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The presence of long-range interactions violates a condition necessary to relate the energy of two
particles in a finite volume to their S-matrix elements in the manner of Lüscher. While in infinite volume,
QED contributions to low-energy charged-particle scattering must be resummed to all orders in
perturbation theory (the Coulomb ladder diagrams), in a finite volume the momentum operator is gapped,
allowing for a perturbative treatment. The leading QED corrections to the two-particle finite-volume energy
quantization condition below the inelastic threshold, as well as approximate formulas for energy
eigenvalues, are obtained. In particular, we focus on two spinless hadrons in the Aþ

1 irreducible
representation of the cubic group, and truncate the strong interactions to the s-wave. These results are
necessary for the analysis of lattice QCDþ QED calculations of charged-hadron interactions, and can be
straightforwardly generalized to other representations of the cubic group, to hadrons with spin, and to
include higher partial waves.
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I. INTRODUCTION

Lattice QCD (LQCD) calculations of the properties of
the lowest-lying mesons are reaching the level of accuracy
where it is necessary to consider the strong interactions in
the context of the full Standard Model. In particular,
hadronic spectra and other hadronic observables are now
being calculated in the presence of both isospin violation
from the light-quark masses and quantum electrodynamics
(QED) [1–11]. QED plays a critical role in the stability and
structure of nuclei, and therefore first principles calcula-
tions of nuclear structure require the inclusion of the
electromagnetic (EM) interactions among quarks. Due to
computational resource limitations, LQCD calculations of
nuclei remain at an early stage, with calculations of the
binding energies of systems with up to five nucleons and
hyperons currently being performed at unphysical light-
quark masses [12–21]. While the time is not yet ripe for the
inclusion of QED in nuclear calculations, there are two-
body scattering processes that can now be calculated with
high accuracy in LQCD and where Coulomb corrections
are relevant, for instance πþπþ. Therefore, formalism that
allows for the systematic calculation of electromagnetic
corrections to two-body interactions in a finite volume (FV)
is required.
The extraction of hadronic interactions from lattice QCD

calculations is more complicated than determining the
spectrum of stable hadrons. The Maiani-Testa theorem
[22] demonstrates that S-matrix elements cannot be directly
extracted from infinite-volume Euclidean-space Green’s
functions except at kinematic thresholds. While discour-
aging from the viewpoint of nuclear physics, where a
central objective is determining the forces between nucle-
ons, hyperons and other hadrons, it is clear from its

statement that the theorem can be evaded with FV calcu-
lations. The essential formalism that enables extraction of
continuum S-matrix elements describing two-body elastic
scattering from measurements of two-body energies in a
finite spatial volume has been known for decades in the
context of nonrelativistic quantum mechanics [23] and, for
two spinless particles, was extended to quantum field
theory by Lüscher [24,25]. The energy of two particles
in a FV depends in a calculable way upon their elastic
scattering amplitudes, and their masses, for energies below
the inelastic threshold. A fundamental assumption in this
formalism is that the two particles experience only finite-
range interactions, such that the typical interaction length
scale is well contained within the spatial volume. Recently,
Lüscher’s formalism has been extended to coupled-
channels systems (i.e. channels that are coupled in infinite
volume), and to systems comprised of particles with
nonzero spin [26–38]. Further, the FV formalism describ-
ing nucleon-nucleon (NN) systems with arbitrary CM
momenta, spin, angular momentum, isospin and twisted
boundary conditions has been developed, providing the
quantization conditions (QCs) for the energy eigenvalues in
irreducible representations (irreps) of the FV symmetry
groups [39]. Efforts to account for the exponentially
suppressed effects of the finite range of the interactions
have also been made [40,41].
At a fundamental level, the inclusion of QED into LQCD

calculations poses a theoretical challenge, as the long-range
nature of the interaction is truncated and modified by the
boundary of the volume. In particular, Ampere’s law and
Gauss’s law cannot be satisfied with a QED gauge field
subject to periodic boundary conditions (PBCs) [42–45]. A
uniform background charge density can be introduced to
circumvent this problem, a procedure which is equivalent to
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removing the zero modes of the photon. That is, the
Coulomb potential energy between charges, e, in a cubic
spatial volume with the zero modes removed, is

Uðr; LÞ ¼ α

πL

X
n≠0

1

jnj2 e
i2πn·r

L ð1Þ

where α ¼ e2=4π, n are triplets of integers and L is the
spatial extent of the cubic volume. The FV Coulomb
potential can be seen in comparison with the infinite-
volume potential in Fig. 1 (left panel). A cross section of
the FV electric field due to a point charge in the center of
the volume is shown in Fig. 1 (right panel). Given the large
density of momentum states in typical lattice volumes, the
removal of the zero modes will not change the desired
infinite-volume values of calculated observables.1

In the absence of QED, there is a clear separation of the
FV artifacts into those that behave as power laws in L, and
those that are exponentially suppressed in L. The latter are
governed by the longest correlation length in the volume,
which, in chiral perturbation theory (χPT) and nucleon-
nucleon effective field theory (NNEFT), is the pion
Compton wavelength. In contrast, the QED FV effects
behave as a power law, which means that the energy
eigenvalues of two charged hadrons will be modified in the
same way by their self-interactions and by their interactions
with each other. Therefore, unlike the case with only short-
range forces, in the presence of photons, the kinematics of
“scattering processes” in lattice calculations also receive
power-law modifications in the FV.
The separation of QED effects from strong interaction

effects in scattering processes has a long history. However,
it is convenient to use effective field theory (EFT) tech-
nology, and its associated power counting, in deriving the

