞC group, the SUð3ÞL ⊗ Uð1ÞX ⊗ Uð1ÞN
framework thus presents a unification of the electroweak
and B − L interactions, in the same manner that the
standard model electroweak theory does for the weak
and electromagnetic interactions.
The two Abelian factors of the 3-3-1-1 symmetry

associated with the SUð3ÞL group correspondingly deter-
mine the electric charge Q and the B − L operators as
residual symmetries, given by

Q ¼ T3 −
1ffiffiffi
3

p T8 þ X; B − L ¼ −
2ffiffiffi
3

p T8 þ N; ð2Þ

where Tiði ¼ 1; 2; 3;…; 8Þ, and X and N are the charges of
SUð3ÞL, Uð1ÞX and Uð1ÞN , respectively [the SUð3ÞC
charges will be denoted by ti]. Note that the above
definitions of Q and B − L embed the 3-3-1 model with
neutral fermions [5] in the theory considered. However, the
coefficients of T8 might be different depending on which
class of the 3-3-1 models it is embedded in [15].
The conserved charge Q is responsible for the electro-

magnetic interaction, whereas B − Lmust be broken so that
the Uð1ÞN gauge boson gets a large enough mass to escape
from the detectors. Indeed, B − L is broken down to a
parity (i.e., a Z2 symmetry),

P ¼ ð−1Þ3ðB−LÞþ2s ¼ ð−1Þ−2
ffiffi
3

p
T8þ3Nþ2s; ð3Þ

which consequently makes “incorrect B − L particles”
stable, providing dark matter candidates [2]. We see that
thisR parity is a residual symmetry of the broken SUð3ÞL ⊗
Uð1ÞN gauge symmetry, which is unlike the R symmetry in
supersymmetry [17]. That being said, the parity P auto-
matically exists, and due to its nature it will play an
important role in the model in addition to stabilizing the
dark matter candidates, as is shown throughout the paper.
The fermion content of the 3-3-1-1 model that is

anomaly free is given as [2]

ψaL ¼

0
B@

νaL

eaL
ðNaRÞc

1
CA ∼ ð1; 3;−1=3;−2=3Þ; ð4Þ

νaR ∼ ð1; 1; 0;−1Þ; eaR ∼ ð1; 1;−1;−1Þ; ð5Þ

QαL ¼

0
B@

dαL
−uαL
DαL

1
CA ∼ ð3; 3�; 0; 0Þ;

Q3L ¼

0
B@

u3L
d3L
UL

1
CA ∼ ð3; 3; 1=3; 2=3Þ; ð6Þ

uaR ∼ ð3; 1; 2=3; 1=3Þ; daR ∼ ð3; 1;−1=3; 1=3Þ; ð7Þ

UR ∼ ð3; 1; 2=3; 4=3Þ; DαR ∼ ð3;1;−1=3;−2=3Þ; ð8Þ
where the quantum numbers located in parentheses are
defined using the gauge symmetries (SUð3ÞC, SUð3ÞL,
Uð1ÞX, Uð1ÞN), respectively. The family indices are a ¼
1; 2; 3 and α ¼ 1; 2.
The exotic fermions NR, U, andD have been included to

complete the fundamental representations of the SUð3ÞL
group, respectively. By the embedding, their electric
charges take the usual values, QðNRÞ ¼ 0, QðUÞ ¼ 2=3,
and QðDÞ ¼ −1=3. However, their B − L charges take the
values ½B−L�ðNRÞ¼0, ½B−L�ðUÞ¼4=3, and ½B−L�ðDÞ¼
−2=3, which are abnormal in comparison to those of the
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standard model particles. These exotic fermions (and the
associated bosons) have ordinary baryon numbers; how-
ever, they possess anomalous lepton numbers and are P odd
(see Table I for details) [2]. Such particles are generally
called wrong-lepton particles (or W particles for short) and
the parity P is thus calledW parity. All other particles of the
model, including the standard model ones (which either
have both ordinary baryon and lepton numbers, or only
differ from the ordinary lepton number by an even lepton
number, such as the ϕ scalar given below) are even underW
parity, and they can be considered as ordinary particles.
Let us recall that the neutral fermions NaR might have

left-handed counterparts, NaL, which transform as singlets
under any gauge symmetry group including Uð1ÞN . In this
way, the NaL are truly sterile, which is unlike the νaR
usually considered in the literature. Interestingly, the sterile
fermions NaL are W particles like the NaR. If the NaL are
not included, the NaR are Majorana fermions. Otherwise,
the presence of the NaL yields NaL;R as generic fermions
(which may be Dirac ones). Further, we will exploit this
matter by deriving the dark matter observables for the cases
of the Dirac or Majorana fermions.
To break the gauge symmetry and generate the masses

for the particles in a correct way, the 3-3-1-1 model needs
the following scalar multiplets [2]:

η ¼

0
B@

η01
η−2
η03

1
CA ∼ ð1; 3;−1=3; 1=3Þ;

ρ ¼

0
B@

ρþ1
ρ02
ρþ3

1
CA ∼ ð1; 3; 2=3; 1=3Þ;

χ ¼

0
B@

χ01
χ−2
χ03

1
CA ∼ ð1; 3;−1=3;−2=3Þ;

ϕ ∼ ð1; 1; 0; 2Þ; ð9Þ
with the vacuum expectation values (VEVs) that conserve
Q and P being given by, respectively,

hηi ¼ 1ffiffiffi
2

p ðu; 0; 0ÞT; hρi ¼ 1ffiffiffi
2

p ð0; v; 0ÞT;

hχi ¼ 1ffiffiffi
2

p ð0; 0;ωÞT; hϕi ¼ 1ffiffiffi
2

p Λ: ð10Þ

The VEVs of η, ρ, and χ only break SUð3ÞC ⊗ SUð3ÞL ⊗
Uð1ÞX ⊗ Uð1ÞN to SUð3ÞC ⊗ Uð1ÞQ ⊗ Uð1ÞB−L, which
leaves the B − L invariant. The ϕ breaks Uð1ÞN as well as
the B − L that defines theW parity,Uð1ÞB−L → P, with the
form as given in [2]. It also provides the mass for the Uð1ÞN
gauge boson as well as the Majorana masses for νaR. Note
that ρ3, η3, and χ1;2 are the W particles, while the others
including ϕ are not (i.e., they are ordinary particles). The
electrically neutral fields η3 and χ1 cannot develop a VEV
due to W-parity conservation. To be consistent with the
standard model, we suppose u; v ≪ ω;Λ.
Up to the gauge fixing and ghost terms, the Lagrangian

of the 3-3-1-1 model is given by

L ¼
X

fermionmultiplets

Ψ̄ iγμDμΨþ
X

scalar multiplets

ðDμΦÞ†ðDμΦÞ

−
1

4
GiμνG

μν
i −

1

4
AiμνA

μν
i −

1

4
BμνBμν −

1

4
CμνCμν

− Vðρ; η; χ;ϕÞ þ LYukawa; ð11Þ

with the covariant derivative

Dμ ¼ ∂μ þ igstiGiμ þ igTiAiμ þ igXXBμ þ igNNCμ; ð12Þ

and the field strength tensors

Giμν ¼ ∂μGiν − ∂νGiμ − gsfijkGjμGkν;

Aiμν ¼ ∂μAiν − ∂νAiμ − gfijkAjμAkν;

Bμν ¼ ∂μBν − ∂νBμ; Cμν ¼ ∂μCν − ∂νCμ: ð13Þ

Ψ denotes the fermion multiplets, such as ψaL, Q3L, uaR,
and so on, whereas Φ stands for scalar multiplets ϕ, η, ρ,
and χ. The coupling constants (gs; g; gX; gN) and the gauge
bosons (Giμ; Aiμ; Bμ; Cμ) are defined as coupled to the
generators (ti; Ti; X; N), respectively. It is noted that in a
mass basis the W� bosons are associated with T1;2, the
photon γ is associated with Q, and the Z, Z0 are associated
with generators that are orthogonal to Q. All these fields,
including C and the gluons G, are even under W parity.
However, the new non-Hermitian gauge bosons—X0;0� as
coupled to T4;5 and Y� as coupled to T6;7—are the W
particles.
The scalar potential and Yukawa Lagrangian mentioned

above are obtained as follows [2]:

TABLE I. The W parity (P) separates the model particles into two classes: (i) W particles that possess P ¼ −1, and (ii) ordinary
particles that have P ¼ þ1. The first class includes a large portion of the new particles, while the second class is dominated by the
standard model particles.

Particle ν e u d G γ W Z Z0 C η1;2 ρ1;2 χ3 ϕ N U D X Y η3 ρ3 χ1;2

L 1 1 0 0 0 0 0 0 0 0 0 0 0 −2 0 −1 1 1 1 −1 −1 1
P þ þ þ þ þ þ þ þ þ þ þ þ þ þ − − − − − − − −
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LYukawa ¼ heabψ̄aLρebR þ hνabψ̄aLηνbR þ h0νabν̄
c
aRνbRϕþ hUQ̄3LχUR þ hDαβQ̄αLχ

�DβR

þ huaQ̄3LηuaR þ hdaQ̄3LρdaR þ hdαaQ̄αLη
�daR þ huαaQ̄αLρ

�uaR þ H:c:; ð14Þ

Vðρ; η; χ;ϕÞ ¼ μ21ρ
†ρþ μ22χ

†χ þ μ23η
†ηþ λ1ðρ†ρÞ2 þ λ2ðχ†χÞ2 þ λ3ðη†ηÞ2

þ λ4ðρ†ρÞðχ†χÞ þ λ5ðρ†ρÞðη†ηÞ þ λ6ðχ†χÞðη†ηÞ
þ λ7ðρ†χÞðχ†ρÞ þ λ8ðρ†ηÞðη†ρÞ þ λ9ðχ†ηÞðη†χÞ þ ðfϵmnpηmρnχp þ H:c:Þ
þ μ2ϕ†ϕþ λðϕ†ϕÞ2 þ λ10ðϕ†ϕÞðρ†ρÞ þ λ11ðϕ†ϕÞðχ†χÞ þ λ12ðϕ†ϕÞðη†ηÞ: ð15Þ

Because of the 3-3-1-1 gauge symmetry, the Yukawa
Lagrangian and scalar potential take the standard forms
that contain no lepton-number-violating interactions.
If such violating interactions as well as nonzero VEVs of

η3 and χ1 were present (as in the 3-3-1 model), they would
be the sources for the hadronic FCNCs at tree level [12].
The FCNC problem is partially solved by the 3-3-1-1
symmetry andW-parity conservation. Also, the presence of
the η3 and χ1 VEVs would imply a mass hierarchy between
the real and imaginary components of the X0 gauge boson
due to their different mixings with the neutral gauge
bosons. This leads to CPT violation, which is experimen-
tally unacceptable [13]. The CPT violation encountered
with the 3-3-1 model is thus solved by the 3-3-1-1
symmetry and W-parity conservation as well.
Table I lists all the model particles with their parity

values explicitly provided. The lepton numbers have also
been included for convenience. However, the baryon
numbers are not listed since they can be obtained as
usual (all the quarks u, d, U, and D have B ¼ 1=3,
whereas the other particles have B ¼ 0). As shown in
Ref. [2], the X0 gauge boson cannot be dark matter.
However, the neutral fermion (a combination of Na fields)
or the neutral complex scalar (a combination of η03 and χ01
fields) can be dark matter depending on which one of
them is the lightest wrong-lepton particle, in agreement
with Ref. [11].
The fermion masses that are obtained from the Yukawa

Lagrangian after the gauge symmetry breaking have been
presented in Ref. [2] in detail. Below, we will calculate the
masses and physical states of the scalar and gauge boson
sectors when the Λ scale of the Uð1ÞN breaking is
comparable to the ω scale of the 3-3-1 breaking, which
was neglected in Ref. [2]. Also, all the gauge interactions of
fermions and scalars as well as the constraints on the new
physics are derived. We stress again that in the regime Λ ≫
ω the B − L and 3-3-1 symmetries decouple, whereas—
when these scales become comparable—the new physics
associated with the B − L and that of the 3-3-1 model are
correlated, possibly at the TeV scale, all of which may be
proven at the LHC or ILC.

III. SCALAR SECTOR

SinceW parity is conserved, only the neutral scalar fields
that are even under this parity symmetry can develop the
VEVs given in Eq. (10). We expand the fields around these
VEVs as

η ¼ hηi þ η0 ¼

0
B@

uffiffi
2

p

0

0

1
CAþ

0
BB@

S1þiA1ffiffi
2

p

η−2
S0
3
þiA0

3ffiffi
2

p

1
CCA;

ρ ¼ hρi þ ρ0 ¼

0
B@

0

vffiffi
2

p

0

1
CAþ

0
B@

ρþ1
S2þiA2ffiffi

2
p

ρþ3

1
CA; ð16Þ

χ ¼ hχi þ χ0 ¼

0
BB@

0

0

ωffiffi
2

p

1
CCAþ

0
BB@

S0
1
þiA0

1ffiffi
2

p

χ−2
S3þiA3ffiffi

2
p

1
CCA;

ϕ ¼ hϕi þ ϕ0 ¼ Λffiffiffi
2

p þ S4 þ iA4ffiffiffi
2

p ; ð17Þ

where in each expansion the first and last terms are denoted
as the VEVs and physical fields, respectively. Note that
S1;2;3;4 and A1;2;3;4 are W even, while those with primed
signs, S01;3 and A

0
1;3, areW odd. There is no mixing between

theW-even andW-odd fields due toW-parity conservation.
On the other hand, the f parameter in the scalar potential
can be complex (the remaining parameters, such as the μ2’s
and λ’s, are all real). However, its phase can be removed by
redefining the fields η; ρ; χ appropriately. Consequently, the
scalar potential conserves the CP symmetry. Assuming that
the CP symmetry is also conserved by the vacuum, the
VEVs and f can simultaneously be considered as the real
parameters. There is no mixing between the scalars (CP
even) and pseudoscalars (CP odd) due to CP conservation.
To find the mass spectra of the scalar fields, let us expand

all the terms of the potential up to the second-order
contributions of the fields:
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μ21ðρ†ρÞ ¼ μ21ðhρi†hρi þ hρi†ρ0 þ ρ0†hρi þ ρ0†ρ0Þ ¼ μ21

�
v2

2
þ vS2 þ ρþ1 ρ

−
1 þ ρþ3 ρ

−
3 þ S22 þ A2

2

2

�
;

μ22ðχ†χÞ ¼ μ22

�
ω2

2
þ ωS3 þ χ−2 χ

þ
2 þ S021 þ A02

1 þ S23 þ A2
3

2

�
;

μ23ðη†ηÞ ¼ μ23

�
u2

2
þ uS1 þ η−2 η

þ
2 þ S21 þ A2

1 þ S023 þ A02
3

2

�
;

μ2ðϕ†ϕÞ ¼ μ2
�
Λ2

2
þ ΛS4 þ

S24 þ A2
4

2

�
;

λðϕ†ϕÞ2 ¼ λ

�
Λ4

4
þ Λ2S24 þ Λ3S4 þ

Λ2

2
ðS24 þ A2

4Þ þ interaction

�
;

λ1ðρ†ρÞ2 ¼ λ1

�
v4

4
þ v2S22 þ v3S2 þ v2

�
ρþ1 ρ

−
1 þ ρþ3 ρ

−
3 þ S22 þ A2

2

2

�
þ interaction

�
;

λ2ðχ†χÞ2 ¼ λ2

�
ω4

4
þ ω2S23 þ ω3S3 þ ω2

�
χ−2 χ

þ
2 þ S021 þ A02

1 þ S23 þ A2
3

2

�
þ interaction

�
;

λ3ðη†ηÞ2 ¼ λ3

�
u4

4
þ u2S21 þ u3S1 þ u2

�
η−2 η

þ
2 þ S21 þ A2

1 þ S023 þ A02
3

2

�
þ interaction

�
;

λ4ðρ†ρÞðχ†χÞ ¼ λ4

�
v2ω2

4
þ ωv2

2
S3 þ

vω2

2
S2 þ vωS2S3 þ

v2

2

�
χ−2 χ

þ
2 þ S021 þ A02

1 þ S23 þ A2
3

2

�

þ ω2

2

�
ρþ1 ρ

−
1 þ ρþ3 ρ

−
3 þ S22 þ A2

2

2

�
þ interaction

�
;

λ5ðρ†ρÞðη†ηÞ ¼ λ5

�
v2u2

4
þ uv2

2
S1 þ

vu2

2
S2 þ vuS1S2 þ

v2

2

�
η−2 η

þ
2 þ S21 þ A2

1 þ S023 þ A02
3

2

�

þ u2

2

�
ρþ1 ρ

−
1 þ ρþ3 ρ

−
3 þ S22 þ A2

2

2

�
þ interaction

�
;

λ6ðχ†χÞðη†ηÞ ¼ λ6

�
ω2u2

4
þ uω2

2
S1 þ

ωu2

2
S3 þ uωS1S3 þ

ω2

2

�
η−2 η

þ
2 þ S21 þ A2

1 þ S023 þ A02
3

2

�

þ u2

2

�
χþ2 χ

−
2 þ S021 þ A02

1 þ S23 þ A2
3

2

�
þ interaction

�
;

λ7ðρ†χÞðχ†ρÞ ¼
λ7
2
ðvχ−2 þ ωρ−3 Þðωρþ3 þ vχþ2 Þ þ interaction;

λ8ðρ†ηÞðη†ρÞ ¼
λ8
2
ðvη−2 þ uρ−1 Þðuρþ1 þ vηþ2 Þ þ interaction;

λ9ðχ†ηÞðη†χÞ ¼ λ9

�
ω

2
ðS03 þ iA0

3Þ þ
u
2
ðS01 − iA0

1Þ
��

u
2
ðS01 þ iA0

1Þ þ
ω

2
ðS03 − iA0

3Þ
�
þ interaction;
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λ10ðϕ†ϕÞðρ†ρÞ ¼ λ10

�
Λ2v2

4
þ vΛ2

2
S2 þ

Λv2

2
S4 þ vΛS2S4 þ

v2

2

�
S24 þ A2

4

2

�

þ Λ2

2

�
ρþ1 ρ

−
1 þ ρþ3 ρ

−
3 þ S22 þ A2

2

2

�
þ interaction

�
;

λ11ðϕ†ϕÞðχ†χÞ ¼ λ11

�
Λ2ω2

4
þ ωΛ2

2
S3 þ

Λω2

2
S4 þ ωΛS3S4 þ

ω2

2

�
S24 þ A2

4

2

�

þ Λ2

2

�
χþ2 χ

−
2 þ S021 þ A02

1 þ S23 þ A2
3

2

�
þ interaction

�
;

