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We compute the leptonic decay constants fDþ , fDs
, and fKþ and the quark-mass ratios mc=ms and

ms=ml in unquenched lattice QCD using the experimentally determined value of fπþ for normalization.
We use the MILC highly improved staggered quark ensembles with four dynamical quark flavors—up,
down, strange, and charm—and with both physical and unphysical values of the light sea-quark masses.
The use of physical pions removes the need for a chiral extrapolation, thereby eliminating a significant
source of uncertainty in previous calculations. Four different lattice spacings ranging from a ≈ 0.06 to
0.15 fm are included in the analysis to control the extrapolation to the continuum limit. Our primary results
are fDþ ¼ 212.6ð0.4Þðþ1.0

−1.2Þ MeV, fDs
¼ 249.0ð0.3Þðþ1.1

−1.5Þ MeV, and fDs
=fDþ ¼ 1.1712ð10Þðþ29

−32Þ, where
the errors are statistical and total systematic, respectively. The errors on our results for the charm decay
constants and their ratio are approximately 2–4 times smaller than those of the most precise previous lattice
calculations. We also obtain fKþ=fπþ ¼ 1.1956ð10Þðþ26

−18Þ, updating our previous result, and determine the

quark-mass ratios ms=ml ¼ 27.35ð5Þðþ10
−7 Þ and mc=ms ¼ 11.747ð19Þðþ59

−43Þ. When combined with exper-
imental measurements of the decay rates, our results lead to precise determinations of the Cabibbo-
Kobayashi-Maskawa matrix elements jVusj ¼ 0.22487ð51Þð29Þð20Þð5Þ, jVcdj ¼ 0.217ð1Þð5Þð1Þ and
jVcsj ¼ 1.010ð5Þð18Þð6Þ, where the errors are from this calculation of the decay constants, the uncertainty
in the experimental decay rates, structure-dependent electromagnetic corrections, and, in the case of jVusj,
the uncertainty in jVudj, respectively.
DOI: 10.1103/PhysRevD.90.074509 PACS numbers: 12.38.Gc, 14.20.Dh

I. INTRODUCTION AND MOTIVATION

The leptonic decays of pseudoscalar mesons enable
precise determinations of Cabibbo-Kobayashi-Maskawa
(CKM) quark-mixing matrix elements within the
Standard Model. In particular, experimental rates for the
decays Dþ → μþν, Ds → μþν and Ds → τþν, when com-
bined with lattice calculations of the charm-meson decay
constants fDþ and fDs

, allow one to obtain jVcdj and jVcsj.
Indeed, this approach results in the most precise current
determination of jVcdj. Similarly, the light-meson decay-
constant ratio fKþ=fπþ can be used to extract jVusj=jVudj
from the experimental ratio of kaon and pion leptonic decay
widths [1,2]. Here we calculate the charm decay constants
for the first time using physical values for the light sea-
quark mass. We obtain fDþ and fDs

to about 0.5% precision
and their ratio fDs

=fDþ to about 0.3% precision; we also
update our earlier calculation of fKþ=fπþ [3] to almost
0.2% precision. This is the most precise lattice calculation
of the charm decay constants to date, and improves upon
previous results by a factor of 2–4. We also compute the
quark-mass ratios mc=ms and ms=ml, which are funda-
mental parameters of the Standard Model.
We use the lattice ensembles generated by the MILC

Collaboration with four flavors (nf ¼ 2þ 1þ 1) of
dynamical quarks using the highly improved staggered
quark (HISQ) action, and a one-loop tadpole improved
Symanzik improved gauge action [4–7]. The generation
algorithm uses the fourth-root procedure to remove the
unwanted taste degrees of freedom [8–20]. Our data set
includes ensembles with four values of the lattice spacing
ranging from approximately 0.15 to 0.06 fm, enabling good
control over the continuum extrapolation. The data set
includes both ensembles with the light (up-down), strange,

and charm sea masses close to their physical values
(“physical-mass ensembles”) and ensembles where either
the light sea mass is heavier than in nature, or the strange
sea mass is lighter than in nature, or both.
The physical-mass ensembles enable us to perform first a

straightforward analysis that does not require chiral fits.
This analysis, which we refer to as the “physical-mass
analysis” below, gives our results for fKþ=fπþ, as well as
ratios of physical quark masses. The quark-mass ratios are
then used as input to a more sophisticated analysis of the
charm decay constants that includes the ensembles with
unphysical sea-quark masses. In this second analysis,
referred to as the “chiral analysis,”we analyze our complete
data set within the framework of staggered chiral pertur-
bation theory (SχPT) for all-staggered heavy-light mesons
[21–23]. The inclusion of the unphysical-mass ensembles
gives us tighter control on discretization effects because
SχPT connects the quark-mass and lattice-spacing depend-
ence of the data, reducing the statistical errors on the decay
constants significantly, and allowing us to make more
refined adjustments for mistuning of masses. We therefore
take our final central values for fDþ, fDs

, and fDs
=fDþ from

the chiral analysis. The physical-mass analysis provides a
cross-check of the chiral analysis and is used in our final
estimate of systematic uncertainties.
An earlier result for fKþ=fπþ was presented in Ref. [3].

Here we update this analysis with slightly more statistics
and improved estimates for the systematic errors.
Preliminary results for the charm decay constants and
quark masses were presented in Ref. [24].
This paper is organized as follows. Section II gives

details about the lattice ensembles used in our calculation
and the method for extracting the decay constants from
two-point correlation functions. As discussed in Sec. III,
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the first stage in our analysis is to fit the two-point
correlators to determine the meson masses and decay
amplitudes for each pair of valence-quark masses.
Section IV presents the main body of our analysis, which
proceeds in two stages. In the first stage, described in
Sec. IVA, we use the physical-mass ensembles to compute
quark-mass ratios and fKþ=fπþ , as well as some additional
intermediate quantities required for the later chiral analysis
of the D-meson decay constants. In the first part of the
physical-mass analysis, Sec. IVA 1, we fit the valence-
quark mass dependence of the masses and amplitudes and
evaluate the decay amplitudes at the resulting tuned valence
masses. Next, in Sec. IVA 2, we adjust the quark-mass
ratios and decay amplitudes to account for the slight sea-
quark mass mistuning and extrapolate these results to the
continuum. In the last part of the physical-mass analysis,
Sec. IVA 3, we consider systematic errors from finite-
volume and electromagnetic effects. In the second analysis
stage described in Sec. IV B, we use heavy-light staggered
chiral perturbation theory to combine the unphysical light-
and strange-quark mass ensembles with the nearly physical
quark mass ensembles to obtain the charm-meson decay
constants. We first present the chiral perturbation theory for
all-staggered heavy-light mesons in Sec. IV B 1. We then
discuss the required mass-independent scale setting in
Sec. IV B 2, where we take care to correct for effects on

the scale and quark-mass estimates of mistunings of the
sea-quark masses. We present the chiral-continuum fits in
Sec. IV B 3 and discuss the systematic errors from the
continuum extrapolation, as well as from other sources, in
Sec. IV B 4. We present our final results for the decay
constants and quark-mass ratios with error budgets in
Sec. V, in which we also compare our results to other
unquenched lattice calculations. Finally, we discuss the
impact of our results on CKM phenomenology in Sec. VI.
The Appendix gives details about the inclusion of non-
leading heavy-quark effects in our chiral formulas.

II. LATTICE SIMULATION PARAMETERS
AND METHODS

Table I summarizes the lattice ensembles used in this
calculation. Discussion of the parameters relevant to the
lattice generation, such as integration step sizes and accep-
tance rates, choice of the rational hybrid Monte Carlo
(RHMC) or rational hybrid molecular dynamics (RHMD)
algorithm, and autocorrelations of various quantities can be
found in Ref. [7]. In particular, we find that the effects of
using the RHMD algorithm rather than the RHMC algorithm
in some of our ensembles are negligible. The dependence of
error estimates for the decay constants in this work on the
jackknife block size is consistent with the more general

TABLE I. Ensembles used in this calculation. The first column is the gauge coupling β ¼ 10=g2, and the next three columns are the
sea-quark masses in lattice units. The primes on the masses indicate that they are the values used in the runs, and in general differ from
the physical values either by choice, or because of tuning errors. The lattice spacings in this table are obtained separately on each
ensemble using fπþ as the length standard, following the procedure described in Sec. IVA 1. (In Sec. IV B we use a mass-independent
lattice spacing, described there.) The lattice spacings here differ slightly from those in Ref. [7] since we use fπþ as the length scale, while
those in Ref. [7] were determined using Fp4s (discussed at the beginning of Sec. IVA). Values of the strange-quark mass chosen to be
unphysical are marked with a dagger †); while the asterisk (*) marks an ensemble that we expect to extend in the future.

β am0
l am0

s am0
c ðL=aÞ3 × ðT=aÞ Nlats a (fm) L (fm) MπL Mπ (MeV)

5.80 0.013 0.065 0.838 163 × 48 1020 0.14985(38) 2.38 3.8 314
5.80 0.0064 0.064 0.828 243 × 48 1000 0.15303(19) 3.67 4.0 214
5.80 0.00235 0.0647 0.831 323 × 48 1000 0.15089(17) 4.83 3.2 130
6.00 0.0102 0.0509 0.635 243 × 64 1040 0.12520(22) 3.00 4.5 299
6.00 0.0102 0.03054† 0.635 243 × 64 1020 0.12104(26) 2.90 4.5 307
6.00 0.00507 0.0507 0.628 243 × 64 1020 0.12085(28) 2.89 3.2 221
6.00 0.00507 0.0507 0.628 323 × 64 1000 0.12307(16) 3.93 4.3 216
6.00 0.00507 0.0507 0.628 403 × 64 1028 0.12388(10) 4.95 5.4 214
6.00 0.01275 0.01275† 0.640 243 × 64 1020 0.11848(26) 2.84 5.0 349
6.00 0.00507 0.0304† 0.628 323 × 64 1020 0.12014(16) 3.84 4.3 219
6.00 0.00507 0.022815† 0.628 323 × 64 1020 0.11853(16) 3.79 4.2 221
6.00 0.00507 0.012675† 0.628 323 × 64 1020 0.11562(14) 3.70 4.2 226
6.00 0.00507 0.00507† 0.628 323 × 64 1020 0.11311(19) 3.62 4.2 230
6.00 0.0088725 0.022815† 0.628 323 × 64 1020 0.12083(17) 3.87 5.6 286
6.00 0.00184 0.0507 0.628 483 × 64 999 0.12121(10) 5.82 3.9 133
6.30 0.0074 0.037 0.440 323 × 96 1011 0.09242(21) 2.95 4.5 301
6.30 0.00363 0.0363 0.430 483 × 96 1000 0.09030(13) 4.33 4.7 215
6.30 0.0012 0.0363 0.432 643 × 96 1031 0.08779(08) 5.62 3.7 130
6.72 0.0048 0.024 0.286 483 × 144 1016 0.06132(22) 2.94 4.5 304
6.72 0.0024 0.024 0.286 643 × 144 1166 0.05937(10) 3.79 4.3 224
6.72 0.0008 0.022 0.260 963 × 192 583� 0.05676(06) 5.44 3.7 135
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results on autocorrelations in Ref. [7]. Reference [7] also
shows the molecular dynamics time evolution of the
topological charge for many of these ensembles and histo-
grams of the topological charge. We have since also verified
that on the a ≈ 0.06 fm physical quark mass ensemble the
autocorrelation time for the topological charge is much
shorter than the topological charge autocorrelation time on
the a ≈ 0.06 fm, m0

l ¼ m0
s=5 ensemble shown in Fig. 2 of

Ref. [7]. The dependence on the light-quark mass can be
understood by thinking of the decorrelation process as a
random walk in the topological charge.
Our extraction of the pseudoscalar decay constants with

staggered quarks follows that used for asqtad quarks [2,25]
and for fKþ with the HISQ action [3,26]. The decay
constant fPS is given by the matrix element of ψ̄γ5ψ
between the vacuum and the pseudoscalar meson. For
staggered fermions, using the pion taste corresponding to
the axial symmetry broken only by quark masses, this
becomes the operator

OPð~x; tÞ ¼ χ̄að~x; tÞð−1Þxþyþzþtχað~x; tÞ; ð1Þ
where a is a color index. The desired matrix element can be
obtained from the amplitude of a correlator using this
operator at the source and sink:

PPPðtÞ ¼
1

Vs

X
~y

hOPð~y; 0ÞOPð~0; tÞi

¼ CPPe−Mt þ excited state contributions; ð2Þ

where Vs is the spatial volume, M is the pseudoscalar
meson mass and the sum over ~y isolates the zero spatial
momentum states. Then the decay constant is given by
[27,28]

fPS ¼ ðmA þmBÞ
ffiffiffiffiffiffi
Vs

4

r ffiffiffiffiffiffiffiffi
CPP

M3

r
; ð3Þ

where mA and mB are valence quark masses and M is the
pseudoscalar meson mass.
In our computations, we use a “random-wall” source for

the quark propagators, where a randomly oriented unit
vector in color space is placed on each spatial site at the
source time. Then quark and antiquark propagators origi-
nating on different lattice sites are zero when averaged over
the sources. We use three such source vectors for each
source time slice.
We also compute pion correlators using a “Coulomb-

wall” source, where the gauge field is fixed to the lattice
Coulomb gauge, and then a uniform color vector source is
used at each spatial site. In practice these vectors are the
“red,” “green,” and “blue” color axes. The Coulomb-wall
source correlators are somewhat less contaminated by
excited states than the random-wall source correlators, so
by simultaneously fitting the correlators with common
masses we are able to determine the masses better, and
hence get a better determined amplitude for the random-
wall source correlator.
Four source time slices are used on each lattice, with the

exception of the 0.06 fm physical quark-mass ensemble
where, because these lattices are longer in the Euclidean
time direction, six source time slices are used. The location
of the source time slices on successive lattices is advanced
by an amount close to one-half of the spacing between
sources, but incommensurate with the lattice time size, so
that the source location cycles among all possible values.
In each lattice ensemble, two-point correlators are com-

puted for a range of valence-quarkmasses. The complete set
of valence-quark masses is given in Table II. The lightest

TABLE II. Valence-quark masses used in this project. Correlators with random-wall and Coulomb-wall sources are computed for each
possible pair of valence-quark masses. Light valence massesmv are given in units of the (ensemble value of the) sea strange-quark mass
m0

s. Note that for the four ensembles with near-physical sea-quark mass, the lightest valence mass is the same as the light sea mass. The
two heavy valence masses are in units of the charm sea-quark massm0

c. For the ensembles with unphysical strange-quark mass (included
in “All” at β ¼ 6.0), the valence masses are given in units of the approximate physical strange-quark mass, 0.0507.