QED corrections to the FV QCs, the solution of which
provides the energy eigenvalues. Generally, for low-energy
charged-particle scattering processes, the Coulomb inter-
action is included nonperturbatively through a resumma-
tion of ladder diagrams. In an infinite volume this is
necessary because the scale of the Coulomb bound state
is set by the “Bohr” radius, ðαMÞ−1, and interactions with
momenta that probe the binding energy of the system are
nonperturbative in α. In FV, the nonperturbative treatment
would appear to be quite involved due to the proliferation
of increasingly complex integer sums. However, in the
spatial lattice volume, L3, the momentum operator is
gapped, with a scale that is set by 1=L, and not by the
inverse Bohr radius. Therefore, there is a range of volumes
in which the QED interactions can be treated in perturba-
tion theory in a loop expansion, leading to a significant
simplification in the corrections to Lüscher’s QCs. Another
energy scale that must be considered is the inelastic
threshold, set by the lowest photon energy in the FV,
E ¼ 2π=L. Given that there are no zero modes in the FV, by
construction, some of the infrared (IR) issues that are
usually encountered in QED are absent. As expected, this
threshold dictates the kinematical region of validity of the
truncation of the QC to two-body states.
This paper is organized as follows. In Sec. II, we review

the basic EFT results that allow for a separation of the QCD
and QED interactions in the elastic scattering of two
charged hadrons in infinite volume. These results form
the basis of the FV generalization. QED modifications to
the FV QCs that provide the energy eigenvalues of the Aþ

1

cubic irrep, truncated to s-wave interactions, are the subject
of Sec. III. First, the modifications to the scattering
kinematics due to FV self-energy shifts are considered,
and then the truncated QC is determined. In the limit of
small scattering lengths compared to L, perturbative
expressions for the energy eigenvalues are derived.
Furthermore, the QED corrections to the energy of a bound
state (when one exists) are determined. Requisite integer
sums are provided in the Appendix.
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FIG. 1 (color online). The left panel shows the FV Coulomb potential energy between unit charges along an axis of a cubic volume
(solid red curve) obtained from Eq. (1), and the infinite-volume Coulomb potential (dashed blue curve) [45]. The right panel shows the
FV electric field in the z ¼ 0 plane due to a point charge located at the center of the cube.

1The FV modifications to the values of counterterms in a low-
energy effective field theory of QCD will scale as ∼e−L=r, where r
is the typical scale of the strong interactions.
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II. COULOMB SCATTERING

QED contributions to two-particle interactions in a
FV will be considered in the context of the pionless
EFT [46–53]. The effective range expansion (ERE), which
describes the low-energy strong interactions between two
hadrons, emerges naturally from the pionless EFT, and it
was shown by Bethe [54] how the ERE is modified in the
presence of Coulomb interactions. Bethe’s analysis was
reformulated in EFT by Kong and Ravndal [55], and as this
formalism plays a central role in the calculations that
follow, it is helpful to review its salient features.
The T-matrix describing the QED interactions of two

spinless charged particles of mass M, charge e, carrying
equal but opposite momentum p, and in the absence of
strong interactions, has a partial-wave expansion of the form

TC ¼ −
4π

M

X
l

ð2lþ 1Þ e
i2σl − 1

2ip
Plðcos θÞ; ð2Þ

where p ¼ jpj and σl ¼ argΓð1þ lþ iηÞ. l is the angular
momentum of the scattering channel, η ¼ αM=ð2pÞ, and θ
is the center-of-mass (CoM) scattering angle. The strong
interactions between two hadrons below the t-channel cut in
an s-wave can be described by an EFT of four-hadron
operators. The effects of these operators can be encapsu-
lated, for the purposes of this work, by a single interaction
(a pseudopotential) with a coefficient CðE�Þ, which is an
analytic function of the CoM energy E�.2

Treating CðE�Þ nonperturbatively by summing all bub-
ble diagrams with a CðE�Þ insertion at each vertex, and
using dimensional regularization (DR) to regulate ultra-
violet divergences, the T-matrix including the strong and
the leading QED interactions is

TSC ¼ C2
ηðpÞ

CðE�Þei2σ0
1 − CðE�ÞJ∞0 ðE�Þ ¼ −

4π

M
e2iσ0

p cot δ − ip
; ð4Þ

where δ is the s-wave phase shift. J∞0 ðE�Þ is the r ¼ 0 to
r ¼ 0 Green’s function including QED interactions, and
can be written as

J∞0 ðE�Þ ¼ M
Z

d3q
ð2πÞ3

C2
ηðqÞ

p2 − q2 þ iϵ
; ð5Þ

and CηðpÞ is the Coulomb corrected vertex resulting from
the resummation of Coulomb ladder diagrams, with a
square given by

C2
ηðpÞ ¼

2πηðpÞ
e2πηðpÞ − 1

: ð6Þ
The parameter η ∼ α=v, where v is the relative velocity of
the two hadrons, governs the viability of QED perturbation
theory and therefore, as pointed out above, for momenta of
order αM, η ∼ 1 and Coulomb ladders must be treated to all
orders in α and resummed.
Decomposing J∞0 into finite and divergent parts,

Jfin0 þ Jdiv0 , leads to [55]

Jfin0 ¼M
Z

d3q
ð2πÞ3

C2
ηðqÞ
q2

p2

p2−q2þ iϵ
¼−

αM2

4π
HðηÞ; ð7Þ

where

HðηÞ ¼ ψðiηÞ þ 1

2iη
− lnðiηÞ; ð8Þ

with ψ the logarithmic derivative of the gamma function.
Using DR with modified minimal subtraction (MS) in
n ¼ 4 − 2ϵ dimensions,3 the divergent part becomes

Jdiv0 ¼−M
Z

d3q
ð2πÞ3

CηðqÞ
q2

¼αM2

4π

�
1

ϵ
þ ln

�
μ

ffiffiffi
π

p
αM

�
þ1−

3

2
γE

�
;

ð9Þ

where μ is the renormalization scale introduced in n
dimensions, and γE is Euler’s constant. The expression
for TSC in Eq. (4) then leads to

C2
ηðpÞpcotδþ αMhðηÞ ¼ −

4π

MCðE�Þ

þ αM

�
1

ϵ
þ ln

�
μ

ffiffiffi
π

p
αM

�
þ 1−

3

2
γE

�

ð10Þ
where

ImHðηÞ ¼
C2
ηðpÞ
2η

and ReHðηÞ≡ hðηÞ ð11Þ
have been used. As Bethe showed, the left-hand side of
Eq. (10) admits an ERE of the form

