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Motivated by the observation that the Higgs quartic coupling runs to zero at an intermediate scale, we
propose a new framework for models of split supersymmetry, in which gauginos acquire intermediate scale
Dirac masses of ∼108−11 GeV. Scalar masses arise from one-loop finite contributions as well as direct
gravity-mediated contributions. Like split supersymmetry, one Higgs doublet is fine-tuned to be light. The
scale at which the Dirac gauginos are introduced to make the Higgs quartic zero is the same as is necessary
for gauge coupling unification. Thus, gauge coupling unification persists (nontrivially, due to adjoint
multiplets), though with a somewhat higher unification scale ≳1017 GeV. The μ term is naturally at the
weak scale, and provides an opportunity for experimental verification. We present two manifestations of
split Dirac supersymmetry. In the “pure Dirac” model, the lightest Higgsino must decay through R-parity
violating couplings, leading to an array of interesting signals in colliders. In the “hypercharge impure”
model, the bino acquires a Majorana mass that is one-loop suppressed compared with the Dirac gluino and
wino. This leads to weak scale Higgsino dark matter whose overall mass scale, as well as the mass splitting
between the neutral components, is naturally generated from the same UV dynamics. We outline the
challenges to discovering pseudo-Dirac Higgsino dark matter in collider and dark matter detection
experiments.
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I. INTRODUCTION

In the minimal supersymmetric extension of the
Standard Model (MSSM), the Higgs quartic coupling is
predicted, in terms of a handful of parameters that deter-
mine the tree-level and loop-corrected contributions. Now
that the LHC has measured the Higgs mass [1,2], and
consequently the quartic coupling in the Standard Model,
this measurement can be used to reverse-engineer the
parameters and relevant mass scales of the supersymmetric
theory. Scales well above the weak scale are predicted:
m~t ≃ 5 TeV for tan β ≫ 1 and jAtj ≪ m~t (e.g. [3–7]) and
in split supersymmetry [8–10] m~t ≳ 108 GeV for tan β≃ 1
[11–14]. The long tail to very large superpartner masses
results from the vanishing of the tree-level quartic coupling
in the tan β → 1 limit. Reverse-engineering the mass scales
of the MSSM is unfortunately not very predictive after all.
Supersymmetric models with Dirac gaugino masses, first

studied in [15–17] with more model-building explored in
[18–37], predict the Higgs quartic coupling to vanish once
the gauginos and their scalar counterparts are integrated
out1 [18]. This is an improvement on the MSSM, in so far
as there is a single prediction for the scale of supersym-
metry breaking masses. Reverse-engineering this scale, and

one finds MD ∼ 1011 GeV, where λhðMDÞ≃ 0 (for exam-
ple, [38–45]). This is akin to the original split supersym-
metry models [8–10], except that both gauginos and scalars
are expected to be within an order of magnitude of this large
intermediate scale. Unlike split supersymmetry models,
however, there are negligible corrections to the running of
the Standard Model quartic coupling for scales below ≪
MD (and hence the difference between the upper bound of
∼108 GeV in split supersymmetry models with light
gauginos [11] from ∼1011 GeV in split Dirac supersym-
metry models). Other recent versions of intermediate scale
supersymmetry include [46–53].
This is an idealized scenario. In practice, there are

additional contributions to the Higgs quartic coupling even
in models with dominantly Dirac gaugino masses. For one,
anomaly mediation provides an irreducible Majorana con-
tribution to gaugino masses as well as a separate contri-
bution to the adjoint scalar masses, the latter causing
corrections to the pure Dirac prediction of a vanishing
quartic coupling. The size of Majorana masses is naturally
loop-suppressed compared with the Dirac gaugino masses,
for example in models with gravity mediation [30]. This
leads to a very small contribution to the quartic coupling.
Another contribution arises from the dimension-six (so
called “lemon-twist”) operator [18] in the superpotential,
W0W0trΦ2=M2, that results in shifts of the masses of scalar
components of the adjoint superfields. The mass shifts

1Assuming just the dimension-five supersoft operator; more on
this in Sec. II.
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cause an incomplete cancellation of the quartic, though it is
controllable within the order one differences between the
coefficients of these operators and tan β. Yet another
contribution is a supersymmetric mass for the adjoint
superfield, which shifts both the gaugino masses as well
as the scalar masses, the latter causing corrections to the
pure Dirac prediction of a vanishing quartic coupling as
before. Finally, the superpotential operator that generates
Dirac gaugino masses may not exist for all of the gauge
groups. In the hypercharge impure model that we discuss
below, there is no singlet partner for the bino, and thus, the
bino does not acquire a Dirac mass. As a consequence, the
bino acquires a loop-suppressed Majorana mass from
anomaly mediation, and regenerates a small Higgs quartic
coupling, λh ≃ ðg02cos22βÞ=4. This implies a restricted
range of intermediate scales for the supersymmetry break-
ing masses is predicted, between 108 to 1010 GeV, corre-
sponding to between tan β ≫ 1 to tan β≃ 1.
The μ parameter could be small or near the intermediate

scale, depending on whether a “bare” Uð1ÞPQ-breaking
mass,

R
d4θHuHd, is permitted [13]. As a chiral Kähler

operator, it is technically natural to omit it, which we do.
Thus, we consider Bμ and μ generated through higher-
dimensional operators after supersymmetry is broken.
Kähler operators at dimension six can lead to both Bμ

and μ fromD-term and F-term contributions. If there are no
singlets in the hidden sector, which is consistent with the
gauginos not acquiring Majorana masses (except through
anomaly mediation), the leading operator to generate μ isR
d4θW0†W0†HuHd=Λ3, which is dimension seven, and

thus suppressed relative to the intermediate scale. Bμ can
arise through a dimension-six operator in the superpotentialR
d2θW0W0HuHd=Λ2, whose coefficient is set by doing one

fine-tuning to get one Higgs doublet light. Given Bμ, as
well as anomaly-mediated Majorana contributions to the
gaugino masses, both Uð1ÞPQ and Uð1ÞR are broken in the
visible sector near the intermediate scale, and thus there is
also a one-loop radiative contribution to μ [9,10]. In the
hypercharge impure model, this one-loop radiative contri-
bution provides the dominant contribution to μ, analogous
to one version of spread supersymmetry [12], as we
will see.
Remarkably, gauge coupling unification persists when

μ∼ weak scale with a Dirac gluino and Dirac wino at an
intermediate scale. Gauge coupling unification with inter-
mediate scale Dirac gauginos has been studied before [22],
and unification occurs with fairly good accuracy even when
light Higgsinos are the only new physics affecting gauge
coupling running [54,55]. In the models we consider, given
a weak scale μ parameter, the leading difference at one-loop
from the MSSM is the scale of the Dirac gaugino masses
and the additional degrees of freedom due to the additional
adjoint chiral superfields. Since the degrees of freedom are
proportional to the appropriate quadratic Casimir of the
group [N for SUðNÞ], there is some common Dirac gaugino

mass scale where gauge coupling unification must occur.
Remarkably, we findMD ≃ 1011 GeV, which is essentially
the same scale where λhðMDÞ≃ 0. The additional degrees
of freedom (Dirac fermion partner and complex scalar in
the adjoint representation) accelerate the RG evolution of
the gauge couplings between the intermediate scale to the
unification scale in such a way as to exactly compensate for
the lack of Majorana gauginos in the RG evolution between
the weak scale and the intermediate scale. This is discussed
in Sec. III.
The outline of the paper is as follows. We first present

the “toolkit” for split Dirac supersymmetry models in
Sec. II. This includes the variety of operators and con-
tributions to the soft masses and μ parameter in the theory.
We demonstrate gauge coupling unification is successful
at one loop in Sec. III. Gauge coupling unification,
however, is not directly affected by the character of the
bino, i.e., whether there is (or is not) a pure singlet
superfield for it to acquire a Dirac mass. This leads to two
distinct models within the larger framework of split Dirac
supersymmetry:

(i) Pure Dirac model (Sec. IV): The gluino, wino, and
bino acquire Dirac masses. In this model, the Higgs
quartic coupling vanishes at the intermediate scale,
and thus predicts the largest scale for the Dirac
gauginos. The Higgsino mass is small, arising from
a dimension-seven operator as well as a suppressed
radiative contribution. The neutral Higgsinos are
highly degenerate, Δmχ ≪ keV, forming a nearly
pure Dirac fermion with an unsuppressed Z cou-
pling, and are ruled out as a dark matter candidate.
R-parity violation is introduced, and we demonstrate
the various decay modes that are possible for the
lightest Higgsino.