λ12ðϕ†ϕÞðη†ηÞ ¼ λ12

�
Λ2u2

4
þ uΛ2

2
S1 þ

Λu2

2
S4 þ uΛS1S4 þ

u2

2

�
S24 þ A2

4

2

�

þ Λ2

2

�
ηþ2 η

−
2 þ S21 þ A2

1 þ S023 þ A02
3

2

�
þ interaction

�
;

fϵmnpηmρnχp þ H:c: ¼ f

�
uvωffiffiffi

2
p þ uvffiffiffi

2
p S3 þ

uωffiffiffi
2

p S2 þ
vωffiffiffi
2

p S1 þ
uffiffiffi
2

p ðS2S3 − A2A3−ρþ3 χ−2 − ρ−3 χ
þ
2 Þ

þ vffiffiffi
2

p ðS1S3 − A1A3 − S01S
0
3 þ A0

1A
0
3Þþ

ωffiffiffi
2

p ðS1S2 − A1A2 − η−2 ρ
þ
1 − ηþ2 ρ

−
1 Þ
�
þ interaction:

The scalar potential—which is the sum of all the above terms—can be rearranged as

Vðρ; η; χ;ϕÞ ¼ Vmin þ V linear þ Vmass þ V interaction; ð18Þ

where the interactions stored in V interaction do not need to be explicitly obtained. Vmin contains the terms that are independent
of the scalar fields,

Vmin ¼ μ21
v2

2
þ μ22

ω2

2
þ μ23

u2

2
þ μ2

Λ2

2
þ λ21

v4

4
þ λ22

ω4

4
þ λ23

u4

4
þ λ2

Λ4

4

þ λ24
v2ω2

4
þ λ25

v2u2

4
þ λ26

u2ω2

4
þ λ210

v2Λ2

4
þ λ211

Λ2ω2

4
þ λ212

u2Λ2

4
þ f

uvωffiffiffi
2

p ;

which only contributes to the vacuum energy; it does not affect the physical processes.
V linear includes all the terms that linearly depend on the scalar fields,

V linear ¼ S1

�
uμ23 þ λ3u3 þ

1

2
λ5uv2 þ

1

2
λ6uω2 þ

ffiffiffi
2

p

2
fvωþ 1

2
λ12uΛ2

�

þ S2

�
vμ21 þ λ1v3 þ

1

2
λ4vω2 þ 1

2
λ5u2vþ

ffiffiffi
2

p

2
fuωþ λ10

2
vΛ2

�

þ S3

�
ωμ22 þ λ2ω

3 þ λ4
2
ωv2 þ λ6

2
ωu2 þ

ffiffiffi
2

p

2
fuvþ λ11

2
ωΛ2

�

þ S4

�
μ2Λþ λΛ3 þ 1

2
λ10v2Λþ 1

2
λ11Λω2 þ 1

2
λ12Λu2

�
: ð19Þ

Because of the gauge invariance, the coefficients vanish,

vμ21 þ λ1v3 þ
1

2
λ4vω2 þ 1

2
λ5u2vþ

ffiffiffi
2

p

2
fuωþ λ10

2
vΛ2 ¼ 0; ð20Þ

ωμ22 þ λ2ω
3 þ λ4

2
ωv2 þ λ6

2
ωu2 þ

ffiffiffi
2

p

2
fuvþ λ11

2
ωΛ2 ¼ 0; ð21Þ
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uμ23 þ λ3u3 þ
1

2
λ5uv2 þ

1

2
λ6uω2 þ

ffiffiffi
2

p

2
fvωþ 1

2
λ12uΛ2 ¼ 0; ð22Þ

μ2 þ λΛ2 þ 1

2
λ10v2 þ

1

2
λ11ω

2 þ 1

2
λ12u2 ¼ 0; ð23Þ

which is also the condition of potential minimization,

∂V
∂u ¼ ∂V

∂v ¼ ∂V
∂ω ¼ ∂V

∂Λ ¼ 0: ð24Þ

The 3-3-1-1 gauge symmetry will be broken in the correct way and the potential will be bounded from below if we impose
μ2 < 0; μ21;2;3 < 0, λ > 0, λ1;2;3 > 0, and other necessary conditions for λ4;5;6;…;12. In this case, the equations for the potential
minimization above give a unique, nonzero solution for the VEVs ðu; v;ω;ΛÞ.
Vmass consists of all the terms in the potential that quadratically depend on the scalar fields. It can be decomposed into

Vmass ¼ Vcharged
mass þ VS

mass þ VA
mass þ VS0

mass þ VA0
mass; ð25Þ

where the first term includes all the mass terms of the charged scalars, while the remaining terms belong to the neutral
scalars with each term for a distinct group of fields characterized by the W and CP parities, as mentioned before.
The mass spectrum of the charged scalars is given by

Vcharged
mass ¼ χþ2 χ

−
2

�
μ22 þ λ2ω

2 þ λ4
2
v2 þ λ6

2
u2 þ λ11

2
Λ2

�
þ ηþ2 η

−
2

�
μ23 þ λ3u2 þ

1

2
λ5v2 þ

1

2
λ6ω

2 þ 1

2
λ12Λ2

�

þ ðρþ1 ρ−1 þ ρþ3 ρ
−
3 Þ
�
μ21 þ λ1v2 þ

1

2
λ4ω

2 þ 1

2
λ5u2 þ

λ10
2

Λ2

�
þ λ7

2
ðvχ−2 þ ωρ−3 Þðvχþ2 þ ωρþ3 Þ

þ λ8
2
ðvη−2 þ uρ−1 Þðuρþ1 þ vηþ2 Þ − f

uffiffiffi
2

p ðρþ3 χ−2 þ ρ−3 χ
þ
2 Þ − f

ωffiffiffi
2

p ðη−2 ρþ1 þ ηþ2 ρ
−
1 Þ: ð26Þ

From the potential-minimization conditions, we extract μ21, μ
2
2, and μ

2
3 and substitute them into the above expression to yield

Vcharged
mass ¼

�
λ7
2
−

fuffiffiffi
2

p
vω

�
ðvχ−2 þ ωρ−3 Þðvχþ2 þ ωρþ3 Þ þ

�
λ8
2
−

fωffiffiffi
2

p
uv

�
ðvη−2 þ uρ−1 Þðvηþ2 þ uρþ1 Þ

¼
�
λ7
2
−

fuffiffiffi
2

p
vω

�
ðv2 þ ω2ÞH−

4H
þ
4 þ

�
λ8
2
−

fωffiffiffi
2

p
vu

�
ðv2 þ u2ÞH−

5H
þ
5 ; ð27Þ

where we have defined

H�
4 ≡ vχ�2 þ ωρ�3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2 þ ω2
p ; H�

5 ≡ vη�2 þ uρ�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p : ð28Þ

The fields H�
4 ; H

�
5 by themselves are physical charged scalars with masses given by, respectively,

m2
H4

¼
�
λ7
2
−

fuffiffiffi
2

p
vω

�
ðv2 þ ω2Þ; m2

H5
¼
�
λ8
2
−

fωffiffiffi
2

p
vu

�
ðv2 þ u2Þ: ð29Þ

The field that is orthogonal to H5, G�
W ¼ uη�

2
−vρ�

1ffiffiffiffiffiffiffiffiffiffi
u2þv2

p , has zero mass and can be identified as the Goldstone boson of the W�

gauge boson. Similarly, the field that is orthogonal to H4, G�
Y ¼ ωχ�

2
−vρ�

3ffiffiffiffiffiffiffiffiffiffi
v2þω2

p , is massless and can be identified as the Goldstone

boson of the new Y� gauge boson.

DONG et al. PHYSICAL REVIEW D 90, 075021 (2014)

075021-8



For the neutral scalar fields, we start with the A group,

VA
mass¼A2

1

�
μ23
2
þ1

2
λ3u2þ

1

4
λ5v2þ

1

4
λ6ω

2þ1

4
λ12Λ2

�

þA2
2

�
μ21
2
þ1

2
λ1v2þ

1

4
λ4ω

2þ1

4
λ5u2þ

λ10
4
vΛ2

�

þA2
3

�
μ22
2
þ1

2
λ2ω

2þλ4
4
v2þλ6

4
u2þλ11

4
ωΛ2

�
ð30Þ

þA2
4

�
μ2

2
þ1

2
λΛ2þ1

4
λ10v2þ

1

4
λ11ω

2þ1

4
λ12u2

�

−
fuffiffiffi
2

p A2A3−
fvffiffiffi
2

p A1A3−
fωffiffiffi
2

p A1A2

¼−
f

2
ffiffiffi
2

p
�
vω
u
þuω

v
þuv

ω

��
vωA1þuωA2þuvA3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2v2þv2ω2þu2ω2

p
�

2

;

ð31Þ

with the help of the potential-minimization conditions.
Therefore, we have a physical pseudoscalar field with a
corresponding mass,

A≡ vωA1þuωA2þuvA3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2v2þv2ω2þu2ω2

p ; m2
A¼−

fffiffiffi
2

p
�
vω
u
þuω

v
þuv

ω

�
:

ð32Þ

If u; v;ω > 0, we have f < 0 so that the squared mass is
always positive. We realize that A4 is massless and can be
identified as the Goldstone boson of the new neutral gauge
boson C of Uð1ÞN . The remaining massless fields are
orthogonal to A as follows:

GZ ¼ uA1 − vA2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p ;

GZ0 ¼ −uvðvA1 þ uA2Þ þ ωðu2 þ v2ÞA3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu2v2 þ v2ω2 þ u2ω2Þðu2 þ v2Þ

p : ð33Þ

They are the Goldstone bosons of the neutral gauge bosons
Z and Z0, respectively (where Z is standard model-like
while Z0 is 3-3-1 model-like).
For the A0 group, we have

VA0
mass ¼ A02

1

�
μ22
2
þ 1

2
λ2ω

2 þ λ4
4
v2 þ λ6

4
u2 þ λ11

4
ωΛ2

�

þ A02
3

�
μ23
2
þ 1

2
λ2ω

2 þ λ4
4
v2 þ λ6

4
u2 þ λ11

4
ωΛ2

�

þ fvffiffiffi
2

p A0
1A

0
3 þ

λ9
4
ðωA0

3 − uA0
1Þ2

¼ 1

2

�
λ9
2
−

1ffiffiffi
2

p fv
uω

�
ðu2 þ ω2Þ

�
ωA0

3 − uA0
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ ω2
p

�
2

;

by using the minimization conditions. Hence, a physicalW-
odd pseudoscalar and its mass have the form

A0≡ωA0
3−uA0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2þω2

p ; m2
A0 ¼

�
λ9
2
−

1ffiffiffi
2

p fv
uω

�
ðu2þω2Þ: ð34Þ

Similarly, for the S0 group we obtain

VS0
mass ¼

1

2

�
λ9
2
−

1ffiffiffi
2

p fv
uω

�
ðu2 þ ω2Þ

�
ωS03 þ uS01ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ ω2

p
�

2

; ð35Þ

which yields a physicalW-odd scalar with a corresponding
mass,

S0 ≡ ωS03 þ uS01ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ ω2

p ; m2
S0 ¼

�
λ9
2
−

1ffiffiffi
2

p fv
uω

�
ðu2 þ ω2Þ:

Some remarks are in order:
(1) We see that the scalar S0 and pseudoscalar A0 have

the same mass. They can be identified as the real and
imaginary components of a physical neutral com-
plex field:

H00 ≡ S0 þ iA0ffiffiffi
2

p ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ ω2

p ðuχ0�1 þ ωη03Þ;

with the mass

m2
H0 ¼

�
λ9
2
−

1ffiffiffi
2

p fv
uω

�
ðu2 þ ω2Þ: ð36Þ

(2) The field that is orthogonal to H0, G0
X ¼

1ffiffiffiffiffiffiffiffiffiffi
u2þω2

p ðωχ01 − uη0�3 Þ, is massless and can be iden-

tified as the Goldstone boson of the new neutral non-
Hermitian gauge boson X0.

Finally, there remains the S group of the W-even, real
scalar fields. Using the potential-minimization conditions,
we have

VS
mass ¼

�
λ3u2−

1

2
ffiffiffi
2

p f
vω
u

�
S21þ

�
λ1v2 −

1

2
ffiffiffi
2

p f
uω
v

�
S22

þ
�
λ2ω

2 −
1

2
ffiffiffi
2

p f
vu
ω

�
S23þ

�
λ5uvþ

1ffiffiffi
2

p fω

�
S1S2

þ
�
λ6uωþ 1ffiffiffi

2
p fv

�
S1S3þ

�
λ4ωvþ

1ffiffiffi
2

p fu

�
S2S3

þ λΛ2S24þ λ12uΛS1S4þ λ10vΛS2S4þ λ11ωΛS3S4

¼ 1

2

�
S1 S2 S3 S4

�
M2

S

0
BBB@
S1
S2
S3
S4

1
CCCA; ð37Þ

where
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M2
S ≡

0
BBBBBB@

2λ3u2 − 1ffiffi
2

p f vω
u λ5uvþ 1ffiffi

2
p fω λ6uωþ 1ffiffi

2
p fv λ12uΛ

λ5uvþ 1ffiffi
2

p fω 2λ1v2 − 1ffiffi
2

p f uω
v λ4ωvþ 1ffiffi

2
p fu λ10vΛ

λ6uωþ 1ffiffi
2

p fv λ4ωvþ 1ffiffi
2

p fu 2λ2ω
2 − 1ffiffi

2
p f vu

ω λ11ωΛ

λ12uΛ λ10vΛ λ11ωΛ 2λΛ2

1
CCCCCCA
: ð38Þ

In Ref. [2], the physical states were derived when the
B − L-breaking scale is as large as the GUT scale, for
example, so that S4 is completely decoupled from the
remaining three scalars of the 3-3-1 model. In this work we
consider the possible B − L interactions that might happen
at the TeV scale, like those of the 3-3-1 model that are
characterized by the ω and f scales. Therefore, let us
assume that Λ is at the same order as f;ω and all are
sufficiently large in comparison to the weak scales u; v so
that the new physics is safe [2], i.e.,

−f ∼ ω ∼ Λ ≫ u ∼ v: ð39Þ
Notice that all the physical scalar fields that have been
found so far are new particles with corresponding masses
given at the ω or

ffiffiffiffiffiffiffiffiffijfωjp
scale.

The mass matrix (38) will provide a small eigenvalue for
the mass of the standard model Higgs boson, whereas the
remaining eigenvalues will be large enough to be identified
as the corresponding masses of the new neutral scalars. To
see this explicitly, it is appropriate to consider the leading-
order contributions of the mass matrix (38). Imposing
Eq. (39) and keeping only the terms that are proportional to
ðω;Λ; fÞ2, we have the result

M2
SjLO¼

0
BBBBB@

− 1ffiffi
2

p fvω
u

1ffiffi
2

p fω 0 0

1ffiffi
2

p fω − 1ffiffi
2

p fuω
v 0 0

0 0 2λ2ω
2 λ11ωΛ

0 0 λ11ωΛ 2λΛ2

1
CCCCCA: ð40Þ

The 2 × 2 matrix in the first diagonal box gives a zero
eigenvalue with the corresponding eigenstate

m2
H ¼ 0; H ≡ uS1 þ vS2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v2
p : ð41Þ

This state is identified as the standard model Higgs boson.
The remaining eigenvalue is

m2
H1

¼ −
fωffiffiffi
2

p
�
u
v
þ v
u

�
∼ ω2; ð42Þ

which corresponds to a new, heavy neutral scalar:

H1 ≡ −vS1 þ uS2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p : ð43Þ

The 2 × 2 matrix in the second diagonal box provides two
heavy eigenstates with masses at the ω scale given by,
respectively,

H2 ≡ cφS3 þ sφS4;

m2
H2

¼ λ2ω
2 þ λΛ2

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ22ω

4 þ ðλ211 − 2λλ2Þω2Λ2 þ λ2Λ4

q
∼ ω2;

H3 ≡ −sφS3 þ cφS4;

m2
H3

¼ λ2ω
2 þ λΛ2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ22ω

4 þ ðλ211 − 2λλ2Þω2Λ2 þ λ2Λ4

q
∼ ω2;

where the mixing angle is given by

t2φ ¼ −
λ11ωΛ

λΛ2 − λ2ω
2
: ð44Þ

We have adopted the notations sx ¼ sin x; cx ¼ cos x;
tx ¼ tan x, and so forth, for any angle x (such as φ), which
we use throughout this paper.
We see that at the leading order, the standard model-like

Higgs boson has a vanishing mass. Hence, when consid-
ering the next-to-leading-order contribution, its generated
mass is small due to the perturbative expansion. In fact, we
can write the general mass matrix M2

S in a new basis of the
states ðH;H1; H2; H3Þ. Since the mass of the standard
model-like Higgs boson is much smaller than those of the
new particles, the resulting mass matrix will have a seesaw-
like form [18] that can transparently be diagonalized.
Indeed, by putting

0
BBBBB@
S1
S2
S3
S4

1
CCCCCA¼U

0
BBBBB@

H

H1

H2

H3

1
CCCCCA; U≡

0
BBBBB@

uffiffiffiffiffiffiffiffiffiffi
u2þv2

p − vffiffiffiffiffiffiffiffiffiffi
u2þv2

p 0 0

vffiffiffiffiffiffiffiffiffiffi
u2þv2

p uffiffiffiffiffiffiffiffiffiffi
u2þv2

p 0 0

0 0 cφ −sφ
0 0 sφ cφ

1
CCCCCA;

ð45Þ

the mass matrix (38) in the new basis is

M02
S ¼UTM2

SU¼
�
A1×1 B1×3

BT
1×3 C3×3

�
; ð46Þ

where
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A≡ 2
v4λ1 þ u4λ3 þ u2v2λ5

u2 þ v2
; BT ≡

0
BBBBBBBB@

uv½v2ð2λ1−λ5Þþu2ð−2λ3þλ5Þ�
u2þv2

sφΛðv2λ10þu2λ12Þþcφð
ffiffi
2

p
fuvþv2ωλ4þu2ωλ6Þffiffiffiffiffiffiffiffiffiffi

u2þv2
p

−
ffiffi
2

p
fsφuvþcφΛðv2λ10þu2λ12Þ−sφωðv2λ4þu2λ6Þffiffiffiffiffiffiffiffiffiffi

u2þv2
p

1
CCCCCCCCA
; ð47Þ

and C is a 3 × 3 matrix with corresponding components given by

C11 ≡ −
ffiffiffi
2

p
fðu2 þ v2Þ2ωþ 4u3v3ðλ1 þ λ3 − λ5Þ

2uvðu2 þ v2Þ ;

C12 ¼ C21 ≡ 2sφuvΛðλ10 − λ12Þ þ cφ½
ffiffiffi
2

p
fðu2 − v2Þ þ 2uvωðλ4 − λ6Þ�

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p ;