C2
ηðpÞp cot δþ αMhðηÞ ¼ −

1

aC
þ 1

2
r0p2 þ � � � ð12Þ

where aC is the Coulomb-corrected scattering length and r0
is the effective range. The presence of the extra term on the
left-hand side can be understood based on the analytic
structure of the scattering amplitude (see Fig. 2). As the
t-channel cut begins at the origin when photons are present,

2At the level of the nonrelativistic Lagrange density, expressed
as a gradient expansion of local operators built out of a field ψ , it
is straightforward to show, using equations of motion and
integrating by parts, that [52,56]

−θ̂ψTð∇⃖− ~∇Þ2ψ¼4Mθ̂

�
i∂0þ

∇2

4M

�
ψTψ≡4Mθ̂OE�ψTψ ; ð3Þ

where θ̂ is an arbitrary operator, and terms that are total
derivatives are not shown. The operator OE� when acting on
the two-particle operator simply yields the nonrelativistic center-
of-mass energy, E�.

3The power counting in the EFT is manifest in the power
divergence subtraction (PDS) scheme [46,47]. Here for simplicity
we use MS, which obscures the strong power counting, but does
not change it.
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this term removes this cut from the scattering amplitude,
thus leaving an expression that is analytic in p2 (neglecting
radiation) and which consequently admits an ERE.4

While the inelastic threshold is at p ¼ 0, this cut is
suppressed by powers of α compared to the t-channel cut.
Matching the right-hand sides of Eqs. (10) and (12) is

achieved through renormalization [46,47,55]. Rather than
useMS to subtract the 1=ϵ pole, a slightly modified scheme,
denoted MSFV, is used, which corresponds to subtracting

αM2

4π

�
1

ϵ
−
γE
2
þ 1þ ln

ffiffiffi
π

p
2

�
: ð13Þ

In this scheme, which is convenient for the FV calculations
to follow, the ERE can be described by renormalized
coefficients,

−
4π

MCðp; μÞ þ αM

�
ln

�
2μ

αM

�
− γE

�
¼ 1

aC
þ 1

2
r0p2 þ � � � ;

ð14Þ
where Cðp; μÞ ¼ C0ðμÞ þ C2ðμÞp2 þ � � � is the renormal-
ized strong-interaction pseudopotential coefficient.
The analysis of this section is appropriate for the

interactions of like-charged hadrons, such as proton-proton
scattering. In the case of hadrons with opposite charges,
the kinematic factor η changes sign, η ¼ −αM=ð2pÞ, and
HðηÞ becomes

H̄ðηÞ ¼ ψðiηÞ þ 1

2iη
− lnð−iηÞ: ð15Þ

III. FINITE VOLUME COULOMB SCATTERING

A. Power counting and kinematics

In a cubic spatial volume with PBCs, a free particle can
carry momentum p ¼ 2πn=L, where n is a triplet of
integers. In the absence of zero modes, the momentum

carried by a photon is restricted to k ≥ 2π=L and the
relevant size of η in the FV is η ∼ αML, which implies that
for ML ≪ 1=α, QED interactions can be treated perturba-
tively in α. Of course, η grows with the spatial volume and,
for a given M, there is a critical value of L at which
perturbation theory breaks down and the Coulomb ladders
must be resummed to all orders, as in infinite volume. In
addition, LQCD calculations have volumes large enough so
that M ≫ 1=L, and this limit will also be assumed
throughout this analysis. Note that due to the absence of
the zero mode, the inelastic threshold of the two-hadron
state, which is set by the two hadrons recoiling against a
photon, is at

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πM=L

p þOð1=MÞ.
The power-law nature of the expansion parameter leads

to various subtleties. In the absence of QED, hadron self-
energies contain FV corrections that are exponentially
suppressed by the dimensionless parameter mπL, and
therefore, neglecting these corrections, the kinematics in
the FVare the same as in infinite volume. This is no longer
the case in the presence of QED as the hadron masses have
power-law volume dependencies [42–45].
The total CoM energy of the two-hadron system can be

written as E� ¼ 2ML þ T�L, where T�L is the CoM kinetic
energy, andML is the mass of the single hadron, in the FV.
The ERE, while usually written in terms of an expansion in
the square of the hadron three-momentum, is an analytic
function of E� below the inelastic threshold, and with the
FV shift in the hadron mass(es), is evaluated at a shifted
value of the kinetic energy in the FV,

pcotδ¼−
1

aC
þ 1

2
r0p2þ r1p4þ� � �

¼−
1

aC
þ 1

2
r0MT� þ r1M2T�2þ� � �

¼−
1

aC
þ 1

2
r0MðE�− 2MÞþ r1M2ðE�− 2MÞ2þ� � �

→−
1

a0C
þ 1

2
r00MT�Lþ r01M

2ðT�LÞ2þ �� � ; ð16Þ

(a) (b)

FIG. 2 (color online). The analytic structure of the scattering amplitude in the complex p plane (a) without QED and (b) with QED.
The imaginary axis exhibits the QCD t-channel cut with its threshold atmπ=2, while the real axis gives the inelastic pion-production cut
with its threshold at

ffiffiffiffiffiffiffiffiffiffiffi
mπM

p
. In the presence of QED, both the t-channel cut (dark blue) and the inelastic cut (yellow) begin at the origin.

