
New strategy for the lattice evaluation of the leading order hadronic
contribution to ðg − 2Þμ

Maarten Golterman*

Department of Physics and Astronomy, San Francisco State University,
San Francisco, California 94132, USA

Kim Maltman†

Department of Mathematics and Statistics, York University, 4700 Keele Street,
Toronto, Ontario M3J 1P3, Canada

Santiago Peris‡

Department of Physics, Universitat Autònoma de Barcelona,
E-08193 Bellaterra, Barcelona, Spain

(Received 18 May 2014; published 22 October 2014)

A reliable evaluation of the integral giving the hadronic vacuum polarization contribution to the
muon anomalous magnetic moment should be possible using a simple trapezoid rule integration of
lattice data for the subtracted electromagnetic current polarization function in the Euclidean momentum
interval Q2 > Q2

min, coupled with an N-parameter Padé or other representation of the polarization in the
interval 0 < Q2 < Q2

min, for sufficiently high Q2
min and sufficiently large N. Using a physically

motivated model for the I ¼ 1 polarization, and the covariance matrix from a recent lattice simulation to
generate associated fake “lattice data,” we show that systematic errors associated with the choices of
Q2

min and N can be reduced to well below the 1% level for Q2
min as low as 0.1 GeV2 and rather small N.

For such low Q2
min, both a next-to-next-to-leading-order (NNLO) chiral representation with one

additional NNNLO term and a low-order polynomial expansion employing a conformally transformed
variable also provide representations sufficiently accurate to reach this precision for the low-Q2

contribution. Combined with standard techniques for reducing other sources of error on the lattice
determination, this hybrid strategy thus looks to provide a promising approach to reaching the goal of a
subpercent-precision determination of the hadronic vacuum polarization contribution to the muon
anomalous magnetic moment on the lattice.
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I. INTRODUCTION

The discrepancy of about 3.5σ between the measured
value [1] and the Standard Model prediction [2] for the
anomalous magnetic moment of the muon, aμ ¼
ðgμ − 2Þ=2, has attracted considerable attention. After
the purely QED contributions, which are now known
to five loops [3], the next most important term in the
Standard Model prediction is the leading order (LO)
hadronic vacuum polarization (HVP) contribution,
aLO;HVPμ . The error on the dispersive evaluation of this
quantity, obtained from the errors on the input eþe− →
hadrons cross sections, is currently the largest of
the contributions to the error on the Standard Model
prediction [2]. The dispersive approach is, moreover,
complicated by discrepancies between the determinations

by different experiments of the cross sections for
the most important exclusive channel, eþe− → π−πþ
[4–7].1
The existence of this discrepancy, and the role played

by the error on the LO HVP contribution, have led
to an increased interest in providing an independent
determination of aLO;HVPμ from the lattice [8–22]. Such a
determination is made possible by the representation of
aLO;HVPμ as a weighted integral of the subtracted polariza-
tion, Π̂ðQ2Þ, over Euclidean momentum squaredQ2 [9,23].
Explicitly,

aLO;HVPμ ¼ −4α2
Z

∞

0

dQ2fðQ2ÞΠ̂ðQ2Þ; ð1Þ

where, with mμ the muon mass,
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1A useful overview of the experimental situation is given in
Figs. 48 and 50 of Ref. [6].
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fðQ2Þ ¼ m2
μQ2Z3ðQ2Þ 1 −Q2ZðQ2Þ

1þm2
μQ2Z2ðQ2Þ ;

ZðQ2Þ ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðQ2Þ2 þ 4m2
μQ2

q
−Q2

�
=ð2m2

μQ2Þ; ð2Þ

and Π̂ðQ2Þ≡ ΠðQ2Þ − Πð0Þ, with ΠðQ2Þ the unsubtracted
polarization, defined from the hadronic electromagnetic
current-current two-point function, ΠμνðQÞ, via

ΠμνðQÞ ¼ ðQ2δμν −QμQνÞΠðQ2Þ: ð3Þ

The vacuum polarization ΠμνðQÞ can be computed, and
hence ΠðQ2Þ determined for nonzero Q, for those quan-
tized Euclidean Q accessible on a given finite-volume
lattice. Were ΠðQ2Þ to be determined on a sufficiently
finely spacedQ2 grid, especially in the region of the peak of
the integrand, aLO;HVPμ could be determined from lattice
data by direct numerical integration.
Two facts complicate such a determination. First, since

the kinematic tensor on the rhs of Eq. (3), and hence the
entire two-point function signal, vanishes as Q2 → 0, the
errors on the direct determination of ΠðQ2Þ become very
large in the crucial low-Q2 region. Second, for the lattice
volumes employed in current simulations, only a limited
number of points is available in the low-Q2 region, at least
for conventional simulations with periodic boundary con-
ditions. With the peak of the integrand centered around
Q2 ∼m2

μ=4 ≈ 0.0028 GeV2, one would need lattices with a
linear size of about 20 fm to obtain lattice data near
the peak.
The rather coarse coverage and sizable errors at very low

Q2 make it necessary to fit the lattice data for ΠðQ2Þ to
some functional form, at least in the low-Q2 region.
Existing lattice determinations have typically attempted
to fit the form of ΠðQ2Þ over a sizable range of Q2, a
strategy partly predicated on the fact that the errors on the
lattice determination are much smaller at larger Q2, and
hence more capable of constraining the parameters of a
given fit form. The necessity of effectively extrapolating
high-Q2, high-acccuracy data to the low-Q2 region most
relevant to aLO;HVPμ creates a potential systematic error
difficult to quantify using lattice data alone.
In Ref. [20], this issue was investigated using a physical

model for the subtracted I ¼ 1 polarization, Π̂I¼1ðQ2Þ. The
model was constructed using the dispersive representation
of Π̂I¼1ðQ2Þ, with experimental hadronic τ decay data used
to fix the relevant input spectral function. The study showed
that (1) Π̂I¼1ðQ2Þ has a significantly stronger curvature at
lowQ2 than at highQ2 and (2), as a result, the extrapolation
to low Q2 produced by typical lattice fits, being more
strongly controlled by the numerous small-error, large-Q2

data points, is systematically biased towards producing
insufficient curvature in the low-Q2 region either not

covered by the data, or covered only by data with much
larger errors. Resolving this problem requires an improved
focus on contributions from the low-Q2 region and a
reduction in the impact of the large-Q2 region on the
low-Q2 behavior of the fit functions and/or procedures
employed.
In this paper we propose a hybrid strategy to accomplish

these goals. The features of this strategy are predicated on a
study of the I ¼ 1 contribution to aLO;HVPμ corresponding to
the model for the I ¼ 1 polarization function, Π̂I¼1ðQ2Þ,
introduced in Ref. [20]. The results of this study lead us to
advocate a combination of direct numerical integration of
the lattice data in the region above Q2

min ∼ 0.1 GeV2, and
the use of Padé or other representations in the low-Q2

(0 < Q2 ≤ Q2
min) region. We will consider two non-Padé

alternatives for representing Π̂ at lowQ2—that provided by
chiral perturbation theory (ChPT), and that provided by a
polynomial expansion in a conformal transformation of
the variable Q2 improving the convergence properties of
the expansion.
The organization of the paper is as follows: In Sec. II we

briefly review the construction of the model, and use the
resulting Π̂I¼1ðQ2Þ to quantify expectations about both the
behavior of the integrand for âLO;HVPμ ≡ ½aLO;HVPμ �I¼1 and
the accumulation of contributions to this quantity as a
function of the upper limit of integration in the analogue of
Eq. (1). We also show, with fake data generated from the
model using the covariances and Q2 values of a typical
lattice simulation with periodic boundary conditions, that
the contribution to âLO;HVPμ from Q2 above Q2

min can be
evaluated with an error well below 1% of the full
contribution by direct trapezoid rule numerical integration
for Q2

min down to at least as low as Q2
min ¼ 0.1 GeV2. The

values of Q2 covered by state-of-the-art lattice data are too
few, and the statistical errors too large, to allow Q2

min to be
lowered much beyond this at present. Such a low Q2

min,
however, implies that the use of fit forms to represent the
polarization function below Q2