C13 ¼ C31 ≡
ffiffiffi
2

p
fsφð−u2 þ v2Þ þ 2uv½cφΛðλ10 − λ12Þ þ sφωð−λ4 þ λ6Þ�

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p ;

C22 ≡ 2s2φλΛ2 þ 2cφ

�
−
cφfuv

2
ffiffiffi
2

p
ω
þ sφωΛλ11 þ cφω2λ2

�
;

C23 ¼ C32 ≡ ðc2φ − s2φÞωΛλ11 þ 2cφsφ

�
fuv

2
ffiffiffi
2

p
ω
þ λΛ2 − ω2λ2

�
;

C33 ≡ −
fs2φuvffiffiffi

2
p

ω
þ 2cφΛðcφλΛ − sφωλ11Þ þ 2s2φω2λ2: ð48Þ

Because −f ∼ ω ∼ Λ ≫ u ∼ v, we achieve the seesaw form
for M02

S , where jjCjj ∼ ω2 ≫ jjBjj ∼ uω ≫ jjAjj ∼ u2, with
jjAjj≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TrðATAÞ
p

, and so forth. Therefore, the standard
model-like Higgs boson obtains a mass given by the seesaw
formula [18],

δm2
H ¼ A − BC−1BT ∼Oðu2; v2Þ; ð49Þ

which is realized at the weak scales in spite of the large
scales ω, Λ, and f (see below). The standard model-like
Higgs boson is given by

H þ δH ¼ H − BC−1

0
B@

H1

H2

H3

1
CA: ð50Þ

The physical heavy scalars are orthogonal to this light state,
and their masses change negligibly compared to their
leading-order values.
The mass of the standard model-like Higgs boson can be

approximated as

δm2
H ¼ 2

�
λ3u4 þ λ5u2v2 þ λ1v4

u2 þ v2
þm2

0 þm2
1

f
ω
þm2

2

f2

ω2

�
;

ð51Þ

where the mass parameters m0; m1, and m2 are given by

m2
0 ≡−

1

ðλ211 − 4λλ2Þðv2 þ u2Þ ½−λ
2
12λ2u

4 − λðλ6u2 þ λ4v2Þ2

þ λ12u2ðλ11λ6u2 − 2λ10λ2v2 þ λ11λ4v2Þ
þ λ10v2ðλ11λ6u2 − λ10λ2v2 þ λ11λ4v2Þ�; ð52Þ

m2
1≡ −

ffiffiffi
2

p
uv½ðλ11λ12 − 2λλ6Þu2 þ ðλ10λ11 − 2λλ4Þv2�

ðλ211 − 4λλ2Þðu2 þ v2Þ ;

ð53Þ

m2
2 ≡ 2λu2v2

ðλ211 − 4λλ2Þðu2 þ v2Þ : ð54Þ

Because the quantity f=ω is finite, the Higgs mass δm2
H

depends only on the weak scales u2 and v2, as stated. We
will evaluate the Higgs mass and assign δm2

H ¼
ð125 GeVÞ2 as measured by the LHC [19,20]. For this
purpose, let us assume u ¼ v and ω ¼ −f, which leads to

δm2
H¼ðλ3þλ5þλ1Þu2þ2m2

0−2m2
1þ2m2

2≡ λ̄u2: ð55Þ

Here, λ̄ is a function of only the λ’s, which can easily
be achieved with the help of Eqs. (52), (53), and (54)
for the respective m2

0;1;2. In addition, we have
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u2 þ v2 ¼ ð246 GeVÞ2, i.e., u ¼ 246ffiffi
2

p GeV, which is given

from the mass of the W boson, as shown below. Hence, we
identify δm2

H ¼ λ̄ð246ffiffi
2

p GeVÞ2 ¼ ð125 GeVÞ2, which yields

λ̄ ¼ ð125
ffiffi
2

p
246

Þ2 ≃ 0.5. This is an expected value for the
effective self-interacting scalar coupling.
In summary, we have the 11 Higgs bosons (H0, A0,

H0
1;2;3, H

�
4;5, H

00;0�), as well as the nine Goldstone bosons
corresponding to the nine massive gauge bosons (G�

W , G
0
Z,

G0;0�
X , G�

Y , G0
Z0 , G0

C). Because of the constraints
u; v ≪ ω;Λ;−f, the standard model-like Higgs boson
(∼H) is light, with a mass at the weak scales, whereas
all the new Higgs bosons are heavy, with masses at the ω,
Λ, or −f scales. In the calculations below, we will ignore
the mixing effects of the standard model Higgs boson H
with the new particles H1;2;3 (where the mixing angles
defined by BC−1 are typically proportional to u

ω ≪ 1, which
is actually small). Therefore, we have found the physical
states H;H1; H2; H3. Denoting tβ ¼ v=u and taking the
effective limit u=ω; v=ω ≪ 1, the physical scalar states are
related to the gauge states as follows:

�
H

H1

�
≃
�

cβ sβ
−sβ cβ

��
S1
S2

�
;

�
A

GZ

�
≃
�

cβ sβ
−sβ cβ

��
A2

A1

�
;

�
H2

H3

�
≃
�

cφ sφ
−sφ cφ

��
S3
S4

�
;

�
H−

5

G−
W

�
¼
�

cβ sβ
−sβ cβ

��
ρ−1
η−2

�
;

H4 ≃ ρ3; GY ≃ χ2; GX ≃ χ1;

H0 ≃ η3; GZ0 ≃ A3; GC ¼ A4: ð56Þ

As mentioned, the mixings of the standard model Higgs
boson H with the new scalars H1;2;3 are proportional to

u=ω, where the proportional coefficients depend on the
couplings of the scalar potential. Since the strengths of the
scalar self-couplings are mostly unknown, these coeffi-
cients are undefined as well. Therefore, if the coefficients
are small (as expected), the new physics effects via the
mixings can be neglected, similar to the gauge-boson sector
discussed below. Otherwise, it is important to note that the
leading-order new physics effects must include the
Oðfu; vg=fω;Λ;−fgÞ corrections to the couplings of
the standard model Higgs boson due to the mixing with
the new scalars, as well as the modifications of the H
interactions to the new physics processes via the new
scalars (H1;2;3). In this case, the mixing parameters as
determined by BC−1 have to be taken into account.
However, it is also noted that even for the proportional
coefficients of order unity (like a scalar self-coupling in the
large strength regime), the modifications to the standard
model Higgs couplings are around jΔκj≡ u=ω ∼ 0.1,
which easily satisfies the κk bounds, as presented
in Ref. [1].
We remind the reader that—apart fromH0, which will be

identified as a viable dark matter candidate—the remaining
scalars in this model should be sufficiently heavy in order
to obey the bounds coming from the muon anomalous
magnetic moment [21].

IV. GAUGE SECTOR

The gauge bosons obtain masses when the scalar fields
develop VEVs. Therefore, their mass Lagrangian is given
by

Lgauge
mass ¼

X
Φ

ðDμhΦiÞ†ðDμhΦiÞ: ð57Þ

Substituting the scalar multiplets η, ρ, χ, and ϕ with their
covariant derivatives, gauge charges, and VEVs (given
above), we get

Lgauge
mass ¼ g2u2

8

��
A3μ þ

A8μffiffiffi
3

p −
2

3
tXBμ þ

2

3
tNCμ

�
2

þ 2Wþ
μ W−μ þ 2X0�

μ X0μ

�

þ g2v2

8

��
−A3μ þ

A8μffiffiffi
3

p þ 4

3
tXBμ þ

2

3
tNCμ

�
2

þ 2Wþ
μ W−μ þ 2Yþ

μ Y−μ
�

þ g2ω2

8

��
−
2A8μffiffiffi

3
p −

2

3
tXBμ −

4

3
tNCμ

�
2

þ 2Yþ
μ Y−μ þ 2X0�

μ X0μ

�
þ 2g2NΛ

2C2
μ; ð58Þ

where we have defined tX ≡ gX
g , tN ≡ gN

g , and

W�
μ ¼ A1μ∓iA2μffiffiffi

2
p ; X0;0�

μ ¼ A4μ∓iA5μffiffiffi
2

p ; Y∓
μ ¼ A6μ∓iA7μffiffiffi

2
p : ð59Þ
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The mass Lagrangian can be rewritten as

Lgauge
mass ¼ g2

4
ðu2 þ v2ÞWþW− þ g2

4
ðv2 þ ω2ÞYþY− þ g2

4
ðu2 þ ω2ÞX0�X0 þ 1

2
ðA3A8BCÞM2

0
BBB@

A3

A8

B

C

1
CCCA; ð60Þ

where the Lorentz indices have been omitted and should be understood. The squared-mass matrix of the neutral gauge
bosons is found to be

M2 ¼ g2

2

0
BBBBBBBB@

1
2
ðu2 þ v2Þ u2−v2

2
ffiffi
3

p − tXðu2þ2v2Þ
3

tNðu2−v2Þ
3

u2−v2
2
ffiffi
3

p 1
6
ðu2 þ v2 þ 4ω2Þ − tXðu2−2ðv2þω2ÞÞ

3
ffiffi
3

p tNðu2þv2þ4ω2Þ
3
ffiffi
3

p

− tXðu2þ2v2Þ
3

− tXðu2−2ðv2þω2ÞÞ
3
ffiffi
3

p 2
9
t2Xðu2 þ 4v2 þ ω2Þ − 2

9
tXtNðu2 − 2ðv2 þ ω2ÞÞ

tNðu2−v2Þ
3

tNðu2þv2þ4ω2Þ
3
ffiffi
3

p − 2
9
tXtNðu2 − 2ðv2 þ ω2ÞÞ 2

9
t2Nðu2 þ v2 þ 4ðω2 þ 9Λ2ÞÞ

1
CCCCCCCCA
:

The non-Hermitian gauge bosons W�, X0;0�, and Y� by
themselves are physical fields with the corresponding
masses

m2
W ¼ 1

4
g2ðu2 þ v2Þ; m2

X ¼ 1

4
g2ðu2 þ ω2Þ;

m2
Y ¼ 1

4
g2ðv2 þ ω2Þ: ð61Þ

Because of the constraints u; v ≪ ω, we have
mW ≪ mX ≃mY . W is identified as the standard model
W boson, which implies

u2 þ v2 ¼ ð246 GeVÞ2: ð62Þ

The X and Y fields are the new gauge bosons with large
masses at the ω scale.
The neutral gauge bosons ðA3; A8; B; CÞ mix via the

mass matrix M2. It is easily checked that M2 has a zero
eigenvalue with a corresponding eigenstate,

m2
A ¼ 0; Aμ ¼

ffiffiffi
3

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 4t2X

p �
tXA3μ −

tXffiffiffi
3

p A8μ þ Bμ

�
;

ð63Þ

which are independent of the VEVs and identified as those
of the photon (notice that all the other eigenvalues of M2

are nonzero). The independence of the VEVs for the photon
field and its mass is a consequence of electric-charge
conservation [22]. With this at hand, electromagnetic
vertices can be calculated that result in the form
−eQðfÞf̄γμfAμ, where the electromagnetic coupling

constant is identified as e ¼ gsW , with the sine of the
Weinberg angle given by [22]

sW ¼
ffiffiffi
3

p
tXffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3þ 4t2X
p : ð64Þ

The photon field can be rewritten as

Aμ

e
¼ A3μ

g
−

1ffiffiffi
3

p A8μ

g
þ Bμ

gX
; ð65Þ

which is identical to the electric-charge operator expression
in Eq. (2) if one replaces its generators by the correspond-
ing gauge bosons over couplings (namely, Q is replaced by
Aμ=e, Ti by Aiμ=g, and X by Bμ=gX). Hence, Aμ can be
obtained fromQ without usingM2. The mass eigenstate Aμ

depends on just A3μ, A8μ, and Bμ, whereas the new gauge
boson Cμ does not give any contribution, which stems from
electric-charge conservation as well [22].
To identify the physical gauge bosons, we first rewrite

the photon field in the form

A ¼ sWA3 þ cW

 
−
tWffiffiffi
3

p A8 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

t2W
3

r
B

!
; ð66Þ

where we have used tX ¼ ffiffiffi
3

p
sW=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − 4s2W

p
. In the above

expression, the combination in parentheses ð� � �Þ is just the
field that is associated with the weak hypercharge
Y ¼ − 1ffiffi

3
p T8 þ X. The standard model Z boson is therefore

identified as

Z ¼ cWA3 − sW

 
−

tWffiffiffi
3

p A8 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

t2W
3

r
B

!
; ð67Þ
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which is orthogonal to A, as usual. The 3-3-1 model Z0
boson, which is a new neutral boson, is orthogonal to the
field that is coupled to the hypercharge Y (and thus it is
orthogonal to both the A and Z bosons),

Z0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

t2W
3

r
A8 þ

tWffiffiffi
3

p B: ð68Þ

Hence, we can work in a new basis of the form
ðA; Z; Z0; CÞ, where the photon is a physical particle and
is decoupled, while the other fields Z; Z0, and Cmix among
themselves.
The mass matrix M2 can be diagonalized via several

steps. In the first step, we change the basis
to ðA3; A8; B; CÞ → ðA; Z; Z0; CÞ,

0
BB@

A3

A8

B

C

1
CCA ¼ U1

0
BB@

A

Z

Z0

C

1
CCA; U1 ¼

0
BBBBB@

sW cW 0 0

− sWffiffi
3

p sWtWffiffi
3

p
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − t2W

3

q
0

cW

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − t2W

3

q
−sW

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − t2W

3

q
tWffiffi
3

p 0

0 0 0 1

1
CCCCCA: ð69Þ

In this new basis, the mass matrix M2 becomes

M02 ¼ UT
1M

2U1 ¼
�
0 0

0 M02
s

�
; ð70Þ

where the 11 component is the zero mass of the photon (which is decoupled), whileM02
s is a 3 × 3 mass submatrix of Z; Z0,

and C,

M02
s ≡

0
B@

m2
Z m2

ZZ0 m2
ZC

m2
ZZ0 m2

Z0 m2
Z0C

m2
ZC m2

Z0C m2
C

1
CA

¼ g2

2

0
BBBBB@

ð3þ4t2XÞðu2þv2Þ
2ð3þt2XÞ

ffiffiffiffiffiffiffiffiffi
3þ4t2X

p
ðð3−2t2XÞu2−ð3þ4t2XÞv2Þ

6ð3þt2XÞ

ffiffiffiffiffiffiffiffiffi
3þ4t2X

p
tNðu2−v2Þ

3
ffiffiffiffiffiffiffiffi
3þt2X

p
ffiffiffiffiffiffiffiffiffi
3þ4t2X

p
ðð3−2t2XÞu2−ð3þ4t2XÞv2Þ

6ð3þt2XÞ
ð3−2t2XÞ2u2þð3þ4t2XÞ2v2þ4ð3þt2XÞ2ω2

18ð3þt2XÞ
tNðð3−2t2XÞu2þð3þ4t2XÞv2þ4ð3þt2XÞω2Þ

9
ffiffiffiffiffiffiffiffi
3þt2X

p
ffiffiffiffiffiffiffiffiffi
3þ4t2X

p
tNðu2−v2Þ

3
ffiffiffiffiffiffiffiffi
3þt2X

p tNðð3−2t2XÞu2þð3þ4t2XÞv2þ4ð3þt2XÞω2Þ
9
ffiffiffiffiffiffiffiffi
3þt2X

p 2
9
t2Nðu2 þ v2 þ 4ðω2 þ 9Λ2ÞÞ

1
CCCCCCA
:

Because of the conditions, u; v ≪ ω;Λ, we have
m2

Z;m
2
ZZ0 ; m2

ZC ≪ m2
Z0 ; m2

Z0C;m
2
C. Hence, in the second

step, the mass matrix M02 (or M02
s) can be diagonalized

by using the seesaw formula [18] to separate the light state
(Z) from the heavy states (Z0; C). We denote the new basis
as ðA; Z1;Z0; CÞ, so that A and Z1 are physical fields and are
decoupled while the rest mix,

0
BBB@

A

Z

Z0

C

1
CCCA ¼ U2

0
BBB@

A

Z1

Z0

C

1
CCCA;

M002 ¼ UT
2M

02U2 ¼

0
B@

0 0 0

0 m2
Z1

0

0 0 M002
s

1
CA; ð71Þ

where M002
s is a 2 × 2 mass submatrix of the Z0; C heavy

states, while mZ1
is the mass of the Z1 light state. By virtue

of the seesaw approximation, we have

U2 ≃
0
B@

1 0 0

0 1 E

0 −ET 1

1
CA;

E ≡ ðm2
ZZ0m2

ZCÞ
�

m2
Z0 m2

Z0C

m2
Z0C m2

C

�−1

; ð72Þ

m2
Z1

≃m2
Z − E

�
m2

ZZ0

m2
ZC

�
; M002

s ≃
�

m2
Z0 m2

Z0C

m2
Z0C m2

C

�
:

ð73Þ

E is a two-component vector given by
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E1 ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4t2X þ 3

p
f3Λ2½ð2t2X − 3Þu2 þ ð4t2X þ 3Þv2� þ t2Xω

2ðu2 þ v2Þg
4Λ2ðt2X þ 3Þ2ω2

≪ 1;

E2 ¼
t2X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4t2X þ 3

p
ðu2 þ v2Þ

8Λ2ðt2X þ 3Þ3=2tN
≪ 1;

which is suppressed at the leading order u; v ≪ ω;Λ. The Z1, Z0, and C fields are standard model-like, 3-3-1 model-like,
and Uð1ÞN-like gauge bosons, respectively. To be concrete, we write Z1 ≃ Z − E1Z0 − E2C, Z0 ≃ Z0 þ E1Z, and
C≃ Cþ E2Z, which differ from the Z, Z0, and C fields by only small mixing terms, respectively.
Moreover, with the help of tX ¼ ffiffiffi

3
p

sW=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − 4s2W

p
, we have

E1 ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − 4s2W

p
4c4W

�
v2 − c2Wu2

ω2
þ s2Wðu2 þ v2Þ

9Λ2

�
; E2 ¼

s2W
24c3WtN

u2 þ v2

Λ2
: ð74Þ

We realize that the first term in E1 is just the mixing angle of Z-Z0 in the 3-3-1 model with right-handed neutrinos,
tθ ≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − 4s2W

p
ðc2Wu2 − v2Þ=ð4c4Wω2Þ [22], when Λ ≫ ω. Using v2w ≡ u2 þ v2 ¼ ð246 GeVÞ2 (which is the fixed weak

scale) as well as 0 < u2; v2 < v2w, the E1 parameter is bounded by

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − 4s2W

p
4c4W

��
vw
ω

�
2

þ s2W
9

�
vw
Λ

�
2
�
< E1 < −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − 4s2W

p
4c4W

�
−c2W

�
vw
ω

�
2

þ s2W
9

�
vw
Λ

�
2
�
; ð75Þ

where the second term in each set of brackets is negligible
since Λ≳ ω. Therefore, the E1 bounds and the E2 param-
eter can be approximated as