(ii) Hypercharge impure model (Sec. V): The gluino and
wino acquire Dirac masses, while the bino acquires a

FIG. 1. Sketch of the mass spectrum of the two split Dirac
supersymmetry models considered in this paper: Pure Dirac (all
gauginos acquire Dirac masses) and hypercharge impure (the
gluino and wino acquire Dirac masses, the bino acquires a
Majorana mass).
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Majorana mass from anomaly mediation, making
it lighter than the other gauginos. In this scenario,
a small quartic coupling may be regenerated, de-
pending on tan β (which in turn depends on the
relative hierarchy between Bμ and m2

Hu
; m2

Hd
). Gen-

erally, a slightly lower scale for MD ∼ 108 →
109 GeV results, causing M1 ∼ 106 → 107 GeV.
This large bino mass has the feature of generating
the scale of μ and the mass splitting m~χ2 −m~χ1 ≃
M2

Z sin
2 θW=M1 to make the lightest Higgsino a

perfect WIMP candidate for dark matter.
The mass spectra associated with each of these models is
shown in Fig. 1. Finally, we conclude with a discussion
in Sec. VI.

II. TOOLKIT FOR SPLIT DIRAC
SUPERSYMMETRIC MODELS

Split Dirac supersymmetry is a general framework for
considering a new class of split supersymmetry models. In
this section, we provide an overview of the operators
leading to contributions to the supersymmetry breaking
and preserving parameters in the (Dirac extended) MSSM.
This serves as a “toolkit” with which split Dirac super-
symmetry model enthusiasts can build interesting models.
We use the results of the toolkit to construct the two models
that serve as the focus of this paper in Secs. IV and V.

A. No singlets in the hidden sector

Majorana gaugino masses arise when total gauge
singlets in the hidden sector, S, acquire supersymmetry
breaking vevs for their F components, S ¼ Fθ2. The usual
dimension-five operator that leads to Majorana gauginos isR
d2θSWαWα=Λ. While it is always technically natural to

omit these contributions, if there no singlets in the hidden
sector, this operator is simply forbidden. In addition, the
absence of hidden sector singlets also means the usual
dimension-five operator in the Kähler potential that gen-
erates μ,

R
d4θS†HuHd=Λ, is forbidden. Hidden sectors

without singlets are well known, for example SUð4Þ ×
Uð1Þ [56]. In the absence of hidden sector singlets,
gauginos can acquire Dirac masses through D-type expect-
ation values, as explained below, as well as anomaly-
mediated Majorana masses. The μ term can arise through
higher-dimensional operators, or through radiative correc-
tions, as we will see.

B. Dirac gaugino masses

A Dirac gaugino mass for one or more gauge groups
of the Standard Model arises once the MSSM is extended
with an additional superfield Φk in the adjoint representa-
tion of the appropriate gauge group, k ¼ 1; 2; 3 for Uð1ÞY,
SUð2ÞL, SUð3Þc. The Dirac mass is generated through the
operator

L ⊃ λk

Z
d2θ

ffiffiffi
2

p W0
αW

k;α
a Φk;a

Λ
þ H:c:; ð1Þ

where W0
α ¼ θαD is a spurion for supersymmetry break-

ing, Wk;α
a is the gauge superfield for the appropriate SM

gauge group, and Λ is the scale where supersymmetry
breaking is mediated to the visible sector. The labels α and
a are spinor and gauge indices, respectively. Inserting the
D-term expectation value, the operator gives

L ⊃ −MD;kðλaψa þ 2
ffiffiffi
2

p
DaReðAaÞÞ þ H:c:; ð2Þ

where Aa is the complex scalar of the supermultiplet Φa.
This term marries the gaugino λa with a fermion in the
adjoint representation ψa with a Dirac massMD;k ≡ λkD=Λ.

C. Higgs quartic coupling at dimension five

The tree-level quartic coupling for Higgs boson arises
from the D terms. The new ingredient from the dimension-
five operator of Eq. (2), is the term 2

ffiffiffi
2

p
MDDaReðAaÞ in

addition to the term −D2
a=2 from the gauge kinetic terms in

the superpotential. Solving for the D term through its
equation of motion gives

Da ¼ −2
ffiffiffi
2

p
MDReðAaÞ þ g2a

X
i

ϕ�
i t

aϕi: ð3Þ

Substituting this back into Lagrangian,

1

2

�
2

ffiffiffi
2

p
MDReðAaÞ þ g2a

X
i
ϕ�
i t

aϕi

�
2

; ð4Þ

we find the usual Higgs quartic coupling, a mass for
ReðAaÞ, and a cross term. Once ReðAaÞ is integrated out at
≃MD, no quartic couplings proportional to gauge cou-
plings remain. Hence, the tree-level Higgs quartic coupling
vanishes.

D. Higgs quartic coupling at dimension six

There are additional contributions to the quartic cou-
pling. Using just D terms, at dimension six one can write
the lemon-twist operator

λlt
2

Z
d2θ

W0
αW0α

Λ2
trðΦaΦaÞ þ H:c: ð5Þ

This superpotential term gives masses to both ReðAaÞ and
ImðAaÞ scalar components of Φa, but with opposite sign.
This additional mass term for ReðAaÞ disrupts the quadratic
form, Eq. (4), and thus can reintroduce a partial quartic
coupling for the Higgs boson. The size of the quartic
depends on the relative size of the operator coefficients,2

2Throughout this paper, we use the normalization convention
VðHÞ ⊃ λh

2
ðH†HÞ2 for the Higgs quartic.
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Δλh;tree ¼
1

4
cos22β

�
λltg2

4λ22 þ λlt
þ λltg02

4λ21 þ λlt

�
: ð6Þ

In many UV completions this operator is generated at the
same order as the operator of Eq. (1), and thus is too large.
However, solutions to this problem have been proposed
[57]. It should also be noted that it is technically natural to
omit this contribution from the superpotential, so its
absence need not require tuning coefficients. It is also
true that a modest hierarchy between the dimension-five
coefficient and the dimension-six coefficient will also
render this contribution to the quartic coupling to be
negligible.

E. Majorana gaugino masses

In the absence of singlets in the hidden sector, Majorana
gaugino masses arise from anomaly mediation. Placed in
the context of supergravity and tuning away the cosmo-
logical constant, supersymmetry breaking generates a
gravitino mass at least of order

m3=2 ∼
Dffiffiffi
3

p
Mpl

: ð7Þ

(Here we assume the D term dominates the supersymmetry
breaking in the hidden sector.) The anomaly-mediated
contribution to the Majorana gaugino masses is [58,59]

~Mk ¼
βk
gk

m3=2; ð8Þ

where βk are the gauge coupling beta-functions given in
Appendix B. Comparing the size of the Dirac and Majorana
gaugino masses, we find

~Mk

MD;k
¼ βk

gkλk

Λ
Mpl

: ð9Þ

We see that the Majorana gaugino masses are suppressed
by at least a loop factor times gauge coupling squared
relative to the Dirac gaugino masses. Further suppression is
possible if the mediation scale is below the Planck scale.
The Majorana mass splits the Dirac gaugino state into two
Majorana states—though the loop suppression from Eq. (9)
implies that the splitting between the states is small and the
gauginos are more accurately described as pseudo-Dirac.
Pseudo-Dirac gauginos do not in themselves change the
argument about the vanishing of the quartic coupling. In
anomaly mediation, the gaugino masses are also accom-
panied by scalar mass squareds that are two-loop sup-
pressed relative to the gravitino mass, but this leads to a
very small correction for the Majorana masses given
in Eq. (9).