min can be restricted to the
region Q2 ≲ 0.1–0.2 GeV2, where the behavior of
Π̂I¼1ðQ2Þ is expected to be much easier to parametrize
in a simple and reliable manner. We then show, in Sec. III,
that this expectation is borne out in practice. Explicitly, we
demonstrate that, in the region up to about 0.1–0.2 GeV2,
good enough data will allow Π̂I¼1ðQ2Þ to be represented
with an accuracy sufficient to reduce the systematic error on
the low-Q2 contribution to âLO;HVPμ to well below the 1%
level. The three functional forms we investigate are low-
order Padés, a polynomial representation in a conformally
mapped variable, and a next-to-next-to-leading-order
(NNLO) ChPT form supplemented by an analytic
NNNLO term. The Padés we will consider are of two
types: those constrained explicitly to reproduce the first few
derivatives at Q2 ¼ 0 [22], and those obtained by fitting to
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data in the low-Q2 region [14]. We will be limited to
investigating the systematics of these low-Q2 representa-
tions. The lattice Q2 values and covariance matrix
employed for fake-data studies in Ref. [20] do not allow
for a meaningful extension of this exploration to include
also the statistical component of the uncertainty. We expect,
however, that new lattice data, employing twisted boundary
conditions to provide a denser set ofQ2 values on the lattice
[13,18,21], as well as improved statistics [24,25], will make
a more complete investigation possible in the near future. In
this section we also discuss briefly the expected low-Q2

behavior of the subtracted isoscalar polarization, Π̂I¼0ðQ2Þ,
which can be obtained using values for the relevant chiral
LECs obtained from a chiral fit to the isovector model data.
Finally, in Sec. IV, we discuss the relation between the
errors on the low-Q2 contribution to âLO;HVPμ and those
on the slope and curvature at Q2 ¼ 0, and argue that a
subpercent determination of the former and few-percent
determination of the latter should be sufficient to obtain a
subpercent determination of the full contribution to
aLO;HVPμ . This section also contains our conclusions.

II. THE MODEL FOR Π̂I¼1ðQ2Þ AND
ITS IMPLICATIONS FOR THE
COMPUTATION OF aLO;HVP

μ

A. A review of the model for Π̂I¼1ðQ2Þ
The I ¼ 1 vector polarization function, ΠI¼1ðQ2Þ,

satisfies a once-subtracted dispersion relation,

Π̂I¼1ðQ2Þ≡ ΠI¼1ðQ2Þ − ΠI¼1ð0Þ

¼ −Q2

Z
∞

4m2
π

ds
ρðsÞ

sðsþQ2Þ ; ð4Þ

where mπ is the pion mass and ρðsÞ the corresponding
spectral function. A sensible choice for ΠI¼1ð0Þ and the
function ρðsÞ thus determines a model for ΠI¼1ðQ2Þ.2 The
subtracted polarization represents one such version, in
which ΠI¼1ð0Þ happens to be equal to 0.
The spectral function ρðsÞ has been measured with high

precision, for s < m2
τ , in nonstrange hadronic τ decays

[26,27]. In Ref. [20], Π̂I¼1ðQ2Þ was determined from
Eq. (4) using as input a version of the OPAL data updated
for modern values of the exclusive mode branching
fractions.3 For those s not accessible in τ decay, ρðsÞ
was represented by the five-loop-truncated dimension
D ¼ 0 perturbative form [29], supplemented by a model
representation of the residual, duality violating (DV)
contribution. An exponentially damped oscillatory form

motivated by large-Nc and Regge ideas, was used for the
latter, based on a model for duality violations developed in
Refs. [30], inspired by earlier work in Refs. [31]. Where the
perturbativeþ DV form is used for ρðsÞ above s ¼ m2

τ ,
the DV contribution is much smaller than the perturbative
one, making the model dependence of the resulting version
of Π̂I¼1ðQ2Þ extremely mild, especially in the low-Q2

region where the factor weighting ρðsÞ, 1=½sðsþQ2Þ�,
behaves as 1=s2 over most of the spectrum. Our model for
Π̂I¼1ðQ2Þ is thus a very physical one, especially so in the
low-Q2 region most relevant to the âLO;HVPμ integral. As
such, it allows the systematics associated with various
strategies for the fitting of Π̂ðQ2Þ and evaluation of the
integral for aLO;HVPμ to be investigated in a quantitative
manner. In taking the lessons from such model studies over
to the lattice, one must, of course, bear in mind that the
value of ΠI¼1ð0Þ is not known on the lattice, and will have
to be determined either through a fit to the data or by using
time moments of the two-point function, as will be
discussed further below.

B. Behavior of the integrand of, and partial
contributions to, âLO;HVP

μ

The physical model for Π̂I¼1ðQ2Þ described in the
previous section allows us to investigate in detail expect-
ations, first, for the behavior of the integrand in the I ¼ 1
analogue of Eq. (1) and, second, for how rapidly (as a
function of the upper limit of integration) the contributions
to âLO;HVPμ accumulate. To facilitate the discussion below,
we will denote by âLO;HVPμ ½Q2

min; Q
2
max� the partial contri-

bution to the âLO;HVPμ integral from the interval
Q2

min ≤ Q2 ≤ Q2
max. With this notation, âLO;HVPμ ½Q2

max� ¼
âLO;HVPμ ½0; Q2

max� is the accumulated contribution between 0
and Q2

max, and âLO;HVPμ ¼ âLO;HVPμ ½0;∞�.
Figure 1 shows the product of the weight fðQ2Þ

appearing in the aLO;HVPμ integral and the model version
of the subtracted I ¼ 1 polarization. As is well known, this
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Q
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FIG. 1 (color online). fðQ2ÞΠ̂I¼1ðQ2Þ versus Q2 in the low-Q2

region.

2ΠI¼1ð0Þ, of course, has no physical significance, and is
sensitive to the precise details of the short-distance regularization
of the two-point function.

3Full details may be found in the appendix of Ref. [28].
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product is strongly peaked at low Q2; it is thus shown only
in the regionQ2 < 0.2 GeV2, beyond which it continues to
decrease rapidly and monotonically. The model shows the
location of the peak to be around Q2 ∼m2

μ=4. Lattice data
typically does not reach such low Q2, and some form of
fitting is thus necessary to extrapolate into the peak region,
at least in the conventional lattice approach.
It is also useful to look at the accumulation of the

contributions to âLO;HVPμ as a function of the upper limit of
integration, Q2

max. We display this accumulation, normal-
ized to the integral over all Q2, âLO;HVPμ , in the model, in
Fig. 2. We note that over 80% of the contribution is
accumulated below 0.1 GeV2 and over 90% below
0.2 GeV2. It follows that the accuracy required for con-
tributions above 0.1 or 0.2 GeV2 is much less than that
required for the low-Q2 region. It thus becomes of interest
to investigate the accuracy one might achieve for the
higher-Q2 contributions were one to avoid altogether fitting
and/or modeling, and the associated systematic uncertainty
that accompanies it, and instead perform a direct numerical
integration over the lattice data. We investigate this ques-
tion in the next subsection.