Sea-quark masses Light valence masses Charm valence masses

β am0
l am0

s am0
c mv=m0

s mv=m0
c

5.80 0.013 0.065 0.838 0.1, 0.15, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0 0.9, 1.0
5.80 0.0064 0.064 0.828 0.1, 0.15, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0 0.9, 1.0
5.80 0.00235 0.0647 0.831 0.036, 0.07, 0.1, 0.15, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0 0.9, 1.0
6.00 0.0102 All 0.635 0.1, 0.15, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0 0.9, 1.0
6.00 0.00507 All 0.628 0.1, 0.15, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0 0.9, 1.0
6.00 0.00184 0.0507 0.628 0.036, 0.073, 0.1, 0.15, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0 0.9, 1.0
6.30 0.0074 0.037 0.440 0.1, 0.15, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0 0.9, 1.0
6.30 0.00363 0.0363 0.430 0.1, 0.15, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0 0.9, 1.0
6.30 0.0012 0.0363 0.432 0.033, 0.066, 0.1, 0.15, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0 0.9, 1.0
6.72 0.0048 0.024 0.286 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0 0.9, 1.0
6.72 0.0024 0.024 0.286 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0 0.9, 1.0
6.72 0.0008 0.022 0.260 0.036, 0.068, 0.1, 0.15, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0 0.9, 1.0

A. BAZAVOV et al. PHYSICAL REVIEW D 90, 074509 (2014)

074509-4



valence mass used is one-tenth the strange-quark mass for
the coarser ensembles with heavier sea-quark masses, 1=20
the strange-quark mass for the a ≈ 0.06 fm ensembles with
heavier than physical sea-quarkmass, and the physical light-
quark mass for the ensembles with physical sea-quark mass.
The valence masses chosen then cover the range from this
lightest mass up to the estimated strange-quark mass. We
then choose additional masses at the estimated charm-quark
mass (the same as the charm-quark mass in the sea), as well
as nine-tenths of that value, so that we canmake adjustments
for mistuning of the charm-quark mass. For these last two
quarks, the coefficient of the three-link term in the fermion
action (the “Naik term”) is adjusted to improve the
quark’s dispersion relation [29]. Specifically, the expansion
resulting from combining Eqs. (24) and (26) of Ref. [29]
is used; the improvement has been checked in HISQ
simulations [6,29].

III. TWO-POINT CORRELATOR FITS

To find the pseudoscalar masses and decay amplitudes,
the random-wall and Coulomb-wall correlators are fitted to
common masses but independent amplitudes. With stag-
gered quarks the Goldstone-taste pseudoscalar correlators
with unequal quark masses contain contributions from
opposite-parity states, which show up as exponentials
multiplied by an alternating sign, ð−1Þt. For valence-quark
masses up to and including the strange-quark mass these
contributions are small, and good fits can be obtained while
neglecting them. In fact, in our previous analyses with the
asqtad quark action, these states were not included in the
two-point fits. However, with these data sets, slightly better
fits are obtained when an opposite-parity state is included
in the light-light fits, and so we include such a state in the
unequal quark mass correlators.
The light-charm correlators (where “light” here includes

masses up to the physical strange-quark mass ms) are more
difficult to fit than the light-light correlators for several
reasons. First, because the difference in the valence-quark
mass is large, the amplitude of the opposite-parity states is
not small. Second, the mass splitting between the ground
state and the lowest excited single particle state is smaller.
For the light-light correlators, the approximate chiral
symmetry makes the ground state mass smaller than typical
hadronic scales, which has the side effect of making the
mass gap to the excited single particle states large, and
these excited states can be suppressed by simply taking a
large enough minimum distance. For the charm-light
correlators we include an excited state in the fit function.
(In principle, multiparticle states also appear in these
correlators. For example, the lowest excited state in the
pion correlator would be a three-pion state. Empirically
these states do not enter with large amplitudes, and the
important excited states correspond more closely to single
particle states.)

To make the fits converge reliably, it is necessary to
loosely constrain the masses of the opposite-parity and
excited states by Gaussian priors. The central value of the
gap between the ground state and opposite parity states is
taken to be 400 MeV, motivated by the 450 MeV gap
between the D mass and the 0þ light-charm mass, and the
350 MeV gap between the Ds mass and a poorly estab-
lished 0þ strange-charm meson [30]. The central value for
the gap between the ground state and excited state masses is
taken to be 700 MeV, motivated by the 660 MeV gap
between the ηc and the corresponding 2S state. In most
cases the widths of the priors for the opposite-parity and
excited state gaps are taken to be 200 and 140 MeV,
respectively, although in some cases these need to be
adjusted to get all of the jackknife fits to converge.
Another factor that makes the light-charm correlators

more difficult to fit is the faster growth of the statistical
error. The time dependence of the variance of a correlator is
expected to depend on time as e−E2t, where E2 is the energy
of the lowest lying state created by OO†, where O is the
source operator for the correlator itself, with the proviso
that quark and antiquark lines all go from source to sink,
rather than coming back to the source [31]. For the pion
correlator, the state created by OO† is just the two-pion
state, leading to the expectation that the fractional statistical
error on the pion correlator is roughly independent of
distance. However, for the light-charm correlator, the
quarks and antiquarks created by OO† can pair up to form
an ηc and a pion. Then, the reduction of the pion’s mass
from chiral symmetry makes this state much lighter than
2MD, so the fractional error of the propagator grows rapidly
with distance. This makes it essential to use smaller
minimum distances in the fit range for the light-charm
correlators, which of course makes the problem of excited
states discussed in the previous paragraph even more
serious.
Table III shows our expectations for the states controlling

the growth of statistical errors for the various pseudoscalar
correlators. Figure 1 shows the fractional errors for the

TABLE III. States expected to control the statistical errors on
the correlators, for the pseudoscalars with physical valence-quark
masses. The second column shows the state expected to control
the growth of the statistical error on the correlator, the third
column the mass gap between half the mass of the error state and
the particle mass, and the fourth column the length scale for the
growth of the fractional statistical error. Here s̄s is the unphysical
flavor nonsinglet state, with mass 680 MeV.

State Error Energy gap (MeV) Growth length (fm)

π 2π 0 ∞
K π þ s̄s 90 2.26
ηc 2ηc 0 ∞
Ds ηc þ s̄s 140 1.42
D ηc þ π 310 0.64
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random-wall correlators for the 0.09 fm physical quark-
mass ensemble, with comparison to the slopes expected
from Table III. With the exception of the charm-charm
correlator, the behavior of the statistical error agrees with
our theoretical expectations.
Figures 2 and 3 show the masses in the 2þ 1 state fits for

the light-charm correlators in the a ≈ 0.09 fm physical
quark-mass ensemble as a function of the minimum
distance included in the fit, where the light-quark mass
is the physical ðmu þmdÞ=2 (Fig. 2) and ms (Fig. 3). Fit
ranges are chosen from graphs like this for all the
ensembles, and analogous graphs for the light-light and
charm-charm correlators. We show this ensemble because
it, together with the a ≈ 0.06 fm physical-mass ensemble,
is the most important to the final results. In these graphs the
error bars on the right show the central values and widths of
the priors used for the opposite-parity and excited masses.
At short distances, these masses are more accurately
determined by the data, while at larger Dmin the input
prior controls the mass. The linear sizes of the symbols in
these figures are proportional to the p value of the fit, with
the size of the symbols in the legend corresponding to 50%.
In the two-point correlator fits used to choose the fit types
and ranges, as in Figs. 2 and 3, autocorrelations among the
lattices are minimized by first blocking the data in blocks of
four lattices, or 10–24 molecular dynamics time units.
However, statistical errors on results in later sections are
obtained from the jackknife procedures described in
Secs. IVA and IV B. In these analyses the two-point fits
are repeated in each jackknife resampling. From these and
similar graphs for other ensembles and different numbers of
excited states, keeping the minimum distance in physical

units reasonably constant, the minimum distances and fit
forms in Table IV are chosen. The need for using a smaller
minimum distance and including an excited state in the
heavy-light fits is consistent with our expectations from
Table III and Fig. 1. Because the statistical errors increase
with distance from the source, the fits are much less

FIG. 1 (color online). Fractional errors for pseudoscalar
correlators as a function of distance from the 0.09 fm physical
quark-mass ensemble. The line segments show the slope expected
from the states in Table III, which give a good approximation
to the observed growth of the errors with the exception of the
charm-charm correlator.

FIG. 2 (color online). Fits for the light-charm pseudoscalar
correlator (mass M) in the ensemble with a ≈ 0.09 fm and
physical sea-quark masses. We plot the ground state, alternating
state (opposite parity) and excited state masses as a function of
minimum distance included in the fit. The size of the symbols is
proportional to the p value of the fit, with the size of the symbols
in the legend corresponding to 0.5. The two bursts on the right
show the priors and their errors for the alternating and excited
masses. The vertical arrows at Dmin ¼ 15 indicate the fit that is
chosen. Further discussion is in the text. Here the masses and
distance are in units of the lattice spacing.

FIG. 3 (color online). Fits for the strange-charm correlator in
the ensemble with a ≈ 0.09 fm and physical sea-quark masses.
The format and symbols are the same as in Fig. 2.
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sensitive to the choice of maximum distance. In most cases
the maximum distance is taken to be one less than the
midpoint of the lattice. However, in the a ≈ 0.09 and
0.06 fm ensembles, the light-charm and charm-charm fits
used a smaller maximum distance because having fewer
points in the fit gave a better conditioned covariance matrix.
These maximum distances are also included in Table IV.

IV. DETERMINATION OF DECAY CONSTANTS
AND QUARK-MASS RATIOS

This section describes the details of the analyses that
produce our results for light-light and heavy-light decay
constants and the ratios of quark masses. We perform two
versions of the analysis. The first, the “physical-mass
analysis” described in Sec. IVA, is a straightforward
procedure that essentially uses only the physical-quarkmass
ensembles. On these ensembles, a chiral extrapolation is not
needed: only interpolations are required in order to find the
physical quark-mass point. The physical-mass analysis
produces our results for quark-mass ratios and fKþ=fπþ ,
as well as some additional intermediate quantities required
for the chiral analysis of theDmesondecay constants,which
follows. The second analysis of charm decay constants,
described in Sec. IV B, uses chiral perturbation theory to
perform a combined fit to all of our physical-mass and
unphysical-mass data, and to thereby significantly reduce
the statistical uncertainties of the results. We take the more
precise values of fDþ , fDs

, and their ratio from the chiral
analysis as our final results, and use those from the simpler
physical-mass analysis only as a consistency check, and to
aid in the estimation of systematic errors.
In the physical-mass analysis of Sec. IVA, we first

determine the lattice spacing and quark masses separately
for each ensemble, using, in essence, the five experimental
values of fπþ , Mπ0 , MK0 , MKþ and MDs

, as explained in
Sec. IVA 1. In order to adjust for mistuning of the sea-
quark masses, we perform a parallel scale-setting and
quark-mass determination on the unphysical-mass ensem-
bles; there, however, an extrapolation in the valence-quark
mass is generally required. We extrapolate the quark-mass
ratios to the continuum, after small sea-quark mistuning
adjustments, in Sec. IVA 2. We follow the same procedure

on the physical-mass ensembles to also obtain values for
decay constants. In particular, we update our result for
fKþ=fπþ from Ref. [3]. Although the results for charm
decay constants from the physical-mass analysis are not
taken as our final values, they are used as additional inputs
in the estimation of systematic errors from the continuum
extrapolation. Finally, the physical-mass analysis allows us
to make straightforward estimates of systematic errors
coming from finite-volume and electromagnetic (EM)
effects on the decay constants and quark-mass ratios, as
described in Sec. IVA 3.
The values of the physical quark-mass ratios mc=ms,

ms=ml, and (to a lesser extent, in order to take into account
isospin-violating effects) mu=md obtained in Sec. IVA are
used in the subsequent chiral analysis in Sec. IV B. Further,
in the physical-mass analysis, we determine the useful
quantity Fp4s [7], which is the light-light pseudoscalar
decay constant F evaluated at a fiducial point with both
valence masses equal to mp4s ≡ 0.4ms and physical sea-
quark masses. The meson mass at the same fiducial point,
Mp4s, as well as the ratio Rp4s ≡ Fp4s=Mp4s, are similarly
determined. The unphysical decay constant Fp4s provides
an extremely precise and convenient quantity to set the
relative scale in the chiral analysis (see Sec. IV B 2), while
we use Rp4s to tune the strange sea-quark mass.
The chiral analysis of the decay constants of charm

mesons is described in detail in Sec. IV B. With chiral
perturbation theory, one can take advantage of all our data
by including both the physical-mass and unphysical-mass
ensembles in a unified procedure. In particular, the stat-
istical error inΦDþ is slightly more than a factor of 2 smaller
with the chiral analysis than in the physical-mass analysis
of Sec. IVA. In addition, the use of the relevant form of
staggered chiral perturbation theory for this case, heavy-
meson, rooted, all-staggered chiral perturbation theory
(HMrASχPT) [23], allows us to relate the quark-mass
and lattice-spacing dependence of the data, and thereby
use the unphysical-mass ensembles to tighten the control of
the continuum extrapolation. Our final central values for the
charm decay constants given in the conclusions are taken
from the chiral analysis. We increase some of the systematic
uncertainties, however, to take into account differences with
the results of the physical-mass analysis.

TABLE IV. Fit forms and minimum distance included for the two-point correlator fits. Here the fit form is the number of negative
parity (i.e., pseudoscalar) states “plus” the number of positive parity states. When the valence quarks have equal masses, the opposite-
parity states are not included. In this work the charm-charm fits are needed only for computing the mass of the ηc meson, used as a check
on the quality of our charm physics.

light-light light-charm charm-charm

Form Dmin Dmax Form Dmin Dmax Form Dmin Dmax

a ≈ 0.15 fm 1þ 1 16 23 2þ 1 8 23 2þ 0 9 23
a ≈ 0.12 fm 1þ 1 20 31 2þ 1 10 31 2þ 0 12 23
a ≈ 0.09 fm 1þ 1 30 47 2þ 1 15 37 2þ 0 18 35
a ≈ 0.06 fm 1þ 1 40 71 2þ 1 20 51 2þ 0 21 50
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A. Simple analysis from physical
quark-mass ensembles

Here we determine the quark-mass ratios and decay
constants employing primarily the physical quark-mass
ensembles. First, in Sec. IVA 1, we determine the lattice
spacing, quark masses, and decay constants separately for
each ensemble. Next, in Sec. IVA 2, we adjust the quark
masses and decay constants for slight sea-quark mass
mistuning, and extrapolate to the continuum. Finally, we
estimate the systematic uncertainties in the quark-mass
ratios and decay constants in Sec. IVA 3. We present
results and error budgets for these quantities obtained from
the physical mass analysis in Table VI.