F. Higgs quartic coupling with supersymmetric
masses for the adjoints

Supersymmetric masses for the adjoint fields can be
generated through the operator

λadj
2

Z
d4θ

�
W0†

αW0α†

Λ3
trðΦaΦaÞ þ H:c:

�
; ð10Þ

which gives a very small supersymmetric contribution to
the masses of the adjoint fields, Madj ≡ λadjD2=Λ3. In
principle this contribution modifies the quartic coupling
[18]

Δλh;tree ¼
1

4
cos22β

�
g2M2

adj;2

M2
adj;2 þ 4M2

D;2
þ g02M2

adj;1

M2
adj;1 þ 4M2

D;1

�
:

ð11Þ

Given that Madj ∼M2
D=Λ, this leads to a negligible

correction. If however “bare” supersymmetric masses
for the adjoints were present in the superpotential,
Oð1Þ R d2θMadjtrðΦaΦaÞ þ H:c:, independent of super-
symmetry breaking, with masses of order or exceeding
the Dirac masses, then a partial quartic is recovered. For
example, in the hypercharge impure model detailed in
Sec. V, the bino does not acquire a Dirac mass. This could
occur even with the existence of Eq. (1) with a bino
superfield partner (a total gauge singlet), if the mass
Madj;1 ≫ MD;1, so that λh ¼ g02 cos2 2β=4 from Eq. (11).

G. μ and Bμ term from D terms

Using just D-type spurions, both Uð1ÞPQ and Uð1ÞR can
be violated through higher-dimensional operators. As a
result, both μ and Bμ can be generated. The leading
contribution to μ is from

Z
d4θ

W0†
αW0α†HuHd

Λ3
¼

Z
d2θ

D2

Λ3
HuHd

¼
Z

d2θ
M2

D

Λ
HuHd ð12Þ

that gives μ ∼ TeV when MD ∼ 1011 GeV and Λ ¼ MPl.
Notice also that once MD ≲ 1010 GeV (for Λ ¼ MPl), this
contribution becomes too small to give a large enough μ to
evade direct collider constraints on Higgsinos. Wewill refer
to this μ-term contribution as the “primordial” μ.
The leading contribution to Bμ arises from the super-

potential operator

λBμ

Z
d2θ

W0
αW0αHuHd

Λ2
¼ λBμ

D2

Λ2
~Hu

~Hd: ð13Þ

Notice that Bμ is parametrically of the same size as the
Dirac gaugino mass found in Eq. (2).
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H. Radiative generation of μ

The global symmetries Uð1ÞPQ and Uð1ÞR are broken by
the Bμ term and Majorana gaugino masses. In a model
without Dirac mass terms for the bino and wino, this
implies μ can be radiatively generated [10] through the
renormalization group equation,3

ð4πÞ2 dμ
dt

¼ ~g0u ~g0dM
�
1 þ 3~gu ~gdM�

2 þ
1

4
μ

�
−18

�
g21
5
þ g22

�

þ 3ð~g2u þ ~g2dÞ þ ~g02u þ ~g02d

�
: ð14Þ

The ~g0u;dð~gu;dÞ couplings are the strengths of the up or
down-type Higgsino-Higgs-bino (Higgsino-Higgs-wino)
Yukawa couplings. At the scale of supersymmetry breaking
MD, these Yukawa couplings are related, at tree level, to the
gauge couplings as ~g0uðMDÞ ¼ g0 sin β, ~g0dðMDÞ ¼ g0 cos β,
etc. However, below MD, the theory is no longer super-
symmetric so the RGE for the Higgsino-Higgs-bino
Yukawa couplings is no longer the same as the RGE for
the gauge couplings. The RGE for μ is proportional to
sinð2βÞ, which vanishes in the limit tan β → ∞ (or 0). This
follows because, in this limit, Bμ ∝ sinð2βÞ → 0, and hence
Uð1ÞPQ symmetry is restored [10].
If however both the bino and wino acquire Dirac masses,

the only source of Uð1ÞR breaking is the small anomaly-
mediated Majorana gaugino mass. Therefore, the RGE
in Eq. (14) only applies between the two narrowly split
pseudo-Dirac states (between MD;1 � ~M1). As a result, the
radiatively generated μ is highly suppressed. We will see
examples of both MD;k ¼ 0 and MD;k ≠ 0 in the models
discussed in Secs. V, IV.

I. One-loop finite contributions to scalar masses

Supersymmetry breaking through D terms is known
as supersoft supersymmetry breaking [18] due to the
finite soft scalar ðmassÞ2 that are induced for the scalars
of the MSSM. The contributions were computed in [18]
to be

~m2 ¼
X
k

CkðrÞαkM2
D;k

π
log

~m2
r;k

M2
D;k

: ð15Þ

Here ~mr;k is the scalar mass for the real part of the
adjoint field, given by 2MD;k in the absence of additional
contributions from F terms to the scalar masses (see next
subsection).

J. F-term contributions to scalar masses

Supersymmetry breaking hidden sectors with D-term
spurions (which was utilized above to generate the Dirac
gaugino mass) generically have spurions, X, that transform
under the hidden sector group (i.e. non-singlets), and
acquire F terms (e.g., see [56]). The only gauge invariant
combination of the hidden sector spurions X that get F-
type expectation values must involve powers of X†X. This
implies mass terms for scalars

κi

Z
d4θ

X†X
Λ2

ϕ†
iϕi; ð16Þ

as well as a contribution the Bμ term,

κBμ

Z
d4θ

X†X
Λ2

HuHd; ð17Þ

are generically present. These operators give contributions
jFj2=Λ2 to the scalar mass squareds as well as Bμ.

K. Fine-tuning to get one light Higgs doublet

In split supersymmetry models, fine-tuning in the scalar
mass squared parameters of the Higgs mass matrix is
needed such that one doublet gets a small, negative mass
squared, causing electroweak symmetry breaking [8–10]
(see also [12,13,60,61]). In the MSSM, the Higgs mass
matrix is

MH ¼
�m2

Hu
Bμ

Bμ m2
Hd

�
; ð18Þ

where the entries in the mass matrix include all of the
supersymmetry breaking contributions fromD terms and F
terms described above. (We have neglected the tiny con-
tribution jμj2 ≪ jm2

Hu
j,jm2

Hd
j to the diagonal entries.) Since

the Dirac gauginos induce large positive one-loop finite
contributions to m2

Hu
and m2

Hd
, we assume any additional

contributions from F terms do not cause these mass-
squareds to go negative. Electroweak symmetry breaking
at the weak scale requires one small negative eigenvalue,
and hence Det½MH� ¼ m2

Hu
m2

Hd
− B2

μ < 0. The light (neg-
ative) eigenvalue is

m2
Hlight

≃ Det½MH�
Tr½MH�

¼ m2
Hu
m2

Hd
− B2

μ

m2
Hu

þm2
Hd

¼ 1

1þ tan2β

�
m2

Hu
tan2β −

B2
μ

m2
Hu

�
; ð19Þ

where tan β is determined by

tan β≃
ffiffiffiffiffiffiffiffiffi
m2

Hd

m2
Hu

s
; ð20Þ

3This result includes one minor correction to the RGE for μ
given in Ref. [10]. The correct expression involves the complex
conjugate of the gaugino mass, such that the reparameteriza-
tion-invariant phases argð~gu 0� ~gd0�μM1Þ and argð~g�u ~g�dμM2Þ are
not generated if there is no primordial contribution to μ.
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up to corrections of order m2
Hlight

=ðmHu
mHd

Þ. Clearly we

must fine-tune B2
μ to be slightly larger than m2

Hu
m2

Hd
to

obtain a small negative mass-squared eigenvalue.
It is interesting to compare the size of Bμ to the one-loop

(finite) contributions from the Dirac gauginos to the Higgs
soft mass squared(s). The largest contributions to the soft
mass squareds for the Higgs doublets come from the Dirac
wino,

m2
Hu

≃m2
Hd

≃ g2

4π2
M2

D;2 ≃
�
MD;2

10

�
2

: ð21Þ

Comparing this to the size of Bμ given in Eq. (13), we need
λBμ

≃ 10−2 such that Bμ marginally destabilizes the Higgs
mass matrix giving one negative eigenvalue. Since this
contribution to Bμ arises in the superpotential, it is
technically natural for this coefficient to be small.
Notice also that when the one-loop finite contributions

from the Dirac gauginos dominate the Higgs mass squar-
eds, Eq. (21), m2

Hu
≃m2

Hd
and thus tan β≃ 1. Once F-term

contributions are included with different coefficients for the
up-type and down-type masses, tan β can be different from
1. Generically, in the absence of large hierarchies in these
coefficients, tan β is small.