C. Direct numerical integration:
How low can you go?

In this section, we argue that existing lattice data, even
those without twisted boundary conditions, are already
sufficiently accurate that direct numerical integration
of the lattice data can be relied on to produce a value
âLO;HVPμ ½Q2

min; 2 GeV2� accurate to well below 1% of
âLO;HVPμ for Q2

min down to about 0.1 GeV2. The situation
will be even better once the results of new data with
reduced errors onΠðQ2Þ due to all-mode averaging (AMA)
[24,25] and/or denser sets of Q2 produced by using twisted
boundary conditions [13,18,21] become available.
One practical issue, concerning the constant ΠI¼1ð0Þ

needed to convert the unsubtracted polarization ΠI¼1ðQ2Þ

obtained from the lattice to the corresponding subtracted
version Π̂I¼1ðQ2Þ needed for the I ¼ 1 analogue of the
integral in Eq. (1), should be dealt with before continuing
with the main investigation of this section. The issue arises
because the model we are working with is one for the
subtracted polarization. It thus appears to differ from the
lattice case, where a determination of ΠI¼1ð0Þ and sub-
sequent subtraction would be required. This issue is,
however, easily resolved. One simply interprets the model,
not as one for the subtracted polarization, Π̂I¼1ðQ2Þ, but
rather as one for the unsubtracted polarization, ΠI¼1ðQ2Þ,
happening to have ΠI¼1ð0Þ ¼ 0, and allows ΠI¼1ð0Þ to
become a free parameter in fits of data sets based on our
model.4 The extent to which the fitted ΠI¼1ð0Þ deviates
from the known value 0 then quantifies the systematic
uncertainty in the determination of ΠI¼1ð0Þ for the given fit
function form.
Fits of ½1; 1� and higher-order Padés on the interval

between 0 and 1 GeV2 to the fake data set of Ref. [20]
show that it is possible to obtain ΠI¼1ð0Þ from such fits
with an uncertainty smaller than 0.001.
An uncertainty δΠI¼1ð0Þ produces a corresponding

uncertainty

δâLO;HVPμ ½Q2
min;∞� ¼ 4α2δΠI¼1ð0Þ

Z
∞

Q2
min

dQ2fðQ2Þ ð5Þ

on the contribution to âLO;HVPμ from Q2 ≥ Q2
min. The rapid

decrease of fðQ2Þ with Q2 means this uncertainty falls
rapidly with increasingQ2

min. Figure 3 illustrates the impact
of this uncertainty on âLO;HVP. The figure shows the Q2

min
dependence of δâLO;HVP½Q2

min;∞�, as a fraction of âLO;HVP,
for δΠI¼1ð0Þ ¼ 0.001. Even with this (what we expect to be
rather conservative) choice for δΠI¼1ð0Þ, the error remains
safely below 1% for Q2

min down to 0.1 GeV2, where

δâLO;HVPμ ½0.1 GeV2;∞�
âLO;HVPμ

¼ 0.0074

�
δΠI¼1ð0Þ
0.001

�
: ð6Þ

The relatively rapid growth at lower Q2
min, however, means

that careful monitoring of this error for the δΠI¼1ð0Þ
actually achieved in a given analysis would be required
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μL
O

,H
V

P

FIG. 2 (color online). The accumulation of the contributions to
âLO;HVPμ as a function of the upper limit, Q2

max, of integration.

4Another way of understanding what is going on here is as
follows: The model for the subtracted polarization can be
converted to a related model more closely resembling the lattice
situation by simply adding a fixed constant offset C to all the
subtracted polarization values Π̂I¼1ðQ2Þ. In fitting fake data
generated from this modified version of the model, ΠI¼1ð0Þ will
of course need to be included as a fit parameter. The result
obtained for ΠI¼1ð0Þ in such a fit will then be exactly equal to the
sum of C and the result Π̂I¼1ð0Þ that would be obtained by
performing the same fit to the unmodified data with Π̂I¼1ð0Þ left
free.
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if one wished to push the lower limit of direct numerical
integration of the lattice data to below 0.1 GeV2.
We now turn to the model study of the accuracy of the

direct numerical integration of the subtracted polarization
data, assuming that δΠI¼1ð0Þ is small enough to allow
for a sufficiently precise subtraction. For this purpose, we
employ the fake I ¼ 1 data set used previously in Ref. [20].
The set was constructed from the τ-data-based model
discussed above using the covariance matrix for a 643 ×
144 MILC ensemble with periodic boundary conditions,
a ≈ 0.06 fm, and mπ ≈ 220 MeV [32].
The lattice covariance matrix is, by construction,

also the covariance matrix of the fake data set. With the
fake data and its covariances in hand, we evaluate
âLO;HVPμ ½Q2

min; 2 GeV2� and its error by direct trapezoid
rule integration of the data and compare the result to the
corresponding exact result in the model. The difference
between the two gives the systematic error associated with
estimating âLO;HVPμ ½Q2

min; 2 GeV2� by direct numerical
integration.5

In addition to this systematic uncertainty, there is, of
course, also the statistical component of the overall
uncertainty obtained by propagating the data covariances
through the trapezoid rule evaluation. In the present model
study, these covariances are those of the fake data set.
The results for both the systematic and statistical

components of the uncertainty on the trapezoid rule
evaluation are displayed, as a function of Q2

min, in
Fig. 4. For eachQ2

min, the displayed central value represents
the corresponding systematic uncertainty, while the error
bar gives the size of the corresponding statistical uncer-
tainty. The results have been scaled by âLO;HVPμ in order to
display the impact of the numerical integration uncertainty
on the final error for âLO;HVPμ . We see that both components
are completely negligible above Q2

min ≈ 0.2 GeV2. The

systematic component remains below 0.25% for all points
shown. The statistical component is seen to be dominant for
low Q2

min, reaching about 0.5% for the lowest value shown
(Q2

min ¼ 0.086 GeV2). The growth of the statistical com-
ponent with decreasing Q2

min is a consequence of the rapid
growth in the data errors for the very low-Q2 points,
something that would be significantly reduced with
improved data [24,25].
The results of this study show that data from existing

lattice simulations, even without twisted boundary con-
ditions and/or AMA improvement, allow an evaluation of
the contributions to âLO;HVP from Q2 > Q2

min with an
accuracy safely below 1% of âLO;HVP for Q2

min down to at
least 0.1 GeV2. While not yet available, analogous fake
data sets constructed from covariance matrices corre-
sponding to lattice data with twisted boundary conditions
and AMA improvement will, once available, allow us to
quantify the level of improvement made possible by
better statistics and a finer distribution of Q2 points.
Of course, as explained at the beginning of this sub-
section, ΠI¼1ð0Þ, needed to compute Π̂I¼1ðQ2Þ for the
numerical integration, will have to be determined with
sufficient precision as well.
The fact that âLO;HVPμ ½Q2

min; 2 GeV2� can be reliably
evaluated by direct numerical integration down to Q2

min ∼
0.1 GeV2 greatly simplifies the task of computing the rest
of the contribution to âLO;HVPμ . The reason is that, for
0 ≤ Q2 ≲ 0.1 GeV2, one expects fits using low-order
Padés of the types proposed in Refs. [14,22], or using
the conformal polynomial or chiral representations dis-
cussed below (Secs. III B and III C), to provide efficient
and reliable representations of the subtracted polarization
function. We show that this is indeed the case in the next
section, and investigate the systematic uncertainties on
the low-Q2 contributions produced by the use of such
fit forms.
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FIG. 4 (color online). The systematic and statistical components
of the error on the evaluation of âLO;HVPμ ½Q2

min; 2 GeV2� by direct
trapezoid rule numerical integration, as a fraction of âLO;HVPμ .
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FIG. 3 (color online). The impact of an uncertainty δΠI¼1ð0Þ ¼
0.001 in ΠI¼1ð0Þ on âLO;HVPμ ½Q2

min;∞� as a fraction of âLO;HVPμ .