1. Valence-quark mass interpolation

In this stage of the analysis we determine tuned quark
masses and the lattice spacing (using fπþ to fix the scale)
for each ensemble, and then find the decay constants by
interpolation or extrapolation in valence-quark mass to
these corrected quark masses. There are a number of
possible choices for the procedure used, and we include
the differences among a few sets of choices in our
systematic error estimate. It is important to remember that
there is inherent ambiguity in defining a lattice spacing for
ensembles with unphysical sea-quark masses, but all
sensible choices should have the same limit at zero lattice
spacing and physical sea-quark masses. For example, in the
ensemble-by-ensemble fitting procedure described in this
section, we take the value of fπþ on each ensemble to be
130.41 MeV, independent of sea-quark masses, while for
the chiral perturbation theory analysis we take the lattice
spacing to be independent of the sea-quark masses.
Figure 4 illustrates some of the features of our procedure,

and referring to it may help clarify the following descrip-
tion. Since the decay amplitude F depends on valence-
quark mass, and we wish to use fπþ ¼ 130.41 MeV to set
the lattice scale, we must determine the lattice spacing and
tuned light-quark mass simultaneously. To do so, we find
the light valence-quark mass where the mass and amplitude
of the pseudoscalar meson with degenerate valence quarks
have the physical ratio ofM2

π=f2πþ . (Actually we adjust this
ratio for finite size effects, using the pion mass and decay

constant in a 5.5 fm box. This correction is discussed in
Sec. IVA 3.) This light-quark mass is the average of the up-
and down-quark masses, ml ¼ ðmu þmdÞ=2. Here we use
the mass of the π0, since it is less affected by electromag-
netic corrections than the πþ. Since the πþ contains one up
and one down quark, the error in fπþ from using degenerate
light valence quarks is negligible. This tuning is illustrated
in the upper left panel of Fig. 4, which shows this ratio as a
function of light valence mass for the 0.09 fm physical
quark-mass ensemble, one of the two ensembles that are
most important in our analysis. The octagons in this panel
are the ratio at the valence-quark masses where we
calculated correlators, with error bars that are too small
to be visible. The horizontal red line is the desired value of
this ratio, and the green vertical line shows the light-quark
mass where the ratio has its desired value. With the tuned
light-quark mass determined, we use the decay amplitude at
this mass, fπþ , to fix the lattice spacing. In performing the
interpolation or extrapolation ofM2

π=f2π we use points with
degenerate light valence-quark mass mv and employ a
continuum, partially quenched, SU(2) χPT form [22,32],

M2
π

f2π
¼ B2mv

f2

�
1þ 1

16π2f2
½Bð4mv − 2m0

lÞ logð2Bmv=Λ2
χÞ þ 4Bðmv þm0

lÞ logðBðmv þm0
lÞ=Λ2

χÞ� þ Cmv

�
;

fπ ¼ f

�
1 −

2Bðmv þm0
lÞ

16π2f2
logðBðmv þm0

lÞ=Λ2
χÞ þ Cmv þDm2

v

�
; ð4Þ

where m0
l is the light sea-quark mass and Λχ is the chiral

scale. In applying Eq. (4), we fix the low-energy constants
B and f in the coefficients of the logarithms to values
determined from lowest order χPT using the smallest

valence-quark mass. We then fix the coefficients of mv
and m2

v in M2
π=f2π using the smallest two valence-quark

masses available, and we fix the analytic coefficients in fπ
using the three smallest valence-quark masses. In the

FIG. 4 (color online). Illustration of the “fπ” tuning for the
a ≈ 0.09 fm physical quark-mass ensemble. F is the decay
constant of a generic pseudoscalar meson. The procedure
illustrated is described in the text.
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physical quark-mass ensembles, such as the one shown in
Fig. 4, this is only a small correction to the quark mass. On
the other hand, in most of the ensembles with m0

l=m
0
s ¼ 0.1

or 0.2, the lightest valence-quark mass is 0.05m0
s or 0.1m0

s,
and a significant extrapolation is made. However, these
unphysical-mass ensembles are used only in the analysis of
this section to correct the results of the physical-mass
ensembles for small mistunings of the sea masses in the
physical-mass ensembles.
We then fix the tuned strange-quark mass to the mass that

gives the correct 2M2
K −M2

π . This is illustrated in the upper
right panel of Fig. 4. In all of our ensembles, we use valence
“strange”-quark masses at the expected strange-quark mass
and at 0.8 times this mass. The two data points shown in the
figure have these strange masses and the lightest available
light-quark valence mass. A linear interpolation or extrapo-
lation is performed through these two points. Again, the
horizontal red line shows the desired value of this mass
difference, and the vertical green line the resulting value of
ms. In this stage of the tuning the kaon mass is corrected for
finite-volume effects, electromagnetic effects and isospin
breaking effects, where again we defer the details to the
discussion of systematic errors in Sec. IVA 3.
Next we determine the up-down quark mass difference,

and hence the up- and down-quark masses. We use the
difference in K0 and Kþ masses:

md −mu ¼
M2

K0
adj
−M2

Kþ
adj

∂M2
K∂ml

: ð5Þ

Here the kaon masses are adjusted for finite-volume and
electromagnetic effects, and again we defer the details to
Sec. IVA 3. We note that the electromagnetic corrections
are a small effect on the strange quark-mass tuning but are
absolutely crucial in the determination of md −mu. To
estimate the derivative ∂M2

K=∂ml, we use the masses of
kaons containing a valence quark near the strange-quark
mass and a second valence quark that is one of the two
lightest valence quarks we have.
Then the tuned charm-quark mass is determined from the

experimental value of MDs
. We use MDs

rather than MD
because it has much smaller statistical errors. In all of
our ensembles we have correlators with valence-quark
masses at the expected charm-quark mass and at 0.9 times

this mass. Using linear interpolations inms of theDs meson
mass at these two “charm” masses to the strange-quark
mass found earlier, and a linear interpolation inmc between
these, we find a tuned charm-quark mass.
Now that we have found the lattice spacing and tuned

quark masses, we can find decay constants and masses of
other mesons by interpolating or extrapolating to these
quark masses. The bottom panel of Fig. 4 illustrates this
process. The lower set of points in this graph are the decay
constants at each light valence mass, interpolated using the
two strange valence masses to the tuned strange-quark
mass. Then fKþ is found by extrapolating these points to
the tunedmu, illustrated by the red octagon at the lower left.
Similarly, the upper set of data points is the decay constant
at each light-quark mass, linearly interpolated or extrapo-
lated using the two charm valence masses to the tuned mc.
This graph is then interpolated or extrapolated to the tuned
md to find fDþ , shown in the red octagon at the upper left,
or to the tuned ms to find fDs

, shown by the red octagon at
the upper right.
As checks on our procedure, we also similarly inter-

polate or extrapolate in the meson masses to findMD0 ,MDþ

and Mηc .

2. Sea-quark mass adjustment
and continuum extrapolation

In this stage we combine the results from the individual
ensembles and fit to a function of the lattice spacing to find
the continuum limit. We use the ensembles with unphysical
sea-quark masses to make small adjustments for the fact
that the sea-quark masses in the physical quark-mass
ensembles were fixed after short tuning runs, and inevitably
turned out to be slightly mistuned when the full runs are
done. The amount of mistuning is shown in Table V, which
gives the sea-quark masses and the tuned quark masses for
the physical quark-mass ensembles.
Fitting to the lattice spacing dependence is straightfor-

ward, because the results from each ensemble are sta-
tistically independent. We have performed continuum
extrapolations for the ratios of quark masses, mu=md,
ms=ml, and mc=ms, which come automatically from the
fitting for each ensemble described in Sec. IVA 1.
Figures 5–7 show the results for each ensemble, together
with fits to the lattice spacing dependence. In these plots the

TABLE V. Tuned lattice spacings (using fπþ to set the scale) and quark masses for the physical quark-mass ensembles. The quark-
mass entries show the light-, strange- and charm-quark masses in units of the lattice spacing. The column labeled am0 gives the run
values of the sea-quark masses.

aapproxðfmÞ atunedðfmÞ am0 amtuned

0.15 0.15089(17) 0.00235=0.0647=0.831 0.002426ð8Þ=0.06730ð16Þ=0.8447ð15Þ
0.12 0.12121(10) 0.00184=0.0507=0.628 0.001907ð5Þ=0.05252ð10Þ=0.6382ð8Þ
0.09 0.08779(8) 0.0012=0.0363=0.432 0.001326ð4Þ=0.03636ð9Þ=0.4313ð6Þ
0.06 0.05676(6) 0.0008=0.0220=0.260 0.000799ð3Þ=0.02186ð6Þ=0.2579ð4Þ
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abscissa is a2αS, where αS is an effective coupling constant
determined from taste violations in the pion masses. The
relative value of αS at a given coupling β, compared to its
value at a fixed, fiducial coupling β0, is given by

αSðβÞ
αSðβ0Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2Δ̄Þβa2ðβ0Þ
ða2Δ̄Þβ0a2ðβÞ

s
; ð6Þ

where ða2Δ̄Þβ is the mean squared taste splitting at
coupling β, and aðβÞ is the lattice spacing given below

in Table VIII. Equation (6) assumes that a2Δ̄ is propor-
tional to α2Sa

2, its leading behavior. We use β0 ¼ 5.8 in
these plots and scale αS to agree with the coupling αV at
β0 ¼ 5.8, which in turn may be determined from the
plaquette [33] as explained after Eq. (9) of Ref. [7].
In these figures the fit used to determine the central value

is shown in black. This is a quadratic polynomial fit
through the four physical quark-mass points. In this fit,
small adjustments have been made to compensate for sea-
quark mass mistuning. To make these adjustments, the
derivative of each quantity with respect to sea-quark mass is
found from a fit including both the physical quark-mass
ensembles and the 0.1m0

s ensembles, and this derivative is
used to adjust each point in the fit. The resulting adjust-
ments are too small to be visible in Figs. 5, 6, and 7. Other
fits shown in these figures are used in estimating the
systematic error resulting from our choice of fitting forms.
The blue lines in each figure show the fit including the
0.1m0

s points, where the fit is quadratic in a2 and linear in
m0

l=m
0
s. Here the solid line is the fit evaluated at the physical

sea-quark mass, and the dashed line is the fit evaluated at
m0

l ¼ 0.1m0
s. The red lines are extrapolations using only the

finer lattice spacings: the curved solid line is a quadratic
through the 0.06, 0.09 and 0.12 fm ensembles, and the
dashed straight line is a line through the finest two points.
The diamonds at αSa2 ¼ 0 indicate the continuum extrap-
olations of the various fits. It is clear from the curvature
in Figs. 5, 6, and 7 that a quadratic term is needed.
However, it makes only a negligible difference whether
this quadratic term is taken to be ðαSa2Þ2, as is done here
for convenience, or simply ða2Þ2. Other continuum extrap-
olations not shown here use αVa2, where αV is the strong
coupling constant computed from the plaquette, or simply
a2 as the abscissa.

FIG. 5 (color online). The tuned ratio of strange-quark mass to
light-quark mass, ms=ml, on each ensemble, for the physical
quark-mass ensembles (red octagons), for m0

l=m
0
s ¼ 0.1 (blue

squares) and for m0
l=m

0
s ¼ 0.2 (green bursts). The fits shown in

this and subsequent figures are described in the text. The
diamonds at the left indicate the continuum extrapolations of
the various fits.

FIG. 6 (color online). The tuned ratio of charm-quark mass to
strange-quark mass, mc=ms, on each ensemble. The notation and
choice of fits is the same as in Fig. 5.

FIG. 7 (color online). The ratio of up-quark mass to down-
quark mass, mu=md, on each ensemble. The notation and choice
of fits is the same as in Fig. 5.
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The four extrapolations in Figs. 5, 6, and 7, together with
quadratic fits to the physical mass points using αVa2 or a2

as the abscissa, make a set of six continuum extrapolations
for these and other quantities. The six versions are used to
estimate the systematic errors of the quark-mass ratios and
light-meson decay constants and to inform the systematic
error analysis of Sec. IV B 4.
In Fig. 5 and, to a lesser extent in Figs. 6 and 7, the points

at small lattice spacing with unphysical light sea-quark
masses deviate strongly from the physical sea-quark mass
points. This is mostly a partial quenching effect that shows
up for valence-quark masses small compared to the light
sea-quark mass. In particular, the squared pseudoscalar
meson mass is increased by a partially quenched chiral log,
which means that a smaller tuned light valence-quark mass
is needed to give the desired M2=F2. This has the direct
effect of increasing ms=ml, with smaller effects on all other
quantities. This is mostly seen at the smallest lattice spacing
because at larger lattice spacings taste violations smear out
the chiral logs. Note that this partial quenching effect has
negligible effect on our results for ms=ml and mc=ms,
which depend almost exclusively on the data from the
physical-mass ensembles.
We perform similar continuum extrapolations for the

ratios of decay constants Fp4s=fπþ , fKþ=fπþ , fDþ=fπþ ,
fDs

=fπþ , and fDs
=fDþ , and for Mp4s and Rp4s ¼

Fp4s=Mp4s. Figure 8 shows the individual ensemble values
and the same set of continuum extrapolations for the ratio
fKþ=fπþ . As an example of a quantity involving a charm
quark, Fig. 9 shows values and continuum extrapolations
for the ratio fDs

=fπþ . The extrapolated value for fKþ=fπþ is
our result for this quantity. Figure 10 shows the continuum
extrapolations for Fp4s and Rp4s ≡ Fp4s=Mp4s. The result-
ing continuum values for Fp4s and Rp4s are used in the later
analysis in Sec. IV B. The values for the charm-meson

decay constants provide consistency checks on the analysis
in Sec. IV B, and the spread in continuum values among the
different extrapolations is included in our estimates of the
systematic uncertainty from the continuum extrapolation.
Finally, as a check, we extrapolate the mass of the ηc
meson. These continuum extrapolations and their statistical
errors are shown in Table VI.
Statistical errors on these quark-mass ratios and decay

constants are estimated with a jackknife method, where for
each ensemble we perform the entire fitting procedure
eliminating one configuration at a time. Autocorrelations
are handled by estimating the final error from the variance
of the jackknife resamples, after first blocking the jackknife
results in blocks of 20 (eliminated) lattices, which corre-
sponds to 50 molecular dynamics time units for the
a ≈ 0.15 fm physical quark-mass ensemble, 100 molecular
dynamics time units for the other a ≈ 0.15 fm and the
0.12 fm ensembles and 120 time units for the a ≈ 0.09 and
0.06 fm ensembles.

3. Finite-volume and electromagnetic uncertainties

Our treatment of finite-volume effects on the pion and
kaon masses and decay constants is the same as described
in Ref. [3], and we refer the reader to the discussion there.
To summarize very briefly, we adjust these masses and
decay constants to their values in a 5.5 fm box, the size of
our physical quark-mass lattices, and use these adjusted
values in the tuning procedure described above. After the
tuning and continuum extrapolation, at which point we
have determined fKþ in a 5.5 fm box, the adjustment is
removed to get our result for fKþ in infinite volume. As an
estimate of the remaining finite size uncertainty we use the
difference between results using staggered chiral perturba-
tion theory and continuum chiral perturbation theory [next-
to-next-to-leading order (NNLO) forMπ and fπþ , NLO for

FIG. 8 (color online). The ratio fKþ=fπþ on each ensemble. The
notation and choice of fits is the same as in Fig. 5.

FIG. 9 (color online). The ratio fDs
=fπþ on each ensemble. The

notation and choice of fits is the same as in Fig. 5.
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MK and fKþ] [3]. This difference, along with other
systematic effects, is tabulated in Table VI. Finite size
effects on the charm-meson masses and decay constants
are, as expected, quite small. Figure 11 shows the charm-
meson masses and decay constants on the three ensembles
differing only in spatial size, showing no detectable finite
size effects.
Our treatment of EM effects also follows Ref. [3], which

in turn follows Ref. [2]. The current analysis uses updated

inputs for the electromagnetic effects, so we repeat some of
the discussion. Because our sea quarks are isospin sym-
metric, we adjust the experimental inputs to what they
would be in a world without electromagnetism or sea-quark
isospin violation before matching the simulation data to
experiment to find the strange-quark mass ms and the
average light-quark mass m̂ ¼ ðmu þmdÞ=2. Specifically,
we do not adjust the neutral pion mass because the leading-
order isospin correction toM2

π0
is ∝ ðmu −mdÞ2=Λ2

χ in χPT

FIG. 10 (color online). Fp4s and the ratio Fp4s=Mp4s on each ensemble. Here fπ ¼ 130.41 MeV was used to set the scale to express
Fp4s in MeV. The notation and choice of fits is the same as in Fig. 5.