− 3.5 × 10−3 < E1 < 3 × 10−3;

E2 ≃ 0.014

�
1

tN

��
vw
Λ

�
2

∼ 10−4; ð76Þ

provided that s2W ≃ 0.231, tN ∼ 1, Λ ∼ ω, and
ω > 3.198 TeV, as given from the ρ parameter below.
With such small values for the E1;2 mixing parameters, their
corrections to the couplings of the Z boson—such as the
well-measured Zff̄ ones (due to the mixing with the new
Z0; C gauge bosons)—can be neglected [1]. (However,
notice that they can be changed due to the one-loop effects
of Z0; C as well as those of the non-Hermitian X; Y gauge
bosons accompanied by the corresponding new fermions,
which subsequently give the constraints on their masses
and the gN coupling. A detailed study of this matter is out of
the scope of this work, and it should be addressed else-
where). Even the modifications of the Z interactions (due to
the mixings) to the new physics processes via the Z0, C
bosons are negligible, which will be explicitly shown when

some of these processes are mentioned at the end of this
work. Therefore, except for an evaluation of the mentioned
ρ parameter, we will use only the leading-order terms
below. In other words, the mixing of Z with the Z0; C
bosons can be neglected, so that mZ1

≃mZ, Z1 ≃ Z,
Z0 ≃ Z0, and C≃ C.
For the final step, it is easily to diagonalizeM002 (orM002

s )
to obtain the remaining two physical states, denoted by Z2

and ZN , such that

0
BBB@

A

Z1

Z0

C

1
CCCA ¼ U3

0
BBB@

A

Z1

Z2

ZN

1
CCCA; U3 ¼

0
BBB@

1 0 0 0

0 1 0 0

0 0 cξ −sξ
0 0 sξ cξ

1
CCCA;

M0002 ¼ UT
3M

002U3 ¼ diagð0; m2
Z1
; m2

Z2
; m2

ZN
Þ: ð77Þ

The mixing angle and new masses are given by

t2ξ ≃ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ t2X

p
tNω2

ð3þ t2XÞω2 − 4t2Nðω2 þ 9Λ2Þ ; ð78Þ

m2
ZN

≃ g2

18
ðð3þ t2XÞω2 þ 4t2Nðω2 þ 9Λ2Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðð3þ t2XÞω2 − 4t2Nðω2 þ 9Λ2ÞÞ2 þ 16ð3þ t2XÞt2Nω4

q
Þ; ð79Þ

m2
Z2

≃ g2

18
ðð3þ t2XÞω2 þ 4t2Nðω2 þ 9Λ2Þ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðð3þ t2XÞω2 − 4t2Nðω2 þ 9Λ2ÞÞ2 þ 16ð3þ t2XÞt2Nω4

q
Þ: ð80Þ
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It is noteworthy that the mixing of the 3-3-1 model Z0 boson
and the Uð1ÞN C boson is finite and may be large since
ω ∼ Λ. Z2 and ZN are heavy particles with masses at the ω
scale.
In summary, the physical fields are related to the gauge

states as

0
BBB@

A3

A8

B

C

1
CCCA ¼ U

0
BBB@

A

Z1

Z2

ZN

1
CCCA; ð81Þ

where

U¼U1U2U3≃U1U3

¼

0
BBBBB@

sW cW 0 0

− sWffiffi
3

p sWtWffiffi
3

p cξ

ffiffiffiffiffiffiffiffiffiffiffi
1− t2W

3

q
−sξ

ffiffiffiffiffiffiffiffiffiffiffi
1− t2W

3

q
cW

ffiffiffiffiffiffiffiffiffiffiffi
1− t2W

3

q
−sW

ffiffiffiffiffiffiffiffiffiffiffi
1− t2W

3

q
cξ

tWffiffi
3

p −sξ
tWffiffi
3

p

0 0 sξ cξ

1
CCCCCA:

ð82Þ

The approximation above is given at the leading order
fu2; v2g=fω2;Λ2g ≪ 1, and this means that the standard
model Z boson by itself is a physical field (Z≃ Z1) that
does not mix with the new neutral gauge bosons, Z2

and ZN .
The next-to-leading-order term ðEÞ gives a contribution

to the ρ parameter obtained by

ρ ¼ m2
W

c2Wm
2
Z1

¼ m2
Z

m2
Z − Eðm2

ZZ0m2
ZCÞT

≃ 1þ Eðm2
ZZ0m2

ZCÞT=m2
Z: ð83Þ

Here, notice that mW ¼ cWmZ and m2
Z ∼m2

ZZ0 ∼m2
ZC. To

have a numerical value, let us put u ¼ v ¼ ð246= ffiffiffi
2

p Þ GeV
and ω ¼ Λ. Hence, the deviation is

Δρ≡ ρ − 1≃ 5s2Wt
4
W

18πα

u2

ω2
≃ 0.236

u2

ω2
; ð84Þ

where we have used s2W ¼ 0.231 and α ¼ 1=128 [1]. From
the experimental data Δρ < 0.0007 [1], we have u=ω <
0.0544 or ω > 3.198 TeV (provided that u ¼ 246=ffiffiffi
2

p
GeV, as mentioned). Therefore, the value of ω is on

the TeV scale, as expected.

V. INTERACTIONS

A. Fermion–gauge boson interaction

The interactions of fermions with gauge bosons are
derived from the Lagrangian

Lfermion ≡ Ψ̄iγμDμΨ; ð85Þ

where Ψ runs on all the fermion multiplets of the model.
The covariant derivative as defined in Eq. (12) can be
rewritten as Dμ ¼ ∂μ þ igsGμ þ igPμ, where Gμ ≡ tiGiμ
and Pμ ≡ TiAiμ þ tXXBμ þ tNNCμ (note that tX ¼ gX=g,
tN ¼ gN=g). Expanding the Lagrangian, we find

Lfermion ¼ Ψ̄iγμ∂μΨ − gsΨ̄γμGμΨ − gΨ̄γμPμΨ; ð86Þ

where the first term is kinematic whereas the last two terms
give rise to the strong, electroweak, and B − L interactions
of the fermions.
Notice that the SUð3ÞC generators, ti, are equal to 0 for

leptons and λi
2
for quarks q, where q indicates all the quarks

of the model, such as q ¼ u; d; c; s; t; b;D1;2; U. Hence, the
interactions of gluons with fermions as given by the second
term of Eq. (86) yield

−gsΨ̄γμGμΨ ¼ −gsq̄Lγμ
λi
2
qLGiμ − gsq̄Rγμ

λi
2
qRGiμ

¼ −gsq̄γμ
λi
2
qGiμ; ð87Þ

which takes the usual form (i.e., only the colored particles
have strong interactions).
Let us separate P ¼ PCC þ PNC, where

PCC ≡ T1A1 þ T2A2 þ T4A4 þ T5A5 þ T6A6 þ T7A7;

PNC ≡ T3A3 þ T8A8 þ tXXBþ tNNC: ð88Þ

Hence, the last term of Eq. (86) can be rewritten as

−gΨ̄γμPμΨ ¼ −gΨ̄γμPCC
μ Ψ − gΨ̄γμPNC

μ Ψ: ð89Þ

Here, the first term provides the interactions of the non-
Hermitian gauge bosons W∓, X0;0�, and Y� with the
fermions, while the last term leads to the interactions of
the neutral gauge bosons A, Z1, Z2, and ZN with the
fermions.
Substituting the gauge states from Eq. (59) into PCC,

we get

PCC ¼ 1ffiffiffi
2

p TþWþ þ 1ffiffiffi
2

p UþX0 þ 1ffiffiffi
2

p VþY− þ H:c:; ð90Þ

where the raising and lowering operators are defined as

T�≡T1� iT2; U�≡T4� iT5; V�≡T6� iT7: ð91Þ

DONG et al. PHYSICAL REVIEW D 90, 075021 (2014)

075021-16



Notice that T�, U�, and V� vanish for the right-handed fermion singlets. Therefore, the interactions of the non-Hermitian
gauge bosons with fermions are obtained as

−gΨ̄γμPCC
μ Ψ ¼ −

gffiffiffi
2

p Ψ̄γμðTþWþ
μ þ UþX0

μ þ VþY−
μ ÞΨþ H:c:

¼ −
gffiffiffi
2

p Ψ̄Lγ
μTþΨLWþ

μ −
gffiffiffi
2

p Ψ̄Lγ
μUþΨLX0

μ −
gffiffiffi
2

p Ψ̄Lγ
μVþΨLY−

μ þ H:c:

¼ J−μW Wþ
μ þ J0μX X0

μ þ Jþμ
Y Y−

μ þ H:c:; ð92Þ
where the currents associated with the corresponding non-Hermitian gauge bosons are given by

J−μW ≡ −
gffiffiffi
2

p Ψ̄Lγ
μTþΨL ¼ −

gffiffiffi
2

p ðν̄aLγμeaL þ ūaLγμdaLÞ;

J0μX ≡ −
gffiffiffi
2

p Ψ̄Lγ
μUþΨL ¼ −

gffiffiffi
2

p ðν̄aLγμNc
aR þ ū3LγμUL − D̄αLγ

μdαLÞ;

Jþμ
Y ≡ −

gffiffiffi
2

p Ψ̄Lγ
μVþΨL ¼ −

gffiffiffi
2

p ðēaLγμNc
aR þ d̄3LγμUL þ D̄αLγ

μuαLÞ: ð93Þ

The interactions of the W boson are similar to those of the standard model, while the new interactions with the X and Y
bosons are like those of the ordinary 3-3-1 model.
Substituting the gauge states given by Eq. (81) into PNC, we have

PNC
μ ¼ sWQAμ þ

1

cW
ðT3 − s2WQÞZμ þ

1

cW

�
cξ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − 4s2W

3

r
T8 þ

s2Wffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − 4s2W

p X

�
þ sξcWtNN

�
Z2μ

þ 1

cW

�
−sξ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3 − 4s2W
3

r
T8 þ

s2Wffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − 4s2W

p X

�
þ cξcWtNN

�
ZNμ: ð94Þ

For this expression, we have used tX ¼ ffiffiffi
3

p
sW=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − 4s2W

p
andQ ¼ T3 − T8=

ffiffiffi
3

p þ X. The interactions of the neutral gauge
bosons with fermions are given by

−gΨ̄γμPNC
μ Ψ¼−gsWΨ̄γμQΨAμ−

g
cW

Ψ̄γμðT3− s2WQÞΨZμ−
g
cW

Ψ̄γμ
�
cξ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3− 4s2W

3

r
T8þ

s2Wffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3−4s2W

p X

�
þ sξcWtNN

�
ΨZ2μ

−
g
cW

Ψ̄γμ
�
−sξ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3−4s2W
3

r
T8þ

s2Wffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3− 4s2W

p X

�
þ cξcWtNN

�
ΨZNμ: ð95Þ

Three remarks are in order.
(1) With the help of e ¼ gsW , the interactions of

photons with fermions take the normal form,

−gsWΨ̄γμQΨAμ ¼ −eQðfÞf̄γμfAμ; ð96Þ

where f indicates any fermion of the model.
(2) The interactions of Z with fermions can be rewritten

as

−
g
cW

Ψ̄γμðT3 − s2WQÞΨZμ

¼ −
g
cW

ff̄Lγμ½T3ðfLÞ − s2WQðfLÞ�fL
þf̄Rγμ½−s2WQðfRÞ�fRgZμ;

¼ −
g

2cW
f̄γμ½gZVðfÞ − gZAðfÞγ5�fZμ; ð97Þ

where

gZVðfÞ≡ T3ðfLÞ − 2s2WQðfÞ; gZAðfÞ≡ T3ðfLÞ:
ð98Þ

Therefore, the interactions of Z take the normal
form. For convenience, the couplings of Z with
fermions are given in Table II.

(3) It is noteworthy that the interactions of Z2 with
fermions are identical to those of ZN if one makes
the replacements cξ → −sξ, sξ → cξ in the Z2

interactions, and vice versa. Thus, we only need
to obtain the interactions of either Z2 or ZN ; the
remainders are straightforward.

The interactions of Z2 and ZN with fermions can be
rewritten in a common form similar to that of Z. Therefore,
the last two terms of Eq. (95) yield
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−
g

2cW
f̄γμ½gZ2

V ðfÞ − gZ2

A ðfÞγ5�fZ2μ

−
g

2cW
f̄γμ½gZN

V ðfÞ − gZN
A ðfÞγ5�fZNμ; ð99Þ

where

gZ2

A ðfÞ ¼ −
cξs2Wffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − 4s2W

p T3ðfLÞ

þ
� ffiffiffi

3
p

cξc2Wffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − 4s2W

p þ 2sξcWtNffiffiffi
3

p
�
T8ðfLÞ;

gZ2

V ðfÞ ¼ gZ2

A ðfÞ þ 2
cξs2Wffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − 4s2W

p QðfÞ

þ 2sξcWtNðB − LÞðfÞ;
gZN
A;V ¼ gZ2

A;Vðcξ → −sξ; sξ → cξÞ: ð100Þ

The interactions of Z2 and ZN with fermions are listed in
Tables III and IV, respectively.

B. Scalar–gauge boson interaction

The interactions of gauge bosons with scalars arise from

Lscalar ≡ ðDμΦÞ†ðDμΦÞ; ð101Þ

whereΦ runs on all the scalar multiplets of the model. From
Eqs. (16) and (17), Φ has the common form Φ ¼ hΦi þ Φ0.
Moreover, the covariant derivative has the formDμ ¼ ∂μ þ
igPμ ¼ ∂μ þ igðPCC

μ þ PNC
μ Þ (see the previous subsection

for details). Notice that the strong interaction vanishes
because the scalars are colorless. Substituting all of these
into the Lagrangian, we have

TABLE II. The couplings of Z with fermions.

f gZVðfÞ gZAðfÞ
νa

1
2

1
2

ea − 1
2
þ 2s2W − 1

2

Na 0 0

ua 1
2
− 4

3
s2W

1
2

da − 1
2
þ 2

3
s2W − 1

2

U − 4
3
s2W 0

Dα
2
3
s2W 0

TABLE III. The couplings of Z2 with fermions.

f gZ2

V ðfÞ gZ2

A ðfÞ

νa
cξc2W

2
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p − 5
3
sξcWtN

cξc2W
2
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ 1
3
sξcWtN

ea
cξð1−4s2WÞ
2
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p − 5
3
sξcWtN

cξ
2
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ 1
3
sξcWtN

Na
cξc2Wffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ 2
3
sξcWtN − cξc2Wffiffiffiffiffiffiffiffiffiffi

3−4s2W
p − 2

3
sξcWtN

uα − cξð3−8s2WÞ
6
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ 1
3
sξcWtN − cξ

2
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p − 1
3
sξcWtN

u3
cξð3þ2s2WÞ
6
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ sξcWtN
cξc2W

2
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ 1
3
sξcWtN

dα − cξð3−2s2WÞ
6
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ 1
3
sξcWtN − cξc2W

2
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p − 1
3
sξcWtN

d3
cξ
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p
6

þ sξcWtN
cξ

2
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ 1
3
sξcWtN

U − cξð3−7s2WÞ
3
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ 2sξcWtN − cξc2Wffiffiffiffiffiffiffiffiffiffi
3−4s2W

p − 2
3
sξcWtN

Dα
cξð3−5s2WÞ
3
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p − 2
3
sξcWtN

cξc2Wffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ 2
3
sξcWtN

TABLE IV. The couplings of ZN with fermions.

f gZN
V ðfÞ gZN

A ðfÞ
νa − sξc2W

2
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p − 5
3
cξcWtN − sξc2W

2
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ 1
3
cξcWtN

ea − sξð1−4s2WÞ
2
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p − 5
3
cξcWtN − sξ

2
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ 1
3
cξcWtN

Na − sξc2Wffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ 2
3
cξcWtN

sξc2Wffiffiffiffiffiffiffiffiffiffi
3−4s2W

p − 2
3
cξcWtN

uα
sξð3−8s2WÞ
6
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ 1
3
cξcWtN

sξ
2
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p − 1
3
cξcWtN

u3 − sξð3þ2s2WÞ
6
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ cξcWtN − sξc2W
2
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ 1
3
cξcWtN

dα
sξð3−2s2WÞ
6
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ 1
3
cξcWtN

sξc2W
2
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p − 1
3
cξcWtN

d3 − sξ
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p
6

þ cξcWtN − sξ
2
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ 1
3
cξcWtN

U sξð3−7s2WÞ
3
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ 2cξcWtN
sξc2Wffiffiffiffiffiffiffiffiffiffi
3−4s2W

p − 2
3
cξcWtN

Dα − sξð3−5s2WÞ
3
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p − 2
3
cξcWtN − sξc2Wffiffiffiffiffiffiffiffiffiffi

3−4s2W
p þ 2

3
cξcWtN

TABLE V. The interactions of a non-Hermitian gauge boson
with two scalars.

Vertex Coupling Vertex Coupling

Wþ
μ H−

5 ∂
↔μ

H1 − ig
2

Wþ
μ H−

5 ∂
↔μ

A g
2

Yþ
μ H0�∂↔μ

H−
5 − igsβffiffi

2
p Yþ

μ H−
4 ∂
↔μ

H − igsβ
2

Yþ
μ H−

4 ∂
↔μ

H1 − igcβ
2

Yþ
μ H−

4 ∂
↔μ

A gcβ
2

X0
μH

þ
4 ∂
↔μ

H−
5

igcβffiffi
2

p X0
μH0∂↔μ

H igcβ
2

X0
μH0∂↔μ

H1 − igsβ
2

X0
μH0∂↔μ

A gsβ
2
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Lscalar ¼ ð∂μΦ0Þ†ð∂μΦ0Þ þ ½igð∂μΦ0Þ†ðPμhΦiÞ þ H:c:�
þ g2hΦi†PμPμhΦi
þ ½igð∂μΦ0Þ†ðPμΦ0Þ þ H:c:�
þ ½g2hΦiPμPμΦ0 þ H:c:� þ g2Φ0†PμPμΦ0: ð102Þ

The terms in the first and second lines are, respectively, the
kinematic, scalar-gauge mixing, and mass terms, which are
not relevant to this analysis. The third and fourth lines
includes all the interactions of three and four fields among
the scalars and gauge bosons that we are interested in.
To calculate the interactions, we need to present Φ and

Pμ in terms of the physical fields. Indeed, the gauge part
takes the form Pμ ¼ PCC

μ þ PNC
μ , where its terms have

already been obtained in Eqs. (90) and (94), respectively.
On the other hand, the physical scalars are related to the
gauge states by Eq. (56). Let us work in a basis where all
the Goldstone bosons are gauged away. In this unitary
gauge, the scalar multiplets are given by

η ¼

0
B@

uffiffi
2

p

0

0

1
CAþ

0
B@

1ffiffi
2

p ðcβH − sβH1 þ isβAÞ
sβH−

5

H0

1
CA;

ρ ¼

0
B@

0

vffiffi
2

p

0

1
CAþ

 cβH
þ
5

1ffiffi
2

p ðsβH þ cβH1 þ icβAÞ
Hþ

4

!
;

χ ¼

0
B@

0

0
ωffiffi
2

p

1
CAþ

0
B@

0

0
1ffiffi
2

p ðcφH2 − sφH3Þ

1
CA;

ϕ ¼ Λffiffiffi
2

p þ sφH2 þ cφH3ffiffiffi
2

p : ð103Þ

TABLE VI. The interactions of a neutral gauge boson with two scalars.