5The choice Q2
max ¼ 2 GeV2 is somewhat arbitrary, but in our

model âLO;HVPμ ½2 GeV2� is 99.74% of âLO;HVPμ .
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III. BEHAVIOR OF THE SUBTRACTED
POLARIZATION IN THE LOW-Q2 REGION

AND A HYBRID STRATEGY FOR
EVALUATING aLO;HVP

μ

In the previous section, we showed that contributions to
âLO;HVPμ fromQ2 above∼0.1 GeV2 can be obtained with an
accuracy better than 1% of âLO;HVPμ by direct numerical
integration of existing lattice data. In this section, we
discuss the region between 0 and ∼0.1 GeV2 and inves-
tigate the reliability of low-order Padé, conformally
mapped polynomial, and ChPT representations of the
subtracted polarization in this region. We focus on the
systematic accuracy achievable using these representations
for the evaluation of the low-Q2 contributions to âLO;HVPμ .
As in the previous sections, these investigations are
performed using the τ-data-based model for Π̂I¼1ðQ2Þ.
At low Q2, fits of lattice data to a functional form are

needed to achieve a precise determination of the integral in
Eq. (1). To avoid difficult-to-quantify systematic errors, the
forms employed should be free, if possible, of any potential
model dependence. Here we investigate three such func-
tional forms, one based on a sequence of Padé approx-
imants [14,22], one based on a conformally mapped
polynomial, and one based on ChPT.6 An important
question is to what order Padé, what degree conformally
mapped polynomial, and what order in the chiral counting
one must go in order to obtain representations of Π̂I¼1ðQ2Þ
of sufficient accuracy. In addition, there is the question of
with what statistical precision these functional forms can
then be fit to lattice data. Even if in principle a certain
functional form provides an accurate representation of
Π̂I¼1ðQ2Þ, the parameters still have to be determined with
sufficient precision. In this article, we address only the first
question, leaving an investigation of the second question to
the future, when much more precise lattice data at low Q2

are expected to become available.
In order to probe the accuracy of an approximate

functional form in representing the exact function
Π̂I¼1ðQ2Þ, we need to fix the parameters of that form.
We will do so by constructing the Padé, conformal, and
chiral representations such that they reproduce the values of
the relevant low-order derivatives of Π̂I¼1ðQ2Þ with respect
to Q2 at Q2 ¼ 0. In the model case, these derivatives are

known from the dispersive representation of the subtracted
polarization, while on the lattice they can be obtained from
time moments of the vector current two-point function, as
explained in more detail below. Since we are concerned
with the systematic uncertainty associated with the use of a
given functional form in the low-Q2 region, we will assume
these derivatives to be exactly known and given by the
central values resulting from the dispersive representation.
It will still be necessary to reduce the errors on the low-Q2

lattice data in order to bring the corresponding statistical
uncertainties under control. Our goal is thus only to identify
those functional forms which produce systematic uncer-
tainties at the subpercent level when used with future
improved low-Q2 data.

A. Low-order Padé representations
of the subtracted polarization

As already pointed out in Ref. [14], the function
ΦðQ2Þ≡−Π̂I¼1ðQ2Þ=Q2 is a so-called Stieltjes function
and, as such, satisfies a number of theorems on convergent
representations over compact regions of the complex Q2

plane via Padé approximants [33,34]. For example, the
sequence of ½M þ J;M� Padés constructed to match the
first N ¼ 2M þ J þ 1 coefficients of the Taylor expansion
of ΦðQ2Þ about Q2 ¼ 0 is known to converge to ΦðQ2Þ as
M → ∞, and for any J ≥ −1, in any compact set in the
complex Q2 plane not overlapping the cut of Π̂I¼1 [34].
Moreover, for Q2 > 0, the set of such Padés satisfies the
inequalities [34]

½0; 1� ≤ ½1; 2� ≤ � � � ≤ ½N;N þ 1� ≤ ΦðQ2Þ
≤ ½N;N� ≤ � � � ≤ ½1; 1� ≤ ½0; 0�: ð7Þ

To make contact with the notation employed in Ref. [22],
let us denote −Q2 times the ½M;N� Padé in (7) by
½M þ 1; N�H. The inequalities (7) then correspond to the
following inequalities for the Padé representations of
Π̂I¼1ðQ2Þ:

½1; 0�H ≤ ½2; 1�H ≤ � � � ≤ ½N þ 1; N�H ≤ Π̂I¼1ðQ2Þ
≤ ½N;N�H ≤ � � � ≤ ½2; 2�H ≤ ½1; 1�H: ð8Þ

In Ref. [22] it has been pointed out that the derivatives of
the polarization function atQ2 ¼ 0, needed to construct the
sequences of Padés in Eq. (8), can be determined by
evaluating even-order Euclidean time moments of the zero-
spatial-momentum representation of the relevant vector
current two-point function on the lattice.7 This idea was
implemented for the s̄s and c̄c vector current polarization
functions, and the resulting representations used to deter-
mine the strange and charm contributions to aLO;HVPμ .

6It turns out that the fully known NNLO ChPT representation
of the subtracted polarization, while providing an accurate
representation up to Q2 ∼ 0.05 GeV2, must be supplemented
by an additional analytic NNNLO term to achieve sufficient
accuracy over the whole of the low-Q2 region of interest, i.e., out
to 0.2 GeV2. While the reason for such an NNNLO contribution
is understood, the resulting form does not represent a complete
NNNLO result and, as such, introduces a level of model
dependence into the ChPT-based approach. This strategy, dis-
cussed in more detail in Sec. III C, is, from this point of view, less
favorable than the other two approaches. 7For an alternative approach to obtaining Πð0Þ, see Ref. [15].
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Evidence was presented that convergence has been
achieved by the time the ½2; 2�H order is reached.
However, in the light-quark sector, the errors on these
moments are expected to be much larger, and to grow
rapidly with increasing order, because light-quark correla-
tors are very noisy at large Euclidean t. It is, first of all, not
clear what order Padé would be required for suitable
convergence in the light-quark sector and, second, not
obvious that the moments needed to construct, e.g., the
½2; 2�H Padé, can be determined with sufficient accuracy to
make the computation of the full light-quark contribution to
aLO;HVPμ feasible in this approach.
The τ-data-based model for Π̂I¼1ðQ2Þ provides a con-

venient tool for investigating the first of these questions.
First, since the exact values of the derivatives of Π̂I¼1ðQ2Þ
with respect to Q2 at Q2 ¼ 0 in the model are easily
obtained from the dispersive representation, Eq. (4), it is
straightforward to construct the exact-model versions of the
Padés of Ref. [22] and see how well they do in representing
Π̂I¼1ðQ2Þ. Second, knowing that contributions to âLO;HVP

from Q2 above ∼0.1 GeV2 can be accurately determined
by direct numerical integration of existing lattice data, we
can use the model to explore the obvious question raised by
this observation, namely how low an order of Padé will
suffice if one’s goal is to evaluate the contribution to
âLO;HVPμ , not for all Q2, but rather only for the restricted
region 0 ≤ Q2 ≲ 0.1 GeV2.
Figure 5 shows the comparison of the dispersive results

for Π̂I¼1ðQ2Þ and the ½1; 0�H, ½1; 1�H, ½2; 1�H, and ½2; 2�H
Padés constructed using the exact dispersive results for the
derivatives of Π̂I¼1ðQ2Þ with respect to Q2 at Q2 ¼ 0. The
top panel shows the comparison in the interval 0 ≤ Q2 ≤
2 GeV2, and the bottom panel shows the same comparison
in the more restricted region 0 ≤ Q2 ≤ 0.4 GeV2. Note that
the curves shown in this figure follow the pattern of the
inequalities in Eq. (8). We see that the ½2; 2�H Padé provides
a good, though not perfect, representation of Π̂I¼1ðQ2Þ over
the whole of the range 0 ≤ Q2 ≤ 2 GeV2. This is not true of
the lower-order Padés. When one focuses on the low-Q2

region, however, it is evident that even the ½1; 1�H Padé
provides a very accurate representation in the region of
current interest, 0 ≤ Q2 ≤ 0.2 GeV2.
For the problem at hand, of course, it is deviations of the

Padé representations from Π̂I¼1ðQ2Þ in the low-Q2 region
that are of importance in determining the accuracy of the
Padé-based estimates for âLO;HVPμ . The impact of the
deviations seen in Fig. 5 on the contribution âLO;HVPμ ½Q2

max�
fromtheregion0 ≤ Q2 ≤ Q2

max is showninFig.6asafunction
of Q2

max. The upper panel shows the difference between
the various-order Padé estimates and the exact model
result, scaled as usual by âLO;HVPμ , for Q2

max in the interval
0 ≤ Q2

max ≤ 2 GeV2, while the lower panel zooms in on the
region below 0.2 GeV2 of interest here.