TABLE VI. Values for various physical quantities evaluated at zero lattice spacing, as well as statistical and systematic errors, obtained
from the simple physical-mass ensemble analysis. Here ΦDþ ≡ fDþ

ffiffiffiffiffiffiffiffiffiffi
MDþ

p
, etc. We also include the p value of the central fit of this

analysis. For the systematic errors, we tabulate the amount by which the central values change. Finite size errors are the difference
between results using staggered chiral perturbation theory and continuum chiral perturbation theory (NNLO for Mπ and fπþ , NLO for
MK and fKþ ) [3]. “EM1” is the effect of varying ϵ by 0.021, or one standard deviation. “EM2” is the effect of subtracting 450 MeV2

from M2
K . “EM3” is the effect of lowering the Ds meson mass by 1 MeV. “Cont. extrap.” is the full amount of variation among the

alternative continuum extrapolation fits. “Priors” is the effect of using narrower priors for the mass gaps in the 0.09 and 0.06 fm physical
quark-mass correlator fits. More details on these systematic effects are in the text.

Quantity Central value Statistical p val. Finite size EM1 EM2 EM3 Cont. extrap. Priors

Mηc (MeV) 2982.33 0.35 0.18 0.29 0.11 0.35 −1.81 þ1.41
−0.88 0.01

fKþ=fπþ 1.1956 0.0010 0.025 −0.0010 −0.0003 −0.0004 0.0000 þ0.0023
−0.0014 0.0002

Fp4s (MeV) 153.90 0.09 0.10 −0.15 −0.02 −0.05 0.00 þ0.14
−0.23 0.00

Mp4s (MeV) 433.24 0.17 0.11 −0.02 −0.12 −0.41 0.00 þ0.01
−0.33 −0.01

Rp4s 0.35527 0.00024 0.035 −0.00030 0.00007 0.00023 0.00000 þ0.00052
−0.00015 0.00001

mu=md 0.4482 0.0048 0.025 0.0001 −0.0156 0.0000 0.0000 þ0.0021
−0.0115 0.0000

ms=ml 27.352 0.051 0.72 −0.039 −0.015 −0.053 0.000 þ0.080
−0.020 −0.001

mc=ms 11.747 0.019 0.010 −0.006 0.009 0.025 −0.010 þ0.052
−0.032 0.001

fDs
=fDþ 1.1736 0.0036 0.97 0.0003 −0.0003 −0.0003 0.0000 þ0.0004

−0.0015 −0.0002
fDþ=fπþ 1.6232 0.0057 0.59 −0.0016 0.0003 0.0000 −0.0001 þ0.0097

−0.0034 0.0006
fDs

=fπþ 1.9035 0.0017 0.010 −0.0015 −0.0001 −0.0004 −0.0001 þ0.0089
−0.0050 −0.0001

ΦDþ (MeV3=2) 9161.5 33.7 0.61 −9.3 1.6 0.6 −3.1 þ16.1
−44.9 3.0

ΦDs
(MeV3=2) 11012.9 9.7 0.007 −8.9 −0.7 −2.6 −3.4 þ51.6

−28.8 −0.1
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and therefore small, and the electromagnetic corrections
vanish in the chiral limit for neutral mesons and are thus
also small. For the kaon, we consider the isospin-averaged
mass M2

K̂
¼ ðM2

Kþ þM2
K0ÞQCD=2, where the subscript

“QCD” indicates that the leading EM effects in the masses
are removed from the experimental masses [30]. To remove
these effects we use results from our ongoing lattice
QEDþ QCD simulations with asqtad sea quarks [34,35]
for the parameter ϵ that characterizes violations of Dashen’s
theorem:

ðM2
K� −M2

K0Þγ ¼ ð1þ ϵÞðM2
π� −M2

π0
Þγ; ð7Þ

where the superscript γ denotes the EM contribution to the
splittings. In Refs. [34,35], we found ϵ ¼ 0.65ð7Þð14Þð10Þ,
but this result did not yet adjust for finite-volume effects on
the photon field. A recent preliminary result [36] including
finite-volume effects is ϵ ¼ 0.84ð21Þ, and we use that here.
We estimate the uncertainty due to EM effects by varying

the values of the EM-subtracted meson masses used in the
quark-mass tuning; this affects mu the most. We vary the
parameter ϵ by its error. We also consider possible EM
effects on the neutral kaon mass itself, which are less well
understood than the EM effects on the Kþ − K0 splitting
that are described by ϵ. In Ref. [35], the EM contribution to
the squared K0 mass was estimated to be about 900 MeV2.

However, this estimate did not take into account the effects
of EM quark-mass renormalization, which should be
subtracted from the result. A rough calculation of the
renormalization effect (using one-loop perturbation theory)
suggests it is of order of half the size of the contribution.
We thus include as a systematic error the effect of shifting
the squared K0 mass by 450 MeV2. We do not consider
direct EM effects on the weak matrix elements fπþ , fKþ ,
fDþ and fDs

, which are by definition pure QCD quantities
[30]. Such direct EM effects, however, are relevant in
the extraction of CKM elements by comparison with
experimental rates, as described in Sec. VI.
The shifts in various quantities resulting from these

electromagnetic uncertainties are also tabulated in
Table VI. The two effects labeled EM1 and EM2 are
combined in quadrature to give our quoted EM systematic
errors for ms=ml and fKþ=fπþ . The EM3 column in
Table VI shows the effect of lowering the input Ds meson
mass by 1 MeV, an order-of-magnitude estimate for the
electromagnetic effect on this mass, which affects the
tuning of the charm-quark mass. This effect has not been
directly determined in QCDþ QED simulations.
Assuming that the EM effect on MDþ is approximately
the same as on MDs

, since the two mesons have the same
charge, the EM3 error on the decay constants of these
mesons is negligible: To very good approximation, the

FIG. 11 (color online). Spatial size effects on MD, MDs
, fD and fDs

, as determined by comparison of ensembles with L=a ¼ 24, 32,
and 40 at β ¼ 6.0 (a ≈ 0.12 fm). To show the magnitude of the effects, green error bars show an arbitrary value �1 MeV, and magenta
error bars �1%.
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changes in ΦDþ and ΦDs
due to the change in the estimate

of the charm-quark mass are canceled by the changes in the
factors ofM1=2

Dþ orM1=2
Ds

in these quantities. The fact that the
decay constants themselves are only mildly dependent on
the heavy-quark mass (for example, the difference between
fDs

and fBs
is only about 10% [37]) indicates that such

cancellations must take place. The EM3 error does lead to a
significant uncertainty on mc=ms, and we include it in our
systematic error estimate for that quantity.

B. Chiral perturbation theory analysis of fD and f Ds

including unphysical quark-mass ensembles

In this section, we present the combined chiral extrapo-
lation or interpolation and continuum extrapolations used
to obtain the physical values of theDþ andDs meson decay
constants. We first discuss chiral perturbation theory for all-
staggered heavy-light mesons in Sec. IV B 1, giving the
formulas used for the chiral fits and describing our method
for incorporating discretization effects into the extrapola-
tion. An explanation of our method for setting the lattice
scale follows in Sec. IV B 2. Chiral perturbation theory
assumes a mass-independent scale-setting procedure. In
practice, we use Fp4s to set the scale and Fp4s=Mp4s to tune
the strange sea-quark mass. We take these values from the
physical quark-mass analysis in Sec. IVA. This means that
the absolute scale comes ultimately from fπþ , which is used
to set the scale in Sec. IVA.

The chiral fits themselves are presented in Sec. IV B 3,
while systematic errors in the chiral analysis are described
in Sec. IV B 4. Chiral-continuum extrapolation errors are
found by considering a large number (18) of alternative
chiral fits, as well as six versions of the continuum
extrapolation of the inputs, resulting in 108 possibilities.
We also estimate finite-volume and EM errors within the
chiral analysis by propagating the errors in the correspond-
ing inputs through the chiral fits. Equations (28)–(30) show
our results for the charm decay constants from the self-
contained chiral analysis with complete systematic error
budgets.

1. Chiral perturbation theory for fDþ and fDs

The quark-mass and lattice-spacing dependence of the
decay constant has been derived at one loop in heavy-
meson, rooted, all-staggered chiral perturbation theory
(HMrASχPT) in Ref. [23]. At fixed heavy-quark mass
mQ, one may argue following Ref. [38] that inclusion of
hyperfine splittings (e.g., M�

D −MD) and flavor splittings
(e.g., MDs

−MD), but no other 1=mQ effects, constitutes a
systematic approximation at NLO in HMrASχPT. The
argument is based on the power counting introduced by
Boyd and Grinstein [39]. With v denoting the light valence
quark, Y the vv̄ valence meson, and ΦDv

≡ fDv

ffiffiffiffiffiffiffiffiffi
MDv

p
,

Ref. [23] obtains for the pseudoscalar-taste heavy-
light meson:

ΦDv
¼ Φ0

�
1þ 1

16π2f2
1

2

�
−

1

16

X
S;Ξ

lðM2
Sv;ΞÞ −

1

3

X
j∈Mð3;vÞ

I

∂
∂M2

Y;I
½R½3;3�

j ðMð3;vÞ
I ; μð3ÞI ÞlðM2

jÞ�

−
�
a2δ0V

X
j∈Mð4;vÞ

V

∂
∂M2

Y;V
½R½4;3�

j ðMð4;vÞ
V ; μð3ÞV ÞlðM2

jÞ� þ ½V → A�
�

− 3g2π
1

16

X
S;Ξ

JðMSv;Ξ;Δ� þ δSvÞ − g2π
X

j∈Mð3;vÞ
I

∂
∂M2

Y;I
½R½3;3�

j ðMð3;vÞ
I ; μð3ÞI ÞJðMj;Δ�Þ�

− 3g2π

�
a2δ0V

X
j∈Mð4;vÞ

V

∂
∂M2

Y;V
½R½4;3�

j ðMð4;vÞ
V ; μð3ÞV ÞJðMj;Δ�Þ� þ ½V → A�

��

þ Lsðxu þ xd þ xsÞ þ Lvxv þ La
xΔ̄
2

�
; ð8Þ

where Φ0, Ls, Lv, and La are low-energy constants (LECs);
the indices S and Ξ run over sea-quark flavors and
meson tastes, respectively; Δ� is the lowest-order hyperfine
splitting; δSv is the flavor splitting between a heavy-light
meson with light quark of flavor S and one of flavor v;
and gπ is the D-D�-π coupling. In infinite volume,
the chiral logarithm functions l and J are defined by
[22,38]

lðm2Þ ¼ m2 ln
m2

Λ2
χ

½infinite volume�; ð9Þ

JðM;ΔÞ ¼ ðM2 − 2Δ2Þ logðM2=Λ2Þ þ 2Δ2 − 4Δ2FðM=ΔÞ
½infinite volume�; ð10Þ

with [40]
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Fð1=xÞ≡
8<
:

−
ffiffiffiffiffiffiffiffi
1−x2

p
x

h
π
2
− tan−1 xffiffiffiffiffiffiffiffi

1−x2
p

i
; if jxj ≤ 1;ffiffiffiffiffiffiffiffi

x2−1
p

x lnðxþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − 1

p
Þ; if jxj ≥ 1:

ð11Þ

The residue functions R½n;k�
j are given by

R½n;k�
j ðfmg; fμgÞ≡

Q
k
i¼1ðμ2i −m2

jÞQ
n
r≠jðm2

r −m2
jÞ
: ð12Þ

The sets of masses in the residues are

μð3Þ ¼ fm2
U;m

2
D;m

2
Sg; ð13Þ

Mð3;vÞ ¼ fm2
Y; m

2
π0
; m2

ηg; ð14Þ

Mð4;vÞ ¼ fm2
Y; m

2
π0
; m2

η; m2
η0g: ð15Þ

Here taste labels (e.g., I or V for the masses) are implicit.
We define dimensionless quark masses and a measure of
the taste splitting by

xu;d;s;v ≡ 4B
16π2f2π

mu;d;s;v and xΔ̄ ≡ 2

16π2f2π
a2Δ̄; ð16Þ

where B is the LEC that gives the Goldstone pion mass
M2

π ¼ Bðmu þmdÞ, and a2Δ̄ is the mean-squared pion
taste splitting. The xi are natural variables of HMrASχPT;
the LECs Ls, Lv, and La are therefore expected to beOð1Þ.
All ensembles in the current analysis have degenerate light
sea quarks: xu ¼ xd ≡ xl. The taste splittings have been
determined to ∼1%–10% precision [7] and are used as
input to Eq. (8), as are the taste-breaking hairpin parameters
δ0A and δ0V , whose ranges are taken from chiral fits to light
pseudoscalar mesons [41].
To include the finite-volume effects for a spatial volume

L3 in Eq. (8), we replace [38]

lðm2Þ → lðm2Þ þm2δ1ðmLÞ ½finite volume�; ð17Þ

Jðm;ΔÞ → Jðm;ΔÞ þ δJðm;Δ; LÞ ½finite volume�; ð18Þ

where

δJðm;Δ; LÞ ¼ m2

3
δ1ðmLÞ − 16π2

�
2Δ
3

JFVðm;Δ; LÞ

þ Δ2 −m2

3
KFVðm;Δ; LÞ

�
; ð19Þ

with

KFVðm;Δ; LÞ≡ ∂
∂Δ JFVðm;Δ; LÞ; ð20Þ

andwith δ1ðmLÞ and JFVðm;Δ; LÞ defined in Refs. [42,43].