III. GAUGE COUPLING UNIFICATION
AT ONE LOOP

We now discuss gauge coupling unification in split Dirac
supersymmetry models. This discussion provides a
common framework that illustrates the relevant contribu-
tions to the β functions, at one loop, and the expected scales
of the superpartners. In the specific models described in
Secs. IV and V, we numerically evaluate gauge coupling
unification to two loops with the appropriate thresholds for
the spectra in each theory.
Since the sfermions fill out complete GUTmultiplets, they

do not affect the differential running of the gauge couplings,
and consequently the level of unification, and we will omit
them from the discussion below. These effects are included
in the numerical analysis carried out in later sections. Thus,
there are two important contributions to the one-loop beta
functions for the gauge couplings that determine the level of
unification: Higgsinos (and Higgses) and gauginos. Given
that μ is small in split Dirac supersymmetry models
[Eq. (12)], the only difference from MSSM running is the
(lack of) gauginos and the scalar components of one Higgs
doublet. Since the Higgs scalar doublet has a small con-
tribution to the β-functions, here we focus on just the
gauginos.
The solutions to the one-loop gauge coupling RGEs in

the MSSM are

α−1unifðΛunifÞ − α−1i ðΛweakÞ ¼
bi
2π

log

�
Λunif

Λweak

�
; ð22Þ

where bi ¼ bMSSM
i ¼ ð33=5; 1;−3Þ are the one-loop beta-

function coefficients of the MSSM, where unification is
achieved to within about 1%. Compare this with split Dirac
supersymmetry,

α−1unifðΛunifÞ − α−1i ðΛweakÞ

¼ bDiraci

2π
log

�
Λunif

MD

�
þ bMSSM

i − bgauginoi

2π
log

�
MD

Λweak

�
;

ð23Þ

where bDiraci ¼ bMSSM
i þ Ni and bgauginoi ¼ 2Ni=3, with

Ni ¼ 0; 2; 3 the quadratic Casimir for Uð1ÞY, SUð2ÞL,
SUð3Þc. The scale for the Higgsinos is assumed to be
same (¼ Λweak) for both Eqs. (22) and (23). The additive
factor, bDiraci , corresponds to the usual gauginos as well as
the fields in the chiral adjoint superfields. The RGE can be
rewritten as

α−1unifðΛunifÞ − α−1i ðΛweakÞ

¼ bMSSM
i

2π
log

�
Λunif

Λweak

�
þ Ni

1

2π
log

�
Λunif

MD

�

−
2

3
Ni

1

2π
log

�
MD

Λweak

�
:

Crucially, the additive contribution above the scaleMD and
the subtracted contribution belowMD are both proportional
to the quadratic Casimir of the ith gauge group, Ni. We can
solve for the scale MD where the last two terms cancel
against each other,

MD ¼ Λ3=5
unifΛ

2=5
weak ðone loopÞ: ð24Þ

Notice that one obtains the sameMD for all three SM gauge
groups–this occurred because the new matter that we added
was in the same representation as the gauginos. Setting
Λweak ¼ TeV, which corresponds to a unification scale of
2 × 1016 GeV, we find MD ∼ 1011 GeV.
Having determined that the mass scaleMD necessary for

Dirac supersymmetry to unify coincides with the scale
where the SM Higgs quartic coupling vanishes, and that a
vanishing Higgs quartic is a natural boundary condition in
Dirac supersymmetry, we are ready to consider specific
models. In the following sections we present two complete
models within the split Dirac supersymmetry framework,
each utilizing a subset of the tools presented in Sec. II. We
will find that the two-loop contributions to the gauge
coupling evolution cause the unification scale to increase
to ≳1017 GeV and the precision of unification to slightly
worsen, which we will quantify. (And intriguingly, this also
occurs in Ref. [52].)
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IV. PURE DIRAC MODEL

The first model we consider is one where all the gauginos
acquire a Dirac mass. We construct the model from the
relevant toolkit components, then consider the RG evolu-
tion in detail to self-consistently determine the mass scales
in the model and the level of gauge coupling unification.
The model assumes the dominant supersymmetry break-

ing contributions arise fromD terms, leading to the gaugino
masses given in Eq. (2). In our numerical evaluations, we
take the gauginos to have common massMD, for simplicity.
The real part of the adjoint scalars, ReðAaÞ also acquires a
mass ∼MD. The squarks and sleptons of the MSSM receive
a (flavor-blind) supersoft contribution to their mass,
Eq. (15). This mass is a threshold effect and is independent
of the scale at which supersymmetry breaking is mediated.
Scalar masses may also receive contributions from F terms,
Eq. (16), which need not be flavor universal. The relative
size of these contributions will determine the exact mass of
each sfermion but, in the absence of cancellations, they are
typically at least as heavy as the one-loop finite contribu-
tions from the Dirac gauginos. Anomaly mediation will
also generate loop-suppressed Majorana masses for the
gauginos, Eq. (9), splitting the Dirac gauginos into slightly
pseudo-Dirac gauginos. There are also anomaly-mediated
contributions to the scalar mass squareds (both the real and
imaginary parts), though these contributions are two-loop
suppressed relative to the gaugino mass squared.
In this model, there are two contributions to the μ term.

One arises from the higher-dimension operator involvingD
terms, Eq. (12), while the second is from the radiative
generation of μ. As discussed in Sec. II H, the radiative
generation is further suppressed by the pseudo-Dirac nature
of the gauginos, roughly

μradiative ∼
X
k¼1;2

g2k
16π2

sin 2β
MM;k

MD

Bμ

MD
∼
10−7MD

tan β
: ð25Þ

Summarizing the spectrum, the pure Dirac model con-
tains nearly pure Dirac gauginos with mass MD, squarks
and sleptons with masses ~m (we assume ~m ≤ MD),
Higgs scalars with masses ~m2 ¼ mHu

mHd
, a Bμ term

with size Bμ ≃mHu
mHd

, and tan β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

Hu
=m2

Hd

q
(where

m2
Hu
; m2

Hd
> 0). The only light states other than the Higgs

boson are the Higgsinos, with mass ∼TeV. This is sketched
in Fig. 1.
From Sec. III, we learned that gauge coupling unification

persists when the Dirac gaugino masses are near the
intermediate scale. We now carry out a more precise
analysis of unification. In any given model there will be
a complicated spectrum with states spread from a little
aboveMD to a loop factor below, with the Higgsinos at the
TeV scale. Carrying out the RG evolution in such a scenario
is a daunting task. However, the spreading of states over a

decade or so of energy will not lead to substantially
different results from the case of degeneracy. So, for
simplicity, we consider a spectrum with the Higgsinos
and one Higgs light, and all superpartners and the other
Higgs boson heavy and degenerate, with mass MD. At the
scale MD we match between the non-supersymmetric
theory and the MSSM with additional adjoints. We carry
out the running of the gauge couplings, the top Yukawa,
and the Higgs self coupling, at two loops with matching at
tree level. (Tree level matching implies the thresholds we
discuss are not actually physical mass scales but are instead
MS masses.) We follow the approach of [44], which uses
results presented in [62–66], to evolve the couplings from
MZ, given in Eq. (A2), to higher scales using the RG
equations applicable to this model, given in Appendix B.
The scale MD is determined by the renormalization scale
where the Higgs self-coupling passes through zero.4 Under
our simplifying assumptions about the spectrum there are
very few parameters in this model. Once a Higgsino mass is
fixed, there is a lower bound on the size of tan β for this
Higgsino mass to be consistent with the loop-generated
contribution of Eq. (25). We show an example of the gauge
coupling running in the pure Dirac model in Fig. 2. Note
that the level of unification is improved as the Higgsino
mass is increased.
Because of the large hierarchy between the wino/bino

and the Higgsinos in this scenario, there is very little
mixing among the electroweakinos, thus the two (light)
neutral Majorana Higgsinos behave essentially as a single
Dirac fermion. The relic abundance for a Higgsino in this
mass range ∼TeV, is just right (e.g. [67]) for it to be a
thermal DM relic. Unfortunately, a Dirac fermion that has
quantum numbers of a neutrino has an unsuppressed elastic
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FIG. 2 (color online). An example of running for μ ∼ 1 TeV
and tan β ¼ 2, the scale where the Higgs quartic is zero is
MD ¼ 7.5 × 1010 GeV. The shaded regions correspond to vary-
ing αsðMZÞ within the 2σ uncertainty.