4At higher orders in α, other functions have to be subtracted to
allow an ERE.
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where r1 is the shape parameter. The primed scattering
parameters, that are required to describe the FV two-point
function, are defined by

1

a0C
¼ 1

aC
−
αr0MI
2πL

þOðα2; α=L2Þ;

r00 ¼ r0 þ
4αr1MI

πL
þOðα2; α=L2Þ; ð17Þ

with similar modifications to the terms that are higher
order in the ERE. In these shifted ERE parameters, the
single-particle FV corrections of Refs. [44,45] have been
used, and I ∼ −8.913632 is an integer sum detailed in the
Appendix.
Up to this point, the discussion has been focused on the

dynamics of pointlike particles, but as this work is relevant
to LQCD calculations, the effect of compositeness must be
considered. In Ref. [45], the EFT describing the low-energy
dynamics of hadrons was used to determine the FV
corrections to hadron masses in LQCD calculations, in
which the effect of compositeness, manifesting itself
through a hierarchy of electromagnetic multipole inter-
actions and other multiphoton gauge-invariant interactions,
was made explicit. These one-body QED interactions,
beyond the electric charge, will also contribute to energy
eigenvalues of two hadrons, electrically charged or neutral.
For spinless hadrons, the leading interaction beyond the
charge is from its charge radius. Given that the charge
radius is proportional to the square of the momentum
carried by the photon, the leading effect of the charge radius
is to provide a constant additive renormalization of CðE�Þ,
which is the same in finite and infinite volume. Further, this
contribution cannot be isolated from the experimental
scattering data without a model-dependent subtraction,
or with an explicit calculation of the low-momentum
transfer contribution using EFT. Therefore, in what follows,
the leading contribution from the structure of spinless

hadrons is already included in the definition of the
scattering parameters, and the comparison with experiment
should not remove this contribution from the experimental
data prior to comparing. The analysis that follows does not
make explicit the contribution from the hadron charge
radius, but one should keep in mind that it is implicit.

B. Quantization condition including QED

The truncated QC that determines the Aþ
1 FV energy

eigenvalues can be determined by the singularities of the
FV two-point function. In general, the OðαÞ corrections to
the two-point function result from the sum of all diagrams
with a single insertion of a photon and the related counter-
terms, examples of which are shown in Figs. 3 and 4.
Consider the correlation function between a source, S†, and
a sink, S, where S†; S couple to two hadrons in an s-wave.
Denoting the contribution to this two-point function from
the sums of bubbles shown in Fig. 3 as JL0 ðE�Þ, and the
(generally) energy-dependent FV strong interaction as
CLðE�Þ, this correlation function is

S†½JL0 ðE�ÞþCLðE�ÞðJL0 ðE�ÞÞ2þCLðE�Þ2ðJL0 ðE�ÞÞ3þ����S

¼S†
JL0 ðE�Þ

1−CLðE�ÞJL0 ðE�ÞS¼S†
1

1=JL0 ðE�Þ−CLðE�ÞS:

ð18Þ

Therefore, the FV QC that determines the Aþ
1 energy

eigenvalues is simply

1

CLðE�Þ ¼ JL0 ðE�Þ: ð19Þ

In the infinite-volume limit, the Feynman diagrams repre-
sented in Fig. 3 [given to all orders in Eq. (5)], after
performing the energy integrations, give

J∞0 ðE�Þ ¼ −M
Z

d3q
ð2πÞ3

1

q2 − p2
þ 4παM2

Z
d3q
ð2πÞ3

Z
d3k
ð2πÞ3

1

q2 − p2

1

k2 − p2

1

jq − kj2 þ � � � ; ð20Þ

which in a FV, and using a momentum cutoff, takes the form

JL0 ðE�Þ ¼ −
M

4π2L

XΛn

n

1

jnj2 − ~p2
þ αM2

16π5
XΛn

n

X∞
m≠n

1

jnj2 − ~p2

1

jmj2 − ~p2

1

jn −mj2 þ � � � ; ð21Þ

(a) (b)

FIG. 3. Feynman diagrams contributing to the FV two-point function. Diagram (a) is one of the bubble diagrams resulting from the
strong interactions, while diagram (b) is one of the diagrams at OðαÞ from the exchange of a Coulomb photon (that becomes one of the
Coulomb ladder diagrams in infinite volume).
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where ~p ¼ Lp=2π and Λn ¼ LΛ=2π with Λ a momentum
cutoff, and the ellipses signify omitted Oðα2Þ effects. Note
that the zero mode has been removed from the photon
propagator by the condition m ≠ n. As the FV does not
alter the ultraviolet (UV) behavior of the sums from that of
the infinite-volume integrals, the renormalization of diver-
gences in FV is the same as in infinite volume. In Eq. (21),
the infinite-volume hadron mass, M, has been used, rather
thanML. As the present analysis assumesML ≫ 1, and the
mass does not explicitly appear in the leading QC, this
difference represents a higher order effect. In order to
regulate the divergent sums for numerical evaluation, while
maintaining the mass-independent renormalization scheme,
Eq. (19) becomes [57]

1

CLðE�Þ − ReðJ∞fDRg
0 ðE�ÞÞ ¼ JL0 ðE�Þ − ReðJ∞fΛg

0 ðE�ÞÞ;

ð22Þ
where the fg superscript indicates the regularization
scheme, and it is straightforward to show that

ReðJ∞fΛg
0 ðE�ÞÞ ¼ −

MΛ
2π2

−
αM2

4π
ln
�
2p
Λ

�
þ � � � ; ð23Þ

and

ReðJ∞fDRg
0 ðE�ÞÞ

¼ −
αM2

4π

�
1

2
γE −

1

ϵ
− 1þ ln

�
2p
μ

�
− ln

ffiffiffi
π

p �
þ � � � ; ð24Þ

which matches the perturbative expansion of the all-
orders propagator given in Sec. II. The remaining task is
to relate the FV interactions, CLðE�Þ, to their infinite-
volume counterparts, CðE�Þ, which define the scattering
matrix in Eq. (4), and hence to the scattering parameters.
In general, the FV interactions, CLðE�Þ, result from a

summation of all bubble diagrams of the type shown in
Fig. 4, inwhich the photon is exchangedbetween bubbles, or
between an interaction and a bubble, or between inter-
actions, or produces a loop from the same interaction.
Consider a generic diagram with a photon across bubbles,

as in Fig. 4. As a single bubble with CoM kinetic energy T�

scales as ∼M
ffiffiffiffiffiffiffiffiffiffi
MT�p

; the contribution from the photon
pole is∼

ffiffiffiffiffiffijpjp
∼

ffiffiffiffiffiffiffiffiffiffi
M=L

p
. Therefore, diagramswith photons

across n-bubbles are suppressed by ∼ð ffiffiffiffiffiffiffiffiffiffi
M=L

p Þn.5 To deter-
mine the parametric contributions from these diagrams, it is
sufficient to evaluate the diagram without bubbles between
the insertions of the photon vertices, i.e. the photon across
a single CðE�Þ vertex. Analogous arguments apply to the
diagrams with photons emerging from the strong interaction
(by gauge invariance) and connecting to bubbles, as in
Fig. 4(c), or other interactions. It follows thatCLðE�Þ differs
from CðE�Þ by δCðFVÞðE�Þ ¼ CLðE�Þ − CðE�Þ,