Vertex Coupling Vertex Coupling

AμH
þ
5 ∂
↔μ

H−
5 ie AμH

þ
4 ∂
↔μ

H−
4 ie

ZμH
þ
4 ∂
↔μ

H−
4 − igs2W

cW
ZμH

þ
5 ∂
↔μ

H−
5

igc2W
2cW

ZμA∂↔μ
H1

g
2cW

Z2μH1∂
↔μ

A g½cξðc
2
β−c2Ws2βÞ

2cW
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ tNsξc2β
3

�

Z2μH
þ
4 ∂
↔μ

H−
4 igð −c2Wcξ

cW
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ tNsξ
3
Þ Z2μH−

5 ∂
↔μ

Hþ
5 ig½cξðc

2
β−c2Ws2βÞ

2cW
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ tNsξc2β
3

�

Z2μH0∂↔μ
H0� −igð cWcξffiffiffiffiffiffiffiffiffiffi

3−4s2W
p − tNsξ

3
Þ Z2μH∂↔μ

A gs2β
2
ð cWcξffiffiffiffiffiffiffiffiffiffi

3−4s2W
p þ 2tNsξ

3
Þ

ZNμH
þ
4 ∂
↔μ

H−
4 igð c2Wsξ

cW
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ tNcξ
3
Þ ZNμH−

5 ∂
↔μ

Hþ
5 ig½−sξðc

2
β−c2Ws2βÞ

2cW
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ tNcξc2β
3

�

ZNμH0∂↔μ
H0� igð cWsξffiffiffiffiffiffiffiffiffiffi

3−4s2W
p þ tNcξ

3
Þ ZNμH∂↔μ

A gs2β
2
ð −cWsξffiffiffiffiffiffiffiffiffiffi

3−4s2W
p þ 2tNcξ

3
Þ

ZNμH1∂
↔μ

A g½−sξðc
2
β−c2Ws2βÞ

2cW
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ tNcξc2β
3

�

TABLE VII. The interactions of a scalar with two non-Hermi-
tian gauge bosons.

Vertex Coupling Vertex Coupling

H2X0X0� g2ω
2
cφ H3X0X0� − g2ω

2
sφ

H2YþY− g2ω
2
cφ H3YþY− − g2ω

2
sφ

HWþW− g2
ffiffiffiffiffiffiffiffiffiffi
u2þv2

p
2

HX0X0� g2u
2
cβ

H−
4W

þX0� g2v
2
ffiffi
2

p H1X0X0� − g2u
2
sβ

HYþY− g2v
2
sβ H1YþY− g2v

2
cβ

H−
5X

0Yþ g2
ffiffiffiffiffiffiffiffiffiffi
u2þv2

p
2
ffiffi
2

p s2β H0�W−Yþ g2u
2
ffiffi
2

p

TABLE VIII. The interactions of a scalar with a non-Hermitian
gauge boson and a neutral gauge boson.

Vertex Coupling

Hþ
5 W

−Z2 g2usβð cWcξffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ 2tNsξ
3
Þ

Hþ
5 W

−ZN g2usβð− cWsξffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ 2tNcξ
3
Þ

H0X0Z g2u
4cW

H0X0Z2
g2u
2
ð− cξ

2cW
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ 2tN
3
sξÞ

H0X0ZN
g2u
2
ð sξ
2cW

ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ 2tN
3
cξÞ

H−
4 Y

þA gve
2

H−
4 Y

þZ − g2v
4cW

ð1þ 2s2WÞ
H−

4 Y
þZ2

g2v
2
½ ð1−2c2WÞcξ
2cW

ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ 2tNsξ
3
�

H−
4 Y

þZN
g2v
2
½− ð1−2c2WÞsξ

2cW
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ 2tNcξ
3
�

PHENOMENOLOGY OF THE 3-3-1-1 MODEL PHYSICAL REVIEW D 90, 075021 (2014)

075021-19



Notice that in each expansion above for the multiplet
Φ ¼ η; ρ; χ;ϕ, the first term is identified as hΦi, while the
second term is Φ0 with the physical fields explicitly
displayed. The notations for the scalar multiplets including
the gauge bosons in this unitary gauge have conveniently
been kept unchanged.
The interactions of one gauge boson with two scalars

arise from

igð∂μΦ0Þ†ðPμΦ0Þ þ H:c: ¼ igð∂μΦ0Þ†ðPCC
μ Φ0Þ

þ igð∂μΦ0Þ†ðPNC
μ Φ0Þ þ H:c::

ð104Þ
Substituting all the known multiplets into this expression

gives us the values in Tables Vand VI. We note that A∂↔B≡
Að∂BÞ − ð∂AÞB is frequently used.
The interactions of one scalar with two gauge bosons are

given by

g2hΦiPμPμΦ0 þ H:c: ¼ g2hΦiPCCμPCC
μ Φ0 þ g2hΦi

× ðPCCμPNC
μ þ PNCμPCC

μ ÞΦ0

þ g2hΦiPNCμPNC
μ Φ0 þ H:c::

ð105Þ

These interactions are listed in Tables VII, VIII, and IX,
corresponding to the terms on the rhs, respectively.
The interactions of two scalars and two gauge bosons are

derived from

g2Φ0†PμPμΦ0 ¼ g2Φ0†PCCμPCC
μ Φ0

þ g2Φ0†ðPCCμPNC
μ þ PNCμPCC

μ ÞΦ0

þ g2Φ0†PNCμPNC
μ Φ0; ð106Þ

which give us the values in Tables X, XI, and XII,
respectively.

TABLE IX. The interactions of a scalar with two neutral gauge bosons.

Vertex Coupling

H2Z2Z2 4Λg2t2Nsφs
2
ξ þ ωcφg2ð cWcξffiffiffiffiffiffiffiffiffiffi

3−4s2W
p þ 2tN

3
sξÞ2

H2ZNZN 4Λg2t2Nsφc
2
ξ þ ωcφg2ð− cWsξffiffiffiffiffiffiffiffiffiffi

3−4s2W
p þ 2tN

3
cξÞ2

H2Z2ZN 4Λg2t2Nsφs2ξ þ 2ωcφg2ð cWcξffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ 2tN
3
sξÞð− cWsξffiffiffiffiffiffiffiffiffiffi

3−4s2W
p þ 2tN

3
cξÞ

H3Z2Z2 4Λg2t2Ncφs
2
ξ − ωsφg2ð cWcξffiffiffiffiffiffiffiffiffiffi

3−4s2W
p þ 2tN

3
sξÞ2

H3ZNZN 4Λg2t2Ncφc
2
ξ − ωsφg2ð− cWsξffiffiffiffiffiffiffiffiffiffi

3−4s2W
p þ 2tN

3
cξÞ2

H3Z2ZN 4Λg2t2Ncφs2ξ − 2ωsφg2ð cWcξffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ 2tN
3
sξÞð− cWsξffiffiffiffiffiffiffiffiffiffi

3−4s2W
p þ 2tN

3
cξÞ

HZZ g2

4c2W

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p

HZ2Z2 g2½ucβð c2Wcξ
2cW

ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ tN
3
sξÞ2 þ vsβð cξ

2cW
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ tN
3
sξÞ2�

HZNZN g2½ucβð −c2Wsξ
2cW

ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ tN
3
cξÞ2 þ vsβð −sξ

2cW
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ tN
3
cξÞ2�

HZZ2
g2

cW
½ucβð c2Wcξ

2cW
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ tN
3
sξÞ − vsβð cξ

2cW
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ tN
3
sξÞ�

HZZN
g2

cW
½ucβð −c2Wsξ

2cW
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ tN
3
cξÞ − vsβð −sξ

2cW
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ tN
3
cξ�

HZ2ZN 2g2½ucβð c2Wcξ
2cW

ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ tN
3
sξÞð −c2Wsξ

2cW
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ tN
3
cξÞ þ vsβð cξ

2cW
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ tN
3
sξÞð −sξ

2cW
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ tN
3
cξÞ�

H1Z2Z2 g2½−usβð c2Wcξ
2cW

ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ tN
3
sξÞ2 þ vcβð cξ

2cW
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ tN
3
sξÞ2�

H1ZNZN g2½−usβð −c2Wsξ
2cW

ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ tN
3
cξÞ2 þ vcβð −sξ

2cW
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ tN
3
cξÞ2�

H1ZZ2 − g2

cW
½usβð c2Wcξ

2cW
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ tN
3
sξÞ þ vcβð cξ

2cW
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ tN
3
sξÞ�

H1ZZN − g2

cW
½usβð −c2Wsξ

2cW
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ tN
3
cξÞ þ vcβð −sξ

2cW
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ tN
3
cξÞ�

H1Z2ZN 2g2½−usβð c2Wcξ
2cW

ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ tN
3
sξÞð −c2Wsξ

2cW
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ tN
3
cξÞ þ vcβð cξ

2cW
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ tN
3
sξÞð −sξ

2cW
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ tN
3
cξÞ�
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VI. NEW PHYSICS EFFECTS AND CONSTRAINTS

A. Dark matter: complex scalar H0

The spectrum of scalar particles in the model contains an
electrically neutral particle H0 that is odd under W parity.
Because the W parity symmetry is exact and unbroken by
the VEVs, H0 is stabilized and thus cannot decay if it is the
lightest of theW particles. In this regime we obtain the relic
density ofH0 at the present time and derive some constraints
on its mass. Such a scalar is within the context of the so-
called Higgs portal, which has been intensively exploited in
the literature [23,24] due to its interaction with the standard
model Higgs boson via the scalar-potential regime. We will
show that H0 can be a viable dark matter candidate that
yields the correct abundance (Ωh2 ¼ 0.11–0.12) and obeys
the direct-detection bounds [25].
In the early Universe,H0 was in thermal equilibrium with

the standard model particles. As the Universe expanded and
cooled down, it reached a point where the temperature was

roughly equal to the H0 mass, which prevented the
production of H0 particles via the annihilation of the
standard model particles; only annihilations between H0
particles occurred. However, as the Universe keeps expand-
ing, there is a point where the H0 particles can no longer
annihilate themselves into the standard model particles—
the so-called freeze-out. In this way, the H0 particles
leftover from the freeze-out populate the Universe today.
In order to find the relic density of a dark matter particle
one would need to solve the Boltzmann equation [26],
which we will do for the fermion dark matter case.
However, since H0 is a scalar dark matter particle there
are only s-wave contributions to the annihilation cross
section, and thus the abundance can be approximated as

ΩH0h2 ≃ 0.1 pb
hσvreli

: ð107Þ

Here, hσvreli is the thermal average over the cross section
for two H0’s annihilating into standard model particles
multiplied by the relative velocity between the two H0
particles.
For dark matter masses below mH=2 the Higgs portal is

quite constrained, as discussed in Refs. [23,24]. For dark
matter masses larger than the Higgs mass the annihilation
channel H0H0 → HH plays a major role in determining the
abundance. Therefore, we will focus on the Higgs portal in
order to estimate the abundance and derive a bound on the
scalar dark matter candidate. That being said, the inter-
action of H0 with H is obtained as follows:

LH0−H ¼
�
λ5
2
þ λ3

�
H2H0�H0: ð108Þ

The scattering amplitude for H0H0 → HH is

iMðH0H0 → HHÞ ¼ iðλ5 þ 2λ3Þ≡ iλ0: ð109Þ

It is also noted that there may be other contributions to λ0
mediated by the Higgs H, the new scalars, and the new
gauge bosons. However, such corrections are subleading,
with the assumptions that the λ0 coupling is of order unity
and that H0 is heavy enough. Therefore, the differential
cross section in the center-of-mass frame is given by

dσ
dΩ

¼ jMðH0H0 → HHÞj2j~kj
64π2sj~pj :

1

2
; ð110Þ

where H0 has energy and momentum H0ðE; ~pÞ, and thus
H0�ðE;−~pÞ. Also, the two outgoing Higgs bosons possess
HðE; ~kÞ and HðE;−~kÞ. The coefficient 1

2
is due to the

creation of the two identical particles. Thus, we
have

ffiffiffi
s

p ¼ 2E.
From the experimental side, the dark matter is non-

relativistic ðv ∼ 10−3cÞ. We approximate

TABLE X. The interactions of two non-Hermitian gauge
bosons and two scalars.

Vertex Coupling Vertex Coupling

X0X0�H2H2
g2

4
c2φ X0X0�H3H3

g2

4
s2φ

X0X0�H2H3 − g2

4
s2φ YþY−H2H2

g2

4
c2φ

YþY−H3H3
g2

4
s2φ YþY−H2H3 − g2

4
s2φ

WþW−Hþ
5 H

−
5

g2

2
X0X0�Hþ

5 H
−
5

g2

2
c2β

X0X0�Hþ
4 H

−
4

g2

2
YþY−Hþ

4 H
−
4

g2

2

WþW−HH g2

4
WþW−H1H1

g2

4

WþW−AA g2

4
YþY−HH g2

4
s2β

YþY−H1H1
g2

4
c2β YþY−HH1

g2

4
s2β

YþY−AA g2

4
c2β X0YþH−

5H
g2

2
ffiffi
2

p s2β

X0YþH−
5H1

g2

2
ffiffi
2

p c2β X0YþH−
5A i g2

2
ffiffi
2

p c2β

WþY−Hþ
4 H

−
5

g2

2
cβ W−X0HHþ

4
g2

2
ffiffi
2

p sβ

W−X0H1H
þ
4

g2

2
ffiffi
2

p cβ W−X0AHþ
4

−ig2

2
ffiffi
2

p cβ

X0�X0HH g2

4
c2β X0�X0H1H1

g2

4
s2β

X0�X0HH1 − g2

4
s2β X0�X0AA g2

4
s2β

YþY−Hþ
5 H

−
5

g2

2
s2β X0�X0H0�H0 g2

2

YþY−H0�H0 g2

2
WþY−HH0 g2

2
ffiffi
2

p cβ

WþY−H1H0 − g2

2
ffiffi
2

p sβ WþY−AH0 −ig2

2
ffiffi
2

p sβ

W−X0Hþ
5 H

0 g2sβ
2
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E ¼ mH0ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p ≃mH0

�
1þ 1

2
v2
�
; ð111Þ

where v is the velocity of the dark matter given in natural
units, v ≪ 1. We also have

s ¼ 4E2 ≃ 4m2
H0 ð1þ v2Þ;

j~pj ¼ mH0vffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p ≃mH0v

�
1þ 1

2
v2
�
≃mH0v: ð112Þ

The Einstein relation implies

j~kj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

H

q
≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

H0 ð1þ v2Þ −m2
H

q

≃mH0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v2 −

m2
H

m2
H0

s
≃mH0

�
1þ v2

2
−

m2
H

2m2
H0

�
: ð113Þ

Therefore, the differential cross section takes the form

dσ
dΩ

≃
λ02mH0 ð1þ v2

2
− m2

H
2m2

H0
Þ

64π24m2
H0 ð1þ v2ÞmH02v

: ð114Þ

TABLE XI. The interactions of two scalars with a non-Hermitian gauge boson and a neutral gauge boson.

Vertex Coupling Vertex Coupling

H1H−
5W

þA ge=2 AH−
5W

þA ige=2

H1H−
5W

þZ g2

4cW
ðc2W − 1Þ AH−

5W
þZ ig2

4cW
ðc2W − 1Þ

HH−
5W

þZ2
1
2
g2s2βð cξcWffiffiffiffiffiffiffiffiffiffi

3−4s2W
p þ 2tNsξ

3
Þ HH−

5W
þZN

1
2
g2s2βð −sξcWffiffiffiffiffiffiffiffiffiffi

3−4s2W
p þ 2tNcξ

3
Þ

H1H−
5W

þZ2 g2½cξðc
2
β−s

2
βc2WÞ

2cW
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ tN
3
sξc2β� H1H−

5W
þZN g2½−sξðc

2
β−s

2
βc2WÞ

2cW
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ tN
3
cξc2β�

AH−
5W

þZ2 ig2½cξðc
2
β−s

2
βc2WÞ

2cW
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ tN
3
sξc2β� AH−

5W
þZN ig2½−sξðc

2
β−s

2
βc2WÞ

2cW
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ tN
3
cξc2β�

H−
5H

þ
4 X

0A
ffiffiffi
2

p
gecβ H−

5H
þ
4 X

0Z g2cβ
2
ffiffi
2

p
cW

ð4c2W − 3Þ

H−
5H

þ
4 X

0Z2
g2cβffiffi

2
p ½ cξð3−4c2WÞ

2cW
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ 2tNsξ
3
� H−

5H
þ
4 X

0ZN
g2cβffiffi

2
p ½ −sξð3−4c2WÞ

2cW
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ 2tNcξ
3
�

HHþ
4 Y

−A gesβ
2

H1H
þ
4 Y

−A gecβ
2

AHþ
4 Y

−A −igecβ
2

HHþ
4 Y

−Z −g2sβð2−c2WÞ
4cW

H1H
þ
4 Y

−Z −g2cβð2−c2WÞ
4cW

AHþ
4 Y

−Z ig2cβð2−c2WÞ
4cW

HHþ
4 Y

−Z2
g2sβ
2
½ cξð1−2c2WÞ
2cW

ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ 2tNsξ
3
� H1H

þ
4 Y

−Z2
g2cβ
2
½ cξð1−2c2WÞ
2cW

ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ 2tNsξ
3
�

AHþ
4 Y

−Z2
−ig2cβ

2
½ cξð1−2c2WÞ
2cW

ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ 2tNsξ
3
� HHþ

4 Y
−ZN

g2sβ
2
½−sξð1−2c2WÞ
2cW

ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ 2tNcξ
3
�

H1H
þ
4 Y

−ZN
g2cβ
2
½−sξð1−2c2WÞ
2cW

ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ 2tNcξ
3
� AHþ

4 Y
−ZN

−ig2cβ
2

½−sξð1−2c2WÞ
2cW

ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ 2tNcξ
3
�

HH0X0Z g2cβ
4cW

H1H0X0Z −g2sβ
4cW

AH0X0Z −ig2sβ
4cW

HH0X0Z2
g2cβ
2
ð −cξ
2cW

ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ 2tNsξ
3
Þ

H1H0X0Z2
−g2sβ
2

ð −cξ
2cW

ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ 2tNsξ
3
Þ AH0X0Z2 − ig2sβ

2
ð −cξ
2cW

ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ 2tNsξ
3
Þ

HH0X0ZN
g2cβ
2
ð sξ
2cW

ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ 2tNcξ
3
Þ H1H0X0ZN

−g2sβ
2

ð sξ
2cW

ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ 2tNcξ
3
Þ

AH0X0ZN − ig2sβ
2

ð sξ
2cW

ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ 2tNcξ
3
Þ Hþ

5 H
0Y−A −gesβffiffi

2
p

Hþ
5 H

0Y−Z −g2sβc2W
2
ffiffi
2

p
cW

Hþ
5 H

0Y−Z2
g2sβffiffi

2
p ð −cξ

2cW
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ 2tNsξ
3
Þ

Hþ
5 H

0Y−ZN
g2sβffiffi

2
p ð sξ

2cW
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ 2tNcξ
3
Þ
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TABLE XII. The interactions of two scalars with two neutral
gauge bosons.