Because we have data with ∼1% to less than 0.1%
statistical errors and 314–366 data points (depending on
whether a ≈ 0.15 fm is included), NLO HMrASχPT is not
adequate to describe fully the quark-mass dependence, in
particular for masses near ms. We therefore include all
NNLO and NNNLO mass-dependent analytic terms. There
are four independent functions of xv, xl and xs at NNLO
and seven at NNNLO, for a total of 11 additional fit
parameters. It is not necessary to keep all the seven terms
appearing at NNNLO to get a good fit; nevertheless, we
include all of them to make it a systematic approximation at
the level of analytic terms.
While Eq. (8) is a systematic NLO approximation for the

decay constant at fixedmQ, we have data on each ensemble
with two different values of the valence charm mass: m0

c
and 0.9m0

c, where m0
c is the value of the charm sea mass of

the ensembles, and is itself not precisely equal to the
physical charmmassmc because of tuning errors, which are
in some cases as large as this difference (i.e., 10% of m0

c).
Since such changes in the value of the charm mass lead to
corrections to decay constants that are comparable in size to
those from the pion masses at NLO, Eq. (8) needs to be
modified in order to fit the data. We therefore allow the
LEC Φ0 to depend on mQ as suggested by heavy quark
effective theory (HQET). For acceptable fits to the highly
correlated data at valence charm masses m0

c and 0.9m0
c, we

need to introduce both 1=mQ and 1=m2
Q terms. (For more

details see the Appendix.) Furthermore, Φ0 has generic
lattice-spacing dependence that must be included to obtain
good fits. With HISQ quarks, the leading generic discre-
tization errors are OðαSa2Þ. But because the high degree of
improvement in the HISQ action drastically reduces the
coefficient of these leading errors, formally higher Oða4Þ
errors are also apparent, as can be seen from the curvature
in Figs. 5–10. In Eq. (8), we thus replace

Φ0 → Φ0

�
1þ k1

ΛHQET

mQ
þ k2

Λ2
HQET

m2
Q

�

× ð1þ c1αSðaΛÞ2 þ c2ðaΛÞ4Þ; ð21Þ

where the ki are new physical LECs, ci are additional fit
parameters, ΛHQET is a physical scale for HQETeffects, and
Λ is the scale of discretization effects.
In cases where the valence and sea values of the charm-

quark mass differ, mQ in Eq. (21) is taken equal to the
valence mass. This is based on the expectation from
decoupling [44] that effects due to variations in the charm
sea mass on low-energy physical quantities are small. Note
that HQET tells us that heavy-light decay constants come
from the physics of the light quark at scale ΛQCD, despite
the presence of the heavy valence quark. Thus we do not
introduce extra terms corresponding to the charm sea mass
here. As discussed in Sec. IV B 4, however, such terms are
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included in alternative fits used to estimate systematic
errors.
Generic dependence on a is also allowed for the physical

LECs Ls, Lv, k1 and k2. However, because these parameters
first appear at NLO in the chiral or HQET expansions, it is
sufficient to include at most the leading a dependence, for
example:

Lv → Lv þ LvδαSðaΛÞ2: ð22Þ

Thus we add four fit parameters related to generic dis-
cretization effects: Lvδ, Lsδ, k1δ, and k2δ. There are also
three parameters related to taste-violation effects: La, δ0A
and δ0V . These parameters are taken proportional to the
measured average taste splitting a2Δ̄, which depends on a
approximately as α2Sa

2 [7]. In addition, we find that mQ-
dependent discretization errors must be considered if data
at the coarsest lattice spacing (a ≈ 0.15 fm) are included in
the fits. This is not surprising because amphys

c ≈ 0.84 at this
lattice spacing, which by the power counting estimates of
Ref. [4] suggests ∼5% discretization errors (although this
may be reduced by dimensionless factors). We therefore
add c3αSðamQÞ2 þ c4ðamQÞ4 to the analytic terms in
Eq. (8), where mQ is taken to denote the valence charm
mass. If the a ≈ 0.15 fm data are omitted, good fits may be
obtained with c3 and c4 set to zero. As discussed below, one
can also add similar terms for the charm sea mass.
For the LEC gπ , a reasonable range is gπ ¼ 0.53ð8Þ,

which comes from recent lattice calculations [45,46]. When
this central value and range are included as Bayesian priors,
fits to our full data set tend to pull gπ low, several sigma
below 0.53. Hence, we simply fix gπ ¼ 0.45, 1-sigma
below its nominal value, in our central fit. This problem is
ameliorated for alternative fits, used to estimate the
systematic errors, that drop the data at a ≈ 0.15 fm or that
use the experimental value of fKþ , rather than that of fπþ ,
for f in Eq. (8). Other alternatives considered in the
systematic error estimates are to allow gπ to be a free
parameter, or to keep it fixed at its nominal value. We give
more details about fits with varying treatments of gπ in
Sec. IV B 4.

2. Setting the relative lattice scale

Relative scale setting in the combined chiral analysis is
done using Fp4s. The value of Fp4s in physical units, which
is only needed at the end of this analysis, has been obtained
by comparison with fπþ in Sec. IVA, as are the other
needed inputs: Rp4s ≡ Fp4s=Mp4s and the quark-mass
ratios mc=ms, ms=ml and mu=md. All those quantities
are listed in Table VI, and Fig. 10 shows the data and
continuum extrapolations used to determine Fp4s and Rp4s.
We use Fp4s in the chiral analysis, rather than fπþ itself,

for several reasons. First of all, Fp4s gives highly precise
relative lattice spacings between ensembles. Precision scale

setting is required in order to get good chiral fits to our large
partially quenched data set (366 points) with large corre-
lations of the points within each ensemble. Second, Fp4s

can be accurately adjusted for mistunings in the sea-quark
masses using unphysical-mass ensembles for which the
physical valence-quark mass values needed to find fπþ can
only be reached by extrapolation. Finally, and perhaps most
importantly, there are no logarithms of light pseudoscalar
masses (∼mπ) in the SχPT expression for the decay
constant [22] evaluated at the relevant quark masses for
Fp4s. The lightest meson that enters is a valence-sea meson
for quark masses 0.4ms and ml, which has mass
∼325 MeV (for the Goldstone taste). This means that
Fp4s should be well approximated by its Taylor series in
a2, and we do not need to modify Eq. (8) to take into
account chiral logarithms that enter through the scale-
setting procedure. We have checked this assumption by
performing a more complicated three-step analysis: (i) The
degenerate light-light decay-constant data for all ensembles
are fit to the NLO SχPT form of Ref. [22]. (ii) From the fit,
we determine Fp4s as a function of a2. (iii) The data for

ΦDv
=F3=2

p4s are fit to Eq. (8) divided by the 3=2 power of
Fp4sða2Þ. The results of this procedure differ from the
results reported in Table IX below by less than half of the
statistical errors, and the systematic errors are essentially
the same in both approaches.
We use a mass-independent scale-setting scheme. We

first determine aFp4s and amp4s on the physical-mass
ensembles; then, by definition, all ensembles at the same β
as a given physical-mass ensemble have a lattice spacing a
and value of amp4s equal to those of the physical-mass
ensemble. Since we do not know the correct strange-quark
mass until after the lattice spacing is fixed, aFp4s and
amp4s must be determined self-consistently. We find amp4s

and aFp4s on a given physical-mass ensemble by adjusting
amv until aF=ðaMÞ has the expected physical ratio Rp4s.
To determine aFp4s and amp4s accurately, data must be

adjusted for mistunings in the sea-quark masses. The sea-
quark masses of the physical-mass ensembles are tuned
relatively well (especially at 0.09 and 0.06 fm), and
adjustments are small. Nevertheless, the adjustments
may change the final results of fDþ and fDs

by more than
the size of the statistical errors.
To make these adjustments, we first find an approximate

value of amp4s on each physical-mass ensemble by passing
a parabola through ðM=FÞ2 as a function of mv, for the
three values of mv closest to mp4s. The sea-quark masses
are kept fixed (initially, to their values in the run) in this
process. We use ðM=FÞ2 here rather than F=M, since we
expect M2 to be approximately linear in mv, and F2 to be
approximately constant. The value of amv where the ratio
takes its expected value 1=R2

p4s is the tentative value of
amp4s, and the corresponding value of aF is the tentative
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value of aFp4s. The procedure also gives tentative values
of the physical sea-quark masses in lattice units:
ams ≅ 2.5amp4s, aml ≅ 2.5amp4s=ðms=mlÞ, and amc ≅
2.5amp4sðmc=msÞ. We then adjust the data for aF and
aM to the values they would have at the tentative new
sea-quark masses, and iterate the whole process until it
converges.
The adjustment of the data requires a determination of

the following derivatives:

∂F2

∂m0
l
;

∂F2

∂m0
s
;

∂F2

∂m0
c
;

∂M2

∂m0
l
;

∂M2

∂m0
s
;

∂M2

∂m0
c
;

∂2M2

∂m0
l∂mv

;
∂2M2

∂m0
s∂mv

;
∂2M2

∂m0
c∂mv

; ð23Þ

where the derivatives should be evaluated at mv ¼ mp4s,
and with m0

l, m0
s and m0

c at their physical values. All
quantities here are in “p4s units,” which are (semi)physical
units in which aF and aM have been divided by (the
tentative value of) aFp4s, and quark masses in lattice units
have been divided by (the tentative value of) amp4s (and
therefore do not require renormalization). The mixed partial
derivatives with mv are needed because we must adjust the
data at different values of mv in order to iterate the process.
BecauseM2 is approximately linear in mv, the effect of the

mixed partials in Eq. (23) is non-negligible, while mixed
partials of F2 may be neglected. Since the effects of
mistunings are already not much larger than our statistical
errors, we expect that we may neglect discretization errors
and any mistuning effects in the derivatives themselves.
This means that we may use, at all lattice spacings, the
values determined for the derivatives in Eq. (23) at any one
lattice spacing. This expectation is confirmed by alternative
determinations of the derivatives, which give results in
agreement with the method we now describe.
Many of the derivatives may be calculated using the 12

ensembles that we have at a ≈ 0.12 fm. Figure 12 shows
the light and strange sea masses of these ensembles. Most
of the ensembles have the same charm sea masses, which
allows us to determine the derivatives with respect to m0

l
and m0

s accurately. We first convert the lattice data to
p4s units using (tentative values of) amp4s and aFp4s.
Ensembles in which the light sea mass is tuned close to
0.1m0

s, shown inside the dashed blue ellipse in Fig. 12,
are then used to determine ∂F2=∂m0

s, ∂M2=∂m0
s and

∂2M2=∂m0
s∂mv. The three derivatives with respect to m0

s
are found by fitting a quadratic function to the correspond-
ing quantities of these ensembles, as shown in Fig. 13.
To calculate ∂F2=∂m0

l, ∂M2=∂m0
l and ∂2M2=∂m0

l∂mv,
we use the three ensembles with strange sea mass close to
its physical value, the ensembles inside the red ellipse in
Fig. 12. We fit straight lines to the corresponding data, as
shown in Fig. 14. Note that there are small differences in
the charm and strange sea masses of these ensembles, but
they are taken into account by a small adjustment using the
derivatives with respect to m0

s and m0
c.

The derivatives with respect to m0
c cannot be calculated

directly, because we do not have a group of ensembles with
different charm sea masses but equal light and strange sea
masses. So we have to determine the charm-mass deriv-
atives indirectly, by investigating ensembles with different
charm sea masses after adjusting for their differences in
strange and light sea masses. This procedure can be carried
out using the three ensembles available at ≈0.06 fm. Since
m0

s andm0
c vary by about 10% on these three ensembles, the

lever arm is large enough to calculate the derivatives with
respect tom0

c. We first use the derivatives with respect tom0
s

obtained at ≈0.12 fm to adjust the data at ≈0.06 fm for
mistuning of the strange sea masses, so only m0

l and m0
c

dependence remains. Then we calculate the m0
c derivatives

by passing a function linear in both m0
l and m0

c through the
three data points for each quantity. The m0

c derivatives thus
found feed back into the small adjustments needed at
a ≈ 0.12 fm in order to calculate m0

l derivatives, as dis-
cussed in the preceding paragraph. Our estimates of all the
needed derivatives are tabulated in Table VII.
It is noteworthy that we can analytically determine the

first-order derivatives with respect to m0
c by integrating out

the charm quark for processes that occur at energies well
below its mass. By decoupling [44], the effect of a heavy

0.1 0.2 0.3 0.4 0.5 0.6
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m
l
′/m
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m
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m
l
′/m
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≈ 0.2

m
l
′/m

s
≈ 0.1

m
l
′/m

s
≈ 0.04

Three volumes

FIG. 12 (color online). Values of m0
s and m0

l of the ensembles at
β ¼ 6.0. At one value of m0

s and m0
l, indicated by the black cross,

we have three ensembles with different volumes; the intermediate
volume ensemble, which is equal in volume to all the other
ensembles shown here, is used in our calculation of the
derivatives. Five ensembles inside the blue ellipse are used to
calculate ∂F2=∂m0

s, ∂M2=∂m0
s, and ∂2M2=∂m0

s∂mv. These five
ensembles have the same charm sea masses. Three ensembles
inside the red ellipse are used to calculate ∂F2=∂m0

l, ∂M2=∂m0
l,

and ∂2M2=∂m0
l∂mv. One of these ensembles has a slightly

different charm sea mass, which is adjusted before calculating
the derivatives.
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(enough) sea quark on low-energy quantities occurs only
through the change it produces in the effective value of
ΛQCD in the low-energy (three-flavor) theory [47]. (For a
pedagogical discussion see Sec. 1.5 of Ref. [48].) Thus,
assuming m0

c is heavy enough, we may calculate the m0
c

derivatives of any quantity that is proportional to ΛQCD,
where the proportionality constant is some pure number,
independent of the light-quark masses. Examples of such
quantities are the LEC B in Eq. (16) and the light-light
decay constant in the chiral limit, f. At leading order in
weak-coupling perturbation theory, one then obtains [see
Eq. (1.114) in Ref. [48]]

∂B
∂m0

c
¼ 2

27

B
m0

c
;

∂f
∂m0

c
¼ 2

27

f
m0

c
: ð24Þ

At the nonzero values of mv, m0
l, and m0

s at which we need
to evaluate the derivatives in Eq. (23), there are corrections
to these expressions. However, chiral perturbation theory
suggests that such corrections are relatively small. At the
relevant light masses, we therefore expect

∂F2

∂m0
c
¼ 2F

∂F
∂m0

c
≈

4

27

F2

m0
c
¼ 0.00504 ½p4s units�; ð25Þ

∂M2

∂m0
c
≈ 2mp4s

∂B
∂m0

c
≈

2

27

M2

m0
c
¼ 0.01998 ½p4s units�; ð26Þ

which agree with our numerical results within 10%; see
Table VII. Indeed, the fact that the agreement is this close is
probably due to chance, especially for the derivative of the
decay constant: Our argument has neglected the difference
between f and Fp4s, but that difference is ∼40%.
Having the required derivatives, we now iteratively

adjust for mistunings. We first compute amp4s and
aFp4s, then adjust the data, and repeat the entire process
two more times. The values of amp4s and aFp4s have then
converged to well within their statistical errors. The results
for the lattice spacing a and ams are listed in Table VIII.
The error estimates of these quantities will be discussed
below. Our investigation shows that the errors in the
derivatives change a and ams by less than their statistical
errors, so those errors are not included in the analysis.
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FIG. 14 (color online). Data from three ensembles with strange sea masses tuned close to ms, the ensembles inside the red ellipse in
Fig. 12.
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FIG. 13 (color online). Data from the a ≈ 0.12 fm, m0
l=ms ≈ 0.1 ensembles, which are shown inside the blue ellipse in Fig. 12. Fp4s

andMp4s are the light-light pseudoscalar decay constant and mass, respectively, formv ¼ mp4s; quantities are expressed in p4s units, as
described in the text. The needed derivatives are given by the slope of the tangent line at m0

s=mp4s ¼ 2.5.
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Comparing Table VIII with Table V, which uses fπþ to
set the scale, we see significant differences at the coarser
lattice spacings, but not at the finest spacing. This is as
expected for two different schemes, which should only
agree exactly in the continuum limit.