We see that, if one insists on using the time moments to
evaluate the contributions to âLO;HVPμ from Q2 out to
Q2

max ¼ 2 GeV2 or above, reducing the systematic error
on the evaluation to below 1% will require going to the
½2; 2�H Padé. This would necessitate evaluating time
moments with good accuracy out to tenth order, which
is likely to be a challenging task for light-quark two-point
functions.
We have seen, however, that there is no need to push the

moment-based evaluation of âLO;HVPμ ½Q2
max� out to

Q2
max ∼ 2 GeV2. In the region below Q2 ∼ 0.1–0.2 GeV2

which cannot be handled by direct numerical integration of
the lattice data, one does not need the ½2; 2�H Padé to
achieve an accurate representation of Π̂I¼1ðQ2Þ. The lower
panel of Fig. 6 shows that even the ½1; 1�H representation
is sufficient in this region, producing an estimate for
âLO;HVPμ ½Q2

max� accurate to about 0.3% for Q2
max ¼

0.1 GeV2 and to about 0.5% even for Q2
max ¼ 0.2 GeV2.

This is a potentially significant advantage, since construct-
ing the ½1; 1�H Padé requires moments only up to sixth
order. The ½2; 1�H Padé lowers the previous errors to 0.06%
and 0.2%, respectively, but it requires the eighth-order
moment in its construction.
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FIG. 5 (color online). Comparison of the exact dispersive
model results for Π̂I¼1ðQ2Þ with the Padés constructed from
the derivatives of the model with respect to Q2 at Q2 ¼ 0 in the
intervals 0 ≤ Q2 ≤ 2 GeV2 (upper panel) and 0 ≤ Q2 ≤
0.4 GeV2 (lower panel).
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It is worth emphasizing that another sequence of Padé
approximants to ΠI¼1ðQ2Þ exists; these are the multipoint
Padés of Ref. [14], for which convergence theorems also
exist [33]. These multipoint Padés actually have the same
form as the single-point, Q2 ¼ 0 Padés discussed in
Ref. [22].8 Fitting the coefficients of such Padés over a
relatively low-Q2 interval in which the Padé in question is
known to provide an accurate representation of Π̂I¼1ðQ2Þ is
thus an alternative to obtaining these coefficients by
evaluating the time moments of the two-point function.
Which of the two approaches will yield the smallest
statistical error is a topic for future investigation.
One should, however, bear in mind in this regard that the

time moments, in producing the derivatives of the sub-
tracted polarization with respect toQ2 atQ2 ¼ 0, will yield
Padés which, by construction, will be most accurate in the

low-Q2 region of primary interest for evaluating âLO;HVPμ .
The deviations of the Padé constructed in this manner from
the underlying subtracted polarization will thus lie at higher
Q2 and have a reduced impact on the error on âLO;HVPμ , if
the Padé is only used to get the low-Q2 contribution. In
contrast, in fitting the coefficients of the Padés using low-
Q2 data, the fits will inevitably be more heavily constrained
by the somewhat largerQ2 points in the fit interval, as these
will have smaller errors than the points at very low Q2. The
resulting Padé may thus be less accurate at very lowQ2, and
one may need to go to a higher-order Padé in comparison to
the moment-based approach.
We have attempted to investigate this question using fake

data constructed from the underlying dispersive model as
above. However, for current simulations using periodic
boundary conditions, the errors on the low-Q2 lattice data
are too large, and the number of Q2 points available below
∼0.2 GeV2 too small to allow successful Padé fits to be
carried out on the interval 0.1–0.2 GeV2.9

We can, however, as an interim measure, investigate this
issue using the I ¼ 1 model data and associated covariance
matrix, the latter being generated by the covariances of
the experimental τ-decay data used in constructing the
model. The errors on the resulting polarization function are
2%–3% across the low-Q2 region. Since this differs from
the situation currently seen on the lattice, the dispersive-
model-based investigation serves only to address the
feasibility and basic systematic issues of Padé fits on the
interval 0.1–0.2 GeV2. We expect that in the near future,
lattice data covering a larger subset of low-Q2 values with
smaller errors (but stronger correlations) will become
available because of the use of error-reduction techniques
[24,25] and new theoretical ideas [13,15–18,36], at which
point analogous investigations of the lattice situation will
also become possible.
Performing Padé fits to the τ-based data on the interval

between 0.1 and 0.2 GeV2, we indeed find that it is
necessary to go to the ½2; 1�H Padé if one wishes to reduce
the systematic uncertainty on the low-Q2 Padé determi-
nation of âLO;HVPμ ½0.1 GeV2� to the subpercent level.
As an example, a fit to model data at the points
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FIG. 6 (color online). Deviations of the Padé estimates for
âLO;HVPμ ½Q2

max� as a fraction of âLO;HVPμ in the intervals 0 ≤
Q2

max ≤ 2 GeV2 (upper panel) and 0 ≤ Q2
max ≤ 0.2 GeV2 (lower

panel). Note the difference in scale on the vertical axis.

8Refs. [14] and [22], unfortunately, use different notations to
specify what end up being the same Padé representation of
Π̂ðQ2Þ. The Padé denoted ½M;N� in Ref. [14] corresponds to what
is called ½M þ 1; N� in Ref. [22]. We employ the alternate
notation ½M þ 1; N�H , introduced already above, for the latter
in order to distinguish between it and the earlier notation
employed in Ref. [14].

9For example, the fake data set employed in Ref. [20], based
on the MILC covariance matrix outlined above, has only six Q2

points below 0.2 GeV2—at 0.021, 0.086, 0.109, 0.130, 0.193,
and 0.194 GeV2—the first with extremely large errors and the
final two lying too close together to provide nontrivial individual
constraints. This situation is rather typical. As another example,
the 1=a ¼ 1.37, 1.75, and 2.31 GeV nf ¼ 2þ 1 domain wall
fermion ensembles of the RBC/UKQCD Collaboration [35] have,
respectively, six, two, and one point below Q2 ¼ 0.2 GeV2, the
first point in each case again having a very large error. Even for
the 1=a ¼ 1.37 GeV ensembles, with six points below 0.2 GeV2,
only three of these points lie between 0.1 and 0.2 GeV2, at 0.144,
0.162, and 0.163 GeV2, the latter two again lying too close
together to produce meaningfully independent fit constraints.
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Q2 ¼ 0.10; 0.11;…; 0.20 GeV2 using the ½2; 1�H Padé
form, with Π̂I¼1ð0Þ a free parameter, yields an estimate
for âLO;HVPμ ½0.1 GeV2� accurate to better than 0.45% of
âLO;HVPμ . Even more useful, though not unexpected in view
of the fact that the ½2; 1�H representation is essentially
indistinguishable from the underlying model polarization
out to Q2 ≈ 0.2 GeV2, âLO;HVPμ ½Q2

max� remains accurate to
better than 0.45% out to Q2

max ¼ 0.2 GeV2. This means
that, with sufficiently good data in the interval between
Q2 ≈ 0.1 and 0.2 GeV2, one would be able to vary the
choice of boundary Q2

min between the low-Q2 and high-Q2

regions and obtain combined hybrid determinations of the
full contribution to aLO;HVPμ for several choices of Q2

min,
providing further checks on the systematics of the hybrid
approach.
Figure 7, which shows the fractional errors (relative to

the underlying dispersive model values) for the ½1; 1�H and
½2; 1�H Padés obtained from the 0.10 GeV2 ≤ Q2 ≤
0.20 GeV2 interval fit described above, provides a more
detailed understanding of why it is that a higher-order (in
this case ½2; 1�H) Padé is required to achieve the same
subpercent accuracy as was achieved with the lower-order
½1; 1�H Padé in the alternate approach employing Q2 ¼ 0
expansion coefficients. The fractional Padé errors are those
for the Padés representing the subtracted polarization,
obtained after the fit by subtracting the resulting fitted
Π̂I¼1ð0Þ term. The error bars shown in the figure display the
fractional errors on the dispersive results for the points
Q2 ¼ 0.10; 0.11;…; 0.20 GeV2 used as input to the fits.
Since the ½1; 1�H Padé constructed from the Q2 ¼ 0
expansion coefficients begins to deviate from the under-
lying dispersive model in the upper part of the fit interval
(see the bottom panel of Fig. 5), one expects the version
obtained by fitting to match the data better in the fit

window, only at the cost of deviating from the underlying
model at lower Q2. This will lead to an unphysical nonzero
fit value for Π̂I¼1ð0Þ. Since the ½2; 1�H Padé constructed
from the Q2 ¼ 0 expansion coefficients does a better job in
representing Π̂I¼1ðQ2Þ in the upper part of the fit window
employed, we expect the fitted value of Π̂I¼1ð0Þ to lie
closer to the true value 0 in this case. This expectation is,
indeed, borne out. In the ½1; 1�H case, the fitted value of
Π̂I¼1ð0Þ deviates sufficiently from 0 that, after performing
the subtraction, the resulting subtracted ½1; 1�H Padé only
barely touches the error bars of the input data to which the
unsubtracted version was fit. We thus find that the ½1; 1�H
Padé is insufficiently flexible to simultaneously fit the data
in the region of the fit window and extrapolate accurately to
the lower Q2 near 0. The extra freedom in the ½2; 1�H form
provides sufficient additional flexibility to overcome this
low-Q2 region problem. The small residual bias in the
subtracted version of the fitted ½2; 1�H form will, of course,
be reduced even further if it is possible to either move or
extend the fit window to lower Q2.