δCðFVÞðE�Þ ¼ −α
�
2aC
πM

α3=2 þ
4a2Cr0
L

I þ � � �
�
; ð25Þ

where α3=2 is a numerical constant given in the Appendix.
As these contributions depend explicitly on the scattering
parameters and do not constitute a simple multiplicative
renormalization of p cot δ, they explicitly preclude a direct
extraction of T-matrix elements. This should come as no
surprise, as the QED interactions of systems containing two
or more hadrons (or interactions of such systems with other
types of probes) are not described by the two-body scattering
parameters alone. For instance, in the case of two nucleons,
there will be contributions from the gauge-invariant two-
body operators that contribute to the deuteron quadrupole
moment, and from the operators contributing to the electric
and magnetic polarizabilities.
It follows from Eq. (12) that, at OðαÞ, the truncated Aþ

1

FV QC for fields subject to spatial PBCs is

−
1

a0C
þ 1

2
r00p

2 þ � � � ¼ 1

πL
SCð ~pÞ þ αM

�
ln

�
4π

αML

�
− γE

�

þ � � � ; ð26Þ

(a) (b)

(c)

FIG. 4. Feynman diagrams contributing to the FV two-point function but which are suppressed in the IR compared to the Coulomb
ladder diagrams. (a) Bubble-to-bubble exhange; (b) and (c) Interaction-to-bubble exchanges.

5The diagrams in Fig. 4 are analogous to those involving
radiation pions in NNEFT [46,47], which were analyzed in detail
in Ref. [58].
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where the single sum over integer triplets, which deter-
mines the effects of the strong interactions in the absence of
QED interactions, is modified to

SCðxÞ≡ SðxÞ − αML
4π3

S2ðxÞ þ
αMa2Cr0
π2L2

I ½SðxÞ�2 þ � � � ;
ð27Þ

with

SðxÞ≡XΛn

n

1

jnj2 − x2
− 4πΛn;

S2ðxÞ≡
XΛn

n

X∞
m≠n

1

jnj2 − x2
1

jmj2 − x2
1

jn −mj2 − 4π4 lnΛn:

ð28Þ

The scattering parameters in Eq. (27) are unprimed and the
ellipses denote terms that are higher order in the α, 1=L and
1=M expansions and in the ERE. Equation (26) is the main
result of this paper.
The numerical evaluation of the function SðxÞ through

exponential acceleration techniques is well known [24,25],
and it is convenient to express the OðαÞ regulated double
sum as

S2ðxÞ ¼ R −
2

x2
X
n≠0

1

jnj2
1

jnj2 − x2
þ
X
n≠0

X
m≠0;n

×

�
1

jnj2 − x2
1

jmj2 − x2
−

1

jnj2
1

jmj2
�

1

jn −mj2 ;

ð29Þ

where

R≡XΛn

n≠0

X∞
m≠0;n

1

jnj2jmj2
1

jn−mj2−4π4 lnΛn ¼−178.42ð01Þ:

ð30Þ

The evaluation of this geometric constant, R, is presented
in the Appendix.
The QC given in Eq. (26) determines the FV energy

eigenvalues of two like-charged hadrons. The analogous
QC for oppositely charged hadrons can be determined from
Eq. (26) by the substitution α → −α except in the argument
of the logarithm where α → þα.

C. Renormalization group evolution

It is tempting to combine the terms in brackets on the
left- and right-hand sides of Eq. (26); however, it is only
this particular decomposition that allows an ERE of the left-
hand side [54]. Indeed, the appearance of the logarithm on

the right-hand side is essential to the physical interpretation
of the QC, and can be understood with the aid of the
renormalization group (RG). In the MSFV scheme, a
running scattering length can be defined,

1

aðμÞ≡
4π

MCð0; μÞ ¼
1

aC
þ αM

�
ln

�
2μ

αM

�
− γE

�
; ð31Þ

which, by construction, satisfies

1

aðμÞ ¼
1

aðνÞ þ αM ln

�
μ

ν

�
: ð32Þ

This (scheme-dependent) running scattering length can be
interpreted as the scattering length with the leading QED
effects from distance scales > 1=μ removed [55].
With this running scattering length in mind, it is

convenient to give alternate forms of the QC, Eq. (26).
For instance, the QC can be expressed in terms of the MSFV
scattering length with the leading QED effects from length
scales outside of the spatial volume removed. To this end, a
renormalization-scale-dependent function, δ̄ðp; μÞ, can be
defined such that

p cot δ̄ðp; μÞ≡ −
1

aðμÞ þ
1

2
r0p2 þ � � � ; ð33Þ

leading to

pcot δ̄0ðp;2π=LÞ≡−
1

a0ð2π=LÞþ
1

2
r00p

2þ �� � ¼ 1

πL
SCð ~pÞ;

ð34Þ

where the primes denote the modified kinematics. Despite
the presence of the scheme-dependent scattering length,
this form of the QC is the most physical, as it is written
only in terms of quantities which have support within the
boundaries of the FV. The price that is paid for expressing
the QC directly in terms of the physical scattering length
is the presence of the extra term (in brackets) on the right
side of Eq. (26), which removes contributions to the
scattering length from length scales outside of the FV.6