3. Chiral-continuum fits to D system

So far, we have introduced eight fit parameters related to
discretization effects (c1, c2, c3, c4, Lvδ, Lsδ, k1δ, and k2δ)
and three parameters related to taste-violation effects (La,
δ0A, and δ0V). The latter parameters appear at NLO in SχPT
and must be kept since our expansion is supposed to be
completely systematic through NLO. This is not the case
for the former parameters; several of them (c2, c3, c4, Lvδ,
Lsδ, and k2δ) are formally NNLO and may be dropped. We
indeed get acceptable fits when some of these parameters
are dropped, especially if the a ≈ 0.15 fm data are omitted.
In order to see the effects of these parameters, we present
the results of two fits, with different sets of parameters, to
data at the three finer lattice spacings, and we study the
extrapolation of the chiral fit back to the coarsest lattice
spacing (a ≈ 0.15 fm, β ¼ 5.8).
Figure 15 shows a fit to partially quenched data at the

three finer lattice spacings. (The a ≈ 0.15 fm data are
omitted.) Among the introduced fit parameters related to
discretization effects, only c1 in Eq. (21) and k1δ in Eq. (22)
are taken as free parameters in this fit, and the others are set
to zero. This fit gives p ¼ 0.033, and as illustrated in
Fig. 15, the extrapolation of the fit to the coarsest lattice
spacing does not follow the corresponding data points. We
note that this fit and all other chiral fits in this paper include

additional data (not shown) from ensembles at a ≈ 0.12 fm
(β ¼ 6.0) either with m0

s lighter than physical, or with
volumes 243 × 64 and 403 × 64, which were generated to
check finite-volume effects. (See Table I.) Moreover, it is
important to realize that the biggest source of variation in
the data in the four plots shown in Fig. 15 is not
discretization errors, but mistunings of the strange and,
most importantly, charm-quark masses.
Adding c3αSðamQÞ2 þ c4ðamQÞ4 to the analytic terms in

Eq. (8), as well as including c2 in Eq. (21), we get a new fit
to the partially quenched data at the three finer lattice
spacings. By including these three extra parameters, an
excellent fit is achieved, as shown in Fig. 16, and
extrapolation of the fit to the coarsest lattice spacing gives
lines that pass relatively well through the corresponding
data points. This comparison makes clear that higher-order
discretization errors are important for the HISQ data, in
which the leading-order discretization effects are
suppressed.
We have a total of 18 acceptable (p > 0.1) versions of

the continuum-chiral fits. Five of the fits drop the a ≈
0.15 fm ensembles; the rest keep those ensembles. The
chiral coupling f is generally set to fπþ , except for two fits
with the coupling constant set to fKþ . The LEC gπ is
usually fixed to either its nominal value or to 1σ below its
nominal value; however, it is allowed to be a free parameter
in four of the fits. The LEC B in Eq. (16) is generally
determined for each lattice spacing separately by fitting all
data for the squared meson mass M2 vs the sum of the
valence masses to a straight line. (At a ≈ 0.12 fm only the
ensembles with strange sea masses close to its physical
mass are included in the fit.) However, in two versions of
the chiral fits, B is determined from just the data on the
physical-mass ensembles at each lattice spacing.
Another difference among the fits is how we determine

the strong coupling αS in discretization terms such as those
with coefficients c1 and c3. Since the coefficients are free
parameters, all that we actually need in the fits is the
relative value of αS at a given coupling β compared to its
value at a fixed, fiducial coupling β0. In most of the fits, we
have used measured light-light pseudoscalar taste splittings
to fix this relative value, as in Eq. (6). An alternative, which
is used in two of our fits, is to use for αS the coupling αV ,

TABLE VIII. Lattice spacing a and ams, as a function β, in the p4s mass-independent scale-setting scheme.

β ¼ 5.8 a ¼ 0.15305ð17Þstatðþ46
−23Þa2extrapð29ÞFVð4ÞEM fm

ams ¼ 0.06863ð16Þstatðþ43
−24Þa2extrapð26ÞFVð7ÞEM [lattice units]

β ¼ 6.0 a ¼ 0.12232ð14Þstatðþ36
−19Þa2extrapð23ÞFVð3ÞEM fm

ams ¼ 0.05304ð13Þstatðþ33
−18Þa2extrapð20ÞFVð6ÞEM [lattice units]

β ¼ 6.3 a ¼ 0.08791ð10Þstatðþ26
−13Þa2extrapð17ÞFVð2ÞEM fm

ams ¼ 0.03631ð9Þstatðþ23
−13Þa2extrapð14ÞFVð4ÞEM [lattice units]

β ¼ 6.72 a ¼ 0.05672ð7Þstatðþ17
−9 Þa2extrapð11ÞFVð1ÞEM fm

ams ¼ 0.02182ð5Þstatðþ14
−8 Þa2extrapð8ÞFVð2ÞEM [lattice units]

TABLE VII. The values of derivatives needed for adjusting the
data for mistunings. All the derivatives are in p4s units and are
evaluated at the valence mass mv ¼ mp4s and at physical values
of sea masses ml, ms, and mc. Derivatives are found using 0.12
and 0.06 fm ensembles, as described in the text.
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determined from the plaquette [33]. The scale for αV is
taken to be q� ¼ 2.0=a. Note that the NLO perturbative
corrections to αV have not been calculated for the HISQ
action, so we use the result for the asqtad action. Since the
nf dependence of the NLO result is small, we expect the
difference to have negligible effects on the results of the fit.
This expectation can be tested by, for example, flipping the
sign of the nf term in the asqtad result, which is likely a
much bigger change than would actually come from
changing from asqtad to HISQ. When we do this, we find
that the results change by amounts comparable to or smaller
than the statistical errors, and significantly smaller than the
total systematic errors. Similar, but usually smaller,
changes result from replacing q� ¼ 2.0=a with
q� ¼ 1.5=a, which is another reasonable choice, as dis-
cussed in Ref. [7].
We have introduced eight fit parameters related to

discretization effects (c1, c2, c3, c4, Lvδ, Lsδ, k1δ, and
k2δ), but it is not necessary to keep all of them to get an
acceptable fit. Dropping some of these parameters, we have
different continuum-chiral fits with the number of param-
eters ranging from 23 to 28. We may also choose to

constrain, with priors, the LECs in higher-order (NNLO
and NNNLO) analytic terms to be Oð1Þ in natural units [as
explained following Eq. (16)]. (Through NLO, where we
have the complete chiral expression, including logarithms,
we always leave the LECs Φ0, Ls, Lv, and La completely
unconstrained, while gπ , δ0A, and δ0V are constrained by
independent analyses as discussed above.) We may sim-
ilarly constrain the coefficients of discretization terms to be
Oð1Þ when the terms are written in terms of a reasonable
QCD scale (which we take, conservatively, to be
600 MeV). Among the 18 fits we consider, some have
higher-order chiral terms and discretization terms com-
pletely unconstrained, and others constrain either the chiral
terms, or the discretization terms, or both.
In Eq. (21),mQ denotes the valence charm mass. To take

into account the physical effects of the charm sea masses
we can introduce a parameter k01 to Eq. (21):

Φ0 → Φ0

�
1þ k1

ΛHQET

mQ
þ k2

Λ2
HQET

m2
Q

þ k01
ΛHQET

m0
c

�

× ð1þ c1αSðaΛÞ2 þ c2ðaΛÞ4Þ; ð27Þ

FIG. 15 (color online). Simultaneous chiral fit to ΦD as a function of mv, the valence-quark mass (in units of mp4s), at the three finer
lattice spacings. The a ≈ 0.15 fm (β ¼ 5.8) data are not included in the fit, although the data and the extrapolation of the chiral fit to it
are shown at the left in the top row. At the right of the top row we show the a ≈ 0.12 fm (β ¼ 6.0) data, and in the bottom row are
a ≈ 0.09 fm (β ¼ 6.3, left) and a ≈ 0.06 fm (β ¼ 6.72, right). The colors denote different light sea-quark masses, as indicated. For each
color there are two lines, one for heavy valence-quark mass ≈m0

c (higher line), and one for ≈0.9m0
c. In this fit, gπ is fixed to 0.53. The fit

has χ2=dof ¼ 339=293, giving p ¼ 0.033.
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where m0
c is the mass of the charm mass in the sea. One of

our 18 fits adds the parameter k01. Further, discretization
errors coming from the charm sea masses can be included
by adding c03αSðam0

cÞ2 þ c04ðam0
cÞ4 to the analytic terms in

Eq. (8), and one of the fits makes that addition. It is
interesting to note that it is possible to obtain another
acceptable fit in which c2 in Eq. (21) is restricted by priors
to be much smaller than its value in the central fit, but
the c03 and c04 terms are added. This shows that our lattice
data cannot distinguish in detail between various sources
of higher-order discretization effects. However, the results
in the continuum limit are rather insensitive to these
differences.
Since all 18 fits considered have acceptable p values and

give correction terms reasonably consistent with expect-
ations from chiral perturbation theory and power counting,
whether or not such terms are constrained, we have no
strong reason to choose one fit or groups of fits as preferred
in comparison to the rest. We therefore choose our “central
fit” simply by requiring that it be a fit to all ensembles and
that it give results for ΦDþ and ΦDs

that are as close as
possible to the center of the histograms for these quantities
from all the fits and from all systematic variations in the
inputs (i.e., from the “continuum extrapolation” column in
Table VI). This central fit has 27 free parameters, with gπ
fixed to 1-sigma below its nominal value, and with the k01,

c03, and c04 terms discussed in the previous paragraph
dropped, but all discretization terms aside from c03 and
c04 kept. In the central fit, c2 in Eq. (21) is equal to 1.3 with
Λ ¼ 600 MeV; while the HQET parameters are k1 ¼ −1.0
and k2 ¼ 0.5, with ΛHQET ¼ 600 MeV.
Figure 17 shows our central fit to partially quenched data

at all four lattice spacings. Extrapolating the parameters to
the continuum, adjusting the strange sea-quark mass and
charm valence- and sea-quark masses to their physical
values, and setting the light sea-quark mass equal to the
light valence mass [up to the small difference between md
and ml ¼ ðmu þmdÞ=2] gives the orange band. Putting in
the physical light-quark mass then gives the black burst,
which is the result for ΦDþ. Note that the effect of isospin
violation in the valence quarks is included in our result. The
effect of isospin violation in the sea has not been included,
but we may easily estimate its size by putting in our values
for mu and md (instead of the average sea mass ml) in
Eq. (8) and in the NNLO and NNNLO analytic terms. This
results in a change of only 0.01% in fDþ , and a still smaller
change in fDs

.
The width of the band shows the statistical error coming

from the fit, which is only part of the total statistical error,
since it does not include the statistical errors in the inputs of
the quark masses and the lattice scale. To determine the
total statistical error of each output quantity, we divide the

FIG. 16 (color online). Simultaneous chiral fit to ΦD as a function of mv at the three finer lattice spacings. Similar to the fit in Fig. 15,
but with three extra fit parameters: c2, c3, and c4. This fit has χ2=dof ¼ 239=290, giving p ¼ 0.986.
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full data set into 100 jackknife resamples. The complete
calculation, including the determination of the inputs, is
performed on each resample, and the error is computed as
usual from the variations over the resamples. (For conven-
ience, we kept the covariance matrix fixed to that from the
full data set, rather than recomputing it for each resample.)
Each jackknife resample drops approximately ten consecu-
tive stored configurations (50–60 trajectories) from each
ensemble with ≈1000 configurations. This procedure con-
trols for autocorrelations, since all our measures of the
autocorrelations of these quantities indicate that they are
negligible after four or eight consecutive configurations.
For the physical-mass 0.06 fm ensemble with 583 con-
figurations, we are forced to drop only about six consecu-
tive stored configurations at a time. Our expectation is that
the effect of any remaining autocorrelations, while perhaps
not completely negligible, is small compared to other
sources of error. The total statistical errors computed from
the jackknife procedure are only about 10% larger than the
statistical error from the chiral-continuum fit, indicating

that the inputs are statistically quite well determined. The
same procedure is performed to find the total statistical
error of a and ams at each lattice spacing.
Figure 18 illustrates how data for ΦDþ and ΦDs

depend
on lattice spacing after adjustment to physical values of the
quark masses (blue circles). There is a 2%–3% variation
between these points and the continuum value (green
square at a2 ¼ 0). Note that there is clear curvature in
the plot, evidence of significant a4 terms in addition to the
formally leading αSa2 terms. Both the small absolute size
of the errors, and the competition between formally leading
and subleading terms, are typical of highly improved
actions such as the HISQ action. The red stars show the
contribution from the chiral logarithms (with known taste
splittings) to the a2 dependence of the chiral fit function.
The green squares show the corresponding contribution
from the analytic fit parameters. The two effects are of
comparable magnitudes but the relative sign changes
with lattice spacing; both are needed to describe the a2

dependence of the data.

FIG. 17 (color online). Simultaneous chiral fit to ΦD as a function of mv, the valence-quark mass (in units of mp4s), at all four lattice
spacings: a ≈ 0.15 and 0.12 fm (top row), and 0.09 and 0.06 fm (bottom row). This fit has χ2=dof ¼ 347=339, giving p ¼ 0.36. In the fit
lines for each ensemble, the light valence-quark mass varies, with all sea-quark masses held fixed. The orange band, labeled as “unitary/
continuum,” is identical in each panel. It gives the result after extrapolating to the continuum, setting the light valence-quark and sea-
quark masses equal [up to the small difference betweenmd andml ¼ ðmu þmdÞ=2], and adjusting the strange and charm masses to their
physical values. The width of the band shows the statistical error coming from the fit. The black bursts indicate the value of ΦDþ at the
physical light-quark mass point.
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4. Continuum extrapolation and systematic uncertainties

To determine the systematic error associated with the
continuum extrapolation (and chiral interpolation) of the
charm decay constants in the chiral perturbation theory
analysis, we rerun the analysis with alternative continuum-
chiral fits, and with alternative inputs that come from
different continuum extrapolations of the physical-mass
analysis, listed in the continuum extrapolation column in
Table VI.
As mentioned above, we have a total of 18 acceptable

versions of the continuum-chiral fits. We also have the six
versions of the continuum extrapolations used in the
physical-mass analysis that leads to the inputs of quark
masses and the lattice scale. This gives a total of 108
versions of the analysis. Histograms of the 108 results for
ΦDþ and ΦDs

are shown in Fig. 19. Conservatively, we take
the maximum difference seen in these results with our
central values as the “self-contained” estimate of the
continuum extrapolation errors within this chiral analysis.
The central fit is chosen to give results that are close to the
centers of the histograms, which results in more symmet-
rical error bars than in the preliminary analysis reported in
Ref. [24]. Note that the “acceptable” fits entering the
histograms all have p > 0.1. If the cutoff is instead taken

to be p > 0.05, the additional fits allowed would not
change the error estimates. However a cutoff of 0.01 or
lower would give some additional outliers that would
increase the width of the histograms.
As mentioned in Sec. IV B 1, the chiral fits tend to pull

gπ to low values. We can now look at this effect quanti-
tatively. The central fit, which has gπ fixed to 0.45, 1σ
below its nominal value of 0.53, has p ¼ 0.36 and gives
ΦDþ ¼ 9191ð14Þ MeV3=2, where the statistical error comes
only from the fit and not from the errors in the inputs.
Allowing gπ to be a free parameter, with prior range
0.53(8), we find gπ ¼ 0.26ð5Þ, about 3σ below its
nominal value, and p ¼ 0.71. However, ΦDþ then is
9184ð15Þ MeV3=2, a change of only half the statistical
error, and much less than the systematic error from the
range over the results of all chiral-continuum fits.
Alternatively, fixing gπ to its nominal value gives ΦDþ ¼
9195ð13Þ MeV3=2, p ¼ 0.16. We can also consider the
effect in fits that drop the data with a ≈ 0.15 fm and
consequently use fewer lattice-spacing-dependent param-
eters. When gπ is a free parameter with prior range 0.53(8),
we find gπ ¼ 0.37ð6Þ, 2σ below the nominal value, and
ΦDþ ¼ 9189ð12Þ MeV3=2, p ¼ 0.37. The corresponding
fits with gπ fixed to its nominal value or one sigma below