4In this analysis, we assume the contribution from Eq. (6) is
negligible, which is automatic if tan β≃ 1.
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scattering cross section off nucleons through Z exchange,
and is completely ruled out by direct detection experi-
ments.5 So, the Higgsino cannot be the dark matter in this
scenario, and therefore must be unstable. This can be
achieved by either extending to an NMSSM-like scenario
where the DM is a singlino or by adding R-parity violation
to make the Higgsino decay, with DM coming from
another source, e.g. an axion. We focus here on the latter
possibility.
R-parity violating operators fall into two classes, those

that violate lepton number and those that violate baryon
number. Even with squarks of mass ∼MD, there cannot be
operators with Oð1Þ coefficients from both classes since
this will lead to too rapid proton decay.
For the single baryon number violating operator,

λBu
cdcdc, the Higgsinos will decay via a virtual stop to

a top and two jets. The partial width for this three-body
decay is approximately

Γ ~H ∼
y2t λ2Bμ

5

192π3 ~m4
: ð26Þ

Yielding τ ~H ∼ 7 hours for TeV-scale Higgsinos, λB ∼ 1,
and ~m ∼ 1010 GeV. Such long-lived Higgsinos would be
completely invisible in collider detectors, but there are
strong constraints on such long decays from their effects
on BBN and light element abundances [69–72]. This
partial width is strongly dependent on mass of squarks and
drops ∼2 sec for ~m ∼ 109 GeV. If the baryon asymmetry
of the universe is generated at a high scale, above ∼ ~m=10,
the requirement that it not be washed out by the B operator
coming into equilibrium at lower temperatures places
constraints on λB. However, these constraints are rela-
tively weak, since the process is suppressed by the heavy
superpartner mass and four-body phase space, and we
ignore them here.
The results are very similar for the two lepton number

violating RPV operators LLec and QLdc. In the first case
the Higgsino decays to lþl−ν and the rate is similar to (26)
suppressed by ðmτ=mtÞ2. In the second case the Higgsino
decays to a top quark, a down quark and a charged lepton
and the rate is the same as (26).
Bilinear R-parity violation may also occur through the

lepton number violating operator κiLiHu. This can be
generated in a similar way to the μ term, of Eq. (12),
through a Kähler potential operator of the form W 0†W 0†

Λ3 LHu

and so one expects κ ∼ μ ∼ 1 TeV. This operator leads to
two-body Higgsino decays, ~H → l�W∓ðνZÞ with a width
that scales as,

Γ ~H ∼
g2

16π

�
κΔ
μ2

�
2

μ; ð27Þ

where Δ is the chargino-neutralino mass splitting, which is
∼340 MeV. Usually there are strong constraints on the size
of κi since this operator contributes to neutrinos masses at
both tree and loop level [73]. However, for Dirac gauginos
the tree-level contributions are suppressed by the Majorana
mass of the adjoint partner,mν ∼ g2h~νi2MA=M2

D, which we
have taken to be small. Furthermore, the loop-generated
masses, that arise through the mixing of Higgsinos with
leptons induced by κ, scale as,

mν ∼
y4b

16π2
κ2vuvd
μM4

D
: ð28Þ

Thus, κ ∼ 1 TeV is allowed by neutrino masses and leads to
very fast decays of Higgsinos that are safe cosmologically
and can be searched for at colliders.
As mentioned above, the μ term is protected by both a

PQ- and an R-symmetry, so one might worry that turning
on RPV interactions leads to a new source for generating μ.
The RGEs in a the general MSSM with RPVare known up
to two-loop order [74]. To this order, the running of μ is
altered from that of the MSSM only if both κi and one other
source of lepton number violation (i.e. LLEc or LQDc) are
non-zero, and the effect is proportional to their product. We
ignore these effects.

V. HYPERCHARGE IMPURE MODEL

The pure Dirac model discussed in the previous section,
with high scale supersoft supersymmetry breaking, pro-
vides an explanation of the Higgs quartic coupling crossing
through zero at an intermediate scale (and hence, the
correct low energy Higgs mass) combined with gauge
coupling unification nontrivially obtained through accel-
erated running above the intermediate scale. The downside
is that the LSP is not a viable dark matter candidate, due to
the unsuppressed Z-exchange with a nearly pure neutral
Dirac fermion made up from the two neutral (Majorana)
Higgsinos.
We now consider a different model, which we dub the

hypercharge impure model, in which the bino does not
acquire a Dirac mass, and instead obtains the standard
one-loop suppressed Majorana contribution from anomaly
mediation, Eq. (8). The Majorana bino causes a slight
splitting of the pseudo-Dirac neutral Higgsino into two
Majorana states. Consequently, the lightest neutral
(Majorana) Higgsino can only scatter inelastically through
Z exchange [75–77], and thus the spin-independent scat-
tering direct detection rate is suppressed. If the mass
splitting ≳200 keV, there is negligible scattering through
Z exchange due to insufficient kinetic energy to upscatter
into the heavier neutral Higgsino state.

5The situation does not improve if the Higgsinos are lighter
and do not make up all of the dark matter. The lightest the
Higgsinos can be is ∼100 GeV (due to the LEP II bound [68]),
making them only 1% of the dark matter [10], while the
unsuppressed Z-exchange cross section is roughly six orders
of magnitude larger than current direct detection limits.

PATRICK J. FOX, GRAHAM D. KRIBS, AND ADAM MARTIN PHYSICAL REVIEW D 90, 075006 (2014)

075006-8



The absence of a Dirac mass for the bino is automatic if
there is no massless singlet for the bino to marry through
Eq. (1).6 By itself this does not directly affect gauge
coupling unification. It does, however, have repercussions
on the predicted Higgs quartic coupling, and consequently,
on the mass scales in the model.
In this model, the wino mass is large (∼MD), and so the

neutralino mixing matrix has the form,

~MN ¼

0
B@

M1 −MZcβsW MZsβsW
−MZcβsW 0 −μ
MZsβsW −μ 0

1
CA; ð29Þ

with sβ ¼ sin β; sW ¼ sin θW etc. At leading order the
lightest two (Majorana) eigenvalues are,

~MN1 ¼ μ −
M2

Zs
2
W

2M1

ðsin 2β þ 1Þ;