Working with the running scattering length, this logarithm
can be absorbed, and the QC can be expressed in terms
of quantities that have support only within the FV, i.e.
að2π=LÞ. When working directly with physical quantities,
the infrared scale μ̄ ¼ αMeγE=2 can be chosen, which
implies aðμ̄Þ¼aC and the function pcotδ̄ðpÞ≡pcotδ̄ðp;μ̄Þ
can be used in the QC,

6Similar considerations apply to the analogous QC (without
EM) in two spatial dimensions [59].
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p cot δ̄0ðpÞ ¼ −
1

a0C
þ 1

2
r00p

2 þ � � �

¼ 1

πL
SCð ~pÞ þ αM

�
ln

�
4π

αML

�
− γE

�
: ð35Þ

D. Approximate energy eigenvalues

Ideally, the QC in Eq. (26) is solved numerically to
determine the FV energy eigenvalues. However, the
smallness of αML in present day calculations, and those
of the foreseeable future, implies that the QED FV shifts
in the two-hadron energy eigenvalues are small, and
the numerics will not be particularly enlightening.
However, considering the OðαÞ perturbative corrections
to the eigenvalues is informative. It is worth emphasizing
the somewhat peculiar nature of the expansions in the
approximate formulas that follow, which suggest a
somewhat narrow range of validity. While the expansions
are formally perturbative in 1=L times the length scale
which characterizes the strength of the interaction,
and are also nonrelativistic, it is further assumed that
ML ≪ 1=α so that the QED interactions can be treated
perturbatively.

1. The ground state

In a perturbative expansion around the noninteracting
ground state, with energy E ¼ 2ML, there is no contri-
bution from the QED interactions at OðαÞ in the absence
of strong interactions. This is due to the absence of
the photon zero mode, with the uniform background
charge density in the unperturbed state exactly canceling
the particle charge density.7 Using standard methods,
it is straightforward to find the ground-state energy
shift for scattering parameters that are small compared
to L,

ΔEC
0 ¼ΔE0 þΔEðαÞ

0

¼ 4πa0

ML3

�
1−

�
a0

πL

�
þ I þ

�
a0

πL

�
2

þ ½I2−J � þ…

�

− 2αa0

L2π2

�
J þ

�
a0

πL

�
½K−IJ −R=2�

þ
�
a0

πL

�
2

½RI þ I2J − 2J 2 − 2IK−L−R24�

þ 2a0r00π
2

L2
I þ � � �

�
; ð36Þ

where a0 ≡ a0ð2π=LÞ is the MSFV scattering length and
the geometric constants, I , J , K, L, R and R24 are
defined and evaluated in the Appendix. The first term in
braces is the well-known energy shift due to QCD
interactions, while the second term is the shift due to
the combined QCD and QED interactions. This can also
be expressed in terms of the kinematically shifted
scattering parameters,

ΔEC
0 ¼ 4πa0C

ML3

�
1−

�
a0C
πL

�
þI þ

�
a0C
πL

�
2

þ ½I2−J �þ � � �
�

− 2αa0C
L2π2

�
J þ

�
a0C
πL

�
½K−IJ − ~R=2�

þ
�
a0C
πL

�
2

½ ~RI þI2J − 2J 2− 2IK−L−R24�

þ 2a0r00π
2

L2
I þ �� �

�
; ð37Þ

where

~R≡R − 4π4
�
ln

�
4π

αML

�
− γE

�
: ð38Þ

The ellipses denote terms that are higher order in 1=M,
1=L and α. In terms of the physical scattering parameters,
the energy shift of the ground state is

ΔEC
0 ¼ 4πaC

ML3

�
1−

�
aC
πL

�
þI þ

�
aC
πL

�
2

þ ½I2−J �þ � � �
�

− 2αaC
L2π2

�
J þ

�
aC
πL

�
½K−IJ − ~R=2�

þ
�
aC
πL

�
2

½ ~RI þI2J − 2J 2− 2IK−L−R24�

þaCr0π2

L2
I þ� � �

�
: ð39Þ

The only difference between Eqs. (37) and (39) is the
coefficient of the last term, as other differences are
higher order in the expansion.

2. The first excited state

In contrast to the ground state, the energy shift of the first
excited state in the FV receives a contribution from the
exchange of a single Coulomb photon as the uniform
background charge density does not cancel against the
jnj ¼ 1 unperturbed two-hadron charge density. Following
Lüscher [24,25] and expanding8 the energy shift in terms of
tan δ̄0 evaluated at the unperturbed energy, the energy shift
of the first excited state is

7Note that the ground-state energy of boosted systems will
have pure Coulomb corrections as the charge density is no longer
uniformly zero.

8Note that this expansion requires special care due to the
singular, purely Coulombic, contribution.
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ΔEC
1 ¼ΔE1þΔEðαÞ

1

¼ 4π2

ML2
− 12 tan δ̄0

ML2
ð1þ c01 tan δ̄

0 þ c02tan
2δ̄0 þ � � �Þþ 9α

4πL

�
1þ c01α tan δ̄

0 þ
�
c02αþ

8

3
logðαMLÞ

�
tan2δ̄0 þ � � �

�
; ð40Þ

where c01¼−0.061365, c02¼−0.35415 and c01α ¼ 3.83582,
c02α ¼ −7.12197. The strong coefficients, c01;2, were first
computed by Lüscher [24,25], and we do not repeat their
determination here. The leading QED contribution arises
from the exchange of a single Coulomb photon between
jnj ¼ 1 two-hadron states, and is simply given by

α

6πL

X
jmj;jnj¼1
n≠m

1

jn −mj2 ¼
9α

4πL
; ð41Þ

while the remaining QED contributions are of the form

c01α ¼ −
4

9π2
ð6−X2Þ;

c02α ¼ −
2

3π4

�
1

3
ð6−X2ÞI ð1Þ þ 1

6
X1J ð1Þ −Rþ 12

þ 2ðX3 þX4 þX5Þ þX1 −X6 − 4π4ðγE − log4πÞ
�
;

ð42Þ

where the geometric constants, I ð1Þ, J ð1Þ, and X1-X6 are
defined and evaluated in the Appendix. Terms higher order
in 1=L, such as the leading contribution from r0 at 1=L2,
e.g. þ 9α

4πL
3r0
πL tan

2δ̄, are not shown. Further, at this order,
tan δ̄0 can be replaced with tan δ̄ without modifying the
form of Eq. (40). To give some perspective, in a L ¼ 10 fm
volume, the leadingOðαÞ energy shift from the exchange of
a single Coulomb photon is ∼100 keV.