FIG. 18 (color online). Lattice-spacing dependence of ΦDþ and ΦDs
. The blue circles show the lattice data, after adjustment for

mistunings of valence- and sea-quark masses. The red stars show the modification of each continuum value by the a2 dependence of the
chiral logarithms, while the green squares show the corresponding modification by the a2 dependence induced by the fit parameters. Red
stars and green squares overlap at a2 ¼ 0 (only the green square is visible). Neglecting small cross terms, the deviation of the blue circles
from the continuum value are given by the algebraic sum of the deviations of the red stars and the green squares.
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that value give ΦDþ ¼ 9196ð13Þ MeV3=2, p ¼ 0.18 and
ΦDþ ¼ 9192ð12Þ MeV3=2, p ¼ 0.30, respectively. Thus,
the systematic error on ΦDþ associated with the value of
gπ is small compared to our other errors. The systematic
error from gπ on ΦDs

is a factor of 2 smaller still.
The fact that a wide range of gπ values give good fits

indicates that our data have little to say about the physical
value of that parameter. Indeed, even fits with gπ set equal
to zero have very good p values, and do not change ΦDþ by
more than one statistical σ. Such a fit that includes all
data gives ΦDþ ¼ 9180ð13Þ MeV3=2, p ¼ 0.83, and one
that drops the data with a ≈ 0.15 fm gives ΦDþ ¼
9181ð13Þ MeV3=2, p ¼ 0.52.
In practice, the NLO finite-volume corrections are

included in our fit function, Eq. (8), when it is applied
to the data, and the volume is sent to infinity when the
continuum results are extracted. We may conservatively
estimate the residual finite-volume error in the heavy-light
data either by turning off all finite-volume corrections and
repeating the fit, or by using the current fit to find the size of
the NLO finite-volume correction on our most-important,
0.06 fm physical-mass ensemble. Yet another way to make
the estimate is by direct comparison of our results on the
323 × 64, β ¼ 6.0, m0

l=m
0
s ¼ 0.1 ensemble (which is sim-

ilar in physical size to our other m0
l=m

0
s ¼ 0.1 ensembles)

and the 403 × 64, β ¼ 6.0, m0
l=m

0
s ¼ 0.1 ensemble. All

three methods indicate that there are negligible direct finite-
volume effects in the heavy-light lattice data. Nevertheless,
there are non-negligible finite-volume effects in our final
answers, which appear due to the scale setting in the light-
quark sector through, ultimately, fπþ . (The value of Fp4s in
physical units that we use comes by comparison with fπþ .)

We then propagate the errors in the inputs through our
analysis. Electromagnetic errors in the light-quark masses
are similarly propagated through our analysis.
Results for ΦDþ, ΦDs

and their ratio at various values of
the mass ratio of light to strange sea quarks are shown in
Table IX; only the top subsection of the table gives physical
results. Note that the valence masses do not vary in the three
different subsections of the table, so changes in results
show only the effects of the light sea mass. The EM error
associated with the masses of the heavy-light mesons,
which we call EM3, is not included in any of the quoted
EM errors in the table. As explained in Sec. IVA 3, that is
because the error cancels to good approximation when one
extracts the decay constants fDþ , fDs

from ΦDþ , ΦDs
. One

should use the experimental massesMDþ ¼ 1869.62 MeV,
MDs

¼ 1968.50 MeV [30] in this extraction; the exper-
imental errors in these masses are negligible at the current
level of precision.
To quantify the effect of isospin violations, we also

report ΦD and ΦDþ − ΦD, where ΦD is the value of Φ in the
isospin limit, when the light valence mass is equal to ml ¼
ðmu þmdÞ=2 instead of md. In this case, the EM errors in
the heavy-light meson masses do affect the errors in the
corresponding decay constant difference because of the
difference between the EM effect in the charged MDþ and
in the neutral MD0 , which are averaged to obtain MD. We
estimate this error when we quote fDþ − fD below.
In Table X, we report additional results for the case when

the light valence mass is kept equal to the light sea mass
and m0

l=ms ¼ 0.1 or 0.2. These unphysical results may be
useful for normalizing other calculations, such as those of
B-system decay constants, as described in Sec. V.

FIG. 19 (color online). Histograms of ΦDþ and ΦDs
values obtained from various versions of the continuum-chiral extrapolation and

various inputs of quark masses and scale values from the physical-mass analysis. Our central fit gives ΦDþ ¼ 9191 MeV3=2 and
ΦDs

¼ 11046 MeV3=2; those values are marked with vertical black lines. At the top of each histogram, we show the range taken as the
systematic error of the self-contained chiral analysis of the current section.
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At each β value, we have reported, in Table VIII, the
values for the lattice spacing a and the strange mass in
lattice units ams, which come from our scale-setting
procedure using Mp4s=Fp4s and aFp4s. For the estimates
of the extrapolation errors in these quantities, we have used
the six versions of the continuum extrapolation for the
inputs, which are the quark-mass ratios, Mp4s=Fp4s, and
Fp4s in physical units. Finite-volume and electromagnetic
errors come simply from propagating the errors in fπþ and
the light-quark masses through the analysis.
The self-contained chiral analysis of the current section

gives

fDþ ¼ 212.6� 0.4stat
þ0.9
−0.8 ja2extrap � 0.3FV � 0.0EM

� 0.3fπPDG MeV; ð28Þ

fDs
¼ 249.0� 0.3stat þ1.0

−0.9 ja2extrap � 0.2FV � 0.1EM

� 0.4fπPDG MeV; ð29Þ

fDs
=fDþ ¼ 1.1712ð10Þstatðþ24

−31Þa2extrapð3ÞFVð5ÞEM; ð30Þ

fDþ − fD ¼ 0.47ð1Þstatðþ11
−4 Þa2extrapð0ÞFVð4ÞEM MeV; ð31Þ

TABLE IX. Results forΦ from the chiral analysis, for three choices of the light sea massm0
l.ΦD is the value ofΦwhen

the light valence massmv ¼ ml ≡ ðmu þmdÞ=2. Valence masses here are always taken to be the physical valuesmd,ms
or ml, independent of the value of m0

l, and the strange sea mass is always physical (m0
s ¼ ms). In the EM errors on these

quantities, we have not included the EM3 error coming from the EM effects on the masses of the corresponding heavy-
light mesons. Such errors largely cancel when we compute fDþ and fDs

from ΦDþ and ΦDs
using the experimental

meson masses. For ΦD and fD, the situation is more complicated—see text. The negative central value of ΦDþ − ΦD for
m0

l=ms ¼ 0.2 is an effect of partial quenching, but note that the systematic errors are large in this case.

m0
l ¼ ml ΦDþ ¼ 9191� 16stat

þ38
−36 ja2extrap � 13FV � 1EM MeV3=2

ΦDs
¼ 11046� 12stat

þ42
−38 ja2extrap � 12FV � 4EM MeV3=2

ΦDs
=ΦDþ ¼ 1.2018� 0.0010stat þ0.0024

−0.0032 ja2extrap � 0.0004FV � 0.0005EM
ΦD ¼ 9168� 16stat

þ39
−40 ja2extrap � 13FV � 1EM MeV3=2

ΦDþ − ΦD ¼ 23.6� 0.3stat
þ4.7
−1.6 ja2extrap � 0.1FV � 1.0EM MeV3=2

m0
l=ms ¼ 0.1 ΦDþ ¼ 9412� 16stat

þ46
−86 ja2extrap � 13FV � 1EM MeV3=2

ΦDs
¼ 11128� 13stat

þ36
−42 ja2extrap � 12FV � 4EM MeV3=2

ΦDs
=ΦDþ ¼ 1.1824� 0.0010stat þ0.0078

−0.0036 ja2extrap � 0.0004FV � 0.0003EM
ΦD ¼ 9402� 16stat

þ48
−95 ja2extrap � 13FV � 1EM MeV3=2

ΦDþ − ΦD ¼ 10.4� 0.3stat
þ9.4
−2.4 ja2extrap � 0.1FV � 0.5EM MeV3=2

m0
l=ms ¼ 0.2 ΦDþ ¼ 9709� 19stat

þ53
−140 ja2extrap � 13FV � 2EM MeV3=2

ΦDs
¼ 11250� 15stat

þ44
−47 ja2extrap � 12FV � 4EM MeV3=2

ΦDs
=ΦDþ ¼ 1.1588� 0.0011stat þ0.0140

−0.0038 ja2extrap � 0.0003FV � 0.0002EM
ΦD ¼ 9714� 19stat

þ56
−154 ja2extrap � 13FV � 2EM MeV3=2

ΦDþ − ΦD ¼ −5.3� 0.3stat
þ15.0
−3.3 ja2extrap � 0.1FV � 0.0EM MeV3=2

TABLE X. Results for Φ for two choices of light sea masses. Here the valence mass for ΦD is taken equal to the
light sea mass: mv ¼ m0

l. The quantities denoted by “phys” are those tabulated in Table IX for the case m0
l ¼ ml.

m0
l=ms ¼ 0.1 ΦD ¼ 9477� 15stat

þ39
−66 ja2extrap � 13FV � 2EM MeV3=2

ΦDs
¼ 11128� 13stat

þ36
−42 ja2extrap � 12FV � 4EM MeV3=2

ΦD=Φ
“phys”
D ¼ 1.0338� 0.0005stat

þ0.0009
−0.0031 ja2extrap � 0.0000FV � 0.0001EM

ΦD=Φ
“phys”
Dþ ¼ 1.0311� 0.0004stat

þ0.0010
−0.0036 ja2extrap � 0.0000FV � 0.0002EM

ΦDs
=Φ“phys”

Ds
¼ 1.0075� 0.0003stat þ0.0005

−0.0006 ja2extrap � 0.0000FV � 0.0000EM

m0
l=ms ¼ 0.2 ΦD ¼ 9870� 17stat

þ39
−71 ja2extrap � 13FV � 2EM MeV3=2

ΦDs
¼ 11250� 15stat

þ44
−47 ja2extrap � 12FV � 4EM MeV3=2

ΦD=Φ
“phys”
D ¼ 1.0766� 0.0011stat

þ0.0017
−0.0038 ja2extrap � 0.0001FV � 0.0002EM

ΦD=Φ
“phys”
Dþ ¼ 1.0738� 0.0011stat þ0.0017

−0.0043 ja2extrap � 0.0001FV � 0.0002EM
ΦDs

=Φ“phys”
Ds

¼ 1.0185� 0.0007stat
þ0.0014
−0.0010 ja2extrap � 0.0000FV � 0.0000EM
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where fD is the decay constant in the isospin limit,
mu ¼ md ¼ ml. In finding fDþ − fD from ΦDþ − ΦD in
Table IX, we use the experimental value for MDþ and our
result, MDþ −MD0 ¼ 2.6 MeV, obtained from the pure-
QCD analysis in Sec. IVA. Comparison with the exper-
imental mass difference MDþ −MD0 ¼ 4.8 MeV indicates
that the EM effect on this difference is ∼2.2 MeV. We take
half of this difference, namely 1.1 MeV, as our estimate of
the EM3 effect on the heavy-light masses, and propagate
this error to fDþ − fD, adding it in quadrature with other
EM errors to get the error quoted in Eq. (31).

V. RESULTS AND CONCLUSIONS

Our main results are for the charm decay constants and
their ratio. We take the more precise determinations from
the self-contained chiral perturbation theory analysis using
the full set of sea-quark ensembles, Eqs. (28)–(30), for our
best estimate of the central values and statistical errors. We
then use the results of the simpler physical-mass analysis to
help estimate the systematic uncertainties. For the con-
tinuum extrapolation error, we consider the differences in
the central values of fDþ , fDs

, and fDs
=fDþ , obtained with

various continuum-extrapolation Ansätze in the physical-
mass analysis, and take those differences as the uncertainty
whenever they are larger than the error from the chiral
analysis. Figure 20 shows the histograms from Fig. 19
overlaid with the results from the various continuum
extrapolations considered in Sec. IVA (vertical red lines),
as well as our final estimates for the systematic errors of the
continuum extrapolation. The analysis on the physical-
mass ensembles also gives alternative, and comparably
sized, estimates for the finite-volume and EM errors to

those in Eqs. (28)–(30) (see Table VI), and we take the
larger value as the uncertainty in each case. This procedure
yields our final results for fDþ, fDs

and fDs
=fDþ :

fDþ ¼ 212.6� 0.4stat
þ0.9
−1.1 ja2extrap � 0.3FV � 0.1EM

� 0.3fπPDG MeV; ð32Þ

fDs
¼ 249.0� 0.3stat

þ1.0
−1.4 ja2extrap � 0.2FV � 0.1EM

� 0.4fπPDG MeV; ð33Þ

fDs
=fDþ ¼ 1.1712ð10Þstatðþ28

−31Þa2extrapð3ÞFVð6ÞEM: ð34Þ

For the effects of isospin violation we find

fDþ − fD ¼ 0.47ð1Þstatðþ25
−4 Þa2extrapð0ÞFVð4ÞEM MeV; ð35Þ

where the continuum-extrapolation error has been
increased relative to that in Eq. (31) to take into account
the difference from the result of the physical-mass analysis.
We also update our determination of the decay-constant

ratio fKþ=fπþ in Ref. [3] from the physical-mass analysis
using additional configurations on the 0.06 fm physical
quark-mass ensemble, and include results for quark-mass
ratios coming from the tuning procedure and continuum
extrapolation described in Sec. IVA:

fKþ=fπþ ¼ 1.1956ð10Þstat þ23
−14 ja2extrapð10ÞFVð5ÞEM; ð36Þ

ms=ml ¼ 27.352ð51Þstat þ80
−20 ja2extrapð39ÞFVð55ÞEM; ð37Þ

mc=ms ¼ 11.747ð19Þstat þ52
−32 ja2extrapð6ÞFVð28ÞEM: ð38Þ

FIG. 20 (color online). The same as Fig. 19, but the histograms ofΦDþ andΦDs
from the chiral analysis have been overlaid with results

from various continuum extrapolations in the physical-mass analysis, shown as vertical red lines. We take the full ranges shown at the
top of each plot as the final estimates of the systematic errors coming from the continuum extrapolation.
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Although our analysis also determines mu=md, we do not
quote a final result, because the errors in this ratio are
dominated by electromagnetic effects. If we take the results
from our preliminary study of EM effects on pion and kaon
masses reported in Ref. [36] at face value, we obtain a central
value for mu=md ¼ 0.4482ð48Þstat þ21

−115 ja2extrapð1ÞFV, where
we include the uncertainties from all sources other than EM.
Once the full analysis of mu=md from our QCDþ QED
simulations is complete, we expect the EM error to lie
between 0.0150 and 0.0230. Even the more conservative
estimate for the EM error on mu=md, however, would
not impact the uncertainties on our final results in
Eqs. (32)–(38) significantly; the electromagnetic error is
subdominant for most of these quantities, and one of several
comparably sized errors in the case of ms=ml. With the
charm-quark mass tuned to match the Ds mass, our analysis
gives a mass for the ηc of 2982.33ð0.35Þðþ2.34