~MN2 ¼ μ −
M2

Zs
2
W

2M1

ðsin 2β − 1Þ: ð30Þ

The mass difference is independent of μ and tan β and is

Δ ~MN ¼ M2
Zsin

2θW
M1

≃ ð200 keVÞ 10
7 GeV
M1

: ð31Þ

For spin-independent scattering, and for an inelastic split-
ting exceeding ≳250 keV, the minimum velocity to scatter
with recoil energy ER < 50 keVnr in xenon is beyond the
maximum velocity any WIMP is expected to have (in the
Earth’s frame) assuming a galactic escape velocity of
550 km=s. There is a loop-induced spin-independent elas-
tic scattering but again, for these large splittings, the rate is
much too low to be observed [78,79].7 At tree level, the
lightest chargino, the charged component of the Higgsino,
also has mass μ. However, there is a loop contribution
that splits the charged from the neutral component by
∼340 MeV [80]. There is also an elastic spin-dependent
process, for which the bounds are considerably weaker,
but the rate is suppressed since the coupling scales
as ∼Δ ~MN=μ.
Compared to the pure Dirac model, the spectrum of the

squarks, sleptons and Higgs scalars remains relatively
unchanged. However, while the pure Dirac model was
viable even in the limit of zero F-term scalar masses, the
hypercharge impure model is not. If the only source of
supersymmetry breaking is the supersoft operator, Eq. (1),

removing the Uð1Þ adjoint not only leaves both the bino
massless, but the right-handed sleptons as well; they are
only charged under Uð1ÞY and would normally receive a
mass when the Dirac bino is integrated out. The bino mass
is lifted from zero by the anomaly-mediated contribution,
however the anomaly-mediated contribution to the right-
handed slepton masses is (infamously) tachyonic [58].
Therefore, there must be positive F-term contributions to
the right-handed slepton masses through Eq. (16). To
simply the presentation, we assume these contributions
are comparable to the one-loop finite contributions to the
other scalars from the Dirac gluino and wino.
Since the bino mass in this model is purely Majorana, R-

symmetry is broken and μ will be generated radiatively as
soon as supersymmetry is broken. The one-loop RG
equation for μ given in Eq. (14) must be integrated from
Bμ all the way down to M1, a much larger interval than in
the pure Dirac case. The larger running interval leads to
substantially larger radiative μ. Assuming the primordial
jμj ≪ jM1j, we obtain

μ≃ ~g0u ~g0d
16π2

M�
1 ln

jBμj1=2
jM1j

≃ ð1 TeVÞ sin ð2βÞ M�
1

106 GeV
ln
jBμj1=2
jM1j

. ð32Þ

Depending on M1 and tan β, the generated μ can easily
exceed 1 TeV.
One additional significant consequence follows from the

presence of a pure Majorana bino. As shown in Eq. (11),

λhðMDÞ ¼
g02

4
cos22β ð33Þ

and thus a partial quartic coupling is re-generated. This
tends to lower the scale of the Dirac gauginos (and the other
derived scales), as we show in more detail in the next
subsection.

A. Gauge coupling unification

We now study gauge coupling unification in this model,
again using the weak scale coupling inputs given in
Eq. (A2). The RG evolution is done similarly to the pure
Dirac model. Choosing a Higgsino mass m ~H ≃ jμj, we
evolve the RG equations from the weak scale up tom ~H, and
then continue to evolve until the running Higgs quartic
coupling λh satisfies the boundary condition8

λh;SMþ ~HðMDÞ ¼
g02

SMþ ~H
ðMDÞ

4
cos22β: ð34Þ

6If the Dirac partners form part of a GUT multiplet, such as a
24, we imagine that the singlet receives a large mass at the scale
where the GUT breaks and is therefore decoupled from physics at
MD ≪ MGUT.

7There is also large destructive interference between the W-
box diagram and Higgs exchange at the curiously enigmatic value
of mh ≃ 125 GeV [78].

8Like the analysis for the pure Dirac model, we assume the
contribution from Eq. (6) is negligible.
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This sets the Dirac wino mass scale, MD, which we take to
be the same value for the Dirac gluino. The subscript in the
above equation indicates that the λh and g0 RGEs contain
the effects of all SM fields plus the Higgsinos. This change
in the λh boundary condition is the major difference
between the RG evolution in this model and the pure
Dirac model discussed in Sec. IV.
Having established MD, we set M1 ¼ fMD, and we

consider f ∈ f10−4; 10−3; 10−2; 10−1g. The range arises
from Eq. (9), where f ≃ 10−2 is predicted if Λ ¼ MPl,
the couplings λ2;3 ¼ 1 in Eq. (1), and theD term dominates
the supersymmetry breaking contributions in the hidden
sector. Smaller (or larger) values of f are easily possible,
e.g., when Λ < MPl (or when λ2;3 < 1). Generically we
expect the squarks and sleptons to be somewhat lighter than
MD, however for presentation purposes we have set ~m ¼
MD to minimize the number of thresholds we have to deal
with. With M1 and MD (and our assumption about ~m), all
thresholds are known, and we can complete the RG
evolution up to and past these mass scales with suitable
matching.
Finally, to check the consistency of our Higgsino mass

choice, we also run from UV to IR. Starting at MD and
assuming μðMDÞ ¼ 0, we solve for the radiatively gen-
erated μ. The choice μðMDÞ ¼ 0 is somewhat arbitrary, as
we have seen that there can be OðTeVÞ contributions to μ
from the higher-dimensional operator shown in Eq. (12). A
contribution to μ at the scale MD is multiplicatively
renormalized. For the values of M1 that we consider, the
effect of the multiplicatively renormalized piece of μ is

small, however it is possible to arrange for cancellations
between this piece and the contribution to μ coming from
M1. Some of this possible parameter space is already
incorporated by the large range in f ¼ M1=MD.
The quantities we are interested in for a given set of

inputs are: i.) the “quality” of the gauge coupling uni-
fication, ii.) the scale of gauge coupling unification, and
iii.) the internal consistency of the Higgsino mass.
The quality of unification is a somewhat subjective

measure; we choose to calculate the area of the triangle
formed, in the usual logðRG scaleÞ − α−1 plane, from the
three coupling intersection points, i.e., where α−13 ¼ α−11 ,
α−13 ¼ α−12 , etc. Each intersection point is a coupling
value α−1intersect and an energy scale. The area of the
triangle is not an ideal measure, since it leads to
artificially low values for scenarios that happen to unify
at small α−1intersect. Therefore, to remove this bias and get a
more robust unification measure, we divide the area of
the unification triangle divided by the smallest of the
three α−1intersect. To study how the unification scale changes
through parameter space, we keep track of both the
lowest and highest energy scales among the intersection
points. Finally, we have also calculated the unification
measure and range of scales in the MSSM, to directly
compare with our model.
The SM input with the greatest impact on the RG

evolution and gauge coupling unification is the top mass
mtðmtÞ. A smaller top Yukawa coupling causes the Higgs
quartic coupling to evolve more slowly, which in turn
postpones the scale where the quartic and gauge couplings
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FIG. 3 (color online). The left-side plot shows the unification measure, defined as the area of the triangle formed by the three gauge
coupling intersection points, for four different values of M1=MD as mt and tanðβÞ are varied. The right-side plot shows the gauge
coupling unification scale range, defined by the lowest and highest scale where two of the three couplings cross each other. To scale out
the dependence of the unification measure on α−1intersect, we divide the triangle area by the smallest intersection point value of α−1intersect.
Only points with consistent Higgsino mass μ < 1.1 TeV are included in the plot. The contours, reading from upper right to lower left,
correspond to M1=MD ¼ 0.1; 10−2; 10−3 and 10−4. The smallest (largest) mt values correspond to the lowest (highest) edge of each
contour. The three markers indicate benchmark mt; tanðβÞ points that we will examine in more detail. To normalize our definition of the
unification measure, we show the unification measure assuming the MSSM with all sparticles at 1 TeV.
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intersect, Eq. (34). Conversely, a larger top Yukawa
coupling causes the Higgs quartic coupling to evolve faster
and tends to lower the mass scales in the theory. We have
already seen from the one-loop estimates in Sec. III, as well
as the two-loop results shown in Fig. 2, that gauge coupling
unification with a Dirac gluino and wino prefers
MD ∼ 1011 GeV. Lower MD (due to large mt values or
other effects) causes the gauge coupling unification to be
less precise. We account for this dependence by varying
mtðmtÞ within the 2σ uncertainty bands in our calculations.
The regions formed by varyingmtðmtÞ and tan β are shown
in Fig. 3. As we vary mtðmtÞ and tan β we calculate the
(one-loop) radiatively generated μ term, assuming the
primordial μ is 0, and keep only those points for which
μ ≤ 1.1 TeV. The unification measure and scale in the
MSSM (all superpartners at 1 TeV) is also shown in Fig. 3
for comparison.
To give the reader a more concrete context on the quality

of gauge coupling unification, we pick three benchmark
scenarios to display in more detail. These three benchmark
points are indicated by the markers on Fig. 3. From the