B. Conformal expansion of the
subtracted polarization

The Taylor expansion of ΠI¼1ðQ2Þ in the variable Q2

converges for jQ2j < 4m2
π. However, with 4m2

π ¼
0.078 GeV2, the radius of convergence is most likely
too small to be useful in practice. We can improve the
convergence properties by rewritingΠI¼1ðQ2Þ first in terms
of the variable

wðQ2Þ ¼ 1 − ffiffiffiffiffiffiffiffiffiffiffi
1þ z

p

1þ ffiffiffiffiffiffiffiffiffiffiffi
1þ z

p ; z ¼ Q2

4m2
π
; ð9Þ

and then expanding in w. The series

ΠI¼1ðQ2Þ ¼
X∞
n¼0

pnwn ð10Þ

should have better convergence properties than the Taylor
expansion in z, because the whole complex z plane is
mapped onto the unit disc in the complex w plane, with the
cut z ∈ ð−∞;−1� mapped onto the disc boundary. The
expansion (10) thus has radius of convergence jwj ¼ 1. In
terms of the variableQ2, this includes the positive real axis.
For the coefficients p1; p2;…; p4 needed to construct

pðwÞ up to degree 4, we find, from the derivatives of
ΠI¼1ðQ2Þ with respect to Q2 at Q2 ¼ 0 in the model, the
values p1 ¼ 0.05565 and p2 ¼ −0.06936, p3 ¼ 0.04781,
and p4 ¼ −0.01561. The resulting representations of
Π̂I¼1ðQ2Þ linear, quadratic, cubic, and quartic in w are
compared to the exact model values in Fig. 8. We observe,
from Figs. 5 and 8, that the Padé and conformal polynomial
representations with the same number of parameters lie
close to one another.
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FIG. 7 (color online). Fractional errors, relative to the under-
lying dispersive model input, on the subtracted versions of the
½1; 1�H and ½2; 1�H Padés obtained by fitting to the Q2 ¼
0.10; 0.11;…; 0.20 GeV2 dispersive model values. The points
with error bars centered at zero indicate the fractional errors on
the input data entering the fit.
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Let us look more closely at the values of âLO;HVPμ ½Q2
max�

obtained from the conformal polynomial representations.
The quadratic version, for example, yields estimates for
âLO;HVPμ ½Q2

max� 0.6% and 1% below the exact model values
for Q2

max ¼ 0.1 and 0.2 GeV2, respectively, while the
corresponding errors for the cubic representation are
0.02% and 0.04%. These numbers are to be compared to
0.3% and 0.5% for the ½1; 1�H Padé (which has the same
number of parameters as the quadratic polynomial), and
0.06% and 0.2% for the ½2; 1�H Padé (which has same
number of parameters as the cubic polynomial).
While the higher-order conformal representations

discussed above provide very accurate results for
âLO;HVPμ ½Q2

max�, one should bear in mind that their con-
struction requires as input the values of the derivatives of
Π̂ðQ2Þ with respect to Q2 at Q2 ¼ 0. As mentioned before,
these can, in principle, be obtained from the time moments
of the two-point function. Accurate determinations of
the relevant moments will thus be required to make the
conformal approach useful in this form. It is, of course, also
possible to implement the conformal representation by
fitting the coefficients of a truncated version of the
expansion in Eq. (10) to data on an interval of Q2. For
the reasons discussed already in the previous subsection,
an exploration of this possibility can, at present, not be
meaningfully carried out in the low-Q2 region using fake
data generated from the dispersive model via current lattice
covariance matrices. We must thus, again, turn to the a
study employing the τ-data-based model and its covarian-
ces. As in the analogous Padé study in Sec. III A, we find
that a representation one order higher is required to reach
the same accuracy for the fitted version as was reached
using the corresponding moment approach. Fitting the
coefficients of the cubic form to the model data at the
points Q2 ¼ 0.10; 0.11;…; 0.20 GeV2, for example, yields
estimates for âLO;HVPμ ½Q2

max� accurate to between 0.6% and
0.9% for Q2

max in the interval from 0.1 to 0.2 GeV2. The

accuracy of the fitted version in this case, though good, is
less so than what was achieved for the analogous ½2; 1�H
Padé fit. The Padé approach may thus be favored if one is
forced to fit coefficients using data over a limited range of
Q2, while the conformal approach will be most useful if
high-accuracy determinations of the time moments, and
hence the derivatives of the polarization atQ2 ¼ 0, turn out
to be achievable.

C. Chiral representations of the
subtracted polarization

In the region of interest, Q2 ≲ 0.2 GeV2, Q2 is suffi-
ciently small that ChPT should be capable of providing an
accurate representation of the subtracted polarization. It has
been known for some time that the next-to-leading-order
(NLO) representation [37–40] is not adequate for this
purpose, its slope with respect to Q2 being much less than
what is seen in either lattice data [10] or the continuum
version of the I ¼ 1 subtracted polarization discussed
above. The source of the problem is the absence, in the
NLO representation, of NLO low-energy-constant (LEC)
contributions encoding the large contributions associated
with the prominent vector meson peaks in the relevant
spectral functions. These contributions first appear
at NNLO.
The NNLO representation of the subtracted I ¼ 1

polarization function has the form [39,40]10

½Π̂I¼1ðQ2Þ�NNLO ¼ RðQ2; μÞ þ c9ðQ2; μÞLr
9ðμÞ

þ 8Cr
93ðμÞQ2; ð11Þ

where μ is the chiral renormalization scale, Cr
93 is one of

the renormalized dimensionful NNLO LECs defined in
Refs. [41], and R and c9, which also depend on mπ , mK ,
and fπ , are completely known once Q2, μ, mπ , mK , and fπ
are specified. The NLO LEC Lr

9ðμÞ is well known from an
NNLO analysis of π and K electromagnetic form factors
[42], and we take advantage of this determination in the
exploratory fits to the τ-based model data below.
In the resonance ChPT (RChPT) approach [43], which

one expects to represent a reasonable approximation for
vector channels, Cr

93 is generated by vector meson con-

tributions. The RChPT result, Cr
93∼− f2V

4m2
V
≃−0.017GeV−2

[40], where fV andmV are the vector meson decay constant
and mass, is expected to be valid at some typical hadronic
scale (usually assumed to be μ ∼mρ). This rough estimate
is well supported by the data, and the term proportional to
Cr
93 is, in fact, the dominant contribution to the rhs of

Eq. (11) for Q2 ∼ 0.1 GeV2.
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FIG. 8 (color online). Comparison of the results of the
conformal polynomial representations up to quadratic order with
the exact τ-data-based model for Π̂I¼1ðQ2Þ.

10Note that Eq. (19) of Ref. [40] contains a misprint: there
should be no factor q2 in the term proportional to ðLr

9 þ Lr
10Þ.
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In the I ¼ 1 channel, assuming Cr
93 to be dominated by

the ρ contribution, and expanding the ρ propagator to one
higher order in Q2, one obtains an NNNLO contribution of
the form CQ4 which is −Q2=m2

ρ times the NNLO con-
tribution 8Cr

93Q
2, yielding C ¼ −8Cr

93=m
2
ρ ∼ 0.23 GeV−4.