Vertex Coupling

H2H2Z2Z2 g2½2t2Ns2φs2ξ þ 1
2
c2φð cWcξffiffiffiffiffiffiffiffiffiffi

3−4s2W
p þ 2tNsξ

3
Þ2�

H2H2ZNZN g2½2t2Ns2φc2ξ þ 1
2
c2φð −cWsξffiffiffiffiffiffiffiffiffiffi

3−4s2W
p þ 2tNcξ

3
Þ2�

H2H2Z2ZN g2½2t2Ns2φs2ξ þ c2φð cWcξffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ 2tNsξ
3
Þð −cWsξffiffiffiffiffiffiffiffiffiffi

3−4s2W
p þ 2tNcξ

3
Þ�

H3H3Z2Z2 g2½2t2Nc2φs2ξ þ 1
2
s2φð cWcξffiffiffiffiffiffiffiffiffiffi

3−4s2W
p þ 2tNsξ

3
Þ2�

H3H3ZNZN g2½2t2Nc2φc2ξ þ 1
2
s2φð −cWsξffiffiffiffiffiffiffiffiffiffi

3−4s2W
p þ 2tNcξ

3
Þ2�

H3H3Z2ZN g2½2t2Ns2ξc2φ þ s2φð cWcξffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ 2tNsξ
3
Þð −cWsξffiffiffiffiffiffiffiffiffiffi

3−4s2W
p þ 2tNcξ

3
Þ�

H2H3Z2Z2 g2½2t2Ns2φs2ξ − s2φ
2
ð cWcξffiffiffiffiffiffiffiffiffiffi

3−4s2W
p þ 2tNsξ

3
Þ2�

H2H3ZNZN g2½2t2Ns2φc2ξ − s2φ
2
ð −cWsξffiffiffiffiffiffiffiffiffiffi

3−4s2W
p þ 2tNcξ

3
Þ2�

H2H3Z2ZN g2½2t2Ns2φs2ξ − s2φð cWcξffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ 2tNsξ
3
Þð −cWsξffiffiffiffiffiffiffiffiffiffi

3−4s2W
p þ 2tNcξ

3
Þ�

Hþ
5 H

−
5AA e2

Hþ
5 H

−
5ZZ

g2c2
2W

4c2W

Hþ
5 H

−
5Z2Z2 g2½c2βð cξ

2cW
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ tNsξ
3
Þ2 þ s2βð cξc2W

2cW
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ tNsξ
3
Þ2�

Hþ
5 H

−
5ZNZN g2½c2βð −sξ

2cW
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ tNcξ
3
Þ2 þ s2βð −sξc2W

2cW
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ tNcξ
3
Þ2�

Hþ
5 H

−
5AZ

egc2W
cW

Hþ
5 H

−
5ZZ2

g2c2W
cW

½c2βð cξ
2cW

ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ tNsξ
3
Þ − s2βð cξc2W

2cW
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ tNsξ
3
Þ�

Hþ
5 H

−
5ZZN

g2c2W
cW

½c2βð −sξ
2cW

ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ tNcξ
3
Þ − s2βð −sξc2W

2cW
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ tNcξ
3
Þ�

Hþ
5 H

−
5Z2ZN 2g2½c2βð cξ

2cW
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ tNsξ
3
Þð −sξ

2cW
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ tNcξ
3
Þ

þs2βð cξc2W
2cW

ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ tNsξ
3
Þð −sξc2W

2cW
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ tNcξ
3
Þ�

Hþ
4 H

−
4AA e2

Hþ
4 H

−
4ZZ

g2s4W
c2W

Hþ
4 H

−
4Z2Z2 g2ð −c2Wcξ

cW
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ tNsξ
3
Þ2

Hþ
4 H

−
4ZNZN g2ð c2Wsξ

cW
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ tNcξ
3
Þ2

Hþ
4 H

−
4AZ

−2egs2W
cW

Hþ
4 H

−
4AZ2 2egð −c2Wcξ

cW
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ tNsξ
3
Þ

Hþ
4 H

−
4AZN 2egð c2Wsξ

cW
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ tNcξ
3
Þ

Hþ
4 H

−
4ZZ2

−2g2s2W
cW

ð −c2Wcξ
cW

ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ tNsξ
3
Þ

Hþ
4 H

−
4ZZN

−2g2s2W
cW

ð c2Wsξ
cW

ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ tNcξ
3
Þ

(Table continued)

Vertex Coupling

Hþ
4 H

−
4Z2ZN 2g2ð −c2Wcξ

cW
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ tNsξ
3
Þð c2Wsξ

cW
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ tNcξ
3
Þ

HHZZ g2

8c2W

HHZNZN
g2

2
½s2βð −sξ

2cW
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ tNcξ
3
Þ2 þ c2βð −sξc2W

2cW
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ tNcξ
3
Þ2�

H1H1ZZ
g2

8c2W

H1H1Z2Z2
g2

2
½c2βð cξ

2cW
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ tNsξ
3
Þ2 þ s2βð cξc2W

2cW
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ tNsξ
3
Þ2�

H1H1ZNZN
g2

2
½c2βð −sξ

2cW
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ tNcξ
3
Þ2 þ s2βð −sξc2W

2cW
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ tNcξ
3
Þ2�

H1HZ2Z2
1
2
g2s2βð c2ξs

2
2W

4c2Wð3−4s2WÞ þ
tNs2ξs2W

3cW
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p Þ

H1HZNZN
1
2
g2s2βð s2ξs

2
2W

4c2Wð3−4s2WÞ −
tNs2ξs2W

3cW
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p Þ

HHZZ2
g2

2cW
½c2βð cξc2W

2cW
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ tNsξ
3
Þ − s2βð cξ

2cW
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ tNsξ
3
Þ�

HHZZN
g2

2cW
½c2βð −sξc2W

2cW
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ tNcξ
3
Þ − s2βð −sξ

2cW
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ tNcξ
3
Þ�

HHZ2ZN g2½s2βð cξ
2cW

ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ tNsξ
3
Þð −sξ

2cW
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ tNcξ
3
Þ

þc2βð cξc2W
2cW

ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ tNsξ
3
Þð −sξc2W

2cW
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ tNcξ
3
Þ�

H1H1ZZ2
g2

2cW
½s2βð cξc2W

2cW
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ tNsξ
3
Þ − c2βð cξ

2cW
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ tNsξ
3
Þ�

H1H1ZZN
g2

2cW
½s2βð −sξc2W

2cW
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ tNcξ
3
Þ − c2βð −sξ

2cW
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ tNcξ
3
Þ�

H1H1Z2ZN g2½c2βð cξ
2cW

ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ tNsξ
3
Þð −sξ

2cW
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ tNcξ
3
Þ

þs2βð cξc2W
2cW

ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ tNsξ
3
Þð −sξc2W

2cW
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ tNcξ
3
Þ�

H1HZZ2
−g2s2β
2cW

ð cξcWffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ 2tNsξ
3
Þ

H1HZZN
−g2s2β
2cW

ð −sξcWffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ 2tNcξ
3
Þ

H1HZ2ZN g2s2β½ð cξ
2cW

ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ tNsξ
3
Þð −sξ

2cW
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ tNcξ
3
Þ

−ð cξc2W
2cW

ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ tNsξ
3
Þð −sξc2W

2cW
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ tNcξ
3
Þ�

H0�H0Z2Z2 g2ð cWcξffiffiffiffiffiffiffiffiffiffi
3−4s2W

p − tNsξ
3
Þ2

H0�H0ZNZN g2ð −cWsξffiffiffiffiffiffiffiffiffiffi
3−4s2W

p − tNcξ
3
Þ2

H0�H0Z2ZN 2g2ð cWcξffiffiffiffiffiffiffiffiffiffi
3−4s2W

p − tNsξ
3
Þð −cWsξffiffiffiffiffiffiffiffiffiffi

3−4s2W
p − tNcξ

3
Þ

AAZZ g2

8c2W

AAZ2Z2
g2

2
½s2βð cξc2W

2cW
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ tNsξ
3
Þ2 þ c2βð cξ

2cW
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ tNsξ
3
Þ2�

AAZNZN
g2

2
½s2βð −sξc2W

2cW
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ tNcξ
3
Þ2 þ c2βð −sξ

2cW
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ tNcξ
3
Þ2�

AAZZ2
g2

4cW
½cξðc

2
β−c2Ws2βÞ

cW
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ 2tNsξc2β
3

�

AAZZN
g2

4cW
½−sξðc

2
β−c2Ws2βÞ

cW
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ 2tNcξc2β
3

�

AAZ2ZN
g2

2
½s2βð cξc2W

2cW
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ tNsξ
3
Þð −sξc2W

2cW
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ tNcξ
3
Þ

þc2βð cξ
2cW

ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ tNsξ
3
Þð −sξ

2cW
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ tNcξ
3
Þ�

TABLE XII. (Continued)
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It is clear that the rhs is independent of the solid angle,
where dΩ ¼ dφ sin θdθ. Hence, integrating over the total
space is the same as multiplying by 4π, σ ¼ R dσ

dΩ dΩ ¼
4π dσ

dΩ. Because the relative velocity between the two dark
matter particles is vrel ¼ 2v, we find out

σvrel ≃ 4π:2v
λ02mH0 ð1þ v2

2
− m2

H
2m2

H0
Þ

64π24m2
H0 ð1þ v2ÞmH02v

≃ λ02

64π

1

m2
H0

�
1 −

v2

2
−

m2
H

2m2
H0

�
: ð115Þ

Taking the thermal average over both sides, we get

hσvreli≃ λ02

64π

1

m2
H0

�
1 −

hv2i
2

−
m2

H

2m2
H0

�
: ð116Þ

Notice that hv2i ¼ 3
2xF

(where xF ¼ mH0
TF

≃ 20) is given at
the freeze-out temperature [26]. As mentioned before, we
are in the regime m2

H ≪ m2
H0 ; thus,

hσvreli≃
�

α

150 GeV

�
2

λ02
�
1.328 TeV

mH0

�
2

: ð117Þ

The relic density of the dark matter ðH0Þ satisfies the
Boltzmann equation with the solution given by ΩH0h2≃
0.1 pb
hσvreli ≃ 0.11. It follows that hσvreli≃ 1 pb. Since

ð α
150 GeVÞ2 ≃ 1 pb, we get

λ02
�
1.328 TeV

mH0

�
2 ≃ 1; ð118Þ

which leads to the condition for the mass of the dark
matter H0,

mH0 ≃ λ0 × 1.328 TeV: ð119Þ

To conclude, H0 is a dark matter particle if it has a mass
mH0 ≃ 1.328 TeV, provided that λ0 ≃ 1. In the context of
the Higgs portal, for the couplings of order unity the direct-
detection bounds demand dark matter masses at the TeV
order (see Refs. [23,24]). Therefore, this scalar is a viable

dark matter candidate that provides the right abundance and
obeys the direct-detection bounds. Hereafter, we will focus
our attention on the neutral fermion of the model, which is a
natural dark matter candidate because it can be easily
chosen to be the lightest particle among theW-odd particles
under the parity symmetry discussed previously.

B. Dark matter: Dirac vs Majorana fermions

Among the neutral fermions Na, the lightest one will be
denoted as N, which should not be confused with the
Uð1ÞN charge or the subscripts of the ZN gauge boson, the
gN gauge coupling, and the tN parameter. The neutrino and
charged lepton that directly couple to this neutral fermion
(N) via the X and Y gauge bosons are denoted as ν and l,
respectively. There remain two other flavors of neutrinos
and charged leptons, which are denoted as να and lα,
respectively. In this section we will not dwell on unnec-
essary details regarding the abundance and direct-detection
computation. In Fig. 1 we show the diagrams that con-
tribute to the abundance and direct-detection signals of the
fermion candidate N. Surely, the diagram that contributes
to the direct-detection signal is actually the t-channel
diagram on the right side of Fig. 1.
As will be explicitly shown at the end of Sec. VI E, the

modifications to the couplings of the Z and Z2;N gauge
bosons with fermions due to the mixing effects (Z with
Z2;N) are so small that they can be neglected in this
analysis. Similarly, the modifications to the Z2;NZH cou-
plings due to these mixings as well as the neutral scalar
mixings (H with H1;2;3) are negligible.
In addition, it is well known that the interactions of Z2

and ZN are exchangeable and only differ by the replace-
ment ðcξ → −sξ; sξ → cξÞ, respectively. Therefore, given
that these massive gauge bosons (Z2;N) are active particles
(i.e., their scales and couplings are equivalent), they play
similar roles in new physical processes (some of these can
also be seen in subsequent sections). Hence, for simplicity
we might consider one particle (Z2) to be active (which
dominantly sets the dark matter observables), while the
other one (ZN) almost decouples (which gives negligible
contributions). For this aim, we first assume that Λ > ω but
not too large, so that our postulate regarding the Λ scale,
(i.e., that it is comparable to ω) still holds. Hence, we

FIG. 1. Diagrams that contribute to the abundance of the neutral fermion. The diagram depicting a neutral fermion scattering off nuclei
can be immediately found because it is just the t channel of the right panel, mediated by the Z0-type gauge bosons (Z2 and ZN). The Z2-
mediated processes are the most relevant ones though, as we shall see later.
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choose Λ ¼ 10 TeV and vary ω below this value so that
0.1 < ω=Λ < 1 (shown in detail in the cases below). In
addition to ω and Λ, the Z2;N masses as well as their mixing
angle (ξ) still depend on their respective gauge couplings. g
and gX were fixed via the electromagnetic coupling e and
the Weinberg angle, whereas gN is unknown. But, we could

demand αN ≡ g2N
4π < 1 or jgN j < 2

ffiffiffi
π

p
so that this interaction

is perturbative. Without loss of generality, we set
0 < tN < 2

ffiffiffi
π

p
=g ¼ sWffiffi

α
p ≃ 5.43. When tN is large,

tN ≲ 5.43, we have mZN
≫ mZ2

and the mixing is small,

t2ξ ≃ − cW
3
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p
tN

ω2

Λ2 ≃ − 0.146
tN

ω2

Λ2 ≪ 1, as given from

Eq. (78). This is the case considered for the relic density
of the fermion candidate as a function of its mass (mf), and
tN ¼ 5.43 is taken into account. Notice that the dark matter
annihilation is via s channels mediated by Z2;N. The

contribution of Z2 is like
g2

s−m2
Z2

, while that of ZN is g2N
s−m2

ZN

≃
− g2N

m2
ZN

∼ − 1
Λ2 where s≡ 4m2

f ∼m2
Z2

≪ m2
ZN
. Therefore, ZN

gives a smaller contribution of order ω2=Λ2 which almost
vanishes, whereas the relic density is sensitive to Z2.
Provided that the relic density of the dark matter attains

the right value, we consider the contributions of both Z2

and ZN . This is done by varying 0 < tN < 5.43 and
−π=2 < ξ < 0 [from Eq. (78)]. When tN ≲ 5.43, Z2 domi-
nates the annihilation, as given above. But when tN is
decreased to tN ≃ cW

2
ffiffiffiffiffiffiffiffiffiffi
3−4s2W

p ω
Λ ≃ 0.219 ω

Λ or ξ≃ −π=4 [which

is the pole of t2ξ as obtained from Eq. (78)], mZN
becomes

comparable to mZ2
, and Z2 and ZN possess equivalent

gauge couplings due to the large mixing. In this case, the Z2

and ZN bosons give simultaneous dominant contributions
to the dark matter annihilation despite the fact that ω ≪ Λ.
Finally, when tN is approximately zero, tN ≈ 0, the ZN
boson governs the annihilation cross section, while the
contribution of Z2 is negligible. The regime where ZN
dominantly contributes to dark matter annihilation is very
narrow since it is bounded by the maximal mixing value at
tN ≃ 0.219ω=Λ, which is close to zero due to ω < Λ. On

the other hand, the regime where Z2 dominates dark matter
annihilation covers most of the range of tN . This is the
reason why Z2 was predicted to govern dark matter
observables while ZN was almost neglected, provided that
ω < Λ. It is also clear from the above analysis that Z2 and
ZN can have a large mixing in spite of a small ω=Λ, given
that tN ≃ 0.219ω=Λ. On the other hand, the large regime
tN ≲ 5.43 implies that these gauge bosons can slightly mix,
t2ξ ≃ − 0.146

tN
ω2

Λ2 ≪ 1, even if ω=Λ is close to one. Below, we

will display detailed computations for all the cases
mentioned.
If the candidate N is a Dirac fermion, it has both vector

and axial-vector couplings with the neutral gauge bosons.
The abundance is shown in Fig. 2. (In this figure and the
following ones, ω is sometimes denoted as w.) It is clear
from Fig. 2 that the gauge boson Z2 overwhelms the
remaining annihilation channels, in agreement with
Ref. [10], and the resonance at mZ2

=2 is crucial in
determining the abundance. Moreover, we see that the
mass regions 100–200 GeV for ω ¼ 3 TeV, 100–500 GeV
for ω ¼ 5 TeV, or 100–1000 GeV for ω ¼ 7 TeV provide
the right abundance. Additionally, in the left panel of Fig. 3
we show the region of the parameter space cosðξÞ ×
the neutral fermion mass that yields the right abundance,
where ξ is the Z2 and ZN mixing angle. When this angle
goes to zero the coupling Z2-quarks decreases, which
causes the scattering cross section to rapidly decrease, as
shown in the right panel of Fig. 3. There and throughout
this work we let the cosine of this mixing angle run from
zero to unity. [Correspondingly, ξ (tN) runs from −π=2 (0)
to 0 (5.43)]. As for the Majorana case, the overall
abundance is enhanced and hence we find a larger region
of the parameter space that yields the right abundance, as
can seen in Fig. 4.
As for the direct-detection signal, the Dirac fermion

dark matter candidates give rise to spin-independent
(vector) and spin-dependent (axial-vector) scattering cross
sections. But, due to the A2 enhancement that is typical of
heavy targets used in direct-detection experiments, the

FIG. 2 (color online). Abundance of the Dirac fermion N as a function of its mass for different scales of the symmetry breaking. The
shaded region is excluded for inducing weakly interacting massive particle (WIMP) decay such as N → Xν. One can clearly see that the
Z2 resonance plays a major role in the annihilation computation. See text for more details.
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spin-independent bounds are the most stringent ones. This
can be seen in Fig. 3. On the other hand, the Majorana
fermions have zero vector current. This is because the
current of a fermion is equal to the current of an anti-
fermion, but if one applies the Majorana condition
(ψ ¼ ψc) one finds that the vector current must vanish
(which has also been used for the abundance computation
mentioned above). Therefore, only the spin-dependent
bounds apply, which we show in Fig. 5. The LUX
Collaboration has not reported their spin-dependent bounds
yet, so the strongest constraints come from XENON100
[27]. One should conclude from Fig. 5 that the XENON100
bounds are quite loose for the Majorana fermion.