3. The (possible) bound state

In nature, there are no bound doubly charged two hadron
systems; however such systems do exist at unphysical pion
masses, as determined with lattice QCD calculations
[17,19,21,60]. The bound-state energy in the FV is deter-
mined from the large-x limit of SCðxÞ in Eqs. (26) and (27),
and, in particular, the sums contributing to SCðxÞ are

XΛn

n

1

jnj2 þ ~κ2
→ 4πΛn − 2π2 ~κ; ð43Þ

XΛn

n

X
m≠n

1

jmj2 þ ~κ2
1

jnj2 þ ~κ2
1

jn −mj2

→ 4π4ðlogΛn − logð2~κÞÞ þ π2

~κ
I ; ð44Þ

in the large volume limit, ~κ → ∞, where only the leading
power-law corrections are shown.9 At the order to which we
are working, these limits lead to a FV QC for the bound
state of

−
1

aC
−
1

2
r0κ2 ¼ −κ − αM

�
γE þ log

�
αM
4κ

��

−
αM
2πκL

ð1 − κr0ÞI ; ð45Þ

which determines the leading Coulomb corrections to the
bound-state binding energy. Performing a perturbative
expansion of κ ¼ κ0 þ κ1 þ � � �. leads to a binding energy
of

BC ¼ κ20
M

−
2ακ0

1 − κ0r0

�
γE þ log

�
αM
4κ0

��
−

α

πL
I þ � � � ;

ð46Þ

where κ0 is the binding momentum resulting from the
strong interactions alone. The leading QED contribution to
the infinite-volume binding energy is consistent with a
direct perturbative calculation in the ER theory. Further,
the leading FV correction to the binding is given,10 which
vanishes as 1=L, as expected.
In the limit in which the bound state is compact

compared to the lattice volume, the leading corrections
to its total mass should be those of a charge-2 system, as
calculated in Ref. [45]. There are two contributions to the
mass shift of the bound state, one from the shifts of the
individual constituent hadrons, and one from the shift in
the binding energy. We find that in the deep-binding limit,
the total mass of the bound state is shifted by

δMðFVÞ
BS ¼ 2δMðFVÞ − δBC

¼ 2

�
α

2πL
I
�
þ α

πL
I þ � � � ¼ 2α

πL
I þ � � � ; ð47Þ

consistent with expectations [44,45].

9Equation (44) is obtained by first shifting m → nþ p,
performing the sum over n using the Poisson summation formula,
and then dividing the sum over p into two regions. The first
region generates the power-law correction, and the second region
is again evaluated using Poisson summation to give the loga-
rithmic contributions.

10The relation between the scattering parameters and the
binding momentum has been used, with terms higher order in
the scattering parameters neglected.
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Above we have considered the case of a system
bound by the strong interaction, and shown how the
quantization condition, Eq. (26), gives the correct
compact limit. If the system is bound in infinite volume
by the electromagnetic interaction, then the compact
limit cannot be explicitly taken, as this would require
moving through a region of parameter space where
the Coulomb interaction becomes nonperturbative
in the finite volume. Of course, the compact result
will necessarily coincide with the results of
Refs. [44,45].

IV. SUMMARY AND DISCUSSION

Lattice QCD has reached the point where QED is
being included in calculations of some of the simplest
hadronic properties, such as the masses of the lowest-
lying hadrons. Naively, the inclusion of QED should be
problematic for calculations in a finite volume due to its
long-range nature. However, by simply omitting the
zero modes of the photon field, which lead to the
violation of both Gauss’s and Ampere’s laws, lattice
QCDþ QED calculations can be performed in mean-
ingful ways to reliably extract important quantities
without corrupting the infinite-volume limit. Recently,
the relation between the single hadron masses calcu-
lated in a finite volume and their infinite-volume values
has been established [44,45]. Given the nonperturbative
nature of the Coulomb interaction in low-energy scat-
tering, extending this work to relate two-hadron energy
eigenvalues to their corresponding S-matrix elements
had the potential to be quite involved. In this work, we
have shown that there is a large range of volumes,
satisfying ML ≪ 1=α, for which the nonrelativistic
relation between the finite-volume energy of two
hadrons in the Aþ

1 representation of the cubic group
and their s-wave phase shift receives calculable pertur-
bative QED corrections. Our results will straightfor-
wardly generalize to the relations between the energies
of two hadrons in other representations of the cubic
group and the phase shifts and mixing parameters in all
relevant scattering channels.
The confining nature of QCD simplifies the evalu-

ation of hadronic correlation functions using lattice
QCD, as it dictates that the interactions among hadrons
are contained within a volume set by the longest
correlation length, which is the pion Compton wave-
length. As long as the size of the spatial lattice is
significantly larger than the inverse pion mass, there is a
hierarchy of length scales and finite-volume artifacts can
be removed, as in the case of single-particle properties,

or exploited, as in the calculation of two-particle
interactions. The presence of an infinite-range force
destroys this hierarchy. With no zero modes and a
gap in the spectrum of the momentum operator, there
is a region of parameter space for the calculation of the
energy of two nonrelativistic hadrons of mass M. In
particular, if the lattice volume satisfies ML ≪ 1=α,
Coulomb ladders are perturbative, and their contribution
to the two-particle energy, along with other contribu-
tions that are absent in infinite volume, can be computed
perturbatively in α. Furthermore, in the absence of zero
modes, the gap in the spectrum sets the scale of the
contribution due to inelastic processes. It is essential
that such a gap exist in order to derive the quantization
conditions that relate the energies computed in LQCD
and relevant S-matrix elements—those dictating the two-
hadron scattering amplitude, and those which determine
electromagnetic processes.11 In the absence of QED, the
low-energy EFT, which is valid up to the start of the
QCD t-channel cut, gives a QC in a form that is valid up
to the QCD inelastic threshold when expressed in terms
of p cot δ (see Fig. 2). However, it is important to stress
that in the presence of QED, the expressions we have
derived are valid up to the QED inelastic threshold
when this lies below the QCD t-channel cut, or other-
wise up to the QCD t-channel cut.
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APPENDIX A: INTEGER SUMS