This estimate leads to a significantly larger curvature of
Π̂I¼1ðQ2Þ than predicted by the known lower-order terms,
and such a larger curvature is indeed clearly indicated by
the low-Q2 behavior of the τ-data-based model for
Π̂I¼1ðQ2Þ. Contributions to Π̂I¼1ðQ2Þ from a CQ4 term
with such a value for C already become numerically non-
negligible at Q2 ∼ 0.1 GeV2. In order to allow accurate
chiral fits over the range of interest, we thus need to
supplement the NNLO representation of Eq. (11) with an
additional CrQ4 term. Cr represents an effective NNNLO
LEC, which is mass independent at that order.11 We will
refer to the NNLO representation augmented with the CrQ4

term as the NN0LO representation below.
The NN0LO representation is governed by three LECs,

Lr
9, C

r
93, and Cr, the first of which is already known to

better than 10%. The relevant question here is whether,
with sufficiently good Euclidean time moments of the
vector correlation function, or low-Q2 data for its Fourier
transform, this form is capable of producing a representa-
tion of Π̂I¼1ðQ2Þ accurate enough to allow a subpercent
evaluation of the contribution to âLO;HVPμ from the region
Q2 ≲ 0.1–0.2 GeV2. As noted above, at present, the low-
Q2 errors on data from lattice simulations are still too large,
and theQ2 coverage too sparse, to allow this question to be
reliably explored using fake data of the type employed in
Ref. [20]. We thus investigate the systematics of the NN0LO
ChPT fit form using the τ-based I ¼ 1 model following
the same approach as employed in Secs. III A and III B for
the Padé approximant and conformal polynomial forms.
In other words, we determine the relevant LECs, and hence
the chiral representation, from the values of the derivatives
of Π̂I¼1ðQ2Þ with respect to Q2 at Q2 ¼ 0 in the model. As
mentioned before, in the lattice context these derivatives
can, in principle, be determined from the time moments of
the Euclidean correlation function.
Using mπ ¼ 139.57 MeV, mK ¼ 495.65 MeV,

fπ ¼ 92.21 MeV, and μ ¼ 770 MeV, as well as Lr
9ðμÞ ¼

0.00593 from Ref. [42], and the exact values for ΠI¼10ð0Þ
and ΠI¼100ð0Þ from our model, we find that Cr

93ðμÞ ¼−0.01567 GeV−2 and CrðμÞ ¼ 0.2761 GeV−4.12 Using

these values, Fig. 9 shows the comparison between the
exact model dispersive results for Π̂I¼1ðQ2Þ and those
obtained from the chiral representation (11). Also shown is
the chiral representation with the CrQ4 contribution
removed. The necessity of the NNNLO curvature contri-
bution is evident.
Using our chiral representation, we can compare the

value for âLO;HVPμ ½Q2
max� obtained from NN0LO ChPT with

the exact-model value. For Q2
max ¼ 0.1 GeV2, we find that

the ChPT value is 0.6% below the exact value, while for
Q2

max ¼ 0.2 GeV2, it is 1.4% below. While the value at
Q2

max ¼ 0.1 GeV2 is acceptable, this is clearly worse than
the approximation obtained using a ½1; 1�H Padé determined
from the same derivatives at Q2 ¼ 0. NNLO ChPT, which
corresponds to setting Cr ¼ 0, yields values of 4% and
18% above the exact value, at Q2

max ¼ 0.1 and 0.2 GeV2,
respectively. Clearly, the NN0LO form provides a good
representation for values of Q2 extending up to about
0.1 GeV2, but there is evidence for contributions to the
curvature in the data at higher Q2 beyond that described by
the known NLO, NNLO, andCrQ4 terms. This shows up in
the deviations from the data of the chiral curve in the region
Q2 ≳ 0.1 GeV2 in Fig. 9.
As in the case of Padés, an alternative method for

constructing a chiral representation for ΠI¼1ðQ2Þ is by fits
to lattice data at nonzero values of Q2, instead of from
derivatives at Q2 ¼ 0. Such fits will be most reliable when
employed in a fit window involving as low Q2 as possible.
From Fig. 9 and the discussion above, it follows that data at
values of Q2 below 0.1 GeV2 would be needed. In the case
of fits to Padés, we saw in Sec. III A that a sufficiently
accurate representation can in principle be obtained from
data in an interval farther away from zero, 0.1≲Q2 ≲
0.2 GeV2 if one increases the order of the Padé from ½1; 1�H
to ½2; 1�H by adding one parameter. In ChPT, such an
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4
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FIG. 9 (color online). Comparison of the results of the NN0LO
representation (11) and the τ-data-based model for Π̂I¼1ðQ2Þ
(solid curve). The dashed line shows the result including the
phenomenological term CrQ4, the dotted line the result with the
NNNLO contribution CrQ4 removed.

11The mass independence ofCr would be relevant if one wished
to use the results of chiral fits to physical-mass continuum data to
make predictions about the low-Q2 behavior of the subtracted
polarization for lattice simulations corresponding to sufficiently
small, but still unphysically heavy, light-quark masses.

12These are in rough agreement with the RChPT estimates
discussed above. We plan to present a more detailed discussion
of the chiral fits to τ-decay-based model results for Π̂I¼1ðQ2Þ
elsewhere.
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approach would imply going beyond NNNLO order. (As it
is, even the NN0LO representation is only a phenomeno-
logical version of the NNNLO representation.) With such
high orders not being available, the application of ChPT is
limited to the moment-based approach, or possibly to fits at
Q2 values below 0.1 GeV2. This means the ChPT approach
to the low-Q2 region, though potentially providing a
consistency check, is likely to be less useful than the
Padé approach. The former requires small-error data at as
low as possibleQ2 (something more difficult to accomplish
in practice) while, as shown in Sec. III A, a ½2; 1�H Padé
representation obtained by fitting to good quality data
restricted to the somewhat higher region of Q2 between
approximately 0.1 and 0.2 GeV2 can be employed to
obtain a sufficiently accurate value for âLO;HVPμ ½Q2

max� out
to Q2

max ¼ 0.2 GeV2. The Padé approach, whether imple-
mented through moments or through fitting, is thus likely to
be a more favorable one from a practical point of view.
To summarize the conclusions of this subsection, we

have shown that, in the region 0 < Q2 ≲ 0.1 GeV2, use of
NN0LO ChPT provides a representation of the subtracted
polarization accurate enough to allow the evaluation of
aLO;HVPμ ½0.1 GeV2�with a systematic error at the subpercent
level. Because lattice data at Q2 values below 0.1 GeV2

will be required to reach this level, however, use of this
ChPT-inspired fit form is likely to produce results for
aLO;HVPμ ½0.1 GeV2� with larger errors than those obtained
from Padé-based approaches.
We conclude this subsection with a brief discussion of

the low-Q2 I ¼ 0 contributions to aLO;HVPμ . As discussed
above, the NN0LO fits to the model Π̂I¼1ðQ2Þ data fix the
LECs Cr

93 and Cr. It turns out that at NNLO, the related
subtracted vector isoscalar polarization function, Π̂I¼0ðQ2Þ,
is determined by the same set of LECs as is Π̂I¼1ðQ2Þ [40].
This statement remains true of the NN0LO form as well.13

The chiral fit thus also provides us with what should be an
accurate expectation for the behavior of Π̂I¼0ðQ2Þ in the
low-Q2 region. In the isospin limit, Π̂I¼0ðQ2Þ determines
the I ¼ 0 contribution to aLO;HVPμ via14

½aLO;HVPμ �I¼0 ¼ −2α2
Z

∞

0

dQ2fðQ2Þ 1
3
Π̂I¼0ðQ2Þ: ð12Þ

Figure 10 shows the NN0LO expectation for the product
fðQ2ÞΠ̂I¼0ðQ2Þ appearing in the integrand of Eq. (12). The

corresponding I ¼ 1 product fðQ2ÞΠ̂I¼1ðQ2Þ is included
for comparison. It is clear that, though the Q2 dependence
of the two is not identical, the behavior of the I ¼ 0
integrand is sufficiently similar to that of the I ¼ 1

integrand that our conclusions regarding the low-Q2

I ¼ 1 contribution to aLO;HVPμ will also hold for the
I ¼ 0 contribution.