−2.07Þ MeV. While
this mass is in good agreement with the experimental value,
it should be remembered that our calculation does not
include the effects of disconnected contractions or decay
channels to the ηc mass. Finally, we note that we are
computing the values of the decay constants as they are
conventionally defined, in a pure-QCD world. Comparison
to experiment thus requires a matching of the decay rates
between QCD and QCDþ QED. The errors in such a
matching are not included in our error budgets for the decay
constants but are accounted for in our determinations of
CKM matrix elements in Sec. VI.
Figures 21–24 compare our results for ms=ml, mc=ms,

fKþ=fπþ and the charm decay constants with other
unquenched calculations. Our results agree with most deter-
minations at the 1–2σ level. In particular, our value for fDs

agrees with the second-most-precise determination from
HPQCD obtained using HISQ valence quarks on the

(2þ 1)-flavor MILC asqtad ensembles [49]. We disagree
slightly with HPQCD’s determination of the ratio fDs

=fDþ

[50], but only by 1.2σ. Our result for fDs
is more precise than

previous determinations primarily for two reasons. First, the
statistical errors in our data points for thedecay amplitudes are
2 or more times smaller than those obtained by, for example,
HPQCD [49]. Second, our use of ensembleswith the physical
light-quark mass eliminates the significant (although not
dominant) uncertainty from the chiral extrapolation. For
fDþ and fDs

=fDþ , we also have significantly smaller con-
tinuum-extrapolation errors due to the use of the HISQ sea-
quark action and lattice spacings down to a ≈ 0.06 fm.
The dominant source of uncertainty in our results is from

the continuum extrapolation and will be reduced once we
include a still finer ensemble in our analysis with a ≈
0.045 fm and ml=ms ¼ 0.2, generation of which is in
progress. In fact, we already have some preliminary data
on this ensemble, albeit with small statistics, and have tried
including these data in the current chiral fits. The fits have
acceptable p values and give results that are less than one
statistical sigma away from those in Eqs. (32)–(36). Once we
have ensembles with lattice spacings as fine as a ≈ 0.03 fm,
we expect to be able to use the same methods employed here
to compute bottom decay constants. In the meantime,
however, our results for D-meson decay constants using
HISQ charm quarks can be combined with calculations of
the ratios ΦBs

=ΦDs
using Fermilab heavy quarks to improve

the determinations of decay constants in the B system, where
the use of the HISQ action is more difficult. The ratios of
continuum-extrapolated decay constants at various unphys-
ical values of the light-quark mass may also be useful for this
approach. The analysis of B- and D-meson decay constants
with Fermilab heavy quarks on the 2þ 1 flavor asqtad
ensembles is presently being finalized [77].
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FIG. 21 (color online). Unquenched lattice results forms=ml [25,51–56] andmc=ms [51,57–59]. Results are grouped by the number of
flavors from top to bottom: nf ¼ 2 (green diamonds), nf ¼ 2þ 1 (blue circles), and nf ¼ 2þ 1þ 1 (purple squares). Within each
grouping, the results are in chronological order. Our new results are denoted by magenta crosses and displayed at the bottom of
each plot.
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VI. IMPACT ON CKM PHENOMENOLOGY

We now use our decay constant results to obtain values
for CKMmatrix elements within the Standard Model and to
test the unitarity of the first and second rows of the CKM
matrix.
The decay-constant ratio fKþ=fπþ can be combined

with experimental measurements of the corresponding
leptonic decay widths to obtain a precise value for the
ratio jVusj=jVudj [1]. Combining our updated result for
fKþ=fπþ from Eq. (36) with recent experimental results for
the leptonic branching fractions [30] and an estimate of
the hadronic structure-dependent EM correction [78], we
obtain

jVusj=jVudj ¼ 0.23081ð52ÞLQCDð29ÞBRðKl2Þð21ÞEM: ð39Þ

Taking jVudj from nuclear β decay [79], we also obtain

jVusj ¼ 0.22487ð51ÞLQCDð29ÞBRðKl2Þð20ÞEMð5ÞVud
: ð40Þ

This result for jVusj is more precise than our recent
determination from a calculation of the kaon semileptonic
form factor on the physical-mass HISQ ensembles [80],
and larger by 1.8σ. Figure 25 shows the unitarity test of the
first row of the CKM matrix using our result for fKþ=fπþ.
We find good agreement with CKM unitarity and obtain a
value for the sum of squares of elements of the first row of
the CKM matrix consistent with the Standard-Model
prediction zero at the level of 10−3:

1 − jVudj2 − jVusj2 − jVubj2 ¼ 0.00026ð51Þ: ð41Þ
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FIG. 23 (color online). Unquenched lattice results for fD and
fDs

[26,49,50,61,68–74]. We do not include Ref. [75] because of
the small volume used, and Ref. [76] because of the lack of a
continuum extrapolation. Results are grouped by the number of
flavors from top to bottom: nf ¼ 2 (green diamonds), nf ¼ 2þ 1
(blue circles), and nf ¼ 2þ 1þ 1 (purple squares). Within each
grouping, the results are in chronological order. Our new results
are denoted by magenta pluses and displayed at the bottom.
Again, we do not distinguish results in the isospin symmetric
limit from those with nondegenerate up and down quarks, where
we have estimated the difference in Eq. (35).
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Thus our result places stringent constraints on new-physics
scenarios that would lead to deviations from first-row CKM
unitarity. Finally, we note that, now that the uncertainty in
jVusj2 is approximately the same as that in jVudj2, it is
especially important to scrutinize the current uncertainty
estimate for jVudj.
The Dþ- and Ds-meson decay constants can be com-

bined with experimental measurements of the correspond-
ing leptonic decay widths to obtain jVcdj and jVcsj. The
values fDþjVcdj ¼ 46.06ð1.11Þ MeV and fDs

jVcsj ¼
250.66ð4.48Þ MeV in the PDG [81] are obtained from
averaging the experimentally measured decay rates into
electron and muon final states including an estimate of
structure-dependent Bremsstrahlung effects that lowers the
Dþ → μþνμ rate by ∼1% [82,83]. The PDG determinations
of fDþjVcdj and fDs

jVcsj do not, however, take into account
other electroweak corrections (cf. Refs. [1,84], and refer-
ences therein). Such contributions are estimated for pion
and kaon leptonic decay constants to be ∼1%–2%, and the
uncertainties in these corrections, in particular from the
contributions that depend on the hadronic structure, lead to
∼0.1% uncertainties in jVusj=jVudj and jVusj obtained from
leptonic decays. Now that the uncertainties in the charm
decay constants are at the half-a-percent level, it is timely to
consider including electroweak corrections when extracting
jVcdj and jVcsj from leptonic D decays, and we attempt to
provide a rough estimate of their possible size here. We

consider all of the contributions that have been estimated
for pion and kaon leptonic decays. Not all of the necessary
calculations have been performed for the charm system,
however, so, where necessary, we use results for the pion
and kaon system as a guide and take a generous uncertainty.
The universal long-distance EM contribution to leptonic

decays of pointlike charged particles was calculated by
Kinoshita [85]. Evaluating this contribution for leptonic D
decays into muons (because the experimental averages are
dominated by measurements in the muon channel), the
long-distance correction lowers both the Dþ and Ds decay
rates by about 2.5%. The universal short-distance contri-
bution to leptonic decays of charged pseudoscalar mesons,
which accounts for electroweak corrections not included in
the definition of GF, was computed by Sirlin [86].
Choosing MD for the factorization scale that enters
lnðMZ=μÞ, the “Sirlin factor” increases the Dþ and Ds
leptonic decay rates by about 1.8%. Thus the net effect of
these two known corrections is a slight decrease in the Dþ
and Ds rates by less than a percent. Finally, we consider
EM effects that depend on the mesons’ hadronic structure.
The expressions for the structure-dependent contributions
to charged pion and kaon decay rates have been computed
at Oðe2p2Þ and Oðe2p4Þ in chiral perturbation theory
[87,88]. The dominantOðe2p2Þ contribution takes the form
cðPÞ1 α=π, and the coefficients have been estimated numeri-

cally in the large-Nc approximation to be cðπÞ1 ¼ −2.4ð5Þ

0.9484 0.9488 0.9492 0.9496

|V
ud

|
2

0.0492

0.0496

0.05

0.0504

0.0508

|V
us

|2

0.044 0.046 0.048 0.05

|V
cd

|
2

0.95

1

1.05

| V
cs

|2

FIG. 25 (color online). Unitarity tests of the Cabibbo-Kobayashi-Maskawa matrix. Left: Squared magnitudes of elements of the first
row of the CKM matrix. The magenta diagonal band shows ðjVusj=jVudjÞ2 obtained using fKþ=fπþ from this work, the vertical orange
band shows jVudj2 from nuclear β decay [79], and the horizontal yellow band shows jVusj2 obtained using our recent calculation of the
kaon semileptonic form factor at q2 ¼ 0 [80]. The diagonal black line is the unitary prediction and lies well within the region of overlap
of the magenta and orange bands. Right: Squared magnitudes of elements of the second row of the CKM matrix. The green vertical and
blue horizontal bands show jVcdj2 and jVcsj2 obtained using fDþ and fDs

from this work. The black diagonal line does not intersect with
the region of overlap of the two colored bands, indicating a slight tension with CKM unitarity.
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and cðKÞ1 ¼ −1.9ð5Þ [89]. These calculations do not apply to
the charm system, however, because theDðsÞ-meson masses
are much heavier than the pion and kaon masses, and well
outside the range of validity of the light-meson chiral
expansion. We therefore consider the possibility that the
analogous coefficients for theD system are 2–5 times larger
than for the pion and kaon system.With this assumption, we
find a range of the possible size for the hadronic correction to
the Dþ- and Ds-meson leptonic decay rates from 1.1% to
2.8%. Corrections of this size would not be negligible
compared to the known short-distance and long-distance
contributions; thus it is important to obtain a more reliable
estimate of the contributions to charged D decays due to
hadronic structure in the future.
For the determinations of jVcdj and jVcsj given here, we

first adjust the experimental decay rates quoted in the PDG
by the known long-distance and short-distance electroweak
corrections. We then add an estimate of the uncertainty due
to the unknown hadronic structure-dependent EM correc-
tions, taking the lower estimate of 0.6%. With these
assumptions, and using our results for fDþ and fDs

from
Eqs. (32) and (33), we obtain

jVcdj ¼ 0.217ð1ÞLQCDð5Þexptð1ÞEM; ð42Þ

jVcsj ¼ 1.010ð5ÞLQCDð18Þexptð6ÞEM; ð43Þ

where “EM” denotes the error due to unknown structure-
dependent EM corrections. In both cases, the uncertainty is
dominated by the experimental error in the branching
fractions. Thus the significant improvement in fDþ and
fDs

does not, at present, lead to direct improvement in jVcdj
and jVcsj. Experimental measurements of the Dþ decay
rates have improved recently [81], however, such that the
error on jVcdj from leptonic Dþ decays is now approx-
imately half that of jVcdj obtained from either neutrinos
[30] or semileptonic D → πlν decay [90].
Our result for jVcdj agrees with the determination from

neutrinos. Our jVcdj is 1.0σ lower than the determination
from semileptonic D decay in Ref. [90], while our jVcsj is
1.1σ higher than that of Ref. [91]. Figure 25 shows the
unitarity test of the second row of the CKM matrix using
our results for fDþ and fDs

. We obtain a value for the sum
of squares of elements of the second row of the CKM
matrix of

1 − jVcdj2 − jVcsj2 − jVcbj2 ¼ −0.07ð4Þ; ð44Þ

showing some tension with CKM unitarity. This test will
continue to become more stringent as experimental mea-
surements of the Dþ and Ds decay rates become more
precise. At present, even if our rough estimate of the
uncertainty due to structure-dependent EM corrections in
Eqs. (42) and (43) is too small by a factor of 2, the errors on
jVcdj and jVcsj would not change significantly. It will be

important, however, to obtain a more reliable estimate of
the contributions to charged D decays due to hadronic
structure in the future.
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APPENDIX: EXPANSION OF Φ0
IN TERMS OF 1=mQ

Equation (8) contains the effects of hyperfine splittings
(e.g., M�

D −MD) and flavor splittings (e.g., MDs
−MD),

but no other 1=mQ effects. Boyd and Grinstein [39] find
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some other contributions at the same order as hyperfine and
flavor splittings. However, one can show that most of these
terms only produce 1=mQ corrections to the LECs relevant
to the pseudoscalar-meson decay constants. (Some of the
terms violate heavy-quark spin symmetry and therefore
give different contributions to the pseudoscalar and vector-
meson decay constants at this order, but we are not
concerned with vector-meson decay constants here.)
Following Eq. (20) of Ref. [39], at the order of
Oð1=mQ;m0

qÞ, where mq is a light-quark mass, the
1=mQ terms can be included by replacing Φ0 by
Φ0ð1þ const=mQÞ. This dependence can be simply
absorbed in Φ0 for a fixed value of mQ. However, in our
analysis the charm mass varies by about 10%, which leads
to a correction comparable to that produced by terms of
OðmqÞ ∼Oðm2

πÞ. Therefore, replacing Φ0 by Φ0ð1þ
const=mQÞ in Eq. (8) should be considered a NLO
correction. At this order the rate for D� → Dπ is governed
by gπð1þ const=mQÞ instead of gπ , which is already taken
into account by incorporating the range gπ ¼ 0.53ð8Þ
in the fits. We do not allow any further dependence of
gπ on mQ in our analysis, because this dependence is
formally NNLO.
On each ensemble, we have data with two different

values of the valence charm mass:m0
c and 0.9m0

c, where m0
c

is the charm sea mass of the ensemble. In Fig. 26, the ratio
of ΦD at m0

c to ΦD at 0.9m0
c is shown in terms of mv for our

four lattice spacings. The fact that ΦDðm0
cÞ=ΦDð0.9m0

cÞ
does not vary much as a function of the light valence-quark
mass is evidence that the 1=mQ effects can be absorbed in
the overall factor in front of the full one-loop result as
discussed above. On the other hand, ΦD computed at m0

c
and at 0.9m0

c are highly correlated so that their ratio is
known precisely. Since our fits take the correlations into
account, the p values will be low unless the chiral form is
able to reproduce the ratio to high accuracy. Therefore, the
expansion of the overall factor, Φ0, in terms of 1=mQ needs
to be taken beyond the first order; for acceptable fits we
need to introduce a 1=m2

Q term as well as the 1=mQ term, as
indicated in Eq. (21). Furthermore, good fits require the
LEC k1 in Eq. (21) to have generic dependence on a; such
dependence for k2 is also strongly preferred by the fits.
Note finally that Fig. 26 shows a roughly 4% difference

between ΦD at m0
c and at 0.9m0

c. As claimed in the
discussion above Eq. (21), this is comparable to the chiral
NLO effects of a nonzero pion mass, which may be
estimated from the fits shown in Fig. 17. Indeed, those
fits imply that the difference between the physical value of
ΦDþ and its value in the (two-flavor) chiral limit is
roughly 3%.

FIG. 26 (color online). The ratio ΦDðm0
cÞ=ΦDð0.9m0

cÞ (wherem0
c is the charm sea mass of the ensembles) as a function ofmv, the light

valence-quark mass. The upper left panel shows data at a ≈ 0.15 fm. The upper right panel shows the data at a ≈ 0.12 fm from the
ensembles with ms tuned close to its physical value. In the second row, we show a ≈ 0.09 fm (left) and a ≈ 0.06 fm (right) data.
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