1. Single sums

The single sums over integer triplets that are required
for the modified kinematics in a finite volume and
for the approximate two-hadron energy eigenvalues
are

11In the case of a light scalar with no gauge or chiral symmetry
present that gives rise to nonperturbative interactions in infinite
volume, one can still remove the zero mode without affecting
physics, and in principle find a region of parameter space where
perturbation theory is valid. If there is no such region, then
formalism beyond what has been developed here will be
necessary.

SILAS R. BEANE AND MARTIN J. SAVAGE PHYSICAL REVIEW D 90, 074511 (2014)

074511-10



I ¼
XΛn

n≠0

1

jnj2 − 4πΛn ¼ −8.9136; J ¼
X
n≠0

1

jnj4 ¼ 16.5323;

K ¼
X
n≠0

1

jnj6 ¼ 8.4019; L ¼
X
n≠0

1

jnj8 ¼ 6.9458;

I ð1Þ ¼
X
jnj≠1

1

jnj2 − 1
¼ −1.2113; J ð1Þ ¼

X
jnj≠1

1

ðjnj2 − 1Þ2 ¼ 23.2430;

X1 ¼
X

jmj;jnj¼1
n≠m

1

jn −mj2 ¼
27

2
; X2 ¼

X
jnj¼1
jmj>1

1

jmj2 − 1

1

jn −mj2 ¼ 91.1806;

X3 ¼
X
jnj>1

1

jnj2ðjnj2 − 1Þ ¼ 14.7022; X4 ¼
X
jmj¼1
jnj>1

1

jnj2
1

jn −mj2 ¼ 65.3498;

X5 ¼
X
jnj¼1
jmj>1

1

ðjmj2 − 1Þ2
1

jn −mj2 ¼ 46.5687. ðA1Þ

2. Double sums

Unlike the situation in large volumes when only strong interactions contribute, and explicit two-loop sums are not
required, the leading QED contributions resulting from the exchange of Coulomb photons require nontrivial two-loop sums
over triplets of integers. Consider the finite double sum:

R≡XΛn

n≠0

X∞
m≠0;n

1

jnj2jmj2
1

jn −mj2 − 4π4 lnΛn

¼
XΛn

n≠0

1

jnj2 RsubðnÞ − 4π4 lnΛn: ðA2Þ

It is regulated asymmetrically, by first evaluating the inner sum without a cutoff,

RsubðnÞ≡
X∞
m≠0;n

1

jmj2
1

jn −mj2 ; ðA3Þ

and then straightforwardly evaluated using the methods described in Ref. [61]. It is found to be

RsubðnÞ ¼ −2ηð1 − e−ηjnj2Þ 1

jnj2 þ
X∞
m≠0;n

ðe−ηDnm þ e−ηjmj2 − e−ηðDnmþjmj2ÞÞ 1

jmj2Dnm

þ
Z

d3mð1 − e−ηDnmÞð1 − e−ηm
2Þ 1

jmj2Dnm
; ðA4Þ

where Dnm ≡ jn −mj2, and η is a small number introduced to provide a clean way to separate sums into UV and IR
contributions where the UV sums can be replaced by integrals. The η used here should not be confused with the kinematic
variable used in the main body of the paper. The η-independent piece (in the integral) is readily evaluated, giving

RsubðnÞ ¼
π3

jnj − 2ηð1 − e−ηjnj2Þ 1

jnj2 þ
X∞
m≠0;n

ðe−ηDnm þ e−ηjmj2 − e−ηðDnmþjmj2ÞÞ 1

jmj2Dnm

− 2π

Z
∞

0

dm
Z

1

−1
dcðe−ηDnmc þ e−ηm

2 − e−ηðDnmcþm2ÞÞ 1

Dnmc
; ðA5Þ

where Dnmc ≡ jnj2 − 2jnjjmjcþ jmj2, from which Eq. (A2) becomes
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R ¼ π3α3=2 − 2ηJ þ 2ηJ η þ T 1 − 2πT 2 ¼ −178.42ð01Þ; ðA6Þ

where [61]

α3=2 ≡
XΛn

n≠0

1

jnj3 − 4π lnΛn ¼ 3.8219. ðA7Þ

The η-dependent sums are

J η ≡X∞
n≠0

e−ηjnj2

jnj4 ;

T 1 ≡
X∞
n≠0

X∞
m≠0;n

ðe−ηDnm þ e−ηjmj2 − e−ηðDnmþjmj2ÞÞ 1

jnj2jmj2Dnm
;

T 2 ≡
X∞
n≠0

1

jnj2
Z

∞

0

dm
Z

1

−1
dcðe−ηDnmc þ e−ηm

2 − e−ηðDnmcþm2ÞÞ 1

Dnmc
; ðA8Þ

where all sums are evaluated numerically for a range of values of η that provide stable results for each.
Evaluation of the perturbative expansion of the ground-state energy requires sums of the form

Rst ≡
X∞
n≠0

X∞
m≠0;n

1

jnjsjmjt
1

jn −mj2 ; ðA9Þ

but at the order to which we have worked, onlyR24 ¼ 170.97ð01Þ is required. Further, in the perturbative expansion of the
energy of the first excited states, the two-loop sum,

X6 ¼
X

jmj;jnj>1
n≠m

�
1

jnj2 − 1

1

jmj2 − 1
−

1

jnj2
1

jmj2
�

1

jn −mj2 ¼ 264.508; ðA10Þ

is required, and it is evaluated with techniques similar to those used previously.
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