mt; tan β and M1=MD inputs corresponding to each point,
we show how the gauge couplings evolve with energy, i.e.,
the analogous plot to Fig. 2. The running couplings for the
benchmark points are shown in Fig. 4.
As in Fig. 2, we plot the couplings for three different

choices of αsðMZÞ. The impact of varying αsðMZÞ is larger
than one might have expected; all couplings and scales
move, some even significantly, as αsðMZÞ is varied. This
sensitivity comes from the fact that we use the running
Higgs quartic, a quantity sensitive to αsðMZÞ, to set the
location ofMD. Small changes in αsðMZÞ can lead to Oð1Þ
changes in what we derive MD to be, and changes in MD
trickle down to changes in where all running couplings are
matched. To better illustrate how the scale MD is derived,
and how changes in αsðMZÞ affect it, we plot the running
quartic coupling in each of the benchmark scenarios in
Fig. 5 below. Along with λh, we also show the running of
g02
4
cos2 2β, as the intersection of the two curves is what

sets MD.
We can see from Fig. 3 that, at low tan β and small

M1=MD, unification can be as good as in the MSSM. For
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FIG. 4 (color online). The running gauge couplings for the three scenarios indicated by markers in Fig. 3. The top left plot corresponds
to the red diamond in Fig. 3, the top right plot corresponds to the blue triangle, and the lower plot corresponds to the black square. In
each scenario we show the variation in the unification as the strong coupling αs is varied within 2σ of its central value. The insets in the
upper right of each plot show a zoomed-in picture of the intersection region. As explained in the text, since our procedure for settingMD
depends on the running of the Higgs quartic, all mass scales, and hence all couplings, shift as αsðMZÞ is varied.

SPLIT DIRAC SUPERSYMMETRY: AN ULTRAVIOLET … PHYSICAL REVIEW D 90, 075006 (2014)

075006-11



other parameters, unification is somewhat less precise. The
inset plots in Fig. 4 show the mismatch in unification after
uncertainties in αsðMZÞ are taken into account.

VI. DISCUSSION

We have presented a new framework for split super-
symmetry employing Dirac gaugino masses at intermediate
mass scales (∼108–11 GeV). Two specific models were
constructed, both containing gauge coupling unification,
and one (the hypercharge impure model) with a Higgsino
dark matter candidate. There are no model-building gym-
nastics necessary to suppress R violation to maintain light
gauginos, as in the original split supersymmetry model.
The predictivity of split Dirac supersymmetry is improved
over simply unnatural/mini-split/spread, see for example
Refs. [12,13,60,61,81], in so far as the split superpartner
mass scale is determined to be an intermediate scale with a
weaker dependence on tan β.
Both of the discussed models have signals at the weak

scale. We emphasize that the signals themselves are
qualitatively distinct from other split supersymmetry
models—just Higgsinos are light in split Dirac supersym-
metry, while binos, winos, gluinos are heavy. One of
the pressing issues of models that implement the

scalar-to-gaugino mass hierarchy using anomaly mediation
[59,82], that can also occur in the Refs. [12,13,60,61,81]
and related models [83] is that winolike dark matter is
strongly constrained by indirect detection from γ-ray
production in the center of the galaxy [84,85], for all
DM profiles with a core size smaller than 0.5 kpc. Nearly
pure Higgsino-like dark matter, with a mass of ≃1.1 TeV
(which is consistent with thermal abundance), does not
suffer from this constraint due to the negligible Sommerfeld
enhancement in the annihilation rate. On the contrary,
indirect detection may provide one of the promising
avenues towards experimental verification [86]. There
are several other aspects of split supersymmetry, including
flavor physics [87,88] and inflation [89] that could have
interesting interpretations in the split Dirac supersymmetry
framework.
Another challenge to split supersymmetry models is

dimension-five proton decay with anarchic sfermion masses
[90,91]. Split Dirac supersymmetry with just D-term super-
symmetry breaking mediation is flavor blind, completely
eliminating this issue. Nevertheless, even if anarchic F terms
are also present (and F terms must be present in the
hypercharge impure model), the situation with split Dirac
supersymmetry is much improved because of the absence of
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FIG. 5 (color online). The running of the Higgs quartic coupling (black) and g02
4
cos2 2β (red) in the three benchmark scenarios

indicated on Fig. 3. The layout of scenarios is the same as in Fig. 4.
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Majorana gluinos and winos, and that theonly R violation
arises from a one-loop suppressed bino mass that is
accompanied by its small g0 couplings to sfermions.
Gauge coupling unification is comparable to the MSSM

in the pure Dirac model, and somewhat worse in the
hypercharge impure model. Since the predicted unification
scale is higher ≳1017 GeV, the Planck-suppressed GUT
threshold corrections are also correspondingly larger.
Hence, the slightly less precise unification could be just
a symptom of this higher GUT scale. Among the three
scales where the gauge couplings intersect, α2 ¼ α3 occurs
at the lowest scale with α1 typically ∼5% smaller at this
scale. If we take this minor discrepancy as suggestive of
low energy physics, this could suggest the sleptons are
actually much lighter than the squarks in the model. Such a
spectrum is not unexpected since in the hypercharge impure
model the source of the (RH) slepton mass is distinct from
that for the squarks. There may also be additional fields
transforming under Uð1ÞY at low to intermediate scales.
One of the most striking results from our study is the

possibility of nearly pure weak scale Higgsino dark matter
whose mass μ and neutral Higgsino splitting Δ ~MN arise
from the same source–a large Majorana bino mass
M1 ¼ 106 → 107 GeV. Split Dirac supersymmetry (in the
hypercharge impure variety) acts as a UV completion of
viable Higgsino dark matter. Higgsino dark matter produced
purely from thermal processes in the early Universe is
possible when μ≃ 1.1 TeV, though lighter Higgsinos are
also possible if there is an additional source, e.g., asymmetric
Higgsinos [92] or a non-thermal source [93].
There are numerous phenomenological consequences of

Higgsino dark matter that warrant a separate study, which we
will present in Ref. [86]. On the dark matter side, we would
like to know how best to detect an inelastically split
Higgsino. Direct detection is highly suppressed, however,
there can be a large degree of time and recoil-energy
dependence that, to the best of our knowledge, are not
being searched for now with existing data. Direct detection
through elastic scattering is highly suppressed for both the
loop-induced processes leading to spin-independent scatter-
ing as well as the tree-level spin-dependent scattering (due to
pseudo-Dirac nature of the lightest Higgsino). Indirect
detection through γ rays provides a promising detection
strategy using proposed future air Cherenkov telescopes
[94]. Indirect detection through accumulation and annihila-
tion in the Sun [95–97], white dwarf [98] also provide
interesting probes. However, thermalization of dark matter
has been assumed in Refs. [95,97,98] and unfortunately, the
highly suppressed spin-independent elastic scattering sug-
gests thermalization is not effective on timescales of order
the age of the solar system. On the collider side, pure
Higgsinos are currently unconstrained by the LHC [99],
beyond the LEP II bound [68]. Some first studies of
Higgsino production at the LHC and at a 100 TeV collider
[100] suggest getting to the thermal abundance upper bound

of 1.1 TeV is not trivial. Further studies of nearly degenerate
Higgsinos are clearly warranted.

ACKNOWLEDGMENTS

We thank N. Arkani-Hamed, C. Burgess, P. Saraswat, N.
Weiner, and I. Yavin for several useful discussions during
the course of the research. G. D. K. thanks L. Hall and Y.
Nomura for fun discussions about Ref. [52] prior to that
(and this) paper appearing in e-print. G. D. K. is supported
in part by the U.S. Department of Energy under Contracts
No. DE-FG02-96ER40969 and No. DE-SC0011640.
Fermilab is operated by Fermi Research Alliance, LLC,
under Contract No. DE-AC02-07CH11359 with the United
States Department of Energy.