IV. ERRORS FOR THE HYBRID STRATEGY
AND CONCLUSIONS

We have shown that the problem of determining the LO
HVP contribution to aμ on the lattice can be profitably
approached through a hybrid strategy in which contribu-
tions fromQ2 ≥ Q2

min are evaluated by direct trapezoid rule
numerical integration of lattice data for the subtracted
polarization and those from the low-Q2 region,
0 ≤ Q2 ≤ Q2

min, by other methods. Existing lattice data
produced in simulations using periodic boundary condi-
tions, even without further improvements such as AMA
and/or the use of twisted boundary conditions, are already
sufficiently precise to allow the Q2 ≥ Q2

min contributions to
be obtained with systematic and statistical errors well
below 1% of aLO;HVPμ for Q2

min as low as 0.1 GeV2.
In evaluating contributions from the region of Q2 below

Q2
min ∼ 0.1 GeV2, we have shown, by studying a physical

model of the I ¼ 1 vector polarization function, that low-
order Padés, conformally mapped polynomials, as well as
NN0LO ChPT (NNLO ChPT supplemented by an addi-
tional curvature contribution whose physical origin is
understood) provide forms capable of representing the
subtracted polarization with sufficient accuracy to reduce
the systematic uncertainty arising from computing
âLO;HVPμ ½Q2

min� using these forms to a level well below
1% of âLO;HVPμ . In the case of the low-order Padés, this
conclusion remains in force for Q2

min out to beyond
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FIG. 10 (color online). The NN0LO ChPT expectation for the
low-Q2 behavior of the integrand for the I ¼ 0 contribution to
aLO;HVPμ . Also shown, for comparison, is the integrand for the
corresponding I ¼ 1 contribution.

13This follows because contributions of the form CrQ4 arise at
NNNLO from terms in the effective Lagrangian involving six
derivatives and no quark-mass factors. Such terms will produce
SUð3Þ-flavor-symmetric contributions to the vector current two-
point functions.

14Our normalization is such that Π̂I¼0ðQ2Þ ¼ Π̂I¼1ðQ2Þ in the
SUð3Þ-flavor limit, with Π̂I¼1ðQ2Þ the subtracted polarization for
the flavor-ud I ¼ 1 vector current.
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0.2 GeV2. In contrast, systematic errors associated with the
use of the NN0LO ChPT form grow to about 1.4% of
âLO;HVPμ for Q2

min ∼ 0.2 GeV2.
A promising approach to the low-Q2 region, from a

systematic point of view, appears to be that involving the
Padés constructed from the derivatives of the polarization
function with respect toQ2 atQ2 ¼ 0. These derivatives can
be obtained from time moments of the zero-spatial-momen-
tum two-point function [22]. The hybrid approach allows use
of a lower order than would otherwise be possible, with the
½1; 1�H Padé already being sufficient to produce a systematic
error on the determination of âLO;HVPμ ½Q2

min� safely below 1%
for Q2

min out to beyond 0.2 GeV2. Reducing the order of the
Padé employed has the advantage of reducing the order to
which the time moments must be evaluated with good
accuracy, and thus represents a practical advantage in view of
the expectation that light-quark moment errors will grow
rapidly with increasing order. Constructing the ½1; 1�H Padé
requires moments only out to sixth order. In contrast,
evaluating the contribution to âLO;HVPμ out to 2 GeV2 with
subpercent accuracy would require at least the ½2; 2�H Padé,
and hence time moments out to at least tenth order.
We have also shown that a multipoint implementation of

the Padé approach [14], in which the parameters of the
Padés are fit rather than obtained from moments, is also
feasible. This version has the advantage that, with suffi-
ciently good data, it can be successfully implemented using
only data from the region ofQ2 between approximately 0.1
and 0.2 GeV2, where lattice data errors are typically
significantly smaller than at lower Q2. To reach subpercent
accuracy in this implementation, however, requires going to
the ½2; 1�H Padé.15

The approach using polynomials in the conformally
transformed variable w also looks promising, provided
again that moment evaluations of the derivatives of ΠðQ2Þ
with respect to Q2 at Q2 ¼ 0 reach a sufficient level of
accuracy. If one is forced to estimate the polynomial
coefficients by fitting, however, this approach looks less
favorable than the corresponding Padé approach.
While in principal also usable, the ChPT-based approach

appears to us to require better lattice data to reach the same
level of precision than do the two Padé approaches. This is
a consequence of (i) the necessity of performing the NN0LO
fits on intervals restricted to Q2 ≲ 0.1 GeV2 if one wishes
to keep the associated systematic errors at the subpercent
level, and (ii) the fact that errors on lattice data are typically
significantly larger below Q2 ∼ 0.1 GeV2 than they are in
the interval between 0.1 and 0.2 GeV2.
Current low-Q2 lattice data are not yet sufficiently

precise to produce subpercent-level statistical errors on
the low-Q2 contributions aLO;HVPμ ½Q2

min�. To understand
what might be required to reach the desired precision, it

is convenient to consider the case of the moment approach,
specifically the ½1; 1�H Padé representation of the subtracted
polarization,

Π̂ðQ2Þ ¼ ΠðQ2Þ − Πð0Þ ¼ a1Q2

1þ b1Q2
; ð13Þ

which we know is sufficient to produce systematic
uncertainties well below 1%. Errors δa1 and δb1 on the
parameters a1 and b1 produce associated errors

δa1a
LO;HVP
μ ½Q2

min�

¼ −4α2
Z

Q2
min

0

dQ2fðQ2Þ
�

Q2

1þ b1Q2

�
δa1;

δb1a
LO;HVP
μ ½Q2

min�

¼ −4α2
Z

Q2
min

0

dQ2fðQ2Þ
�
− a1Q4

ð1þ b1Q2Þ2
�
δb1: ð14Þ

on aLO;HVPμ ½Q2
min�. Let us now consider the I ¼ 1 analogue,

for which we can quantify these uncertainties using our
τ-data-based model. Taking the central values for a1 and b1
from the ½1; 1�H Padé version obtained from the derivatives
of the model polarization with respect to Q2 at Q2 ¼ 0,
scaling the errors, as usual, by âLO;HVPμ , and defining
ca1 ½a1; b1; Q2

min� and cb1 ½a1; b1; Q2
min� by

δa1 â
LO;HVP
μ ½Q2

min�
âLO;HVPμ

¼ ca1 ½a1; b1; Q2
min�

δa1
a1

;

δb1 â
LO;HVP
μ ½Q2

min�
âLO;HVPμ

¼ cb1 ½a1; b1; Q2
min�

δb1
b1

; ð15Þ

we find, for example, that

ca1 ½a1; b1; 0.1 GeV2� ¼ 0.818;

cb1 ½a1; b1; 0.1 GeV2� ¼ −0.0488; ð16Þ
and

ca1 ½a1; b1; 0.2 GeV2� ¼ 0.913;

cb1 ½a1; b1; 0.2 GeV2� ¼ −0.0724: ð17Þ

It follows that a subpercent error on a1 will be sufficient
to obtain a subpercent error on âLO;HVPμ ½Q2

min� for Q2
min ≤

0.2 GeV2, provided the errors on b1 remain at the
few-percent level, regardless of how correlated the fit
parameters a1 and b1 might be. The parameter a1 is
determined by the slope of the subtracted polarization with
respect toQ2 atQ2 ¼ 0, and b1 by the ratio of the curvature
to the slope. A useful rule-of-thumb goal emerging from
this exercise is thus that, to reach the subpercent error level,
one should aim at reducing the error on the slope parameter
a1, whether obtained from the fourth-order time moment,15The ½1; 1� Padé in the notation of Ref. [14].
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or from fitting, to the subpercent level. Further quantitative
studies using our τ-based model will become possible once
covariance matrices associated with AMA-improved data
with twisted boundary conditions become available. This
will allow us to construct fake data sets based on the model
but with realistic errors and correlations from the point of
view of the lattice.
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