C. Monojet and dijet bounds

Monojet and dijet resonances have been searched for at
the Tevatron, ATLAS, and CMS, with null results so far.
Such signals have been intensively exploited in the liter-
ature. In particular, the dijet bounds are not sensitive to

either the dark matter mass or to the Z2-dark matter
couplings, but they are quite sensitive to the Z2-quarks
couplings. In Ref. [28] lower bounds (namely,
MZ0 ∼ 1.7 TeV) were found for dark matter masses smaller
than 500 GeV and under the assumption that the Z0 boson
couples similarly to the standard model Z boson. One
might notice that the Z2 gauge boson couples similarly to
the Z boson. Therefore, the bounds found in Ref. [28] apply
here to some extent since the couplings are not precisely
identical. That being said, the result shown in the leftmost
panel of Fig. 2 might be in tension with the existing dijet
bounds. The remaining plots do obey the dijet bounds since
they are obtained at Z2 masses greater than 1.7 TeV. It is
important to keep in mind that the collider bounds derived
from simplified models are more comprehensive than the
ones that use an effective-operator approach, because the
production cross sections that use an effective operator
either overestimate or underestimate the collider bounds,
as discussed in Refs. [29,30]. Concerning the monojet

FIG. 3 (color online). Left: The mixing angle × fermionmass plane that yields the right abundance for a Dirac fermion. The
discontinuity in the plots is due to the Z2 resonance which pushes down the overall abundance. Right: Spin-independent scattering cross
section in terms of the Dirac fermion mass for different values of the symmetry breaking. One can easily conclude that the current LUX
bounds require ω≳ 5 TeV. The mixing angle ξ is free to float in our analyses. As the mixing angle goes to zero (cos ξ → 1) the coupling
Z2-quarks decreases, as seen in Table IV.

FIG. 4 (color online). Abundance of the Majorana fermion N as a function of its mass for different scales of the symmetry breaking.
The shaded region is excluded from inducingWIMP decay such asN → Xν. One can clearly see that the Z2 resonance plays a major role
in the annihilation computation. See text for more details.
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bounds, it has been shown that the current direct-detection
limits coming from LUX are typically more stringent.
Therefore, we will not refer to the monojet bounds
hereafter.

D. FCNCs

The fermions get masses from the Yukawa interactions
when the scalar fields develop VEVs, as presented in
Ref. [2]. Due to W-parity conservation, the up quarks (ua)
do not mix with U and the down quarks (da) do not mix
with Dα (recall that the exotic quarks are W odd while the
ordinary quarks are W even). The exotic quarks gain large
masses at the ω scale and become decoupled, whereas the
ordinary quarks mix among themselves via a mass
Lagrangian of the form

Lu;d
mass ¼ −ūaLmu

abubR − d̄aLmd
abdbR þ H:c:; ð120Þ

where

mu
αa ¼

1ffiffiffi
2

p huαav; mu
3a ¼ −

1ffiffiffi
2

p huau;

md
αa ¼ −

1ffiffiffi
2

p hdαau; md
3a ¼ −

1ffiffiffi
2

p hdav: ð121Þ

The mass matrices mu ¼ fmu
abg and md ¼ fmd

abg can be
diagonalized to yield physical states and masses,

uL ¼ VuLðu c tÞTL; uR ¼ VuRðu c tÞTR;
dL ¼ VdLðd s bÞTL; dR ¼ VdRðd s bÞTR; ð122Þ

V†
uLm

uVuR ¼ diagðmu;mc;mtÞ;
V†
dLm

dVdR ¼ diagðmd;ms;mbÞ; ð123Þ

where u ¼ fuag and d ¼ fdag. The CKM matrix [31] is
defined as VCKM ¼ V†

uLVdL.
All the mixing matrices VuL; VdL; VuR; VdR, and VCKM

are unitary. The Glashow-Iliopoulos-Maiani (GIM)
mechanism [32] of the standard model works in this
model, which is a consequence of W-parity conservation.
Let us note that in the 3-3-1 model with right-handed
neutrinos, the ordinary quarks and exotic quarks that have
different T3 weak isospins mix (which is due to the
unwanted nonzero VEVs of η03 and χ01, as well as the
lepton-number-violating interactions Q̄3LχuaR, Q̄3LηUR,
Q̄3LρDαR, Q̄αLχ

�daR, Q̄αLη
�DβR, and Q̄αLρ

�UR and their
Hermitian conjugation, which directly couple ordinary
quarks to exotic quarks via mass terms [33]). Hence, in
that model the dangerous tree-level FCNCs of the Z
boson are due to the nonunitarity of the mixing matrices
listed above (VuL; VdL; VuR; VdR). Even the dangerous
FCNCs come from the one-loop contributions of the W
boson due to the nonunitarity of the CKM matrix
(VCKM). Therefore, the standard model GIM mechanism
does not work. This will be analyzed at the end of this
subsection.
In this model, the tree-level FCNCs happen only with the

new gauge bosons Z2 and ZN (notice that there is a
negligible contribution coming from the Z boson due to
the mixing with Z2;N , as explicitly shown below). This is
due to the nonuniversal property of quark representations
under SUð3ÞL, i.e., the third quark generation differs from
the first two generations. Indeed, from Eq. (95) for the
interactions of Z2;N , the right-handed flavors (ΨR) are
conserved since T8 ¼ 0, X ¼ Q, and N ¼ B − L, which
are universal for ordinary up and down quarks. But the left-
handed flavors (ΨL) change due to the fact that T8 differs
for quark triplets and antitriplets. [Note that X and N are
related to T8 by Eq. (2); the source for the FCNCs is due to
T8 only since T3 is also universal for ordinary up and down
quarks for the same reason as the flavor-conserved Z

FIG. 5 (color online). Left: The mixing angle × fermionmass plane that yields the right abundance for a Majorana fermion. Right:
Spin-dependent scattering cross section in terms of the Majorana fermion mass for different values of the symmetry breaking. One can
easily conclude that the current XENON100 bounds are rather loose.
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current.] The interactions that lead to flavor changing can
be derived from Eq. (95) as

LT8
¼ Ψ̄Lγ

μT8ΨLðg2Z2μ þ gNZNμÞ;

g2 ≡ −g
�
cξ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − t2W=3

p þ sξ
2tNffiffiffi
3

p
�
;

gN ≡ g2ðcξ → −sξ; sξ → cξÞ; ð124Þ

whereΨL indicates all ordinary left-handed quarks. We can
rewrite

LT8
¼ ðūLγμTuuL þ d̄LγμTddLÞðg2Z2μ þ gNZNμÞ
¼ ½ū0LγμðV†

uLTuVuLÞu0L þ d̄0Lγ
μðV†

dLTdVdLÞd0L�
× ðg2Z2μ þ gNZNμÞ; ð125Þ

where u0 ¼ ðu; c; tÞ, d0 ¼ ðd; s; bÞ, and Tu ¼ Td ¼
1

2
ffiffi
3

p diagð−1;−1; 1Þ. Hence, the tree-level FCNCs are

described by the Lagrangian

LFCNC ¼ q̄0iLγ
μq0jL

1ffiffiffi
3

p ðV�
qLÞ3iðVqLÞ3jðg2Z2μ þ gNZNμÞ

ði ≠ jÞ; ð126Þ

where we have denoted q as either u or d.
The FCNCs lead to hadronic mixings, such as K0 − K̄0,

D0 − D̄0, B0 − B̄0, and B0
s − B̄0

s , caused by the pairs
ðq0i; q0jÞ ¼ ðd; sÞ, ðu; cÞ, ðd; bÞ, and ðs; bÞ, respectively.
These mixings are described by the effective interactions
obtained from the above Lagrangian via Z2;N exchanges,

Leff
FCNC ¼ ðq̄0iLγμq0jLÞ2

1

3
½ðV�

qLÞ3iðVqLÞ3j�2
�

g22
m2

Z2

þ g2N
m2

ZN

�
:

ð127Þ

The strongest constraint comes from the K0 − K̄0

mixing [1],

1

3
½ðV�

dLÞ31ðVdLÞ32�2
�

g22
m2

Z2

þ g2N
m2

ZN

�
<

1

ð104 TeVÞ2 : ð128Þ

Assuming that ua is flavor diagonal, the CKMmatrix is just
VdL (i.e., VCKM ¼ VdL). Therefore, jðV�

dLÞ31ðVdLÞ32j≃
3.6 × 10−4 [1] and we have

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g22
m2

Z2

þ g2N
m2

ZN

s
<

1

2 TeV
: ð129Þ

This gives constraints on the mass and coupling of the new
neutral gauge bosons,

mZ2;N
> g2;N × 2 TeV: ð130Þ

There is another bound coming from the B0
s − B̄0

s mixing
that is given by [1]

1

3
½ðV�

dLÞ32ðVdLÞ33�2
�

g22
m2

Z2

þ g2N
m2

ZN

�
<

1

ð100 TeVÞ2 : ð131Þ

In this case, the CKM factor is jðV�
dLÞ32ðVdLÞ33j≃

3.9 × 10−2 [1]. Therefore, we have

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g22
m2

Z2

þ g2N
m2

ZN

s
<

1

2.25 TeV
; ð132Þ

which implies

mZ2;N
> g2;N × 2.25 TeV: ð133Þ

To be concrete, suppose that Z2 and ZN have approx-
imately equal masses and tN ¼ gN=g ¼ 1 so that the B − L
interaction strength is equivalent to that of the weak
interaction. From Eq. (129), we get

mZ2
≈mZN

> 2.037 TeV; ð134Þ

while the relation (132) yields

mZ2
≈mZN

> 2.291 TeV: ð135Þ

Here, we have used g2 ¼ 4πα=s2W , with s2W ¼ 0.231 and
α ¼ 1=128. This is in good agreement with the recent
bound reported in Ref. [34]. Notice that we have used
mZN

≫ mZ2
in the dark matter subsections, which translates

to mZ2
≳ 1 TeV.

Finally, let us give some remarks on the FCNCs due to
the mixing effect of the neutral gauge bosons. In this case,
the Lagrangian (124) is changed by the replacement

g2Z2μ þ gNZNμ → g1Z1μ þ g2Z2μ þ gNZNμ; ð136Þ

where

g1 ≡ g2ðcξ → −E1; sξ → −E2Þ ¼ −
ffiffiffi
3

p
g

4c3W

v2 − c2Wu2

ω2
:

ð137Þ

Correspondingly, the effective interactions for the FCNCs
given by Eq. (127) are also changed by the replacement

g22
m2

Z2

þ g2N
m2

ZN

→
g21
m2

Z1

þ g22
m2

Z2

þ g2N
m2

ZN

: ð138Þ

Let us compare the new contribution with the existing one,
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R≡ g21=m
2
Z1

ðg22=m2
Z2
Þ þ ðg2N=m2

ZN
Þ : ð139Þ

It is sufficient to consider two cases: Λ ≫ ω and Λ ∼ ω. For
the first case, R is similar to (becomes) the 3-3-1 model
with right-handed neutrinos,

R≃g21=m
2
Z1

g22=m
2
Z2

≃ 1

4c4W

ðv2−c2Wu2Þ2
ω2ðu2þv2Þ <

1

4c4W

�
vw
ω

�
2

< 0.0025;

ð140Þ

which is very small. Above, we have used m2
Z1
≃

g2ðu2 þ v2Þ=ð4c2WÞ, m2
Z2

≃ g2c2Wω
2=ð3 − 4s2WÞ, v2w ¼

u2 þ v2 ¼ ð246 GeVÞ2, and ω > 3.198 TeV as derived
from the ρ parameter. For the second case, the contributions
of Z2 and ZN are equivalent. So, the first remark is that
R ∼ ðg21=g22;NÞðm2

Z2;N
=m2

Z1
Þ ∼ E2

1;2ðm2
Z2;N

=m2
Z1
Þ ∼ ðu4=ω4Þ×

ðω2=u2Þ ¼ u2=ω2, which starts at the ðu=ωÞ2 order and
must be small too. Indeed, let us show this explicitly:

R ≤
g21=m

2
Z1

2jg2gN j=ðmZ2
mZN

Þ

¼ 1

8c3WtN js2ξj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − 4s2W

p ðv2 − c2Wu2Þ2
ωΛðu2 þ v2Þ

<
1

8c3WtN js2ξj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − 4s2W

p v2w
ωΛ

≃ 0.00076; ð141Þ

provided that tN ¼ 1, ξ ¼ −π=4 (s2ξ is finite due to the
large mixing of Z2 and ZN , and thus such a value could be
chosen), and Λ ¼ ω ¼ 3.198 TeV. Above, we have also
used mZ2

mZN
¼ 2g2cWtNωΛ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − 4s2W

p
, which can be

derived from Eqs. (79) and (80), the expression (78) for
the ξ mixing angle, and m2

Z1
as approximated before. In

summary, the mixing effects with the Z boson do not affect
the FCNCs.
For the sake of completeness, let us point out the

dangerous FCNCs of the Z boson due to the mixing of
the ordinary quarks and exotic quarks that happens in the
3-3-1 model with right-handed neutrinos, which should be
suppressed. The mixing matrices are redefined as
ðu1u2u3UÞTL;R¼VuL;RðuctTÞTL;R and ðd1d2d3D1D2ÞTL;R¼
VdL;RðdsbDSÞTL;R, so that the 4 × 4 mass matrix of up
quarks ðua; UÞ and the 5 × 5 mass matrix of down quarks
ðda;DαÞ are diagonalized [33]. The Lagrangian that
describes the FCNCs of the Z boson is given by
ð�Þ g

2cW
q̄0iLγ

μq0jLðV�
qLÞIiðVqLÞIjZμ, where I ¼ 4 for Vu

and a plus sign is applied, but I ¼ 4, 5 for Vd and a
minus sign is applied. (Note, however, that the right chiral
currents of Zμ do not flavor change since T3 ¼ 0 for any

right-handed fermion.) All of these lead to the effective
interactions for the hadronic mixings due to the exchange
of the Z boson,

ðq̄0iLγμq0jLÞ2½ðV�
qLÞIiðVqLÞIj�2

1

u2 þ v2
; ð142Þ

where we have used m2
Z ¼ g2ðu2 þ v2Þ=ð4c2WÞ, and we

note that v2w ≡ u2 þ v2 ¼ ð246 GeVÞ2. In the 3-3-1
model with right-handed neutrinos, the Lagrangian for
the FCNCs of the Z0 boson is easily obtained as

−gffiffiffiffiffiffiffiffiffiffiffi
1−t2W=3

p q̄0iLγ
μq0jL

1ffiffi
3

p ½V†
qLVqL�ijZ0

μ, where ½V†
uLVuL�ij ≡

ðV�
uLÞ3iðVuLÞ3j − 1

2
ðV�

uLÞ4iðVuLÞ4j and ½V†
dLVdL�ij≡

ðV�
dLÞ3iðVdLÞ3j þ 3

2
ðV�

dLÞIiðVdLÞIj. Hence, the effective
interactions for the hadronic mixings due to the Z0 con-
tribution are given by

ðq̄0iLγμq0jLÞ2½V†
qLVqL�2ij

1

ω2
; ð143Þ

where we have adoptedm2
Z0 ≃ g2c2W

3−4s2W
ω2 [22]. Since theweak

scale vw in Eq. (142) is too low in comparison to the
3-3-1 scale ω in Eq. (143), it is clear that if the mixing of
the ordinary quarks and exotic quarks is similar in size to that
of the ordinary quarks, ðV�

qLÞIiðVqLÞIj ∼ ðV�
qLÞ3iðVqLÞ3j,

the FCNCs due to the Z boson (142) are too large
(∼ω2=v2w ∼ 102 times the one coming from Z0 or the bound
for the K0 − K̄0 mixing); as such, the theory is invalid.
Hence, the FCNCs due to the ordinary and exotic quark
mixing are more dangerous than those coming from the
nonuniversal interactions of the Z0 boson. To avoid the
large FCNCs, one must assume jðV�

qLÞIiðVqLÞIjj ≪
jðV�

qLÞ3iðVqLÞ3jj [and that the FCNCs of Z0 are domi-

nated by the ordinary quark mixing, ½V†
qLVqL�ij≃

ðV�
qLÞ3iðVqLÞ3j]. Indeed, the K0 − K̄0 mixing constrains

Eq. (142) to be

jðV�
dLÞI1ðVdLÞI2j≲ 10−5: ð144Þ

Thismixingof the exotic andordinary quarks ismuch smaller
than the smallest mixing element (about 5 × 10−3) of the
ordinary quark flavors from the CKM matrix [1]. Therefore,
the 3-3-1-1 gauge symmetry as well as the resultingW parity
provide a more natural framework that not only solves these
problems (including the large FCNCs, the unitarity of the
CKMmatrix, the lepton and baryon number symmetries, and
the CPT theorem, which have strictly been proven by
experiment [1]), but it also gives the small neutrino masses
and dark matter candidates.
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E. LEPII searches for Z2 and ZN

LEPII searches for new neutral gauge bosons via the
channel eþe− → ff̄, where f is any ordinary fermion [35].
In this model, the new physics effect in such a process is
due to the dominant contribution of the Z2 and ZN gauge
bosons, which are s-channel exchanges for f ≠ e. The
effective interaction for these contributions can be derived
[with the help of Eq. (99)] as

Leff
LEP2 ¼

g2

c2Wm
2
I
½ēγμðaILðeÞPL þ aIRðeÞPRÞe�½f̄γμðaILðfÞPL

þ aIRðfÞPRÞf� ðI ¼ Z2; ZNÞ; ð145Þ

where the chiral couplings are given by

aILðfÞ ¼
gIVðfÞ þ gIAðfÞ

2
; aIRðfÞ ¼

gIVðfÞ − gIAðfÞ
2

:

ð146Þ

Let us study a particular process for f ¼ μ,
eþe− → μþμ−. The chiral couplings can be obtained from
Tables III and IV as

aZ2

L ðeaÞ ¼
cξc2W

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − 4s2W

p −
2

3
sξcWtN;

aZ2

R ðeaÞ ¼ −
cξs2Wffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − 4s2W

p − sξcWtN;

aZN
L;R ¼ aZ2

L;Rðcξ → −sξ; sξ → cξÞ: ð147Þ

The effective interaction can be rewritten as

Leff
LEP2 ¼

g2

c2W

�½aZ2

L ðeÞ�2
m2

Z2

þ ½aZN
L ðeÞ�2
m2

ZN

�
ðēγμPLeÞðμ̄γμPLμÞ

þ ðLRÞ þ ðRLÞ þ ðRRÞ; ð148Þ

where the last three terms differ from the first one only in
chiral structures.
Notice that LEPII searches for such chiral interactions

and gives several constraints on the respective couplings,
which are commonly given at the order of a few TeV [35].
Therefore, let us choose a typical value,

g2

c2W

�½aZ2

L ðeÞ�2
m2

Z2

þ ½aZN
L ðeÞ�2
m2

ZN

�
<

1

ð6 TeVÞ2 : ð149Þ

It is noted that this value, 6 TeV, is also a bound derived for
the case of the Uð1ÞB−L gauge boson [36].
Similar to the previous subsection, we suppose that Z2

and ZN have approximately equal masses (mZ2
≈mZN

) and
tN ¼ 1. The above constraint leads to

mZ2
≈mZN

> 2.737 TeV: ð150Þ

This bound is in good agreement with the limit in
the previous subsection via the FCNCs and the ones
given in the literature [34]. As we previously emphasized,
in the dark matter subsections we have adopted
mZN

≫ mZ2
, and therefore in this regime a bound onmZ2

∼
TeV arises.
Finally, let us discuss the contribution of the mixing

effects of the neutral gauge bosons to the above process.
When the mixing is turned on, the interacting Lagrangian
of the neutral gauge bosons takes the form
− g

cW
f̄γμ½ ~aZi

L ðfÞPL þ ~aZi
R ðfÞPR�fZiμ, where i ¼ 1; 2; N

and the (chiral) couplings of the neutral gauge bosons
are correspondingly changed as follows:

aZL;RðfÞ → ~aZ1

L;RðfÞ≡ aZL;RðfÞ þ aZ2

L;RðfÞðcξ → −E1; sξ → −E2Þ;
aZ2

L;RðfÞ → ~aZ2

L;RðfÞ≡ aZ2

L;RðfÞ þ aZL;RðfÞ × ðE1cξ þ E2sξÞ;
aZN
L;RðfÞ → ~aZN

L;RðfÞ≡ aZN
L;RðfÞ þ aZL;RðfÞ × ð−E1sξ þ E2cξÞ: ð151Þ

We realize that the second term in each expression is the E1;2 correction corresponding to the existing couplings due to the
mixing, which can be neglected because of the small values of E1;2, as given in Eq. (76). Indeed, for the concerned process
eþe− → μþμ−, let us consider the ratios of the corrections to the respective existing couplings for f ¼ ea (the charged
leptons). With the Z1 couplings, we have

���� a
Z2

L ðeaÞðcξ → −E1; sξ → −E2Þ
aZLðeaÞ

���� ¼
���� E1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3 − 4s2W
p −

4cWtN
3c2W

E2

���� < 2.43 × 10−3; ð152Þ
���� a

Z2

R ðeaÞðcξ → −E1; sξ → −E2Þ
aZRðeaÞ

���� ¼
���� E1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3 − 4s2W
p þ cWtN

s2W
E2

���� < 2.43 × 10−3; ð153Þ
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which are easily obtained with the help of Eq. (76), s2W ¼ 0.231, and Λ ∼ ω > 3.198 TeV. Similarly, for the Z2 couplings,
we have ���� aZLðeaÞ × ðE1cξ þ E2sξÞ

aZ2

L ðeaÞ

���� ¼
���� E1cξ þ E2sξ

cξffiffiffiffiffiffiffiffiffiffi
3−4s2W

p − 4cW
3c2W

tNsξ

���� < 5.04 × 10−3; ð154Þ

���� aZRðeaÞ × ðE1cξ þ E2sξÞ
aZ2

R ðeaÞ

���� ¼
���� E1cξ þ E2sξ

cξffiffiffiffiffiffiffiffiffiffi
3−4s2W

p þ cW
s2W
tNsξ

���� < 5.04 × 10−3; ð155Þ

where we notice that the mixing angle of the Z0 and C
gauge bosons is bounded by −π=4 < ξ < 0 if tN > 0,
or by 0 < ξ < π=4 if tN < 0. The corrections to the
ZN couplings are small as well. Therefore, the mixing
effects of the neutral gauge bosons do not affect the
standard model eþe− → μþμ− process or our results
given above with the Z2;N exchanges in the absence of
the mixing.

F. Radiative β decays involving Z2;N and the
violation of CKM unitarity

CKM unitarity implies
P

d0¼d;s;bV
�
u0d0Vu00d0 ¼ δu0u00 andP

u0¼u;c;tV
�
u0d0Vu0d00 ¼ δd0d00 , where the elements of the

CKM matrix Vu0d0 ≡ ðV†
uLVdLÞu0d0 (u0 ¼ u, c, t and

d0 ¼ d, s, b) are defined as before. The standard model
calculations have provided a very good agreement with the
above relations [1]. However, if there is a possible
deviation, it is the sign for the violation of CKM unitarity.

Focusing on the first row, the experimental bound
yields [1]

ΔCKM ¼ 1 −
X

d0¼d;s;b

jVud0 j2 < 10−3: ð156Þ

This violation can give the constraints on the new neutral
Z2;N gauge bosons as a result of their loop effects that
contribute to ΔCKM.
Indeed, the ΔCKM deviation is derived from the one-loop

radiative corrections via the new Z2;N and W bosons to
quark β-decay amplitudes from which the Vud, Vus, and
Vub elements are extracted, including muon decay which
normalizes the quark β-decay amplitudes. These have
previously been studied in other theories (such as in
Ref. [37], where similar respective diagrams for quark
and muon β decays were displayed). Generalizing the
results in Ref. [37], the deviation is obtained as

ΔCKM ≃ −
3

4π2
X

I¼Z2;ZN

m2
W

m2
I
ln
�
m2

W

m2
I

�
ðGI

eLÞ11
�
ðGI

eLÞ11 −
ðGI

dL
Þ11 þ ðGI

uLÞ11
2

�
; ð157Þ

where the lepton and quark couplings are given in the physical basis of the left chiral fields when coupled to Z2;N , i.e.,
f̄0Lγ

μGI
fL
f0LIμ, with GI

fL
≡ − g

cW
V†
fLa

I
LðfÞVfL, which gives

ðGI
eLÞ11 ¼ ðGI

νLÞ11 ¼ −
g
cW

aILðeaÞ; ðGZ2
uLÞ11 ¼

gcξ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − 4s2W

p
6cW

; ðGZN
uL Þ11 ¼

−gsξ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − 4s2W

p
6cW

;

ðGZ2

dL
Þ11 ¼

gcξ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − 4s2W

p
6cW

−
g
cW

�
cξc2Wffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − 4s2W

p þ 2

3
sξcWtN

�
jðVdLÞ31j2;

ðGZN
dL
Þ11 ¼ ðGZ2

dL
Þ11ðcξ → −sξ; sξ → cξÞ: ð158Þ

Notice that the mixing effect of the neutral gauge bosons (Z with Z2;N) do not affect these processes, as was explicitly
pointed out in the previous subsection.
Therefore, we have

ΔCKM≃−
3g2

4π2
m2

W

m2
Z2

ln

�
m2

W

m2
Z2

��
2

3
sξtN−

cξc2W
2cW

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3−4s2W

p ��
2

3
sξtN−

cξð3−5s2WÞ
3cW

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3−4s2W

p �
þðZ2→ZN ;cξ→−sξ;sξ→cξÞ: ð159Þ

We consider two typical cases: Λ ≫ ω and Λ ∼ ω. In the first case, ZN does not contribute, i.e., the second term above
vanishes, and ξ ¼ 0. Therefore, this is the case of the 3-3-1 model with right-handed neutrinos. We have
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ΔCKM ≃ −0.0033
m2

W

m2
Z2

ln

�
m2

W

m2
Z2

�
: ð160Þ

Using the bound (156) andmW ¼ 80.4 GeV, the Z2 mass is
constrained bymZ2

> 200 GeV. In fact, the Z2 mass should
be in the TeV range due to the other constraints given above.
For example, by taking mZ2

> 1 TeV, we get ΔCKM <
10−4. Consequently, this case gives a very small contribu-
tion to the violation of CKM unitarity and thus the model
easily evades the experimental bound. In the second case,
assuming that the new neutral gauge bosons have approx-
imately equal masses (mZ2

≃mZN
) and tN ¼ 1, we derive

ΔCKM ≃ −0.0143
m2

W

m2
Z2;N

ln

�
m2

W

m2
Z2;N

�
: ð161Þ

Using the bound (156) we have m2
Z2

≃m2
ZN

> 600 GeV.
The model in this case easily evades the experimental bound
too. To conclude, the new neutral gauge bosons Z2;N give a
negligible contribution to the violation of CKM unitarity.

VII. DISCUSSION AND CONCLUSION

In the standard model, the fermions come in generations,
with each subsequent generation being a replication of the
former. The gauge anomaly is cancelled out over every
generation. Thus, on this theoretical ground the number of
generations can be arbitrary. This may be due to the
fact that the SUð2ÞL anomaly trivially vanishes for any
chiral fermion representation. If the SUð2ÞL is minimally
extended to SUð3ÞL with a corresponding enlargement of
the lepton and quark representations (i.e., the doublets are
enlarged to triplets/antitriplets while the singlets remain the
same, but for some cases the lepton singlets are put into the
corresponding triplets/antitriplets as well), the new SUð3ÞL
anomaly generally does not vanish for each nontrivial
representation. Subsequently, this constrains the generation
number to be an integer multiple of three—the fundamental
color number—in order to cancel the anomaly over the total
fermion content, which provides a partial solution to the
number of fermion generations. Aside from this feature,
some very fundamental aspects of the standard model can
also be understood by the presence of the SUð3ÞL that
causes the electric-charge quantization [9], the Peccei-
Quinn-like symmetry for the strong CP problem [8], and
the oddly heavy top quark [7]. On the other hand, the B − L
number and electric charge Q operators do not commute,
and they are also algebraically nonclosed with respect to
the SUð3ÞL generators. If we suppose that B − L is
conserved similarly to Q, such a SUð3ÞL theory is only
manifest if it includes two extra Abelian factors so that all
the algebras are closed, and the resulting gauge symmetry
SUð3ÞL ⊗ Uð1ÞX ⊗ Uð1ÞN yields a unification of the
weak, electromagnetic, and B − L interactions [apart from
the strong interaction from the SUð3ÞC gauge group].

Besides the B and L symmetries, some very fundamental
matters of the 3-3-1 model can also be understood by
this setup.
Firstly, the breakdown of the 3-3-1-1 gauge symmetry

produces a conserved Z2 subgroup (as a remnant) calledW
parity—similar to R parity in supersymmetry—that plays
an important role and provides insights into the present
model. The lightest wrong-lepton particle is stabilized due
to W-parity conservation, which is responsible for dark
matter. Two dark matter particles have been recognized: a
neutral complex scalar H0 and a neutral fermion N of either
Dirac or Majorana nature. The GIM mechanism for the
standard model currents works in this model due to
W-parity conservation, while the new FCNCs are strictly
suppressed. In fact, the experimental bounds can be easily
evaded, with the expected masses for the new neutral gauge
bosons Z2;N being a few TeV. Because of W-parity
conservation, the new neutral non-Hermitian gauge boson
X does not mix with the neutral Z1;2;N gauge bosons.
Hence, there is no mass splitting within the real and
imaginary components of X that ensures the conservation
of CPT symmetry. These problems of the 3-3-1 model with
right-handed neutrinos have been solved.
We have shown that the B − L interactions can coexist

with the new 3-3-1 interactions at the TeV scale. To realize
this, the scales of the 3-3-1-1 and 3-3-1 breakings are taken
to be at the same energy scale Λ ∼ ω. In this regime, the
scalar potential has been diagonalized. The number of
Goldstone bosons matches the number of massive gauge
bosons. There are 11 physical scalar fields, one of which is
identified as the standard model Higgs boson. The new
physical scalar fields H0

1;2;3, A
0, H�

4;5, and H
00;0� are heavy,

with masses at the ω, Λ, or
ffiffiffiffiffiffiffiffiffijωfjp

scale. There is a finite
mixing between the Higgs scalars—S4 for the Uð1ÞN
breaking and S3 for the 3-3-1 breaking—that gives two
physical fields, H2;3. The standard model Higgs boson is
light with a mass at the weak scale due to the seesaw-
type mechanism associated with the little hierarchy
u; v ≪ ω;Λ;−f. The Higgs mass gets the correct value
of 125 GeV provided that the effective coupling λ̄≃ 0.5,
with the assumption u ¼ v, ω ¼ −f. All of the physical
scalar fields are W even, except for H0 and H4 (the W
particles), which are W odd.
In the proposed regime Λ ∼ ω the gauge sector has been

diagonalized, and we recognize the standard model gauge
bosons W�, A, and Z. Moreover, we have six new gauge
bosons: X0;0�, Y�, and Z2;N . Although the Z boson mixes
with the new neutral gauge bosons, it is light due to a
seesaw-type mechanism in the gauge sector. In order to
reproduce the standard model W-boson mass, we have
constrained u2 þ v2 ¼ ð246 GeVÞ2. From the experimen-
tal bound on the ρ parameter, we get ω > 3.198 TeV
provided that Λ≃ ω and u≃ v. There is a finite mixing
between the Uð1ÞN gauge boson and the Z0 of the 3-3-1
model that produces two physical states by diagonalization:
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the 3-3-1-like gauge boson Z2 and the Uð1ÞN-like gauge
boson ZN . All the gauge bosons are W even except for X
and Y, which are theW particles. The new neutral complex
gauge boson X cannot be a dark matter candidate because it
annihilates into standard model particles before the thermal
equilibrium process has ended [2].
All the interactions of the gauge bosons with the

fermions and scalars have been obtained. The result shows
that every interaction conserves W parity. The correspond-
ing standard model interactions are recovered. The new
interactions as well as their implications for phenomeno-
logical processes of new physics are rich and warrant
further studies. In this paper, some of the new interactions
have been used for analyzing the new FCNCs, the LEPII
Collider, the violation of CKM unitarity, and fermionic
dark matter observables. Because of the seesaw-type
mixing suppression between the light and heavy states
—namely between the Z and new Z2;N gauge bosons, as
well as between the H and new H1;2;3 Higgs bosons—the
mixing effects are radically small. It has been explicitly
pointed out that the new physics effects via these mixings
in the gauge sector can to be safely neglected. For the
scalar sector, the new physics effects via these mixings are
also negligible, and were disregarded for most cases
involving small scalar self-couplings (see the main text
for more details). The scalar self-couplings would give
considerable contributions if they were stronger, but they
are still within the current bounds. The accuracy of the
standard model Higgs mechanism (if it is the case) could
give some constraints on these mixing effects.
Supposing that the scalar dark matter H0 dominantly

annihilates into the standard model Higgs boson H via
the Higgs portal, the relic density of H0 has been calcu-
lated. The correct experimental value is obtained if
mH0 ¼ 1.328 TeV, where it is assumed that the H0�H0 →
HH coupling is equal to unity, λ0 ¼ 1. When the neutral
fermion is a Dirac particle, we conclude that a ω scale of the
symmetry breaking greater than ∼5 TeV is required in
order to obey the LUX2013 bounds. On the other hand,
when the neutral fermion is a Majorana particle the direct-
detection bounds are quite loose and a larger region of the
parameter space has been found that yields the right
abundance. The fermion dark matter observables are
governed by the Z2 gauge boson provided that Λ > ω.
Only if gN ≪ g with Λ ∼ ω either the Λ is smaller than the
ω (which is hardly occurred) with gN ∼ g, the ZN con-
tribution becomes comparable to that of the Z2 boson.
We have shown that the CKM matrix is unitary and the

ordinary GIM mechanism of the standard model works in
this model due to W-parity conservation. We have also
discussed the fact that this mechanism does not work in the
3-3-1 model with right-handed neutrinos, and in such a case
the tree-level FCNCs due to the ordinary and exotic quark
mixing are more dangerous than those coming from the

nonuniversal couplings of the Z2;N gauge bosons. All the
FCNCs associated with the Z boson due to the above
fermion mixing are prevented because of W-parity con-
servation. The new FCNCs coupled to Z2;N are highly
suppressed as well. In fact, the FCNCs due to Z2;N can be
present, but they can be easily evaded by the new physics in
the TeV range. Using the current bound on the K0 − K̄0

system, we have shown that mZ2;N
> 2.037 TeV under the

assumption that Z2 and ZN have approximately equal
masses and that tN ¼ 1 (i.e., the B − L interaction strength
is equal to that of the weak interaction). For the B0

s − B̄0
s

system, the bound is mZ2;N
> 2.291 TeV, under the same

assumptions as in the previous case. For the hierarchical
masses of Z2 and ZN , the smaller mass will take a smaller
bound, e.g., mZ2

> g2 × 2 TeV, corresponding to the K0 −
K̄0 system, where g2 is the reduced gauge coupling that has
a natural value smaller than unity.
The new neutral currents in the model are now detected

by the experiments. We have calculated the contributions of
Z2 and ZN—which dominate the corrections of the new
physics—to the process eþe− → μþμ− at the LEPII
Collider. From the experimental bounds, we have shown
that mZ2;N

> 2.737 TeV provided that these gauge bosons
have approximately equal masses and that tN ¼ 1.
Similarly, for the hierarchal Z2 and ZN masses, the smaller
mass will possess a smaller bound than the above result.
Moreover, we have also indicated that the violation of
CKM unitarity due to the one-loop effects of the new
neutral gauge bosons Z2;N are negligible if the Z2;N masses
are in the TeV range, which is expected.
Finally, the 3-3-1-1 model—which unifies the electro-

weak and B − L interactions along with the strong inter-
action—is a self-consistent extension of the standard model
that solves the potential problems of the 3-3-1 model,
namely, the consistency of the B, L, and CPT symmetries,
and the large FCNCs. The new physics of the 3-3-1-1
model is interesting, possibly appearing in the TeV region.
For all of these reasons, we believe that the 3-3-1-1 model
is a compelling theory that warrants much experimental
attention.
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