APPENDIX A: RG INPUTS

For the RG evolution, we take as boundary conditions
[101]

α−1emðMZÞ ¼ 127.944� 0.014;

sin2θWðMZÞ ¼ 0.23126� 0.00005;

α3ðMZÞ ¼ 0.1185� 0.0006;

MZðMZÞ ¼ 91.1876� 0.0021 GeV;

mtðmtÞ ¼ 173.07� 0.89 GeV;

mh ¼ 125.9� 0.4 GeV: ðA1Þ

APPENDIX B: RGE IN DIRAC-SPLIT

Here we collect the two-loop renormalization group
equations9 used to evolve couplings from the top mass
to the GUT scale, derived using the standard techniques
[103–108]. Below the scale MD, the superpartner mass
scale, we consider the evolution of the Higgs quartic
coupling λh, the top Yukawa yt, and the three gauge
couplings gi. Above that scale we only evolve the gauge
couplings and the top Yukawa. We work in a GUT
normalization, g1 ¼

ffiffiffiffiffiffiffiffi
5=3

p
gY . It is useful to introduce a

general form for the two-loop gauge coupling RGEs,

d
dt

gi ¼ βð1Þi þ βð2Þi

κβð1Þi ¼ big3i

κ2βð2Þi ¼ g3i

�X3
j¼1

Bijg2j − diy2t

�
; ðB1Þ

where we define the loop factor κ ¼ 16π2. In addition, we
define the beta functions

9As a check of our method we have derived the 2 loop RGEs
for split supersymmetry and agree with the results presented in
[102].
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d
dt

yt ¼ βð1Þyt þ βð2Þyt ðB2Þ

d
dt

λh ¼ βð1Þλh
þ βð2Þλh

ðB3Þ

with coefficients as given below.

1. Standard Model

Above the top quark mass, but below the Higgsino mass,
the field content is identical to the SM. Thus,

b ¼
�
41

10
;−

19

6
;−7

�
; B ¼

0
BB@

199
50

27
10

44
5

9
10

35
6

12

11
10

9
2

−26

1
CCA;

d ¼
�
17

10
;
3

2
; 2

�
: ðB4Þ

Similarly the running of the Yukawa and quartic are as in
the SM,

κβð1Þyt ¼ 9

2
y3t − yt

�
8g23 þ

9

4
g22 þ

17

20
g21

�
ðB5Þ

κ2βð2Þyt ¼ −12y5t þ y3t

�
36g23 þ

225

16
g22 þ

393

80
g21 − 6λh

�

þ yt

�
−108g43 þ 9g22g

2
3 þ

19

15
g23g

2
1 −

23

4
g42

−
9

20
g22g

2
1 þ

1187

600
g41 þ

3

2
λ2h

�
; ðB6Þ

and

κβð1Þλh
¼ 12λ2h þ λh

�
12y2t − 9g22 −

9

5
g21

�

− 12y4t þ
9

4
g42 þ

9

10
g22g

2
1 þ

27

100
g41 ðB7Þ

κ2βð2Þλh
¼ −78λ3h þ λ2h

�
54g22 þ

54

5
g21 − 72y2t

�

þ λh

�
−3y4t þ y2t

�
80g23 þ

45

2
g22 þ

17

2
g21

�

−
73

8
g42 þ

117

20
g22g

2
1 þ

1887

200
g41

�

þ 60y6t − y4t

�
64g23 þ

16

5
g21

�

þ y2t

�
−
9

2
g42 þ

63

5
g22g

2
1 −

171

50
g41

�
þ 305

8
g62

−
289

40
g42g

2
1 −

1677

200
g22g

4
1 −

3411

1000
g61: ðB8Þ

2. The Standard Model with Higgsinos

The inclusion of the vectorlike Higgsinos alters the
running of the gauge couplings at one loop, and the quartic
and top Yukawa at two loops. Thus,

b ¼
�
9

2
;−

5

2
;−7

�
B ¼

0
BB@

104
25

18
5

44
5

6
5

14 12

11
10

9
2

−26

1
CCA

d ¼
�
17

10
;
3

2
; 2

�
: ðB9Þ

Since the one-loop running is as in the SM we only show
the two-loop contributions. First for the top Yukawa,

κ2βð2Þyt ¼ −12y5t þ y3t

�
36g23 þ

225

16
g22 þ

393

80
g21 − 6λh

�

þ yt

�
−108g43 þ 9g22g

2
3 þ

19

15
g23g

2
1 −

21

4
g42

−
9

20
g22g

2
1 þ

1303

600
g41 þ

3

2
λ2h

�
: ðB10Þ

Then the Higgs quartic coupling,

κ2βð2Þλh
¼ −78λ3h þ λ2h

�
54g22 þ

54

5
g21 − 72y2t

�

þ λh

�
−3y4t þ y2t

�
80g23 þ

45

2
g22 þ

17

2
g21

�

−
33

8
g42 þ

117

20
g22g

2
1 þ

2007

200
g41

�
þ 60y6t

− y4t

�
64g23 þ

16

5
g21

�

þ y2t

�
−
9

2
g42 þ

63

5
g22g

2
1 −

171

50
g41

�
þ 273

8
g62

−
321

40
g42g

2
1 −

1773

200
g22g

4
1 −

3699

1000
g61: ðB11Þ

3. The Standard Model with Higgsinos and a Bino

In the second version of the model the bino does not have
a adjoint partner to marry and is considerably lighter than
the other superpartners. While the addition of a pure gauge
singlet does not alter the running of the gauge couplings
directly, the presence of both the Higgsinos and bino as
propagating degrees of freedom means there are additional
Yukawa couplings we have to consider,

L ⊃
~g0uffiffiffi
2

p H† ~B ~Hu þ
~g0dffiffiffi
2

p ðHTϵÞ ~B ~Hd þ H:c: ðB12Þ

These interactions are the supersymmetrization of the
Uð1ÞY gauge-matter interactions. Had both Higgses been
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as light as the bino, this piece would have been combined
into the supersymmetricOðg5Þ piece of the RGE. However,
since only one Higgs is (tuned to be) light, the Higgsino-
Higgs-bino interactions is instead projected onto that light

combination, matched at the bino mass, then run as Yukawa
couplings. Matching at this scale ~g0u ¼ g0 sin β; ~g0d ¼
g0 cos β. These additional Yukawa interactions alter the
two-loop gauge RGE, (B1) is modified to become,

κ2
d
dt

gi ¼ κbig3i þ
g3i

ð4πÞ2
�X3
j¼1

Bijg2j − diy2t − dB;ið~g02u þ ~g02dÞ
�
; ðB13Þ

Since we have only added a gauge singlet the b; B and d coefficients are unaltered. The new coefficient is,

dB ¼
�
3

20
;
1

4
; 0
�
: ðB14Þ

In turn these new couplings have their own RGEs,

κβð1Þ
~gu 0

¼ 5

4
~gu03 þ ~g0u

�
2~gd02 þ 3y2t −

�
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4
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��
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�
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�
−
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�
; ðB16Þ

and

κβð1Þ
~gd 0

¼ 5

4
~gd03 þ ~g0d

�
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�
9

4
g22 þ

9

20
g21

��
; ðB17Þ

κ2βð2Þ
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¼ −
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�
: ðB18Þ

These new couplings also enter in the running of the quartic and the top Yukawa. These top Yukawa RGE is given by,

κβð1Þyt ¼ 9

2
y3t þ yt

�
1

2
~gu02 þ

1

2
~gd02 −

�
8g23 þ
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4
g22 þ
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��
; ðB19Þ
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The quartic RGE is,

κβð1Þλh
¼ 12λ2h þ λh

�
12y2t − 9g22 −
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g21 þ 2ð~gu02 þ ~gd02Þ
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κ2βð2Þλh
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4. The MSSM with Adjoints

The final epoch we are interested in occurs in both
Model I and II once all the superpartners, the second
Higgs doublet, and the adjoint chiral super fields are
included. The field content is that of the MSSM with
additional adjoint fermions and scalars. As the adjoints
have no supersymmetric interactions outside of the
kinetic term, no new couplings are introduced and all
Oðg3y2Þ pieces of the gauge couplings RGEs are the same
as in the MSSM. Namely the coefficients in (B1) are,

b ¼
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Since we are now in a supersymmetric theory the
Higgs quartic is no longer a separate coupling but
is instead determined from the D terms in terms of
gauge couplings. This leaves only the top Yukawa,
which runs as

κβð1Þyt ¼ 6y3t − yt
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